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Introduction

Hamiltonians with zero-range interactions (also known as contact or point interactions) are

often used in Quantum Mechanics as toy models to describe low energy behaviors of a (non-

relativistic) particle system. The advantage in exploiting this kind of interaction is due to the

simplicity of its structure, which allows in many cases to explicitly compute the quantities of

main interest. At least formally, the two-body zero-range interaction is characterized by a single

physical parameter known as two-body scattering length a ∈ R defined by

a := − lim
|k|→ 0

f0(k).

Here k denotes the wave number and f0 is the s-wave1 scattering amplitude (associated with

angular momentum ℓ=0) of the two-body scattering process, which corresponds to an isotropic

differential cross section, i.e. |f0(k)|2 = |f0(|k|)|2. It is well known that for a quantum gas at

low temperature, the average thermal wavelength (behaving as T− 1
2 at low temperatures T for

massive particles) is much larger than the typical range of a pairwise short-range interaction. In

this situation universal behaviors are very likely to appear, namely, some phenomenon could rise

with the peculiarity of not being dependent on the specific structure of the two-body interaction

but only on the parameter a. Indeed, since the details of the two-body potential cannot be resolved,

it is reasonable to expect that a n-particle system in dimension d is effectively described by the

following formal Hamiltonian

H̃ = −
n∑

i=1

ℏ2

2mi

∆xi
+
∑

1≤ i<j≤n

νij δ(xi − xj)

where ℏ stands for the reduced Planck’s constant (we set ℏ = 1 henceforth), xi ∈ Rd repres-

ents the position of the i-th particle and mi its mass, while νij is a coupling constant related to

the two-body scattering length associated with the subsystem composed of the particles i and j.

These kind of Hamiltonians are widely used in the physical literature in describing several low

energy phenomena ranging from nuclear physics to condensed matter physics. We list here some

important examples.

• In a three-body system, the first theoretical analysis of the Efimov effect [14], that is, roughly

speaking, the emergence of an infinite sequence of three-body bound states accumulating
1In the fermionic case the low energy behavior is described by a scattering process in the p-wave, i.e. ℓ= 1 and

the differential cross section generally depends on the scattering angle.
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at the threshold of the essential spectrum, was carried out adopting (formal) zero-range

interactions and a suitable three-body regularization.

• The Kronig–Penney model describes an electron in a one-dimensional periodic lattice of

positive ions, whose potential can be represented by a delta-periodic pseudo-potential [34].

• The first derivation of the Lee-Huang-Yang formula [23] for the ground state energy per unit

volume of a diluted Bose gas was obtained using (formal) zero-range interactions.

However, the mathematical construction of such Hamiltonians as self-adjoint (s.a.) and, possibly,

lower bounded operators in a proper Hilbert space requires some care.

In general, they are constructed as s.a. extensions of the free Hamiltonian restricted on the space

of H2-functions vanishing on the coincidence hyperplanes, namely those hyperplanes in which

the contact interaction occurs

π :=
⋃

1≤i< j≤n

{(x1, . . . ,xn)∈Rdn |xi =xj}.

STATE OF THE ART

In the case of a particle scattering against a fixed point through a zero-range interaction, namely

the one-body case (n=1), a complete theory is available ([1]). As an example, since in this thesis

we shall focus on dimension three, let us consider a system composed of two (distinguishable)

spinless particles interacting via a zero-range interaction in R3. Clearly, this represents a one-body

problem with scattering point at the origin, once the center of mass reference frame is adopted.

The free Hamiltonian is simply given by

h = − 1

2µ
∆r , µ =

m1m2

m1 +m2

with r the relative coordinate and µ the reduced mass. The restriction of h on the domain of

smooth functions vanishing in the origin has defect indices (1, 1) and a one-parameter family

of s.a. extensions {hα}α∈R can be explicitly constructed. In particular hα all act the same as h in

H2
0 (R3∖{0}) and ψ ∈D(hα)⊂H2(R3∖{0}) satisfies the following singular boundary condition

ψ(r) =
q

|r|
+ αq + o(1) , |r| −→ 0+

where q ∈ C is a constant depending on the specific choice of ψ and α is related to the two-body

scattering length a via the relation

a = − 1

α
.

Notice that the strength of the point interaction goes to zero if |α| → +∞. In the simple case of

hα all the spectral properties can be characterized.

The situation is in general much more difficult in the n-body case, since the dimension of the
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aforementioned defect space becomes infinite and the dimensionality of the space d plays a cru-

cial role.

In particular, the case d = 1 is relatively simple, since perturbation theory applies and the model

is well understood (see, e.g., [4], [22] for recent contributions).

In dimension two, using a more thorough version of the strategy adopted in the one-body case,

the s.a. and bounded from below Hamiltonian can be constructed (see [11], [13]) and analysed in

detail (for instance, in [21] the zero-range model is achieved as an approximation of Schrödinger

operators with suitably rescaled potentials in the norm-resolvent sense).

In dimension three new difficulties come to light concerning the energetic stability of the system.

Let us consider for simplicity the case n= 3 for three identical spinless bosons of mass 1
2
. Adopt-

ing the Jacobi coordinates (see (1.1) for more details) in the center of mass reference frame, the

free Hamiltonian is given by

H = −∆x −
3

4
∆y .

The problem consists in defining a rigorous Hamiltonian encoding a contact interaction as a per-

turbation ofH supported on the coincidence hyperplanes π. However, as already mentioned above,

the defect space of the restriction of H on the space of regular functions vanishing on π is infinite-

dimensional. This means that one has to choose properly the s.a. extension so that the right phys-

ical properties are satisfied. A first attempt, based on the analogy with the one-body case, has

been made by Ter-Martirosyan and Skornyakov in [35], where they defined a Hamiltonian Hα

acting the same as H outside the coincidence hyperplanes and whose domain fulfills the so-called

Ter-Martirosyan Skornyakov (TMS) boundary condition

ψ(x,y) =
ξ(y)

|x|
+ α ξ(y) + o(1) , for |x| −→ 0+ and y ̸= 0

where ξ is a function depending on ψ ∈ D(Hα). Unfortunately, as first observed by Danilov [10]

and then rigorously analysed by Minlos and Faddeev ([26, 27]), the operators Hα dictated by

imposing the TMS boundary condition turn out to be symmetric but not s.a. and all their s.a.

extensions need to take into account an additional boundary condition associated with the triple

coincidence point x=y=0. However, all these s.a. extensions are unbounded from below, hence

the Hamiltonians Hα defined in [26] are unsatisfactory from the physical point of view. Such

instability property is known in physical literature as Thomas effect, or Thomas collapse, and it

refers to the situation in which one has an infinite sequence of bound states whose energy accumu-

lates at −∞. In particular, this fact has been proved in [27] for the TMS Hamiltonian together with

the presence of the Efimov effect. It is known, since the ’30s when the paper [36] was published,

that the aforementioned ultraviolet singularity is due to the fact that the interaction becomes too

strongly attractive when all the three particles coincide (see also the recent papers [25], [19] and

the references therein) unless the system is entirely composed of (half-integer spin) fermions, in

which case the anti-symmetry provides stability2.
2The situation is different for systems made of two species of (spinless) fermions, for which the TMS Hamiltonian

turns out to be s.a. and bounded from below for certain regimes of the mass ratio (see, e.g., [8, 9], [17], [29, 30]).
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Nevertheless, Minlos and Faddeev suggested at the end of [26] how to construct a regularized

version of the Hamiltonian for a system of three bosons. Roughly speaking, the idea is to intro-

duce an effective scattering length which vanishes when the position of two particles coincides

and the third particle is getting closer to the common position of the first two, whereas the usual

two-body point interaction is restored as soon as this third particle is far enough. In this sense,

one introduces a three-body repulsion that reduces to zero the strength of the interaction between

two particles “only” when the third particle is getting closer (actually it turns out that the range of

such a three-body repulsion can be chosen arbitrarily short). More precisely, Minlos and Faddeev

claimed that a lower bounded Hamiltonian can be obtained by replacing α 7−→ αM in the TMS

boundary condition with

(αM ξ̂)(p) := αξ̂(p) + (K ξ̂)(p)

where K is a given convolution operator with kernel K(p− p′) having the asymptotic behavior

K(q) ∼ γ

|q|2
, for |q| −→ +∞

provided γ large enough. Unfortunately, the proof of this statement has never been disclosed by

the authors. Later, in the early ’80s, Albeverio et al. proposed at the end of [3] another way of

constructing a lower semi-bounded Hamiltonian encoding a contact interaction, again replacing α

with a new position-dependent parameter given by

αA(y) =
δ

|y|
+O(1) , for y −→ 0

with δ > 0 to be chosen large enough. Also in this case a proof of this claim is lacking since they

postponed the discussion of this problem in a forthcoming paper that has never been published.

However, we can observe that comparing the idea introduced by Minlos and Faddeev with theirs,

the former is essentially the Fourier transform of the latter. Nevertheless, in the position-space rep-

resentation the heuristic meaning of the replacement is more intuitive. Indeed, as the third particle

approaches the other two interacting particles we have y−→ 0 and the effective scattering length,

hence the interaction, is vanishing in this limit.

The suggestion made by Minlos and Faddeev was finally developed (taking account of the the ef-

fective scattering length in its position representation) by some recent works ([18], [25, section 9],

[5], [19, section 6]) dealing with a three-boson system with zero-range interactions. The common

result is that the regularization needed to heal the ultraviolet singularity consists in a sort of renor-

malization of the coupling constant. More precisely, the “bare” constant α, henceforth denoted by

α0 =−1
a

in order to avoid confusion, is replaced with a sort of “running coupling constant”, which

is a function depending on the position of the particles. Such a function is characterized by the

asymptotic behavior pointed out by Albeverio et al., with a proportionality constant γ, to which

we refer to as the strength of the regularization. It turns out that γ must be larger than a certain

threshold parameter γc in order to obtain a bounded from below Hamiltonian.

It is worth to mention that Albeverio et al. proposed in [2] an alternative method to construct
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lower bounded zero-range n-body Hamiltonians in dimension three based on the theory of Di-

richlet forms. The method is relatively simple and allows one to define a s.a. extension of the

free Hamiltonian restricted to smooth functions vanishing on the coincidence hyperplanes, thus, a

n-body Hamiltonian with contact interactions. Such a method has also the advantage of providing

the infimum of the spectrum as a preassigned non-positive value. Still, the construction of this

Hamiltonian is rather implicit and it is not clear from their analysis which boundary condition the

elements of the operator domain should satisfy on the coincidence hyperplanes. In other words,

the domain of the Hamiltonian is not explicitly characterized and therefore it is not evident what

kind of s.a. extension is being constructed. A further intrinsic limitation of the method is the fact

that the two-body scattering length (i.e., when all the other particles are far away) must be non-

negative. This fact is intuitively clear by analogy with the simple case of a particle subject to a

point interaction placed at the origin.

MAIN RESULTS

In this thesis we shall further develop the Minlos-Faddeev regularization applied to different

problems, solving different physical situations (examples of which are given below), involving

zero-range interactions.

More precisely, in chapter 1 the three-boson system is taken into account, recalling known facts

from literature in order to introduce the notation and the required machinery and, afterwards, two

new results are proven. Firstly, we show that the threshold parameter γ3bc found in [5] is optimal in

a proper sense. As a second result, we provide an alternative proof of the lower semi-boundedness

of the Hamiltonian that is much simpler and more intuitive, even if a little price in terms of gener-

ality needs to be paid since we have to require a slightly larger threshold parameter. This approach

has the additional advantage of isolating an explicit negative contribution (containing the singu-

larity) of the quadratic form associated to the energy of the system and, therefore, the choice of

the regularizing term necessary to compensate such a negative contribution becomes manifest. In

other words, this method justifies the asymptotic behavior of the effective scattering length at the

triple coincidence point.

In chapter 2, we consider a system composed of N identical non-interacting bosons interacting

only with a different particle. We shall see that one can find a bijection between the quadratic form

associated to this system and the analogous quadratic form of [5] describing 2 bosons interacting

with the impurity. We take advantage of this fact to reproduce step by step analogous results to

the ones only briefly mentioned in chapter 1. Moreover, we stress that the existence of such a

correspondence implies that a three-body regularization is sufficient to heal also the singularity of

this problem and further n-body repulsions, with n > 3 are not necessary. However, it turns out

that the analysis adopted in the three-body case cannot be satisfactorily applied in our situation

and we provide the solution with the development of new techniques. More precisely, the novelty

introduced here is an order by order approximation (the content of section 2.4) carried out for all
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angular momenta needed in order to obtain the boundedness from below of the Hamiltonian for

any value of N . In short, the approach exploited in [5] takes account only of the lower angular

momenta and, although it works fine for three bosons, some of the adopted estimates fail as soon

as N grows large enough (see the end of section 2.1 for more details).

In chapter 3 we analyze the case of an interacting Bose gas via regularized zero-range interactions.

In this framework, a new kind of singularity emerges associated with the coincidence of two pairs

of interacting particles (corresponding to the quadruple coincidence point). Adopting the intuitive

approach developed in section 1.3 we are able to prove stability by taking into account an addi-

tional four-body regularization, required to handle this new singular behavior. Furthermore, we

compare the results obtained in [2] with ours and we show that the class of Hamiltonians defined

there via Dirichlet forms is a particular case of the much wider family of s.a. extensions construc-

ted in this thesis (see proposition 3.6 in section 3.4).

In appendix A we recall some abstract facts exploited throughout the text concerning the theory

of s.a. extensions.

In appendix B we state some useful technical fact.

POSSIBLE PHYSICAL APPLICATIONS

Here we provide some physical motivations and possible applications of the mathematical

results obtained in this thesis.

In chapter 1 we take into account a three-body system that is a rather peculiar problem in non-

relativistic Quantum Mechanics since, in suitable conditions of the interaction, a very counter-

intuitive universal phenomenon could rise, i.e. the Efimov effect ([14]) which is a purely quantum

phenomenon. Despite the absence of bound states in the two-particle subsystems, infinitely many

Borromean3 bound states can emerge in the system of three particles, if at least two of the three

two-particle subsystems exhibit a zero-energy resonance. Such a crucial condition corresponds,

in short, to the existence of a solution of the two-body Schrödinger equation at zero energy that

is only locally integrable and decays at infinity too weakly to be an eigenfunction of the two-

body Hamiltonian. Heuristically, these non-integrable solutions contribute to the emergence of an

effective long-range potential regardless the detail of the two-body interaction, whose range, on

the other hand, can be remarkably chosen arbitrarily short. Furthermore, this kind of universal

effective long-range potential is responsible for the infinite sequence of eigenvalues accumulating

at zero with the asymptotic geometric law

lim
n→+∞

En+1

En

= e−
2π
σ

with σ > 0 depending on the mass ratio of the particles and the statistics4 of the problem. How-
3A three-body Borromean bound state is characterized by the fact that if any of the three particles were removed,

no bound states would be left.
4The Efimov effect does not take place in case of three identical fermions.
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Figure 1: Infinitely many three-body bound states fall into the continuum spectrum as soon as the attractive

pair interaction grows strong enough to destroy the zero-energy resonance.

ever, a rigorous proof of this behavior for usual two-body potentials is still lacking. In case of

contact interactions, such asymptotic geometric law can be explicitly obtained when α0 = 0 (cor-

responding to the resonant case), as pointed out e.g. in [3] and [18], still the Thomas collapse also

occurs and therefore the result is unsatisfactory. In principle, the meaning of the Minlos-Faddeev

regularization is to heal the ultraviolet singularity leaving untouched the infrared structure of the

spectrum. This means that the Hamiltonian discussed in chapter 1 is a reasonable candidate for

trying to prove the geometrical law for regularized contact interactions in an energetically stable

system.

In chapter 2, we consider a gas of bosons that interact only with another particle. Impurity

problems are often studied in condensed matter physics as toy models aimed at obtaining pre-

liminary information about a more complicated situation. Furthermore, they also find concrete

Figure 2: Illustration of the Holstein (left)

and Fröhlich (right) polaron.

applications from semiconductors to polarons. In the lat-

ter case we mention the situation in which one has a

low-energy light particle (e.g. an electron) interacting

with the quasi-particles (e.g. phonons) of a polar crystal

whose structure is locally deformed by the induced po-

larization of the field. The entity composed of the inter-

action carrier and such induced polarization of the field

is called “Polaron” and it is characterize by an effective

mass and its response to external solicitations (e.g. a magnetic field). In case of a large (Fröhlich)

polaron the lattice can be approximated with the continuum, since the de Broglie wave length is

much larger than the lattice space of the medium. Alternatively, when the self-induced polariz-

ation becomes of the order of the lattice parameter, a small (Holstein) polaron can arise. In this

situation, one may be interested in evaluating the ground state energy of the system in a proper
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limit regime. For instance, one can take account of a strongly-coupled (quasi) classical limit5 that

tends to treat the field variables classically and leaves untouched the quantum nature of the light

particle ([33]). Typically, this kind of problems are solvable either in a strongly-coupled regime

or in a weakly-interacting one and a unified theoretical description valid for arbitrary coupling

strengths constitutes a challenging task. In this sense, defining a proper polaron model with a reg-

ularized contact interaction may be a promising simplification aimed at looking for further results

in this direction.

In chapter 3 we study a gas of interacting bosons. Probably the most popular phenomenon

concerning a Bose gas is Bose-Einstein condensation (BEC), that is roughly speaking a transition

phase occurring at extremely low temperatures in which the lowest quantum state is occupied

Figure 3: The emerging of the condensate.

by a macroscopic number of particles.

More precisely there exists a critical

temperature below which the condens-

ate appears and lower the temperature,

larger the number of particles occupy-

ing the ground state. Such a ground

state ψ is normalized in such a way

that ∥ψ∥2L2(R3) represents the number

of particles in the condensate. One finds out, using mean-field theory, that ψ solves the Gross-

Pitaevskii equation (GPE) at temperature T = 0(
− 1

2m
∆x + V (x) +

4πa

m
|ψ(x)|2

)
ψ(x) = µψ(x)

where V and µ stand for the external and the chemical potential, respectively. However mean-

field theory does not take into account correlations that play actually a crucial role in BEC as

soon as T > 0 and some correction is therefore required (in the dilute Bose gas Lee-Huang-Yang

formula applies [23]). In particular, many results are known concerning a confined Bose gas in

the mean-field regime (frequent, weak interactions) and the Gross-Pitaevskii regime (rare, strong

interactions), however, studying in general a confined interacting Bose gas in the thermodynamic-

limit, i.e. sending the number of particles and the size of the confining box to infinity keeping

constant their ratio (a macroscopic quantity, namely the density), is still an open problem and

only partial results are known. The hope is that a regularized contact interaction may represent

a simplified version of the problem similarly to what has been done in [28] for a Fermi gas.

Moreover, in the thermodynamic-limit the scale of the regularization should be negligible, hence

we believe that in principle it is possible to define a proper scaling of the regularization so that it

vanishes in the limit.
5The difference between the semi-classical limit morally consists in sending to zero the commutators associated

to the field variables instead of the Planck’s constant.
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NOTATION

For the reader’s convenience, we collect here some of the notations adopted in the thesis.

• Given the Euclidean space (Rd, ·), x is a vector in Rd, x= |x| is its magnitude and, if x ̸= 0

we set x̂ = x
x
∈ Sd−1.

• S(Rd) denotes the space of Schwartz functions.

• For any p ≥ 1 and Ω open set in Rd, Lp(Ω, µ) is the Banach space of p-integrable functions

with respect to the Borel measure µ. We use Lp(Ω) in case µ is the Lebesgue measure and

we denote ∥·∥p := ∥·∥Lp(Rd).

• If H is a complex Hilbert space, we denote by ⟨· , ·⟩H , ∥·∥H :=
√
⟨· , ·⟩H the inner product

and the induced norm, respectively.

• if H = L2(Rd), we simply denote by ⟨· , ·⟩, ∥·∥ the inner product and the norm.

• F : ψ 7−→ ψ̂ is the Fourier transform of ψ ∈ L2(Rd).

• Hs(Rd) is the standard Hilbert-Sobolev space of order s > 0 in Rd.

• f |π ∈ Hs(Rdn) is the trace of f ∈ Hs+ d
2 (Rd(n+1)) on the hyperplane π of codimension d.

• Given X and Y Hilbert spaces, L (X, Y ) and B (X, Y ) denote the Banach spaces of the

linear operators and the linear, bounded operators from X to Y , respectively.

• Moreover, L (X) := L (X,X) and B (X) := B (X,X).

• Given an integral operator A ∈ L (L2(Y ), L2(X)), we denote by A
(
x
y

)
its kernel, with

x∈X and y ∈ Y .

• Given X and Y two Hilbert spaces, if A : D(A) ⊆ X −→ Y is a densely defined, linear

and closed operator, ρ(A) denotes its resolvent set and RA(z) ∈B (Y,D(A)) its resolvent

operator, with z ∈ ρ(A).
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1. THREE-BOSON SYSTEM

The aim of this chapter is to describe the construction of a Hamiltonian encoding a regularized

point interaction following the approach developed in [5] and also to prove two further results

([16]). More precisely, in section 1.1 we introduce the notation and we formulate the main result

of [5], essentially based on the analysis of a suitable quadratic form Q. Such analysis shall be

resumed in detail in the next chapter, with proper slight modifications due to the different system

taken into account.

In section 1.2 we prove that the threshold value γ 3b
c obtained in [5] is optimal, in the sense that

for γ < γ 3b
c the quadratic form Q is unbounded from below and therefore no Hamiltonian can be

defined.

In section 1.3 we give a different proof of the lower boundedness of the regularized Hamiltonian

based on a new approach in position space. This method loses a bit of generality in the sense that

it is valid only for γ strictly greater than a certain γ̄ 3b
c , with γ̄ 3b

c > γ 3b
c , nevertheless, it has the

advantage to be considerably easier and to isolate an explicit negative contribution (containing

the singularity) of the quadratic form Q (see proposition 1.5). This fact shows that the choice of

the three-body force is not arbitrary but it is manifestly dictated by the inherent singularity of the

problem.

1.1 REGULARIZED HAMILTONIAN

Figure 1.1: Jacobi coordinates associ-

ated with the pair (i, j).

Let us consider a system composed of three identical

spinless bosons of mass 1
2

in three dimensions and let us

fix the center of mass reference frame so that x1, x2 and

x3 = −x1 − x2 represent the Cartesian coordinates of the

three particles. We also introduce the Jacobi coordinatesrk :=
1
2

∑3
i,j=1 ϵijk(xi − xj),

ρk :=
3
2
xk − 1

2

∑3
ℓ=1 xℓ,

k ∈{1, 2, 3} (1.1)

where ϵijk is the Levi-Civita symbol, so that one has the following identitiesrk±1 = −1
2
rk ∓ ρk,

ρk±1 = ±3
4
rk − 1

2
ρk,

k ∈ Z⧸{3}. (1.2)
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Denoting by x = r1 = x2 − x3 and y = ρ1 = x1 − x2 +x3

2
, the Hilbert space of the system is

H3b :=
{
ψ ∈ L2(R6)

∣∣ ψ(x,y) = ψ(−x,y) = ψ
(
1
2
x+ y, 3

4
x− 1

2
y
)}
. (1.3)

Indeed, notice that the symmetry conditions in (1.3) corresponds to the exchange of particles 2, 3

and 1, 2 that implies also the condition ψ(x,y) = ψ
(
1
2
x− y,−3

4
x− 1

2
y
)
, associated with the

exchange of particles 3, 1. If the bosons interact via zero-range forces, then the system is described,

at least formally, by the Hamiltonian

H̃ = −∆x − 3
4
∆y + ν δ(x) + ν δ(y + 1

2
x) + ν δ(y − 1

2
x) (1.4)

where ν ∈R is a coupling constant (related to the two-body scattering length) and we denote by

H0 the free Hamiltonian of the system, i.e.

H0 = −∆x − 3
4
∆y, D(H0) = H2(R6) ∩H3b . (1.5)

As already mentioned in the introduction, in order to define a rigorous counterpart of H̃, one needs

to build a perturbation of the free Hamiltonian supported on the coincidence hyperplanes

πk :=
{
(rk,ρk)∈ R6

∣∣ rk= 0
}
, π :=

⋃ 3
k=1 πk (1.6a)

or, equivalently,

π1 :=
{
(x,y)∈R6

∣∣ x = 0
}
, π2 :=

{
(x,y)∈R6

∣∣ y = −1
2
x
}
,

π3 :=
{
(x,y)∈R6

∣∣ y = 1
2
x
}
.

(1.6b)

In other words, we look for a s.a. and bounded from below extension in H3b of the following

symmetric, densely defined and closed (with respect to the graph norm ofH0) operator

Ḣ0 := H0

∣∣
D(Ḣ0)

, D(Ḣ0) := H2
0 (R6 \ π) ∩H3b . (1.7)

In particular, we are interested in the family of s.a. extensions studied in [5] whose domain, at

least formally, are characterized by the boundary condition

ψ(x,y) =
ξ(y)

x
+ α(y)ξ(y) + o(1) , x −→ 0+, (1.8)

where α is a position dependent parameter given by

α : R3−→R,

y 7−→ α0 +
γ

y
θ(y)

(1.9)

with γ a positive parameter representing the strength of the regularization and θ : R+ −→ R an

essentially bounded function satisfying

1− r
b
≤ θ(r) ≤ 1 + r

b
, for some b > 0. (1.10)

We observe that the function θ, by assumption (1.10), is positive in a neighborhood of the origin

and it is continuous at zero, with θ(0) = 1. We also stress that the simplest choices for the function

θ could be
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• the identically constant function,

• the characteristic function 1b(·) of the ball of radius b centered in the origin,

• the exponentially decaying function exp
(
− | · |

b

)
.

Furthermore, due to the symmetry constraints of H3b , boundary condition (1.8) implies

ψ(x,y) =
ξ
(
3
4
x− 1

2
y
)∣∣y + 1

2
x
∣∣ + α

(
3
4
x− 1

2
y
)
ξ
(
3
4
x− 1

2
y
)
+ o(1) , y −→ −1

2
x,

ψ(x,y) =
ξ
(
−3

4
x− 1

2
y
)∣∣y − 1

2
x
∣∣ + α

(
−3

4
x− 1

2
y
)
ξ
(
−3

4
x− 1

2
y
)
+ o(1) , y −→ 1

2
x.

Observe that for γ = 0 equation (1.8) reduces to the standard TMS boundary condition, which

leads to the Thomas effect. Then, for γ > 0 we are introducing a three-body repulsion meant to

regularize the ultraviolet singularity occurring when the positions of all particles coincide. How-

ever, if one additionally assumes θ compactly supported, the usual two-body point interaction is

restored when the third particle is far enough.

The procedure adopted in [5] for the rigorous construction of the Hamiltonian is the following:

one first introduces the quadratic formQ in H3b describing, at least formally, the expectation value

of the energy of our three-body system. Then one defines a suitable form domain D(Q) and proves

that Q,D(Q) is closed and bounded from below. Finally, the Hamiltonian is defined as the unique

s.a and bounded from below operator associated to such a quadratic form. In other words, one

properly defines the energy form describing (at least heuristically) the desired properties of the

system in order to construct an associated Hamiltonian (see [5, section 2] or the analogous case

discussed in appendix 2.B).

To this end, we first need to introduce the hermitian quadratic form Φλ in L2(R3) given by [5,

equation (3.1)] for λ> 0, namely

Φλ := Φλ
diag+ Φλ

off + Φreg+ Φ0, D(Φλ) = H1/2(R3), (1.11)

where
Φλ

diag[ξ] := 12π

∫
R3

dp
√

3
4
p2 + λ |ξ̂(p)|2, (1.12a)

Φλ
off [ξ] := −

12

π

∫
R6

dpdq
ξ̂(p) ξ̂(q)

p2 + q2 + p ·q + λ
, (1.12b)

Φreg[ξ] :=
6γ

π

∫
R6

dpdq
ξ̂(p) ξ̂(q)

|p− q|2
, (1.12c)

Φ0[ξ] := 12π

∫
R3

dy β(y)|ξ(y)|2, β : y 7−→ α0 + γ
θ(y)− 1

y
. (1.12d)

By assumption (1.10), one has β ∈ L∞(R3) and therefore Φ0 is bounded. This means that Φ0

cannot play any role in the compensation of the singularity contained in Φλ
off . The proof of the fact

that Φλ is well defined in H1/2(R3) is relatively standard and it is given in [5, proposition 3.1].

17



The more relevant point concerning Φλ is that it is coercive for λ large enough as long as γ > γ 3b
c ,

with

γ 3b
c :=

4

3
−
√
3

π
≈ 0.782004. (1.13)

The proof is given in [5, proposition 3.6] and it is based on a rather long and non trivial analysis

performed in the momentum representation (a similar discussion is provided in chapter 2). The

conclusion is that there exists λ0 > 0 such that Φλ is closed and bounded from below by a positive

constant for each λ > λ0 and γ > γ 3b
c . Therefore one can uniquely define a s.a., positive and

invertible operator Γλ in L2(R3) such that

Φλ[ξ] = ⟨ξ, Γλξ⟩, ∀ ξ ∈ D (1.14)

with D=D(Γλ) a dense subspace independent of λ.

Next, defining the continuous1 operator (see proposition B.4)

τ : D(H0) −→ L2(R3),

φ 7−→ 12π φ|π1

(1.15)

satisfying ran(τ) = H
1
2 (R3) and ker(τ) = D(Ḣ0), one can check that2 the injective operator

G(z) := (τRH0(z̄))
∗∈ B(L2(R3),H3b) with z ∈ ρ(H0) is represented in the Fourier space by

(G(z) ξ̂)(k,p) =

√
2

π

ξ̂(p) + ξ̂
(
k− 1

2
p
)
+ ξ̂
(
−k− 1

2
p
)

k2 + 3
4
p2 − z

. (1.16)

Indeed, let (k,p) be the conjugate coordinates of (x,y) and H3b in the space of momenta reads

FH3b =
{
ψ̂ ∈ L2(R6)

∣∣ ψ̂(k,p) = ψ̂(−k,p) = ψ̂
(
1
2
k + 3

4
p,k − 1

2
p
)}

that encodes the bosonic symmetry under the exchange of particles 2, 3 and 1, 2, that clearly also

implies the symmetry by exchange of particles 3, 1, i.e. ψ̂(k,p) = ψ̂
(
1
2
k − 3

4
p,−k − 1

2
p
)
.

We are now in position to introduce the quadratic form in H3b ([5, definition 2.1])

D(Q) :=
{
ψ ∈H3b

∣∣ ψ = ϕλ+G(−λ)ξ, ϕλ∈H1(R6), ξ ∈H
1
2 (R3), λ> 0

}
,

Q[ψ] := ∥H1/2
0 ϕλ∥2 + λ∥ϕλ∥2 − λ∥ψ∥2 + Φλ[ξ]. (1.17)

Using the properties of Φλ and G(−λ), it is now easy to show that the above quadratic form is

closed and bounded from below if γ > γ 3b
c . Hence it uniquely defines a s.a. and lower semi-

bounded operatorH which, by definition, is the Hamiltonian of the three-boson system.

Following an equivalent approach (that shall be adopted in chapter 3), one can consider the

densely defined and closed operator Γ(z) : D ⊂ L2(R3) −→ L2(R3), given by

Γ(z) := Γλ− (λ+ z)G(z̄)∗G(−λ), λ >λ0 , z ∈ ρ(H0) (1.18)

1Here D(H0) must be intended as a Hilbert subspace of H3b endowed with the graph norm ofH0 .
2A similar computation to refer to has been carried out in appendix 2.A.
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which represents a sort of analytic continuation of Γλ, D. Actually, one can prove that Γ(z) fulfils

Γ(z)∗ = Γ(z̄), ∀ z ∈ ρ(H0), (1.19a)

Γ(z)− Γ(w) = (z − w)G(z̄)∗G(w), ∀ w, z ∈ ρ(H0), (1.19b)

∀ z ∈ C : Re(z) < −λ0 ∨ Im(z) > 0, 0 ∈ ρ(Γ(z)). (1.19c)

These properties imply, according to e.g. [31] (see also [7, theorem 2.19]), that for any z ∈ C such

that Γ(z) has a bounded inverse, the operator

R(z) = RH0(z) +G(z)Γ(z)−1G(z̄)∗ (1.20)

defines the resolvent of a s.a. and bounded from below operator which coincides with the Hamilto-

nianH obtained with the approach based on the quadratic form and{
z ∈ C

∣∣ Re(z) < −λ0 ∨ Im(z) > 0
}
⊆ ρ(H).

Moreover, one can verify that H coincides with H0 on D(Ḣ0), satisfies boundary condition (1.8)

in the L2 sense (see [5, remark 4.1]) and it is characterized by

D(H) =
{
ψ ∈ D(Q)

∣∣ ϕz∈D(H0), ξ ∈D, Γ(z)ξ = τϕz

}
,

Hψ = H0ϕz + zG(z)ξ
(1.21)

provided Im z = 0 ∨ ϕz ⊥ G(z)ξ . More details about this abstract setting are discussed in

appendix A.

1.2 OPTIMALITY OF γ 3b
c

In this section we prove the optimality of the threshold parameter γ 3b
c defined by (1.13). More

precisely our goal is to prove the following theorem.

Theorem 1.1.
Whenever γ < γ 3b

c , the quadratic form Q given by (1.17) is unbounded from below.

In order to achieve the result, we shall adapt the ideas contained in [17, section 5]. Denote for

short Gλ :=G(−λ) for any λ>0 and let {un}n∈N⊂D(Q) be a sequence of trial functions given

by

un(x,y) = (Gληn)(x,y), (1.22)

ηn(y) = n2f(ny), f ∈ H
1
2 (R3). (1.23)

We stress that, by an explicit estimate due to (1.16), one finds

inf
n∈N
∥Gληn∥H3b

⪈ 0. (1.24)
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Indeed,

∥Gληn∥2H3b
=

2

π

∫
R6

dkdp
1

n2

∣∣∣f̂(pn)+ f̂
(
k
n
− p

2n

)
+ f̂

(
k
n
+ p

2n

)∣∣∣2(
k2 + 3

4
p2 + λ

)2
=

2

π

∫
R6

dκdq

∣∣∣f̂(q) + f̂
(
κ− q

2

)
+ f̂

(
κ+ q

2

)∣∣∣2(
κ2 + 3

4
q2 + λ

n2

)2 > ∥Gλf∥2H3b
.

Our goal is to show that whenever γ is smaller than the threshold value γ 3b
c given by (1.13), one

has

lim
n→+∞

Q[un] = −∞. (1.25)

According to (1.17), we have

Q[un] = −λ ∥Gληn∥H3b
+ Φλ[ηn] ≤ −λ ∥Gλf∥H3b

+ Φλ[ηn] (1.26)

and therefore the theorem is proven as soon as we exhibit some f ∈H 1
2 (R3) such that

lim
n→+∞

Φλ[ηn] = −∞. (1.27)

In the following lemma we are going to show that the leading order of Φλ[ηn] as n goes to infinity

does not depend on λ and, therefore, we are reducing the problem to the study of the hermitian

quadratic form evaluated in λ = 0 which is, as we shall see, diagonalizable.

Lemma 1.2. Let Φλ and ηn be given by (1.11) and (1.23), respectively. Then, one has

Φλ[ηn] = n2(Φ0
diag+ Φ0

off + Φreg)[f ] +O(n).

Proof. First of all, we can neglect the bounded component Φ0 , since

Φ0[ηn] = 12πn4

∫
R3

dy β(y) |f(ny)|2 = 12πn

∫
R3

dt β
(
t
n

)
|f(t)|2

≤ 12πn ∥β∥∞∥f∥2 =⇒ Φ0[ηn] = O(n), n→ +∞.

Next, rescaling properly the variables in computing Φλ
diag[ηn], one gets

Φλ
diag[ηn] = 12πn

∫
R3

dκ
√

3
4
n2κ2 + λ |f̂(κ)|2

= 6
√
3 πn2

∫
R3

dκ |κ| |f̂(κ)|2 + 12πn

∫
R3

dκ

(√
3
4
n2κ2 + λ −

√
3
4
nκ

)
|f̂(κ)|2

= n2Φ0
diag[f ] + o(n) .

Indeed, exploiting the elementary inequality
√
a2 + b2 − |a| ≤ |b|, we can use the dominated

convergence theorem to obtain

lim
n→+∞

∫
R3

dκ

(√
3
4
n2κ2 + λ −

√
3
4
nκ

)
|f̂(κ)|2 = 0.
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Concerning the regularizing contribution, one simply has

Φreg[ηn] =
6γ

π
n2

∫
R3

dp

∫
R3

dq
f̂(p) f̂(q)

|p− q|2

= n2Φreg[f ].

Finally, we compute Φλ
off [ηn]

Φλ
off [ηn] = −

12

π
n2

∫
R6

dpdq
f̂(p) f̂(q)

p2 + q2 + p ·q + λ
n2

=− 12

π
n2

∫
R6

dpdq
f̂(p) f̂(q)

p2 + q2 + p ·q
+

+
12

π
λ

∫
R6

dpdq
f̂(p) f̂(q)(

p2 + q2 + p ·q + λ
n2

)(
p2 + q2 + p ·q

) .
Defining the integral operator in L2(R3) given by

(Pn φ̂)(p) :=
12

π
λ

∫
R3

dq
φ̂(q)(

p2 + q2 + p ·q + λ
n2

)(
p2 + q2 + p ·q

) , (1.28)

we can write

Φλ
off [ηn] = n2Φ0

off [f ] +

∫
R3

dp f̂(p) (Pn f̂)(p).

We notice that Pn is a Hilbert-Schmidt operator and

∥Pn∥2B(L2(R3))≤
124λ2

π2

∫
R6

dpdq
1(

p2 + q2 + p ·q + λ
n2

)2(
p2 + q2 + p ·q

)2
≤ 124λ2

π2

∫
R6

dpdq
4(

p2+ q2

2
+ λ

n2

)2(
p2 + q2

)2 = 496πλ2
∫ +∞

0

dk
k(

k2

2
+ λ

n2

)2
= 496πλn2.

Owing to the Cauchy–Schwarz inequality, the above estimate implies

Φλ
off [ηn] = n2Φ0

off [f ] +O(n)

and the lemma is proven.

In light of lemma 1.2, it is straightforward to see that (1.27) is achieved as soon as we exhibit a

function f ∈H 1
2 (R3) such that, whenever γ< γ 3b

c , there holds

Φ0
diag[f ] + Φ0

off [f ] + Φreg[f ] < 0.

In the next lemma we exhibit a trial function that allows us to prove such a result.
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Lemma 1.3. Let γ 3b
c be defined by (1.13), assume γ < γ 3b

c and let us consider the family of trial

functions fβ∈ S(R3) ⊂ H
1
2 (R3) such that

f̂β(p) =
1
p2
exp
(
−pβ+ p−β

2

)
, β > 0.

Then there exists β0 > 0 such that for any β ∈ (0, β0) we have(
Φ0

diag+ Φ0
off + Φreg

)
[fβ]< 0.

Proof. We stress that our trial functions are entirely lying in the s-wave subspace, therefore we

have

Φ0
diag[fβ] = 48π2

√
3
4

∫ +∞

0

dp p3 |f̂β(p)|2, (1.29a)

Φ0
off [fβ] = −96π

∫ +∞

0

dp p

∫ +∞

0

dq q f̂β(p) f̂β(q) ln

(
p2 + q2 + pq

p2 + q2 − pq

)
, (1.29b)

Φreg[fβ] = 24πγ

∫ +∞

0

dp p

∫ +∞

0

dq q f̂β(p) f̂β(q) ln

(
p2 + q2 + 2pq

p2 + q2 − 2pq

)
, (1.29c)

where we have used the identity3∫
R6

dpdq g
(
p, q, p ·q

pq

)
= 8π2

∫ +∞

0

dp p2
∫ +∞

0

dq q2
∫ 1

−1

du g(p, q, u) (1.30)

holding for any integrable function g : R2
+× [−1, 1] −→ C. According to, e.g. [5, lemma 3.4], the

quantities in equations (1.29) can be diagonalized through the transformation

M : L2(R+, p
2
√
p2 + 1 dp) −→ L2(R),

ψ 7−→ ψ♯(x) =
1√
2π

∫
R
dt e−itxe2tψ(et)

(1.31)

yielding (see [5, lemmata 3.4, 3.5] and section 2.3 for more details)

Φ0
diag[fβ] = 48

√
3
4
π2

∫
R
dx |f̂ ♯

β (x)|
2, (1.32a)

Φ0
off [fβ] = −48π2

∫
R
dx |f̂ ♯

β (x)|
2 4 sinh

(
π
6
x
)

x cosh
(
π
2
x
) , (1.32b)

Φreg[fβ] = 48π2

∫
R
dx |f̂ ♯

β (x)|
2 γ tanh

(
π
2
x
)

x
. (1.32c)

Let us introduce the bounded and continuous (except at the point x = 0) function

S(x) :=

√
3

2
+
γ sinh

(
π
2
x
)
− 4 sinh

(
π
6
x
)

x cosh
(
π
2
x
) (1.33)

so that we have (
Φ0

diag+ Φ0
off + Φreg

)
[fβ] = 48π2

∫
R
dx |f̂ ♯

β (x)|
2 S(x), (1.34)

3Equation (1.30) is due to the addition formula for the spherical harmonics in the s-wave (see proposition B.2).
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with

lim
x→ 0

S(x) =

√
3

2
− 2π

3
+
π

2
γ =

π

2
(γ − γ 3b

c ) < 0. (1.35)

Roughly speaking, the integral in (1.34) is negative if we choose the trial function such that the

support of f̂ ♯
β is sufficiently concentrated in a neighborhood of zero. More precisely, considering

the explicit expression of f̂β , we have4

f̂ ♯
β (x) =

1

β
ĥ
(

x
β

)
(1.36)

where h : p 7−→ e− cosh p ∈ S(R). Then∫
R
dx |f̂ ♯

β (x)|
2S(x) =

1

β2

∫
R
dx |ĥ(x/β)|2 S(x)

=
1

β

∫
R
dx |ĥ(x)|2 S(βx).

By dominated convergence theorem we obtain

lim
β→ 0+

∫
R
dx |ĥ(x)|2 S(βx) = ∥h∥2 lim

x→ 0
S(x) < 0.

Hence, the lemma is proven by noticing that the previous integral is continuous in β > 0 and

therefore, the quadratic form
(
Φ0

diag+ Φ0
off + Φreg

)
[fβ] is negative for any β small enough.

Proof of theorem 1.1. Let f̂β be the trial function given in lemma 1.3 with β < β0 and consider

the following sequence of charges

η̂ β
n (p) =

1

n
f̂β

(p
n

)
.

By lemma 1.2, we know that

Φλ[η β
n ] = n2(Φ0

diag+ Φ0
off + Φreg)[fβ] +O(n), n→ +∞

and then Φλ[η β
n ] −→ −∞ as n grows to infinity.

1.3 ANALYSIS IN POSITION SPACE

In this section, we give a different proof of the coercivity of Φλ, defined in (1.11), based

on its representation in position space. In particular, with proposition 1.5 we identify a negative

contribution of the quadratic form Φλ
off that is not bounded in L2 (hence it contains the singularity

4We stress that f̂ ♯
β (x) =

√
2
π

1
β Kix/β(1) because of the integral representation for the Macdonald function Kν

given by [20, p. 384, 3.547 4].
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of the problem) and therefore the choice of the regularization term Φreg needed to compensate

such a negative contribution is justified.

In the next proposition we write the quadratic form Φλ in the position-space representation.

Proposition 1.4. For any ξ ∈ H 1
2 (R3) and λ > 0 one has

Φλ
diag[ξ] = 12π

√
λ ∥ξ∥2 + 2

√
3λ

π

∫
R6

dxdy
|ξ(x)− ξ(y)|2

|x− y|2
K2

(√
4λ
3
|x− y|

)
, (1.37a)

Φλ
off [ξ] = −

8
√
3λ

π

∫
R6

dxdy
ξ(x) ξ(y)

y2 + x2 + x ·y
K2

(√
4λ
3

√
y2 + x2 + x ·y

)
, (1.37b)

Φreg[ξ] = 12πγ

∫
R3

dx
|ξ(x)|2

|x|
(1.37c)

where Kµ : R+ −→ C is the modified Bessel function of the second kind (also known as Macdon-

ald function) and order µ ∈ C.

Proof. Identity (1.37a) is a consequence of (1.12a) and [24, section 7.12, (5)], while (1.37c) is

obtained by comparing (1.12c) with the identity∫
R3

dr
|f(r)|2

r
=

1

2π2

∫
R6

dpdq
f̂(p) f̂(q)

|p− q|2
, ∀ f ∈ H1/2(R3). (1.38)

Concerning the proof of (1.37b), we consider (1.12b) for φ∈ S(R3) and we observe that we have

uniformly in λ > 0

σ 7−→ 1

σ2 + τ 2 + τ ·σ + λ
∈ L2(R3, dσ), for τ ̸= 0.

Therefore, by Plancherel’s theorem we find

Φλ
off [φ] = −

12

π

∫
R3

dτ φ̂(τ )

∫
R3

dx
φ(x)

(2π)3/2

∫
R3

dσ
e−ix·σ

τ 2 + σ2 + τ ·σ + λ
.

Using the change of coordinates σ = q − τ
2

, we obtain

Φλ
off [φ] = −

12

π

∫
R3

dτ φ̂(τ )

∫
R3

dx
e

τ ·x
2

i

(2π)3/2
φ(x)

∫
R3

dq
e−i q·x

3
4
τ 2 + q2 + λ

= − 24π

(2π)3/2

∫
R3

dτ φ̂(τ )

∫
R3

dx
φ(x)

|x|
e

τ ·x
2

i−
√

3
4
τ2 +λ |x|

= − 24π

(2π)3/2

∫
R3

dx
φ(x)

|x|

∫
R3

dτ φ̂(τ ) e
τ ·x
2

i−
√

3
4
τ2 +λ |x|.

Since uniformly in λ > 0

τ 7−→ e
τ ·x
2

i−
√

3
4
τ2 +λ |x| ∈ L2(R3, dτ ), for x ̸= 0

we use again Plancherel’s theorem to get

Φλ
off [φ] = −

24π

(2π)3

∫
R3

dx
φ(x)

|x|

∫
R3

dy φ(y)

∫
R3

dτ eiτ ·(y+ x
2)−
√

3
4
τ2 +λ |x|
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= −12

π

∫
R3

dx
φ(x)

|x|

∫
R3

dy
φ(y)

|y + x
2
|

∫ +∞

0

dτ τ sin
(
τ |y + x

2
|
)
e−
√

3
4
τ2 +λ |x|.

The last integral can be explicitly computed using the formula (see, e.g., [20, p. 491, 3.914.6])∫ +∞

0

dx x sin(bx) e−β
√

x2 + γ2
=

bβγ2

β2+ b2
K2

(
γ
√
β2+ b2

)
, ∀ b ∈ R and β, γ > 0 (1.39)

and therefore identity (1.37b) is proven for φ ∈ S(R3). By a density argument5 the result is

extended to any φ∈H 1
2 (R3).

Before proceeding, let us briefly recall some elementary properties of Kµ(·), µ ≥ 0:

zµKµ(z) is decreasing in z ∈R+ , (1.40a)

Kµ(z) =
2µ−1Γ(µ)

zµ
+ o
(
z−µ
)
, for z −→ 0+, µ > 0, (1.40b)

Kµ(z) =
√

π
2z
e−z
[
1 + 4µ2−1

8z
+O

(
z−2
)]
, for z −→ +∞ (1.40c)

where Γ : R ∖−N0 −→ R denotes the Euler Gamma function. In particular, notice that (1.40a)

and (1.40b) imply

zµKµ(z) ≤ 2µ−1Γ(µ), ∀ z ≥ 0, µ > 0. (1.40d)

In the next proposition we show the relevant fact that a negative contribution of Φλ
off that is not

bounded in L2(R3) can be explicitly isolated.

Proposition 1.5. For any φ ∈ H 1
2 (R3) and λ > 0 one has

Φλ
off [φ] = − 24π

∫
R3

dx
e−

√
λ |x|

|x|
|φ(x)|2+

+
4
√
3λ

π

∫
R6

dxdy
|φ(x)− φ(y)|2

y2 + x2 + x ·y
K2

(√
4λ
3

√
y2 + x2 + x ·y

)
.

(1.41)

Proof. Let us decompose the expression given by (1.37b) as follows

Φλ
off [φ] = −

8
√
3λ

π

[∫
R3

dy |φ(y)|2
∫
R3

dx
K2

(√
4λ
3

√
y2 + x2 + x·y

)
y2 + x2 + x·y

+

+

∫
R3

dy φ(y)

∫
R3

dx
φ(x)− φ(y)
y2 + x2 + x·y

K2

(√
4λ
3

√
y2 + x2 + x·y

)]
,

Then, we evaluate the first term in the right hand side. In proposition 1.4 we have seen that the

function

f̂λ
x : R3 −→ R+, x, λ ∈ R+,

τ 7−→ e−x
√

3
4
τ2 +λ

x

(1.42)

5Because of propositions 1.5 and 1.6, one can obtain a control in the H1/2 norm.
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is such that

fλ
|x|

(
y +

x

2

)
=

√
8

3π
λ
K2

(√
4λ
3

√
y2 + x2 + x·y

)
y2 + x2 + x·y

. (1.43)

Notice the symmetry in the exchange x←→ y. Then,∫
R3

dx fλ
|x|
(
y + x

2

)
=

∫
R3

dx fλ
|y|
(
x+ y

2

)
=

∫
R3

dz fλ
|y|(z) = (2π)3/2f̂λ

|y|(0).

Therefore we find

λ√
3π2

∫
R3

dx
K2

(√
4λ
3

√
y2 + x2 + x·y

)
y2 + x2 + x·y

=
e−

√
λ |y|

|y|
, ∀ λ > 0, y ∈ R3 ∖ {0}. (1.44)

According to (1.44), we obtain

Φλ
off [φ] =− 24π

∫
R3

dy |φ(y)|2 e−
√
λ|y|

|y|
+

+
8
√
3λ

π

∫
R6

dxdy
φ(y) [φ(y)− φ(x)]
y2 + x2 + x·y

K2

(√
4λ
3

√
y2 + x2 + x·y

)
.

(1.45)

It is now sufficient to notice that the symmetry in exchanging x←→ y allows us to write∫
R3

dy φ(y)

∫
R3

dx
φ(y)− φ(x)
y2 + x2 + x·y

K2

(√
4λ
3

√
y2 + x2 + x·y

)
=

=
1

2

∫
R6

dxdy
|φ(y)− φ(x)|2

y2 + x2 + x·y
K2

(√
4λ
3

√
y2 + x2 + x·y

)
.

and the proposition is proved.

In the next proposition we are going to provide lower and upper bounds for Φλ exploiting the

representation given by propositions 1.4 and 1.5. To this end, it is convenient to introduce the

Gagliardo semi-norm of the Sobolev space H
1
2 (Rd), defined as

[u ]21
2

:=

∫
R2d

dxdy
|u(x)− u(y)|2

|x− y|d+1
, u ∈ H

1
2 (Rd), (1.46)

so that ∥u∥2
H1/2(Rd)

= ∥u∥2+[u ]21
2

. In terms of the Fourier transform of uwe also have (see e.g., [12,

proposition 3.4] or [24, section 7.12 (4)])

[u ]21
2
=

2π
d+1
2

Γ
(
d+1
2

) ∫
Rd

dk |k||û(k)|2. (1.47)

Proposition 1.6. For any given φ ∈ H 1
2 (R3), one has

Φλ[φ] ≥ Φ0[φ] + Φλ
diag[φ] + 3min{0, γ − 2}[φ ]21

2
, (1.48a)

Φλ[φ] ≤ Φ0[φ] + Φλ
diag[φ] +

(
3γ + 96

√
3

π

)
[φ ]21

2
. (1.48b)
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Proof. The lower bound is obtained by neglecting the positive part of Φλ
off

Φλ
off [φ] + Φreg[φ] ≥ 12π

∫
R3

dy
|φ(y)|2

|y|

(
γ − 2e−

√
λ |y|
)

and by considering the following inequalities

inf
y∈R3

{
γ − 2e−

√
λ |y|
}
≥ min{0, γ − 2}, (1.49)∫

R3

dx
|φ(x)|2

|x|
≤ 1

4π
[φ ]21

2
. (1.50)

Notice that (1.50) is a consequence of the comparison between (1.47) and the (sharp) Hardy-

Rellich inequality (see6 [37])∫
Rd

dx
|u(x)|2

|x|2s
≤ 1

22s
Γ2
(
d
4
− s

2

)
Γ2
(
d
4
+ s

2

) ∫
Rd

dk |k|2s|û(k)|2, ∀u∈Hs(Rd), s < d
2

(1.51)

in case s = 1
2

and d = 3. In order to obtain the upper bound, we recall (1.46) to get∫
R6

dxdy
|φ(y)− φ(x)|2

y2 + x2 + x·y
K2

(√
4λ
3

√
y2 + x2 + x·y

)
≤

≤ [φ ]21
2

sup
(x,y)∈R6

|x− y|4

y2 + x2 + x·y
K2

(√
4λ
3

√
y2 + x2 + x·y

)
.

We make use of (1.40d) and get rid of the dependence on the angles in evaluating the sup, sincex2 + y2 − 2x·y ≤ 2(x2 + y2),

x2 + y2 + x·y ≥ x2+y2

2
,

=⇒ |x− y|2

x2 + y2 + x·y
≤ 4.

Hence, ∫
R6

dxdy
|φ(y)− φ(x)|2

y2 + x2 + x·y
K2

(√
4λ
3

√
y2 + x2 + x·y

)
≤

≤ 3

2λ
[φ ]21

2
sup

(x,y)∈R6

|x− y|4

(y2 + x2 + x·y)2
=

24

λ
[φ ]21

2
.

We stress that in the last step we have an equality, since the argument of the supremum in R6

attains the previous upper bound along the hyperplane x+ y = 0.

So far, we have obtained for any φ ∈ H 1
2 (R3)

Φλ
off [φ] ≤ −24π

∫
R3

dy
|φ(y)|2

|y|
e−

√
λ |y| +

96
√
3

π
[φ ]21

2
. (1.52)

We complete the proof simply by neglecting the negative contribution.

6There is a typo in [37, equation (1.4)]: the power 2 on the Euler Gamma function in the numerator is missing.
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The major difficulties in the proof of the coercivity of Φλ in momentum space obtained in [5] lie

in the search of a lower bound. On the other hand, in position space such estimate, provided in

proposition 1.6, turns out to be much easier. However, some accuracy is lost in this framework.

Indeed, adopting (1.48a) to obtain an estimate from below for Φλ, one gets

Φλ[ξ] ≥ Φλ
diag[ξ]− 3max{0, 2− γ}[ξ ]21

2
+ 12π essinf

y ∈R3
β(y) ∥ξ∥2 (1.53)

or, equivalently

Φλ[ξ]≥
∫
R3

dp

[
12π
√

3
4
p2 + λ− 6π2max{0, 2−γ}p+ 12π essinf

y ∈R3
β(y)

]
|ξ̂(p)|2

= 12π

∫
R3

dp

[
1− π

2
max{0, 2−γ} p√

3/4 p2+λ
+ 1√

3/4 p2+λ
essinf
y ∈R3

β(y)

]√
3
4
p2 + λ |ξ̂(p)|2.

(1.54)

First assume essinf
y ∈R3

β(y) ≥ 0. Then, one simply has

Φλ[ξ] ≥
(
1− π√

3
max{0, 2−γ}

)
Φλ

diag[ξ], ∀λ > 0

and the right hand side is positive as soon as

γ > 2−
√
3

π
=: γ̄3bc . (1.55)

On the other hand, let essinf β be negative. In this case, the function in square brackets in (1.54)

attains its minimum at

pmin =
2πλ max{0, 2−γ}

3|essinf β|
,

Plugging the value of pmin in the right hand side of (1.54), one gets

Φλ[ξ]≥
(
1−

√
π2

3
max{0, 2−γ}2 + (essinf β)2

λ

)
Φλ

diag[ξ] (1.56)

which is positive provided

1− π√
3
max{0, 2− γ} > 0 ⇐⇒ γ > 2−

√
3

π
= γ̄ 3b

c (1.57)

and

λ >
3(essinf β)2

3− π2max{0, 2−γ}2
. (1.58)

Thus, regardless the sign of essinf β we have obtained the coercivity by assuming

γ > γ̄3bc ∧ λ >
3min{0, essinf β}2

3− π2max{0, 2−γ}2
=: λ0 .

As mentioned above, γ̄ 3b
c ≈ 1.44867 is not optimal, since γ̄ 3b

c > γ 3b
c .
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Exploiting (1.10), we are able to estimate inf σ(H) as follows

inf σ(H) > −λ0 ≥


0, α0 ≥

γ

b
,

− 3(γ/b − α0)
2

3− π2max{0, 2−γ}2
, α0 <

γ

b
.

(1.59)

We conclude this chapter with the following observation. The coercivity is obtained in H
1
2 (R3)

for any λ large enough so that the closedness of Φλ easily follows for those values of λ. However,

the closedness of Φλ can be proved for any λ > 0, provided γ > γ3bc (see proposition 2.1 in the

next chapter, whose proof is given in section 2.6). Furthermore, notice that in [5] the lower bound

of the infimum of the spectrum is negative regardless the value of α0 . In this sense estimate (1.59)

is more detailed (clearly the same estimates exploited here can be adopted also in the momentum-

space representation in order to obtain an even better lower bound for the spectrum involving the

optimal threshold value γ3bc ).
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2. BOSE GAS WITH AN IMPURITY

In this chapter we exploit the Minlos-Faddeev regularization discussed in the introduction to

construct a regularized zero-range Hamiltonian in dimension three for a gas of bosons interacting

with an impurity. More precisely, we consider a quantum system of N identical spinless bosons

of mass m and we assume that the bosons interact only with a different particle of mass m0 , via a

zero-range interaction. Let us denote by

HNb+1 := L2(R3)⊗L2
sym(R3N) ⊂ L2(R3(N+1)), N ≥ 2 (2.1)

the Hilbert space of the system. At a formal level, the Hamiltonian reads

H̃ = − 1

2m0

∆x0−
1

2m

N∑
i=1

∆xi
+ ν

N∑
i=1

δ(xi − x0), (2.2)

where ν is a coupling constant and we denote byH0 the free Hamiltonian, given by

H0 := −
1

2m0

∆x0−
1

2m

N∑
i=1

∆xi
, D(H0) = HNb+1 ∩H2(R3(N+1)). (2.3)

We want to define a rigorous counterpart of the formal operator (2.2) as a s.a. and bounded from

below operator H in HNb+1 . By definition, such an operator must be a proper singular perturba-

tion ofH0 supported on the coincidence hyperplanes

π :=
N⋃
i=1

πi , πi :=
{
(x0,x1, . . . ,xN) ∈ R3(N+1)

∣∣ xi = x0

}
. (2.4)

In particular,H must satisfy the property

Hψ = H0ψ ∀ψ ∈ D(H0) s.t. ψ|π = 0 (2.5)

and, given the operator

Ḣ0 := H0|D(Ḣ0)
, D(Ḣ0) := HNb+1 ∩H2

0 (R3(N+1) \ π), (2.6)

which is symmetric and closed according to the graph norm of H0 , we want to find the Hamilto-

nianH as a s.a. and bounded from below extension of Ḣ0 .

The TMS class of extensions is obtained by requiring that an element ψ in the domain of H
satisfies on each hyperplane πi

ψ(x0,x1, . . . ,xN) =
ξ
(

mxi+m0x0

m+m0
,x1, . . . x̌i . . . ,xN

)
|xi− x0|

+

+α0 ξ(x0,x1, . . . x̌i . . . ,xN)+ o(1) , for xi −→ x0 ,

(2.7)
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for some ξ ∈H(N−1)b+1, where the notation x̌i indicates the omission of the variable xi .

The s.a. extensions obtained by requiring boundary condition (2.7) lead to the Hamiltonian un-

bounded from below studied in [26]. As already mentioned, in order to obtain an energetically

stable system, we introduce a suitable regularization in (2.7). More precisely, we replace the para-

meter α0 by a new, position dependent, coupling constant on each coincidence plane πi

α0 7−→ α(x0,x1, . . . x̌i . . . ,xN) ,

where the function α : R3⊗R3(N−1)−→R is given by

α : (z,y1, . . . ,yN−1) 7−→ α0 + γ

N−1∑
j=1

θ(|yj − z|)
|yj − z|

, (2.8)

with γ > 0 and θ : R+−→R an essentially bounded function satisfying (1.10).

With the above replacement, we define the modified boundary condition

ψ(x0,x1, . . . ,xN) =
ξ
(

mxi+m0x0

m+m0
,x1, . . . x̌i . . . ,xN

)
|xi − x0|

+

+(Γi
reg ξ)(x0,x1, . . . x̌i . . . ,xN)+ o(1) , for xi → x0 ,

(2.9)

where Γi
reg acts as follows

Γi
reg : ξ 7−→ α(x0,x1, . . . x̌i . . . ,xN)ξ(x0,x1, . . . x̌i . . . ,xN). (2.10)

Notice that Γi
regξ is symmetric under the exchange of any couple xk ←→ xℓ with ℓ ̸= k ∈

{1, . . . , N}∖ {i}. In analogy with (2.7), boundary condition (2.9) characterizes the point inter-

action between the impurity and the i-th boson. The function α(x0,x1, . . . x̌i . . . ,xN) diverges

if xj → x0 , for any j ̸= i and this means that the strength of the point interaction between the

impurity and the i-th boson decreases to zero when a third particle, in our case another boson,

approaches the common position of the first two particles. In other words, as already pointed out,

we are introducing a three-body interaction meant to regularize the ultraviolet singular behavior

occurring when the positions of more than two particles coincide. We also stress that θ can be

chosen compactly supported, so that the usual two-body point interaction between the impurity

and the i-th boson is restored when the other particles are far enough.

The content of this chapter refers to [15] and its goal is to show that boundary condition (2.9)

allows to give a rigorous construction of a s.a. and bounded from below HamiltonianH.

The approach is based on the theory of quadratic forms. More precisely, by a heuristic procedure1

based on the conditions (2.5), (2.9), we compute the expectation value of the energy of the system

by exploiting the formal Hamiltonian (2.2), so that we arrive at the definition of a quadratic form in

HNb+1, given by (2.16), which is the starting point of the rigorous analysis. Our main result is the

proof that the quadratic form is closed and bounded from below for any γ larger than a threshold

1In this regard, refer to appendix 2.B.
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value γNb+1
c (M) . Such a threshold value is explicitly given by (2.19) and it is uniformly bounded

in N and M . Furthermore, we characterize the s.a. and bounded from below operatorH uniquely

defined by the quadratic form. Such operator, by construction, is our Hamiltonian for the boson

gas interacting with an impurity via regularized zero-range interactions.

2.1 RESULTS AND STRATEGY OF THE PROOF

In this section we introduce some definitions in order to formulate our main results. Then, an

outline of the strategy adopted to prove such results is provided.

Let us define the bounded operatorGλ : H(N−1)b+1−→L2(R3(N+1)) whose Fourier representation

is given by

(Gλξ̂ )(p,k1, . . . ,kN) :=
1

µ

1√
2π

∑N
j=1 ξ̂(p+ kj,k1, . . . ǩj . . . ,kN)

1
2m0

p2 + 1
2m

∑N
n=1 k

2
n + λ

, (2.11)

where λ > 0 and

µ :=
m0m

m0+m
(2.12)

denotes the reduced mass of the two-particle subsystem composed by a boson and the impurity.

We shall refer to Gλξ as the potential produced by the charge ξ distributed on π. A more detailed

discussion on the properties of the potential is postponed to appendix 2.A. Here we only mention

that Gλ is injective, ran(Gλ)⊂HNb+1 and Gλξ /∈H1(R3(N+1)) (see remarks 2.6, 2.7).

Next, let us define the following hermitian quadratic form in L2(R3N)

D(Φλ) = H
1
2 (R3N), Φλ := Φλ

diag+ Φλ
off + Φreg+ Φ0 , (2.13)

where

Φλ
diag[ξ] :=

4πN√
2µ

∫
R3N

dpdk1 · · · dkN−1

√
p2

2(m0+m)
+
∑N−1

n=1
k2n
2m

+ λ |ξ̂(p,k1, . . . ,kN−1)|2 , (2.14a)

Φλ
off [ξ] :=−

N(N−1)
2π µ2

∫
R3(N+1)

dpdk1 · · · dkN
ξ̂(p+k1,k2, . . . ,kN) ξ̂(p+k2,k1,k3, . . . ,kN)

1
2m0

p2 + 1
2m

∑N
n=1 k

2
n + λ

, (2.14b)

Φreg[ξ] :=
2πN(N−1) γ

µ

∫
R3N

dydx1 · · · dxN−1
|ξ(y,x1, . . . ,xN−1)|2

|y− x1|
, (2.14c)

Φ0[ξ] :=
2πN
µ

∫
R3N

dydx1 · · · dxN−1 β(|y− x1|)|ξ(y,x1, . . . ,xN−1)|2 (2.14d)

with

β : r 7−→ α0 + (N−1)γ θ(r)− 1

r
, r > 0 . (2.15)

Notice that assumption (1.10) implies β ∈L∞(R+) and therefore the quadratic form Φ0 is bounded

in L2(R3N). We are now in position to introduce the main object of our analysis, i.e., the quadratic

form in HNb+1 given by

D(Q) :=
{
ψ ∈HNb+1

∣∣ ψ = wλ+Gλξ , wλ ∈H1(R3(N+1)), ξ ∈H(N−1)b+1 ∩H
1
2 (R3N)

}
,
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Q[ψ] := Fλ[w
λ]− λ∥ψ∥2+ Φλ[ξ] (2.16)

where

Fλ : H
1(R3(N+1))−→R+,

φ 7−→ ∥H
1
2
0 φ∥2+ λ ∥φ∥2.

(2.17)

The heuristic motivation leading to the above definition is discussed in appendix 2.B. Preliminar-

ily, we observe that D(Q) is an extension of the form domain ofH0 , since H1(R3(N+1))∩HNb+1

is a proper subset of D(Q) and

Q[ψ] = ⟨H
1
2
0 ψ, H

1
2
0 ψ⟩, for ψ ∈ H1(R3(N+1)) ∩HNb+1 . (2.18)

This is due to the injectivity of Gλ that implies ψ ∈ D(Q) ∩H1(R3(N+1)) if and only if ξ ≡ 0.

Moreover, for any fixed M := m0

m
> 0 and N ≥ 2, we introduce the critical parameter

γNb+1
c (M) :=

2(M +1)

π
arcsin

(
1

M+1

)
−

2
√
M(M+2)

π(N−1)(M +1)
. (2.19)

It is easy to check that (see figure 2.1 at page 34) γNb+1
c is positive and

inf
M>0

γNb+1
c (M) =

2

π

N −2

N −1
, sup

M>0
γNb+1
c (M) = 1.

We notice that γNb+1
c is uniformly bounded in N ≥ 2 and M > 0. We also stress that our results

hold for any γ > γNb+1
c .

Moreover, we observe that the Born-Oppenheimer regime is achieved when M is chosen small

enough, since the positions of the N bosons would be approximately fixed with respect to the

impurity which would play the role of a light particle. In particular one has

lim
M → 0+

γNb+1
c (M) = 1. (2.20)

In the special case M = 1, N = 2 we have γ 2b+1
c (1) = 2

3
−

√
3

π
≈ 0.115338. It is worth to

observe that in the case of three interacting bosons, a larger critical value γ 3b
c ≈ 0.782004 is

found (see (1.13) in the previous chapter). The difference is due to the fact that, in this new

framework, the two bosons are non interacting and therefore the singular negative contribution to

be compensated, contained in (2.14b), is smaller by a factor 2.

Our first result concerns the quadratic form Φλ and it is formulated in the next proposition.

Proposition 2.1.
i) For any γ > 0 and λ > 0 one has

Φλ[ξ] ≤ C1Φ
λ
diag[ξ] , ξ ∈ H

1
2 (R3N) (2.21)

where C1 is a positive constant.

ii) Let us assume γ > γNb+1
c . Then, Φλ is closed for any λ > 0 and there exists λ0 > 0 s.t. for

any λ > λ0 one has

Φλ[ξ] ≥ C2 ∥ξ∥2L2(R3N ), ξ ∈ H
1
2 (R3N) (2.22)

where C2 is a positive constant.
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Figure 2.1: Plot of the threshold parameter in terms of the mass ratio.

Proposition 2.1 implies that Φλ uniquely defines a s.a. and invertible operator Γλ in L2(R3N) for

any λ > λ0 , as long as γ > γNb+1
c . Moreover, we shall see that its domain D is independent

of λ > λ0 and we shall also extend the definition of Γλ, D to all λ ∈ −ρ(H0), preserving its

invertibility for any λ ∈ C∖ (−∞, λ0].
Using the above proposition, we can prove our main results that are summarized in the following

two theorems.

Theorem 2.2.
Let us assume γ > γNb+1

c . Then, the quadratic form Q, D(Q) in HNb+1 is closed and bounded

from below. In particular, Q ≥ −λ0 .

The second theorem is an elementary consequence of the previous one, and it consists in the

characterization of the HamiltonianH.

Theorem 2.3.
Let us assume γ>γNb+1

c . Then, the quadratic formQ, D(Q) uniquely defines the s.a. and bounded

from below operatorH, D(H) characterized as follows

D(H) =
{
ψ ∈ D(Q)

∣∣ wλ∈H2(R3(N+1)), ξ ∈D, Γλξ = 2πN
µ
wλ
∣∣
πN
, λ > 0

}
,

Hψ = H0w
λ− λGλξ.

(2.23)

Moreover, the resolvent is given by

RH(z)ψ = RH0(z)ψ +G−zξ, ∀ z ∈ C∖ [−λ0, +∞), (2.24)

where ψ ∈HNb+1 and ξ ∈D solves the equation

Γ−zξ = 2πN
µ

(
RH0(z)ψ

)∣∣∣
πN

. (2.25)
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Let us comment on our lower bound−λ0 of the quadratic formQ (i.e. the infimum of the spectrum

ofH). In the course of the proof of proposition 2.1 in section 2.6, we explicitly find

σ(H) ≥ −λ0 :=


0, α0 ≥ (N−1) γ

b
,

− [(N−1)γ/b− α0]
2

2µ [1−Λ2
γ(N,M)]

, α0 < (N−1) γ
b
.

(2.26)

where

Λγ(N,M) = max

{
0, 1− π(N−1)

2
M+1√

M(M+2)

[
γ − γNb+1

c (M)
]}
∈ [0, 1). (2.27)

We notice that Λγ(N,M) −→ 1− whenever γ approaches γNb+1
c (M) from above for any choice

of N ≥ 2 and M > 0 and therefore we have −λ0 −→ −∞ for γ −→ (γNb+1
c )+ if α0 is not large

enough.

We conclude this section with an outline of the strategy of the proof. We stress that the main

technical point is proposition 2.1, where we estimate the quadratic form Φλ. It is worth to notice

that the hard part of the work is devoted to finding the estimate from below.

In section 2.2 we introduce suitable changes of coordinates and we rewrite the quadratic form Φλ

in L2(R3N) in terms of the quadratic form Θζ in L2(R3) (see (2.39), (2.40) and (2.41)), that is of

the type studied in [5, section 3] for the three-particle case. This allows us to reduce the analysis to

the estimate of Θζ . As a first result, we prove an estimate from above for Θζ (see proposition 2.5).

In section 2.3 we consider the expressions (2.40) of Θζ in the Fourier space and we expand the

quadratic form in partial waves (see (2.45), (2.46)). We also recall some known results about the

terms F ζ
ℓ , ℓ∈N0 of this expansion.

In section 2.4 we prove some estimates that are crucial to control F ζ
ℓ . We stress that we perform

a careful analysis for each value of ℓ ∈ N0 that leads to a detailed control of the upper bound

and the lower bound. In particular, the result of lemma 2.10 allows us to prove proposition 2.1

by introducing the threshold value γNb+1
c (M) that is uniformly bounded in M > 0 and N ≥ 2.

It is worth to mention that [5, lemma 3.5], which provides an analogous result for the s-wave,

fails in proving the stability of the system for a region of values of M and N . More precisely,

they consider the case ℓ = 0 and they manage to control higher momenta in terms of the ℓ = 2

contribution. However, in our framework such a result is not sufficient to obtain a uniform control

from below of the quadratic form, since the estimates associated with ℓ = 2 do not work for all

values of M and N and therefore one would be forced to assume a further ad hoc constraint on

M (depending on N ). Owing to the new techniques developed in this section we are able to avoid

this problem and to remove such a technical constraint.

In section 2.5 we use the above order by order approximation to obtain the key estimate from

below of Θζ (see (2.105), (2.106)). We also prove another estimate from above of Θζ (see (2.107),

(2.108)) which improves the result in proposition 2.5.

In section 2.6 we show that the estimates of Θζ imply those on Φλ and thus we conclude the proof

of proposition 2.1. Then, following a standard procedure, we also prove theorems 2.2 and 2.3.
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We conclude the chapter with an appendix. In appendix 2.A we discuss some useful properties of

the potential Gλ. In appendix 2.B we give a heuristic derivation of the quadratic form Q.

2.2 REDUCTION TO A THREE-BODY PROBLEM

We start the study of Φλ, defined by (2.13), introducing suitable changes of variables that

reduce the analysis to a quadratic form of the type studied in [5, section 3] for the three-particle

case. In the end we shall prove that D(Φλ) = H
1
2 (R3N).

Let η be the modified reduced mass of the system

η :=
m(m0+m)

m0+2m
=

(
1

m
+

1

m0+m

)−1

(2.28)

and set k̃ = (k1, . . . ,kN−1). Then, we denote for short

ϕ̂(σ, k̃) :=

=
(

k̃2

2m
+λ
)3

4
(
m0

η

)3
4
ξ̂

(√
µ
m

√
k̃2

2m
+λ σ +

√
m0η
mµ

k1,
√

µη
m0m

k1−
√

µ
m

√
k̃2

2m
+λσ,k2, . . . ,kN−1

)
.

(2.29)

In the next lemma we rewrite Φλ[ξ] in terms of this new charge ϕ̂.

Lemma 2.4. For any ξ ∈ H 1
2 (R3N) one has

Φλ[ξ] = Φ0[ξ] +
2πN√
mµ

∫
R3(N−1)

dk̃

√
k̃2

2m
+ λ

[∫
R3

dσ
√

µ
η
σ2+ 2m |ϕ̂(σ, k̃)|2+

+
(N−1)γ

2π2

∫
R6

dσdτ
ϕ̂(σ, k̃) ϕ̂(τ , k̃)

|σ − τ |2
− N−1

2π2

∫
R6

dσdτ
ϕ̂(σ, k̃) ϕ̂(τ , k̃)

σ2+ τ 2+ 2mσ·τ
m0+m

+ 2m

] (2.30)

with ϕ̂ given by (2.29).

In order to prove the previous lemma, let us introduce the change of coordinatesR =
√

η
m

(√
m0

µ
x0+

√
µ
m0

xi

)
,

r =
√

µ
m
(x0 − xi)

⇐⇒


x0 =

√
µη

m0m
R+ η

m0

√
µ
m
r ,

xi =
√

µη
m0m

R− η√
mµ

r.
(2.31)

Such transformation is encoded by the following unitary operator

Ki : L
2(R3N)−→L2(R3N, drdRdx1 · · · dx̌i · · · dxN−1),

(Kiψ)(r,R,x1, . . . x̌i . . . ,xN−1) :=(
η
m0

)3
4
ψ

(√
µη

m0m
R+ η

m0

√
µ
m
r,x1, . . . ,xi−1,

√
µη

m0m
R− η√

mµ
r,xi+1, . . . ,xN−1

)
.

(2.32a)
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Notice that Ki is unitary since
(

η
m0

)3
2

is the Jacobian associated to (2.31). Similarly, one has

K ∗
i : L2(R3N, drdRdx1 · · · dx̌i · · · dxN−1)−→L2(R3N),

(K ∗
i ψ)(x0,x1, . . . ,xN−1) =(

m0

η

)3
4
ψ

(√
µ
m
(x0− xi),

√
m0η
mµ

x0+
√

µη
m0m

xi ,x1, . . . x̌i . . . ,xN−1

)
.

(2.32b)

Next, for any given ξ ∈H 1
2 (R3N), we define the modified charge χ∈H 1

2 (R3N) given by

χ(r,R,x2, . . . ,xN−1) := (K1ξ)(r,R,x2, . . . ,xN−1). (2.33)

With this definition we have (see equation (2.37))

ϕ̂(σ, k̃) =
(

k̃2

2m
+ λ
)3

4
χ̂

(√
k̃2

2m
+ λ σ, k̃

)
. (2.34)

Proof of lemma 2.4. Let us define a new hermitian quadratic form Φ̃λ : L2(R3N)−→R, given by

Φ̃λ := Φ̃λ
diag+ Φ̃λ

off + Φ̃reg , D(Φ̃λ) = H
1
2 (R3N),

Φ̃λ
diag[χ] :=

4πN√
2µ

∫
R3N

dqdk1 · · · dkN−1

√
µ

2mη
q2+

∑N−1
n=1

k2n
2m

+λ |χ̂(q,k1, . . . ,kN−1)|2, (2.35a)

Φ̃λ
off [χ] := −

N(N−1)

2π
√

m3µ

∫
R3(N+1)

dqdpdk1 · · · dkN−1
χ̂(q,k1, . . . ,kN−1)χ̂(p,k1, . . . ,kN−1)

q2+p2

2m
+ q ·p

m0+m
+ 1

2m

∑N−1
n=1 k

2
n + λ

, (2.35b)

Φ̃reg[χ] :=
N(N−1) γ
π
√
mµ

∫
R3(N+1)

dqdpdk1 · · · dkN−1
χ̂(q,k1, . . . ,kN−1)χ̂(p,k1, . . . ,kN−1)

|q − p|2
. (2.35c)

We want to show that

Φλ
diag[ξ] = Φ̃λ

diag[χ], Φλ
off [ξ] = Φ̃λ

off [χ], Φreg[ξ] = Φ̃reg[χ]

where χ is given by (2.33). Let us show that Φ̃reg[χ] = Φreg[ξ]. To this end, we adopt the change

of variables associated to K1 in (2.14c), yielding

Φreg[ξ] =
2πN(N−1) γ

µ

∫
R3N

dx0dx1 · · · dxN−1
|ξ(x0,x1, . . . ,xN−1)|2

|x1− x0|

= 2πN(N−1) γ
µ

∫
R3N

drdRdx2 · · · dxN−1

√
µ

m

1

r
|χ(r,R,x2, . . . ,xN−1)|2

= N(N−1) γ
π
√
mµ

∫
R3(N+1)

dqdpdQdk2 · · · dkN−1
χ̂(q,Q,k2, . . . ,kN−1)χ̂(p,Q,k2, . . . ,kN−1)

|q − p|2

= Φ̃reg[χ].

Notice that in the last step we have used identity (1.38). In order to prove the same result for Φ̃λ
diag

and Φ̃λ
off , it is helpful to deal with Ki in Fourier space. If we denote with (q,Q) the couple of con-

jugate variables of (r,R), while (p, ki) are conjugate to (x0, xi), in the space of momenta (2.31)

reads Q =
√

µη
m0m

(p+ ki),

q = η
m0

√
µ
m
p− η√

mµ
ki

⇐⇒


p =

√
µ
m
q +

√
m0η
mµ

Q ,

ki =−
√

µ
m
q +

√
µη

m0m
Q .

(2.36)
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In particular, one can verify that

χ̂(q,Q,k2, . . . ,kN−1) =
(
m0

η

)3
4
ξ̂
(√

µ
m
q +

√
m0η
mµ

Q ,
√

µη
m0m

Q−
√

µ
m
q,k2, . . . ,kN−1

)
.

(2.37)

Hence, considering that p2

2(m0+m)
+

k21
2m

= Q2

2m
+ µ

2mη
q2, one has

Φλ
diag[ξ] =

4πN√
2µ

∫
R3N

dpdk1 · · · dkN−1

√
p2

2(m0+m)
+ 1

2m

∑N−1
n=1 k

2
n+λ |ξ̂(p,k1, . . . ,kN−1)|2

= 4πN√
2µ

∫
R3N

dQdqdk2 · · · dkN−1

√
Q2

2m
+ µ

2mη
q2+ 1

2m

∑N−1
n=2 k

2
n+λ |χ̂(q,Q,k2, . . . ,kN−1)|2

= Φ̃λ
diag[χ].

In the remaining case, we need the change of coordinates
p =

√
µ
m
(q1+ q2)+

√
µηm0

m3 Q,

k1 =−
√

µ
m
q2+

√
µη

m0m
Q,

k2 =−
√

µ
m
q1+

√
µη

m0m
Q

=⇒


p+ k1 =

√
µ
m
q1+

√
m0η
mµ

Q,

p+ k2 =
√

µ
m
q2+

√
m0η
mµ

Q,

p2

2m0
+

k21
2m

+
k22
2m

=
q21
2m

+
q22
2m

+ Q2

2m
+ 1

m0+m
q1 · q2 .

Indeed, notice that this substitution of Jacobian
(
m0µ
mη

)3
2
, together with (2.37) lead to

Φλ
off [ξ] = −

N(N−1)
2π µ2

∫
R3(N+1)

dpdk1 · · · dkN
ξ̂(p+k1,k2, . . . ,kN) ξ̂(p+k2,k1,k3, . . . ,kN)

1
2m0

p2 + 1
2m

∑N
n=1 k

2
n + λ

= − N(N−1)

2π
√

m3µ

∫
R3(N+1)

dq1dq2dQdk3 · · · dkN
χ̂(q1,Q,k3, . . . ,kN)χ̂(q2,Q,k3, . . . ,kN)
q21
2m

+
q22
2m

+ q1·q2
m0+m

+ Q2

2m
+ 1

2m

∑N
n=3 k

2
n + λ

= Φ̃λ
off [χ].

Next, let us define the unitary scaling operator in L2(R3N)

U : L2(R3)⊗L2(R3(N−1))−→L2(R3)⊗L2(R3(N−1)),

ψ(p,k1, . . . ,kN−1) 7−→
(∑N−1

n=1
k2n
2m

+ λ
)3

4
ψ

(√∑N−1
n=1

k2n
2m

+ λ p,k1, . . . ,kN−1

)
.

(2.38)

We stress that ran(U |H1/2(R3N )) ⊂ H
1
2 (R3N). Using the scaling defined by ϕ̂ = Uχ̂ in Φ̃λ, we

conclude the proof.

Formula (2.30) suggests to define the hermitian quadratic form Θζ , for ζ ≥ 0, with

D(Θζ) = H
1
2 (R3), Θζ := Θζ

diag+Θζ
off +Θreg , (2.39)

where, for a given φ ∈ H 1
2 (R3), we have (recalling M = m0

m
)

Θζ
diag[φ] :=

∫
R3

dσ
√

µ
η
σ2+ ζ |φ̂(σ)|2, (2.40a)
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Θreg[φ] :=
(N−1)γ

2π2

∫
R6

dσdτ
φ̂(σ) φ̂(τ )

|σ − τ |2
, (2.40b)

Θζ
off [φ] :=−

N−1
2π2

∫
R6

dσdτ
φ̂(σ) φ̂(τ )

σ2+ τ 2+ 2σ·τ
M+1

+ ζ
. (2.40c)

Observe that

Φλ[ξ] = Φ0[ξ] +
2πN√
mµ

∫
R3(N−1)

dk1 · · · dkN−1

√∑N−1
n=1

k2n
2m

+ λ Θ2m[ϕ ](k1, . . . ,kN−1) (2.41)

where ϕ is given by (2.29). Equation (2.41) shows that the study of Φλ in L2(R3N) can be reduced

to the analysis of Θζ in L2(R3). Indeed, notice that Θζ is pretty similar to the quadratic form

discussed in the three-body case given in (1.12). In the rest of this section and in sections 2.3, 2.4

and 2.5 we shall concentrate on the estimate from above and from below of Θζ .

Clearly, Θζ
diag[φ]< +∞ if and only if φ ∈H 1

2 (R3). With the following proposition we prove that

the whole quadratic form Θζ is well defined in H
1
2 (R3).

Proposition 2.5. Given φ ∈ H 1
2 (R3N), γ > 0 and ζ ≥ 0, we have

|Θζ [φ]| ≤
[
1 + (N−1)(M+1)√

M(M+2)

(
M+1
M

+ π
2
γ
)]
Θζ

diag[φ] . (2.42)

Proof. The statement is a revised version of [5, proposition 3.1] and the strategy is the same.

Concerning Θζ
off , we have

|Θζ
off [φ]| ≤

N −1

2π2

∫
R6

dpdq
|φ̂(p)| |φ̂(q)|
p2+ q2+ 2p ·q

M+1

≤ (N−1)(M+1)

2Mπ2

∫
R6

dpdq
|φ̂(p)| |φ̂(q)|
p2+ q2

,

where we have used

x2+ y2− 2
M+1

xy ≥ (x2+ y2)
(
1− 1

M+1

)
= M

M+1
(x2+ y2).

Let us define the integral operator Q : L2(R3)−→L2(R3) acting as

(Qψ)(p) :=
∫
R3

dk
ψ(k)

√
p (p2+ k2)

√
k
. (2.43)

Thanks to [17, lemma 2.1], we know that Q is bounded with norm 2π2.

Hence, denoted g(k) :=
√
k |φ̂(k)| ∈ L2(R3), we have

|Θζ
off [φ]| ≤

(N−1)(M+1)

2Mπ2
⟨g, Q g⟩ ≤ (N−1)(M+1)

M
∥g∥2

=
(N−1)(M+1)

M

∫
R3

dk |k||φ̂(k)|2 ≤ (N −1)(M+1)2

M
√
M(M+2)

Θζ
diag[φ] .

Let us consider Θreg . Using equation (1.38), inequality (1.51) in our case reads

1

2π2

∫
R6

dpdq
û(p)û(q)

|p− q|2
=

∫
R3

dx
|u(x)|2

|x|
≤ π

2

∫
R3

dk |k||û(k)|2.

Therefore

0 ≤ Θreg[φ]≤
π

2
(N −1)γ

√
η

µ
Θζ

diag[φ] . (2.44)

and the proof is complete.
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2.3 PARTIAL-WAVE DECOMPOSITION

In order to establish a lower bound for Θζ , in this section we start by following the first steps

of [5, section 3] properly adapted to our case, i.e., we study the quadratic form decomposed in

partial waves. Given φ̂ ∈ L2(R3,
√
p2 + 1 dp), one has

φ̂(p) =
∑
ℓ∈N0

ℓ∑
m=−ℓ

φ̂ℓ,m(p)Y
m
ℓ (ω̂). (2.45)

Here, Y m
ℓ : S2 −→ C denotes the Spherical Harmonic of order ℓ,m, while (p, ω̂) ∈ R+× S2

represents p ∈ R3 in spherical coordinates and φ̂ℓ,m ∈ L2(R+, p
2
√
p2 + 1 dp) are the Fourier

coefficients of φ̂. Accordingly, we decompose the quadratic form Θζ for any ζ ≥ 0

Θζ [φ] =
∑
ℓ∈N0

ℓ∑
m=−ℓ

F ζ
ℓ [φ̂ℓ,m], (2.46)

F ζ
ℓ : L2(R+, p

2dp)−→R, D(F ζ
ℓ ) = L2(R+, p

2
√
p2 + 1 dp). (2.47)

As usual, we consider the three-components

F ζ
ℓ := F ζ

diag+F
ζ
off; ℓ+Freg; ℓ , (2.48)

each of which is going to be computed in the following lemma. From now on, we denote by

Pℓ(y) =
1

2ℓℓ!
dℓ

dyℓ
(y2− 1)ℓ the Legendre polynomial of degree ℓ∈N0 .

Lemma 2.6. For any ψ ∈ L2(R+, p
2
√
p2 + 1 dp), taking into account decomposition (2.46) and

definition (2.48), we have the following expressions for any ζ ≥ 0, ℓ ∈ N0

F ζ
diag[ψ] =

∫ +∞

0

dk k2
√

µ
η
k2+ ζ |ψ(k)|2, (2.49a)

Freg; ℓ[ψ] =
(N−1)γ

π

∫ +∞

0

dp p2
∫ +∞

0

dq q2 ψ(p)ψ(q)

∫ 1

−1

dy
Pℓ(y)

p2+ q2− 2pq y
, (2.49b)

F ζ
off; ℓ[ψ] =−N−1

π

∫ +∞

0

dp p2
∫ +∞

0

dq q2 ψ(p)ψ(q)

∫ 1

−1

dy
Pℓ(y)

p2+ q2+ 2
M+1

pq y + ζ
. (2.49c)

Proof. The result is proved in [8, lemma 3.1] and here we give some details for reader’s conveni-

ence. First we consider the diagonal contribution. Using spherical coordinates in (2.40a) so that

any φ̂(p)∈L2(R3,
√
p2 + 1 dp) can be replaced in Θζ

diag[φ] via decomposition (2.45), one gets

Θζ
diag[φ] =

∑
ℓ∈N0

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m], (2.50)

thanks to the orthonormality of Y m
ℓ , with F ζ

diag given by (2.49a).

Regarding the regularizing contribution, the same procedure yields

Θreg[φ] =
∑
ℓ1∈N0
ℓ2∈N0

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

(N−1)γ
2π2

∫ +∞

0

dp1 p
2
1

∫ +∞

0

dp2 p
2
2 φ̂ℓ1,m1(p1)φ̂ℓ2,m2(p2)×

×
∫
S2
dω̂1

∫
S2
dω̂2

Y m1
ℓ1

(ω̂1)Y
m2
ℓ2

(ω̂2)

p21 + p22 − 2p1p2 ω̂1 · ω̂2

.

(2.51)
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Decomposing the function fp1p2 : x 7−→ 1
p21+p22−2 p1p2 x

in terms of Legendre polynomials, one

obtains for almost every (p1, p2)∈R+×R+

fp1p2(x) =
∑
ℓ∈N0

2ℓ+1
2
⟨Pℓ , fp1p2⟩L2(−1, 1) Pℓ(x), for almost every x ∈ [−1, 1]. (2.52)

Making use of the addition formula for the Spherical Harmonics

Pℓ(ω̂1 · ω̂2) =
4π

2ℓ+ 1

ℓ∑
m=−ℓ

Y m
ℓ (ω̂1)Y m

ℓ (ω̂2), (2.53)

one has the following decomposition for almost every value of ω̂1 · ω̂2 ∈ [−1, 1]

fp1p2(ω̂1 · ω̂2)=
∑
ℓ∈N0

2π

∫ 1

−1

dy
Pℓ(y)

p21 + p22 − 2p1p2 y

ℓ∑
m=−ℓ

Y m
ℓ (ω̂1)Y m

ℓ (ω̂2). (2.54)

Replacing the previous expression in (2.51), we find

Θreg[φ] =
∑
ℓ∈N0

ℓ∑
m=−ℓ

Freg; ℓ[φ̂ℓ,m], (2.55)

with Freg; ℓ given by (2.49b).

The computation related to the off-diagonal contribution is exactly the same.

In the next lemma we characterize the sign of F ζ
off; ℓ and Freg; ℓ .

Lemma 2.7. Let ψ ∈ L2(R+, p
2
√
p2 + 1 dp). Then, for all ℓ ∈ N0 one has Freg; ℓ ≥ 0 andF 0

off; ℓ[ψ] ≥ F ζ
off; ℓ[ψ] ≥ 0, if ℓ is odd,

F 0
off; ℓ[ψ] ≤ F ζ

off; ℓ[ψ] ≤ 0, if ℓ is even.

Proof. The result concerning F ζ
off; ℓ has been proved in [8, lemma 3.3] and the same procedure can

be adapted to obtain Freg; ℓ ≥ 0. Indeed, following the strategy proposed in [8, lemma 3.3], con-

sidering that 2
M+1

pq ⪇ p2+ q2, we can use the geometric series to write an absolutely convergent

series expansion

1

p2+ q2+ 2
M+1

pqy + ζ
=
∑
j∈N0

(−1)j

(p2+ q2+ ζ)j+1

(
2pq

M +1
y

)j

. (2.56)

Therefore, adopting (2.56) in (2.49c) and exchanging the sum with the integration, one gets

F ζ
off; ℓ[ψ] = −N−1

π

∑
j∈N0

( −2
M+1

)j∫ +∞

0

dp p2+j

∫ +∞

0

dq q2+j ψ(p)ψ(q)

(p2+ q2+ ζ)j+1

∫ 1

−1

dy y jPℓ(y)

= −N−1
π2ℓℓ!

∑
j∈N0

( −2
M+1

)j∫ +∞

0

dp

∫ +∞

0

dq
p2+j ψ(p) q2+j ψ(q)

(p2+ q2+ ζ)j+1

∫ 1

−1

dy y j
dℓ

dyℓ
(
y2− 1

)ℓ
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= −N−1
π2ℓℓ!

∑
j∈N0

( −2
M+1

)j∫ +∞

0

dp

∫ +∞

0

dq
p2+j ψ(p) q2+j ψ(q)

(p2+ q2+ ζ)j+1

∫ 1

−1

dy

(
dℓ

dyℓ
y j
)(

1− y2
)ℓ
,

where we integrated by parts ℓ times in the last step. Next, exploiting the identity

1

a j+1
=

1

j!

∫ +∞

0

ds sje−a s, ∀ a > 0 (2.57)

with a = p2+ q2+ ζ , we obtain

F ζ
off; ℓ[ψ] =

N−1
π

+∞∑
j=ℓ

Bjℓ

∫ +∞

0

ds sje−ζ s

∣∣∣∣∫ +∞

0

dk k2+jψ(k)e−k2s

∣∣∣∣2, (2.58)

where we have introduced the coefficients

Bjℓ := −
1

2ℓ ℓ ! j!

(
−2
M +1

)j∫ 1

−1

dy

(
dℓ

dyℓ
y j
)(

1− y2
)ℓ
. (2.59)

It is straightforward to see that Bjℓ = 0 for each j < ℓ and whenever j and ℓ don’t share the same

parity. In all remaining cases, Bjℓ is positive if j and ℓ are odd, while it is negative as long as j

and ℓ are even. Using this fact in (2.58), the statement for F ζ
off; ℓ has been proved.

For the sake of completeness we underline that for all j, ℓ ∈ N0 s.t. j ≥ ℓ and j − ℓ is even,∫ 1

−1

dy

(
dℓ

dyℓ
y j
)(

1− y2
)ℓ
=

22ℓ+1j! ℓ !

(j + ℓ+ 1)!

(
j+ℓ
2

)
!(

j−ℓ
2

)
!
. (2.60)

Therefore, whenever j−ℓ
2
∈ N0

Bjℓ = (−1)j+1 2j+ℓ+1

(j + ℓ+ 1)!

1

(1+M)j

(
j+ℓ
2

)
!(

j−ℓ
2

)
!
. (2.61)

With the same procedure we can complete the proof, since

1

p2+ q2− 2 pqy
=
∑
j∈N0

1

(p2+ q2)j+1 (2pq y)
j. (2.62)

Therefore, we obtain the following representation for Freg; ℓ

Freg; ℓ[ψ] =
(N−1)γ

π

+∞∑
j=ℓ

Cjℓ

∫ +∞

0

ds sj
∣∣∣∣∫ +∞

0

dk k2+jψ(k)e−k2s

∣∣∣∣2, (2.63)

with

Cjℓ :=


0, if j − ℓ is odd,
2j+ℓ+1

(j + ℓ+ 1)!

(
j+ℓ
2

)
!(

j−ℓ
2

)
!
, if j − ℓ is even.

(2.64)
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Notice that, thanks to lemma 2.7, for the sake of a lower bound, we can neglect F ζ
off; ℓ with ℓ odd

and focus on F 0
off; ℓ that represents a lower estimates for F ζ

off; ℓ in case ℓ is even.

Moreover, comparing (2.61) with (2.64) one finds out that

Freg; ℓ + F ζ
off; ℓ ≥ 0, provided γ ≥ 1

and this is a proof of the regularization of the ultraviolet instability. However, one can go beyond

this result dropping the assumption γ ≥ 1 in search for a lower (and possibly optimal) threshold

parameter for γ. In particular, this is the content of section 2.4.

We conclude this section by presenting the diagonalization of the quadratic form F 0
ℓ .

Lemma 2.8. Given ψ ∈ L2(R+, k
2
√
k2 + 1 dk), let ψ ♯ ∈ L2(R) be defined by

ψ ♯(p) := (Mψ)(p) =
1√
2π

∫
R
dt e−ipte2tψ(et) (2.65)

withM defined in (1.31). Then, considering the quantities computed in lemma 2.6, one has

F 0
diag[ψ] =

√
µ

η

∫
R
dp |ψ ♯(p)|2, (2.66a)

F 0
off; ℓ[ψ] =

N−1
2

∫
R
dp |ψ ♯(p)|2Soff; ℓ(p), (2.66b)

Freg; ℓ[ψ] =
N−1
2

∫
R
dp |ψ ♯(p)|2Sreg; ℓ(p), (2.66c)

where

Soff; ℓ(p) =


−
∫ 1

−1

dy Pℓ(y)
cosh

(
p arcsin y

M+1

)√
1− y2

(M+1)2
cosh

(
π
2
p
) , if ℓ is even,

∫ 1

−1

dy Pℓ(y)
sinh

(
p arcsin y

M+1

)√
1− y2

(M+1)2
sinh

(
π
2
p
) , if ℓ is odd.

(2.67a)

Sreg; ℓ(p) =


γ

∫ 1

−1

dy Pℓ(y)
cosh(p arcsin y)√
1− y2 cosh

(
π
2
p
) , if ℓ is even,

γ

∫ 1

−1

dy Pℓ(y)
sinh(p arcsin y)√
1− y2 sinh

(
π
2
p
) , if ℓ is odd.

(2.67b)

Moreover, Soff; ℓ(p) ≤ Soff; ℓ+2(p) ≤ 0, if ℓ is even;

Soff; ℓ(p) ≥ Soff; ℓ+2(p) ≥ 0, if ℓ is odd,
(2.68a)

while

Sreg; ℓ(p) ≥ Sreg; ℓ+2(p) ≥ 0, ∀ ℓ ∈ N0 . (2.68b)

Proof. The result about the diagonal and off-diagonal terms are proved in [8, lemma 3.4], whereas

the statements regarding the regularizing contribution have been shown in [5, lemma 3.4]. In the
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following, we provide the details. Notice that, if we apply the substitution k 7−→ et in (2.49a),

the unitary mapM is obtained by performing the Fourier transform in L2(R). Therefore, equa-

tion (2.66a) is a consequence of Plancherel’s theorem.

Considering the same change of variables p = ex0 , q = ex1 in (2.49c), we can rewrite F 0
off; ℓ as

F 0
off; ℓ[ψ] = −

N−1
π

∫ +∞

−∞
dx0 e

3x0

∫ +∞

−∞
dx1 e

3x1 ψ(ex0)ψ(ex1)

∫ 1

−1

dy
Pℓ(y)

e2x0 + e2x1 + 2
M+1

yex0+x1

= −N−1
2π

∫
R
dx0 e

2x0ψ(ex0)

∫
R
dx1 e

2x1ψ(ex1)

∫ 1

−1

dy
Pℓ(y)

cosh(x0 − x1) + 1
M+1

y
.

The previous expression is manifestly an inner product in L2(R, dx0) between a function and a

convolution involving the same function. Thus, thanks to the properties of the Fourier transform,

F 0
off; ℓ[ψ] =

N−1
2

∫
R
dp |ψ ♯(p)|2Soff; ℓ(p),

where

Soff; ℓ(p) := −
1

π

∫
R
dx e−ipx

∫ 1

−1

dy
Pℓ(y)

cosh(x) + y
M+1

. (2.69)

Since the function (x, y) 7−→ 1
cosh(x)+ y

M+1
∈ L1(R× [−1, 1], dxdy) uniformly in M ≥ 0, we can

use Fubini’s theorem and [20, p. 511, 3.983.1] to get

Soff; ℓ(p)=−
1

π

∫ 1

−1

dyPℓ(y)

∫
R
dx

e−ipx

cosh(x)+ y
M+1

=−2
∫ 1

−1

dyPℓ(y)
sinh

(
p arccos y

M+1

)√
1− y2

(M+1)2
sinh(πp)

. (2.70)

Proceeding in the same way for Freg; ℓ , we obtain

Freg; ℓ[ψ] =
N−1
2

∫
R
dp |ψ ♯(p)|2Sreg; ℓ(p),

where

Sreg; ℓ(p) :=
γ

π

∫ 1

−1

dy Pℓ(y)

∫
R
dx

e−ipx

cosh(x)− y
= 2γ

∫ 1

−1

dy Pℓ(y)
sinh(p arccos(−y))√

1− y2 sinh(πp)
. (2.71)

Next, since arccos a = π
2
− arcsin a for all a ∈ [−1, 1], we have

sinh(p arccos a) = sinh
(
π
2
p
)
cosh(p arcsin a)− cosh

(
π
2
p
)
sinh(p arcsin a), (2.72)

that, together with the fact that Pℓ is a polynomial of the same parity as ℓ, identities (2.67a)

and (2.67b) are recovered.

To conclude the proof, we can make use of proposition B.1 to study the monotonicity of Soff; ℓ and

Sreg; ℓ . In particular, we need to verify that the functions f1, p , f2, p : (−1, 1)−→R given by

f1, p : a 7−→
sinh(p arcsin a)√

1− a2
, f2, p : a 7−→

cosh(p arcsin a)√
1− a2

(2.73)

have expansions in power series with radius of convergence 1 and positive coefficients for all

p ∈ R. To this end, let A be the set of all analytic functions in one variable whose Taylor expan-

sion is made of positive coefficients. It is straightforward that A is closed under multiplications,
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compositions and dilations. Furthermore, given a function in A , its derivative still belongs to A .

Therefore, since sinh(·), cosh(·), arcsin(·) ∈ A , one has

d

da
arcsin a =

1√
1− a2

∈ A =⇒ f1, p , f2, p ∈ A .

Moreover, notice that the radius of convergence of the power series expansions of both f1, p and

f2, p is simply 1.

2.4 ORDER BY ORDER APPROXIMATION

In the following, we obtain some key estimates useful to control F ζ
ℓ . We first provide the upper

bound.

Lemma 2.9. For any ψ ∈ L2(R+, k
2
√
k2 + 1 dk) and ℓ ∈ N0 , one has

Freg; ℓ[ψ] ≤


πγ
2

(N−1)(M+1)√
M(M+2)

F 0
diag[ψ], if ℓ is even,

2γ
π

(N−1)(M+1)√
M(M+2)

F 0
diag[ψ], if ℓ is odd,

(2.74a)

F 0
off; ℓ[ψ] ≤


0, if ℓ is even,

2(N−1)(M+1)2

π

[
1√

M(M+2)
− arcsin 1

1+M

]
F 0
diag[ψ], if ℓ is odd.

(2.74b)

Proof. Let us first consider the case ℓ even. According to (2.68a) we have Soff; ℓ ≤ 0 while,

from (2.67b) and (2.68b), we know that

Sreg; ℓ(p) ≤ Sreg; 0(p) = 2γ
tanh

(
π
2
p
)

p
≤ πγ.

Hence, it is straightforward to see that

Freg; ℓ[ψ] ≤ N−1
2

√
η
µ
Sreg; 0(0)F

0
diag[ψ] =

πγ
2

(N−1)(M+1)√
M(M+2)

F 0
diag[ψ].

Next, we consider ℓ odd. In light of (2.68), both Sreg; ℓ(p) and Soff; ℓ(p) are maximised at ℓ = 1,

uniformly in p ∈ R. Furthermore, thanks to the parity of the integrand, we get

Soff; 1(p) = 2

∫ 1

0

dy
y sinh

(
p arcsin y

1+M

)√
1− y2

(1+M)2
sinh

(
π
2
p
) =

2(M +1)2

sinh
(
π
2
p
) ∫ arcsin 1

M+1

0

du sinu sinh(pu) ,

Sreg; 1(p) = 2γ

∫ 1

0

dy
y sinh(p arcsin y)√
1− y2 sinh

(
π
2
p
) =

2γ

sinh
(
π
2
p
)∫ π

2

0

du sinu sinh(pu) .

In both cases, we are dealing with decreasing functions in p > 0. Indeed, one has that the func-

tion p 7−→ sinh(pu)

sinh(π2 p)
is non-increasing, uniformly in u ∈ [0, π

2
]. Thus, performing the derivatives
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d
dp
Soff; 1(p) and d

dp
Sreg; 1(p), one gets negative quantities for any p > 0, since the integrands are

negative for almost every u ∈ [0, π
2
].

Hence, since Soff; 1(p) and Sreg; 1(p) are even and decreasing in p > 0, the maximum is attained at

the point p = 0 . Therefore,

Soff; ℓ(p)≤ Soff; 1(0) =
4(M+1)2

π

∫ arcsin 1
1+M

0

du u sin(u) =
4(M+1)

π

[
1−
√
M(M+2) arcsin

1

1+M

]
,

Sreg; ℓ(p)≤ Sreg; 1(0) =
4γ

π

∫ π
2

0

du u sin(u) =
4γ

π
.

In conclusion, for ℓ odd we have

Freg; ℓ[ψ] ≤ N−1
2

√
η
µ
Sreg; 1(0)F

0
diag[ψ] =

2γ
π

(N−1)(M+1)√
M(M+2)

F 0
diag[ψ];

Foff; ℓ[ψ] ≤ N−1
2

√
η
µ
Soff, 1(0)F

0
diag[ψ] =

2(N−1)(M+1)2

π

[
1√

M(M+2)
− arcsin 1

1+M

]
F 0
diag[ψ].

Let us introduce some further notation. For any a ∈ C and n ∈ N0 , let (a)n be the Pochhammer

symbol, also known as rising factorial, given by

(a)n :=

a(a+ 1) · · · (a+ n−1), if n ∈ N,

1, if n = 0.
(2.75a)

It is easy to see that for any n ∈ N0

(a)n =

(−1)nn!
( |a|
|a|−n

)
, if a ∈ −N0 ,

Γ(a+n)
Γ(a)

, otherwise.
(2.75b)

In particular, notice that if a ∈ −N0 , then (a)n = 0 for all n > |a|. Next, we recall the definition

of the Gauss hypergeometric function

2F1(a, b ; c ; z) :=
∑
k∈N0

(a)k(b)k
(c)k

zk

k!
. (2.76)

Representation (2.76) is well defined for a, b ∈ C, c ∈ C ∖−N0 and its radius of convergence

is 1. However, if a or b is a non-positive integer, then the Gauss hypergeometric function reduces

to a polynomial in z. In this case, c can also assume non-positive integer values, provided that |c|
is greater than or equal to the degree of the polynomial. We also remind the Gauss’ summation

theorem

2F1(a, b ; c ; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, if Re(c− a− b) > 0. (2.77)

In proposition B.3 we give the explicit computation of the integrals appearing in equations (2.67a)

and (2.67b) for ℓ even in terms of the Gauss hypergeometric function.
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Remark 2.1. We point out that the integral evaluated in proposition B.3 considerably simplifies

in case x = 1 or p = 0. Indeed, making use of (2.77) and (B.4), one gets in case x = 1∫ 1

−1

dyPℓ(y)
cosh(p arcsin y)√

1− y2
=

2ℓ+1
√
π ℓ ! Γ

(
ℓ+ 3

2

)
(2ℓ+1)!

∣∣Γ( ℓ+2+ip
2

)∣∣2
ℓ
2∏

n=1

[
p2+(2n−1)2

]
=

2ℓ
√
π ℓ ! Γ

(
ℓ+ 1

2

)
(2ℓ)!

∣∣Γ( ℓ+2+ip
2

)∣∣2
ℓ
2∏

n=1

[
p2+(2n−1)2

]
=

π

2ℓ
∣∣Γ( ℓ+2+ip

2

)∣∣2
ℓ
2∏

n=1

[
p2+(2n−1)2

]
.

Exploiting the identity

|Γ(n+1+ ib)|2= πb

sinh(πb)

n∏
k=1

(k2+ b2), ∀ b ∈ R, n ∈ N0 , (2.78)

one obtains ∫ 1

−1

dyPℓ(y)
cosh(p arcsin y)√

1− y2
=

2 sinh
(
π
2
p
)

p

ℓ
2∏

k=1

p2+(2k−1)2

p2 + 4k2
. (2.79)

Let us consider the case p = 0. Taking into account that

ℓ
2∏

k=1

(2k − 1)2 = (ℓ− 1)!!2 =
ℓ !2

2ℓ
(
ℓ
2

)
!2
,

where (·)!! denotes the double factorial, i.e.

n!! :=

⌈n2⌉−1∏
k=0

(n− 2k) =


2

n
2

(
n
2

)
! , if n is even,

(n+1)!

2
n+1
2

(
n+1
2

)
!
, if n is odd,

(2.80)

one obtains ∫ 1

−1

dy
Pℓ(y)√
1− x2y2

=
2xℓ ℓ !3

(2ℓ+ 1)!
(
ℓ
2

)
!2

2F1

(
ℓ+1
2
, ℓ+1

2
; ℓ+ 3

2
;x2
)
. (2.81)

In the special case x = 1 and p = 0, one has∫ 1

−1

dy
Pℓ(y)√
1− y2

=
2
√
πℓ !3 Γ

(
ℓ+ 3

2

)
(2ℓ+ 1)!

(
ℓ
2

)
!4

=

√
πℓ !3 Γ

(
ℓ+ 1

2

)
(2ℓ)!

(
ℓ
2

)
!4

=
πℓ !2

22ℓ
(
ℓ
2

)
!4

(2.82)

where we have used (2.77) and (B.4).

The next lemma is the key technical ingredient for the proof of proposition 2.1. It involves a

sequence of new auxiliary quadratic forms Ξ ζ
ℓ, sℓ

defined on L2(R+, p
2dp) for any given ℓ ∈ N0

and for some parameter sℓ ∈ (0, 1) as follows

Ξ ζ
ℓ, sℓ

:= sℓF
ζ
diag+ F 0

off; ℓ+ Freg; ℓ , D(Ξ ζ
ℓ, sℓ

) = L2(R+, p
2
√
p2 + 1 dp) . (2.83)

As we shall see, these quadratic forms will be useful to obtain a lower bound for F ζ
ℓ .

Lemma 2.10. Let ψ ∈ L2(R+, p
2
√
p2 + 1 dp) and γNb+1

c given by (2.19). Then, for γ > γNb+1
c ,

there exists {s∗ℓ}ℓ∈N0⊂(0, 1) such that each quadratic form Ξ ζ
ℓ, s∗ℓ

defined by (2.83), is non-negative

for any ζ ≥ 0 and ℓ ∈ N0 .
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Proof. Taking into account the diagonalization derived in lemma 2.8, one has

Ξ ζ
ℓ, sℓ

[ψ]≥
(
sℓF

0
diag+F

0
off; ℓ+Freg; ℓ

)
[ψ] =

∫
R
dp |ψ ♯(p)|2

[
sℓ
√

µ
η
+ N−1

2
(Soff; ℓ+Sreg; ℓ)(p)

]
=:

∫
R
dp |ψ ♯(p)|2fN

ℓ, sℓ
(p).

The lemma is proved if we show that for each order ℓ, there exists sℓ ∈ (0, 1) such that the function

fN
ℓ, sℓ

is non-negative uniformly in N ≥ 2. Notice that this is actually the case for ℓ odd, in light

of (2.68), so from now on we focus on the case ℓ even.

In particular, the uniform non-negativity of the function is eventually achieved since

lim
p→+∞

fN
ℓ, sℓ

(p) = sℓ
√

µ
η
> 0.

We notice that Soff; ℓ and Sreg; ℓ, and then fN
ℓ, sℓ

, are written in terms of the Gauss hypergeometric

function 2F1 (see (2.67a), (2.67b) and proposition B.3) and therefore the main point is a careful

control from below of such a function.

The proof will be constructed in two steps: first we show that fN
ℓ, sℓ

evaluated at zero is positive

uniformly in N ≥ 2 for a proper choice of {sℓ}ℓ∈N0 ⊂ (0, 1), then we prove that fN
ℓ, sℓ

is bounded

from below by a monotonic function hNℓ, sℓ that shares the same values with fN
ℓ, sℓ

at zero and

infinity. Once these statements are proven, we will have fN
ℓ, sℓ
≥ hNℓ, sℓ > 0 as long as sℓ is such

that fN
ℓ, sℓ

(0)> 0 for all ℓ∈N0 and uniformly in N ≥ 2.

Step 1. We observe that fN
ℓ, sℓ

(0) is positive if and only if

sℓ > −N−1
2

√
η
µ
(Soff; ℓ + Sreg; ℓ)(0)

= N−1
2

√
η
µ

∫ 1

−1

dy
Pℓ(y)√

1− y2

(1+M)2

− γ
∫ 1

−1

dy
Pℓ(y)√
1− y2

. (2.84)

The requirement sℓ ∈ (0, 1) implies a constraint for the parameter γ, since we need the right hand

side of (2.84) to be strictly less than 1. Therefore

γ > γℓM :=

[∫ 1

−1

dy
Pℓ(y)√
1− y2

]−1
∫ 1

−1

dy
Pℓ(y)√

1− y2

(1+M)2

− 2

N−1

√
µ

η

. (2.85)

Let us show that

γNb+1
c (M) = max

k∈N0

{γ2kM }= γ0M . (2.86)

Taking into account equations (2.81) and (2.82), condition (2.85) reads

γ > γℓM = γℓM,1− γℓM,2 ,

with

γℓM,1 :=
22ℓ+1ℓ !

(
ℓ
2

)
!2

π (2ℓ+ 1)! (M +1)ℓ
2F1

(
ℓ+1
2
, ℓ+1

2
; ℓ+ 3

2
; 1
(M+1)2

)
, (2.87)
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γℓM,2 :=
22ℓ+1

(
ℓ
2

)
!4
√
M(M +2)

π ℓ !2(N−1)(M +1)
. (2.88)

We observe that γℓM,2 is increasing in ℓ, since

22(ℓ+2)
(
ℓ+2
2

)
!4

(ℓ+ 2)!2
=

22ℓ+4
(
ℓ
2
+1
)
!4

(ℓ+ 2)!2
=

22ℓ 24
(
ℓ
2
+1
)4( ℓ

2

)
!4

(ℓ+ 2)2(ℓ+ 1)2 ℓ !2
=

22ℓ(ℓ+ 2)2
(
ℓ
2

)
!4

(ℓ+ 1)2 ℓ !2
>

22ℓ
(
ℓ
2

)
!4

ℓ !2
.

Therefore

γℓM < γℓM,1− γ0M,2 = γℓM,1−
2

π (N−1)

√
M(M +2)

M +1
. (2.89)

Let us consider γℓM,1. Using the Euler’s integral representation of the Gauss hypergeometric func-

tion

2F1(a, b ; c ; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

dt
tb−1(1− t)c−b−1

(1− z t)a
, Re(c) > Re(b) > 0, (2.90)

one has for any x ∈ [0, 1]

2F1

(
ℓ+1
2
, ℓ+1

2
; ℓ+ 3

2
;x2
)
=

Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+1
2

)(
ℓ
2

)
!

∫ 1

0

dt
t
ℓ−1
2 (1− t) ℓ

2

(1− x2t) ℓ+1
2

=
2Γ
(
ℓ+ 3

2

)
Γ
(
ℓ+1
2

)(
ℓ
2

)
!

∫ 1

0

du
uℓ(1− u2) ℓ

2

(1− x2u2) ℓ+1
2

=
2ℓ(2ℓ+ 1)Γ

(
ℓ+ 1

2

)
√
π ℓ !

∫ 1

0

du
uℓ(1− u2) ℓ

2

(1− x2u2) ℓ+1
2

=
(2ℓ+1)!

2ℓ ℓ !2

∫ 1

0

du
uℓ(1− u2) ℓ

2

(1− x2u2) ℓ+1
2

.

Exploiting the trivial inequality 1− u2 ≤ 1− x2u2, we obtain an estimate from above

2F1

(
ℓ+1
2
, ℓ+1

2
; ℓ+ 3

2
;x2
)
≤ (2ℓ+1)!

2ℓ ℓ !2

∫ 1

0

du
uℓ√

1− x2u2
, (2.91)

where equality holds if ℓ = 0 ∨ x = 1. From (2.91) one gets

γℓM,1 ≤
2ℓ+1

(
ℓ
2

)
!2

π ℓ ! (M +1)ℓ

∫ 1

0

du
uℓ√

1− u2

(1+M)2

=: γ̄ℓM , (2.92)

where equality holds if ℓ = 0 ∨M = 0. Hence, in particular we know that

γ0M,1 = γ̄0M = 2(M+1)
π

arcsin
(

1
M+1

)
. (2.93)

In the following computations we set x = 1
M+1

for the sake of notation. Let us prove that{
γ̄ℓM
}
ℓ∈2N0

is a decreasing sequence for all fixed M > 0. We have

γ̄ℓM − γ̄ℓ+2
M =

2ℓ+1xℓ
(
ℓ
2

)
!2

π ℓ !

∫ 1

0

du
uℓ√

1− x2u2

[
1−

4x2
(
ℓ
2
+ 1
)2
u2

(ℓ+ 2)(ℓ+ 1)

]

=
2ℓ+1xℓ

(
ℓ
2

)
!2

π ℓ !

∫ 1

0

du
uℓ√

1− x2u2

[
1− (ℓ+ 2)x2u2

ℓ+ 1

]
.

Our goal is to show that the last integral is positive for any given x ∈ (0, 1) and ℓ even, so that

γ̄ℓ+2
M < γ̄ℓM . To this end, we first point out that the integral is manifestly positive at x = 0, whereas

the evaluation of the integral at x = 1 yields∫ 1

0

du
2uℓ√
1− u2

[
1− ℓ+ 2

ℓ+ 1
u2
]
=

π ℓ !

2ℓ
(
ℓ
2

)
!2
− ℓ+ 2

ℓ+ 1

π (ℓ+ 2)!

2ℓ+2
(
ℓ
2
+ 1
)
!2

= 0.
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We observe that, in order to obtain inf
{
γ̄ℓM − γ̄ℓ+2

M |M > 0
}
≥ 0, it is sufficient to prove that the

integral is a monotonic decreasing function in x for any ℓ. In other words, we want to show

d

dx

∫ 1

0

du
uℓ√

1− x2u2

[
1− ℓ+ 2

ℓ+ 1
x2u2

]
< 0, ∀x ∈ (0, 1), ℓ even. (2.94)

By the Leibniz integral rule, the derivative with respect to x can be computed inside the integral.

Therefore, for any x ∈ (0, 1), u ∈ [0, 1] and ℓ even, one has

∂

∂x

uℓ√
1− x2u2

[
1− ℓ+ 2

ℓ+ 1
x2u2

]
=

xuℓ+2

(1− x2u2) 3
2

[
1− ℓ+ 2

ℓ+ 1
x2u2

]
− ℓ+ 2

ℓ+ 1

2xuℓ+2

√
1− x2u2

=
xuℓ+2

(1− x2u2) 3
2

[
1− ℓ+ 2

ℓ+ 1

(
x2u2 + 2− 2x2u2

)]
=

xuℓ+2

(1− x2u2) 3
2

[
ℓ+ 2

ℓ+ 1
x2u2 − ℓ+ 3

ℓ+ 1

]
< 0.

Since the integral of a negative function obviously yields a negative quantity, (2.94) is proven.

This means that
{
γ̄ℓM
}
ℓ∈2N0

is decreasing for any fixed M > 0. Thus, taking into account (2.92)

and (2.93), we finally get

γℓM,1 ≤ γ̄ℓM ≤ γ̄0M = γ0M, 1 , ∀ ℓ even.

Hence, thanks to (2.89), equation (2.86) is proved.

Step 2. Let us define the following function

hNℓ, sℓ(p) := sℓ

√
M(M+2)

M + 1
+ (N−1)(γ − γℓM,1)

tanh
(
π
2
p
)

p

ℓ
2∏

k=1

p2 + (2k−1)2

p2 + 4k2
, (2.95)

where γℓM,1 has been defined in (2.87). We shall prove that hNℓ, sℓ satisfies

hNℓ, sℓ ≤ fN
ℓ, sℓ

, (2.96a)

hNℓ, sℓ(0) = fN
ℓ, sℓ

(0), (2.96b)

lim
p→+∞

hNℓ, sℓ(p) = lim
p→+∞

fN
ℓ, sℓ

(p), (2.96c)

hNℓ, sℓ(p) is monotonic in p ∈ R+. (2.96d)

Starting with (2.96a), we take into account proposition B.3 and equation (2.79) to obtain an explicit

expression for fN
ℓ, sℓ

fN
ℓ, sℓ

(p) = sℓ

√
M(M + 2)

M + 1
+
N −1
2

(Soff; ℓ + Sreg; ℓ)(p)

= sℓ

√
M(M + 2)

M + 1
+

(N −1)h̄ℓ(p)
cosh

(
π
2
p
) ℓ

2∏
k=1

[
p2 + (2k−1)2

]
,

(2.97)

where we have introduced, for the sake of notation, the function

h̄ℓ(p) := γ
sinh

(
π
2
p
)

p

ℓ
2∏

k=1

1

p2 + 4k2
−

2ℓ ℓ ! 2F1

(
ℓ+1+ip

2
, ℓ+1−ip

2
; ℓ+ 3

2
; 1
(1+M)2

)
(2ℓ+1)! (M+1)ℓ

. (2.98)
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To achieve the result, consider the Euler’s transformation formula

2F1(a, b ; c ; z) = (1− z)c−a−b
2F1(c− a, c− b ; c ; z) (2.99)

and the inequality

|Γ(a+ ib)|2≤ |Γ(a)|2 , ∀ a, b ∈ R . (2.100)

Indeed, one can write

2F1

(
ℓ+1+ip

2
, ℓ+1−ip

2
; ℓ+ 3

2
;x2
)
=
√
1− x2 2F1

(
ℓ+2−ip

2
, ℓ+2+ip

2
; ℓ+ 3

2
;x2
)

=
√
1− x2

∑
k∈N0

x2k

k!

(
ℓ+2−ip

2

)
k

(
ℓ+2+ip

2

)
k(

ℓ+ 3
2

)
k

≤
√
1− x2

(
ℓ
2

)
!2∣∣Γ( ℓ+2+ip

2

)∣∣2 ∑
k∈N0

x2k

k!

(
ℓ
2
+1
)2
k(

ℓ+ 3
2

)
k

=

√
1− x2

(
ℓ
2

)
!2∣∣Γ( ℓ+2+ip

2

)∣∣2 2F1

(
ℓ
2
+ 1, ℓ

2
+ 1; ℓ+ 3

2
;x2
)
,

where we have used Γ(z̄) = Γ(z) and inequality (2.100), according to which∣∣Γ( ℓ+2+ip
2

+k
)∣∣2∣∣Γ( ℓ+2+ip

2

)∣∣2 ≤
Γ2
(
ℓ
2
+1
)∣∣Γ( ℓ+2+ip

2

)∣∣2 Γ2
(
ℓ
2
+1+k

)
Γ2
(
ℓ
2
+1
) =

(
ℓ
2

)
!2∣∣Γ( ℓ+2+ip
2

)∣∣2 ( ℓ2 +1
)2
k
.

Using again (2.99) to the right hand side, one obtains

2F1

(
ℓ+1+ip

2
, ℓ+1−ip

2
; ℓ+ 3

2
;x2
)
≤

(
ℓ
2

)
!2∣∣Γ( ℓ+2+ip

2

)∣∣2 2F1

(
ℓ+1
2
, ℓ+1

2
; ℓ+ 3

2
;x2
)
. (2.101)

Making use of identity (2.78) in the previous inequality, one has

h̄ℓ(p) ≥
sinh

(
π
2
p
)

p

ℓ
2∏

k=1

1

p2 + 4k2

[
γ −

22ℓ+1 ℓ !
(
ℓ
2

)
!2

π (2ℓ+1)! (M+1)ℓ
2F1

(
ℓ+1
2
, ℓ+1

2
; ℓ+ 3

2
; 1
(1+M)2

)]

=
sinh

(
π
2
p
)

p
(γ − γℓM,1)

ℓ
2∏

k=1

1

p2 + 4k2
.

Exploiting this lower bound in (2.97), one finds out that hNℓ, sℓ satisfies condition (2.96a). Further-

more, we stress that we have obtained this estimate by using only inequality (2.100), according to

which the equality sign holds in case p= 0. In other words, we have also proved (2.96b).

Next, we show (2.96c). Since p2+(2k−1)2

p2+4k2
< 1 for all k,∣∣∣∣∣hNℓ, sℓ(p)− sℓ

√
M(M + 2)

M + 1

∣∣∣∣∣ ≤ (N − 1)|γ − γℓM,1|
tanh

(
π
2
p
)

p

where the right hand side vanishes as p goes to infinity. Therefore,

lim
p→+∞

hNℓ, sℓ(p) = sℓ

√
M(M + 2)

M + 1
= lim

p→+∞
fN
ℓ, sℓ

(p).
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It remains to prove the monotonicity of hNℓ, sℓ in R+ . In particular, it suffices to show that the

function

p 7−→
tanh

(
π
2
p
)

p

ℓ/2∏
k=1

p2+ (2k−1)2

p2+ 4k2
(2.102)

is decreasing in R+ . Let us remind the product representation of the hyperbolic tangent

tanh(z) = z
∏
k∈N

1 + z2

π2k2

1 + 4z2

π2(2k−1)2

. (2.103)

Denoting z = π
2
p, one has

tanh
(
π
2
p
)

p

ℓ
2∏

k=1

p2+(2k−1)2

p2+4k2
=
π

2

ℓ
2∏

k=1

1 + p2

4k2

1 + p2

(2k−1)2

p2+(2k−1)2

p2+4k2

+∞∏
k= ℓ

2
+1

1 + p2

4k2

1 + p2

(2k−1)2

=
π

2

ℓ
2∏

k=1

(2k−1)2

4k2

+∞∏
k= ℓ

2
+1

1 + p2

4k2

1 + p2

(2k−1)2

=
π

2

(ℓ− 1)!!2

ℓ !!2

+∞∏
k= ℓ

2
+1

1 + p2

4k2

1 + p2

(2k−1)2

.

In order to prove that the function (2.102) is decreasing, we consider

ln

tanh
(
π
2
p
)

p

ℓ
2∏

k=1

p2+(2k−1)2

p2+4k2

= ln
(π
2

)
+ 2 ln

[
(ℓ− 1)!!

ℓ !!

]
+

+
+∞∑

k= ℓ
2
+1

ln

(
1 +

p2

4k2

)
− ln

[
1 +

p2

(2k − 1)2

]
.

(2.104)

We notice that for p > 0

∂

∂p

{
ln

(
1 +

p2

4k2

)
− ln

[
1 +

p2

(2k − 1)2

]}
=

2p

p2 + 4k2
− 2p

p2 + (2k − 1)2

=
2p (1− 4k)

(p2 + 4k2)[p2 + (2k − 1)2]
< 0, ∀ k ≥ 1.

Hence, (2.104) is decreasing in p > 0 since it is a sum of decreasing functions. Therefore,

also (2.102) is decreasing and (2.96d) is proven.

In conclusion, we know that whenever γ > γNb+1
c , there exists s∗ℓ ∈ (0, 1) for any ℓ ∈ N0 ,

such that fN
ℓ, s∗ℓ

(0) > 0 uniformly in N ≥ 2. Since we also know that fN
ℓ, sℓ

is eventually positive,

conditions (2.96) imply that fN
ℓ, s∗ℓ
≥ hNℓ, s∗ℓ > 0 and the proof is completed.

Remark 2.2. In lemma 2.10, we have shown that, if γ ≥ γℓM,1 , any s∗ℓ ∈ (0, 1) is such that

fN
ℓ, s∗ℓ
≥ 0, whereas in case γ ∈

(
γNb+1
c , γℓM,1

)
, the function fN

ℓ, s∗ℓ
is still non negative for all s∗ℓ s.t.

π ℓ !2

22ℓ+1
(
ℓ
2

)
!4

(N−1)(M+1)√
M(M+2)

(γℓM,1− γ) < s∗ℓ < 1.

Notice that the lower bound is non-increasing in ℓ, hence the sequence {s∗ℓ} that makes Ξ ζ
ℓ, s∗ℓ

non-negative for all ζ ≥ 0 and ℓ ∈ N0 can be chosen within an interval that does not depend on

ℓ, namely

max

{
0,
π

2

(N −1)(M +1)√
M(M +2)

(γ0M,1 − γ)

}
< s∗ℓ < 1, ∀ ℓ ∈ N0 .
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2.5 ESTIMATE OF Θζ

Collecting the results obtained in the previous two sections, we can now establish detailed

estimates for Θζ . Indeed, in the next proposition we prove a lower bound, which is the crucial

ingredient for the proof of our main results. We also prove an upper bound, which improves the

result already obtained in proposition 2.5.

Proposition 2.11. Given φ ∈ H 1
2 (R3) and ζ ≥ 0, we have

Θζ [φ] ≥ [1− Λγ(N,M)] Θζ
diag[φ], for γ > γNb+1

c , (2.105)

where

Λγ(N,M) := max

{
0, 1− π(N−1)

2
M+1√

M(M+2)

[
γ − γNb+1

c (M)
]}
∈ [0, 1). (2.106)

Moreover

Θζ [ψ] ≤ Θζ
diag[ψ] + Λ′

γ(N,M)Θ0
diag[ψ] , for γ > 0, (2.107)

where

Λ′
γ(N,M) := (N−1)(M+1)√

M(M+2)
max

{
π
2
γ, 1

2
Soff; 1(0) +

2
π
γ
}
. (2.108)

Proof. Let φ∈H 1
2 (R3) and consider decomposition (2.46) and lemma 2.7. Then,

Θζ [φ] =
∑
ℓ∈N0

ℓ∑
m=−ℓ

F ζ
ℓ [φ̂ℓ,m] =

∑
ℓ∈N0

ℓ∑
m=−ℓ

(
F ζ
diag+F

ζ
off; ℓ+Freg; ℓ

)
[φ̂ℓ,m]

≥
∑
ℓ∈N
ℓ odd

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m] +

∑
ℓ∈N0
ℓ even

ℓ∑
m=−ℓ

(
F ζ
diag+F

0
off; ℓ+Freg; ℓ

)
[φ̂ℓ,m].

Taking account of definition (2.83), for any choice of {sℓ}ℓ∈N0 ⊂ (0, 1), the previous inequality

reads

Θζ [φ] ≥
∑
ℓ∈N
ℓ odd

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m] +

∑
ℓ∈N0
ℓ even

ℓ∑
m=−ℓ

(1− sℓ)F ζ
diag[φ̂ℓ,m] +Ξ ζ

ℓ, sℓ
[φ̂ℓ,m].

According to lemma 2.10, there exists a sequence {s∗ℓ}ℓ∈N0⊂(0, 1) such that Ξ ζ
ℓ, s∗ℓ
≥ 0, hence

Θζ [φ] ≥
∑
ℓ∈N
ℓ odd

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m] +

∑
ℓ∈N0
ℓ even

ℓ∑
m=−ℓ

(1− s∗ℓ)F
ζ
diag[φ̂ℓ,m]

≥
∑
ℓ∈N0

ℓ∑
m=−ℓ

(1− s∗ℓ)F
ζ
diag[φ̂ℓ,m] ≥ inf

k∈N0

(1− s∗k)
∑
ℓ∈N0

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m]

= inf
k∈N0

(1− s∗k)Θ
ζ
diag[φ]
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where, according to remark 2.2, each s∗k can be arbitrarily chosen within an interval in (0, 1) that

does not shrink as k varies. Exploiting this fact, we can optimize the inequality by choosing

s∗k =
π(N−1)

2
M+1√

M(M+2)
max

{
0, γ0M,1 − γ

}
= Λγ(N,M), ∀ k ∈ N0

so that Θζ [φ] ≥ [1− Λγ(N,M)] Θζ
diag[φ], where Λγ(N,M) is given by (2.106).

Let us consider the upper bound. By lemmata 2.7 and 2.9, we have

Θζ [φ] =
∑
ℓ∈N0

ℓ∑
m=−ℓ

F ζ
ℓ [φ̂ℓ,m] =

∑
ℓ∈N0

ℓ∑
m=−ℓ

(
F ζ
diag+F

ζ
off; ℓ+Freg; ℓ

)
[φ̂ℓ,m]

≤
∑
ℓ∈N0
ℓ even

ℓ∑
m=−ℓ

(
F ζ
diag+ Freg; ℓ

)
[φ̂ℓ,m] +

∑
ℓ∈N
ℓ odd

ℓ∑
m=−ℓ

(
F ζ
diag+F

0
off; ℓ+Freg; ℓ

)
[φ̂ℓ,m]

≤
∑
ℓ∈N0

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m] +

N−1
2

√
η
µ
max

{
Sreg; 0(0), Soff; 1(0) + Sreg; 1(0)

}
F 0
diag[φ̂ℓ,m]

= Θζ
diag[φ] + Λ′

γ(N,M)Θ0
diag[φ]

where Λ′
γ(N,M) is given by (2.108).

We end the section with a couple of observations.

Remark 2.3. We stress that the upper bound obtained in (2.107) is an improvement of estim-

ate (2.42), since Θ0
diag ≤ Θζ

diag and

1 + Λ′
γ(N,M) ≤ 1 + (N−1)(M+1)√

M(M+2)

(
M+1
M

+ π
2
γ
)
. (2.109)

Indeed, in case γ ≥ π
π2−4

Soff; 1(0) one has

(N−1)(M+1)√
M(M+2)

(
M+1
M

+ π
2
γ
)
≥ (N−1)(M+1)√

M(M+2)

π
2
γ = Λ′

γ(N,M).

On the other hand, consider 0< γ < π
π2−4

Soff; 1(0). Taking into account the following elementary

estimate

arcsin(t) ≥ t ≥ t

√
1− t
1 + t

, 0 ≤ t ≤ 1, (2.110)

we have 1
t

√
1− t2 arcsin(t) ≥ 1− t, or 1− 1

t

√
1− t2 arcsin(t) ≤ t. Then

1−
√
x2 − 1 arcsin 1

x
≤ 1

x
, x ≥ 1. (2.111)

Therefore, exploiting (2.111) with x =M + 1, one obtains

(N−1)(M+1)√
M(M+2)

(
M+1
M

+ π
2
γ
)
≥ (N−1)(M+1)√

M(M+2)

(
1 + 2

π
γ
)

≥ (N−1)(M+1)√
M(M+2)

[
(M +1)

(
1−

√
M(M +2) arcsin 1

M+1

)
+ 2

π
γ
]

≥ 2
π

(N−1)(M+1)√
M(M+2)

[
(M +1)

(
1−

√
M(M +2) arcsin 1

M+1

)
+ γ

]
= Λ′

γ(N,M).
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Remark 2.4. We observe that a different kind of estimate from below can be performed for Θζ . In

particular, one has for any φ ∈ H 1
2 (R3)

Θ ζ [φ] ≥
∑
ℓ∈N
ℓ odd

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m] +

∑
ℓ∈N0
ℓ even

ℓ∑
m=−ℓ

(
F ζ
diag− sℓF

0
diag + Ξ0

ℓ, sℓ

)
[φ̂ℓ,m]

≥
∑
ℓ∈N
ℓ odd

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m] +

∑
ℓ∈N0
ℓ even

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m]− s∗ℓF 0

diag[φ̂ℓ,m]

≥
∑
ℓ∈N0

ℓ∑
m=−ℓ

F ζ
diag[φ̂ℓ,m]− s∗ℓF 0

diag[φ̂ℓ,m] ≥ Θ ζ
diag[φ]− sup

k∈N0

{s∗k}Θ0
diag[φ].

Again, this inequality is optimized by choosing s∗k identically equal to Λγ(N,M), so that one has

Θ ζ [φ] ≥
∫
R3

dσ
(√

µ
η
σ2+ ζ − Λγ(N,M)

√
µ
η
σ
)
|φ̂(σ)|2.

The quantity in parenthesis in the previous integrand has a minimum in σ, since Λγ(N,M) < 1

(namely γ> γNb+1
c ), i.e.

σmin = Λγ(N,M)

√
η ζ

µ [1−Λ2
γ(N,M)]

,

obtaining

Θ ζ [φ] ≥
√
1−Λ2

γ(N,M)
√
ζ ∥φ∥2L2(R3) . (2.112)

We stress that this estimate is in principle better than (2.105), in the sense that, during the calcu-

lations, we have neglected Ξ0
ℓ, sℓ

, whereas in proposition 2.11 we neglected Ξ ζ
ℓ, sℓ
≥ Ξ0

ℓ, sℓ
.

2.6 PROOF OF THE MAIN RESULTS

In this section we complete the proof of the results stated in section 2.1.

Proof of proposition 2.1. Let us recall that, for any charge ξ ∈ H 1
2 (R3N), we have defined a res-

caled charge ϕ ∈ H 1
2 (R3N) given by (2.29). According to equations (2.41) and (2.105), we can

deduce a lower bound for the quadratic form Φλ

Φλ[ξ] = Φ0[ξ] +
2πN√
mµ

∫
R3(N−1)

dk2 · · · dkN

√
1
2m

∑N
j=2 k

2
j + λ Θ2m[ϕ](k2, . . . ,kN)

≥ Φ0[ξ] + [1−Λγ(N,M)] 2πN√
mµ

∫
R3(N−1)

dk2 · · · dkN

√
1
2m

∑N
j=2 k

2
j + λ Θ2m

diag[ϕ](k2, . . . ,kN)

= Φ0[ξ] + [1−Λγ(N,M)] Φλ
diag[ξ] , ∀λ > 0, γ > γNb+1

c .

Recalling definition (2.14d) and assumption (1.10) (which implies β essentially bounded), we

have

Φ0[ξ]≥ 2πN
µ

inf
R+

{β} ⟨ξ, ξ⟩L2(R3N ) =
2πN
µ

(
α0 − (N−1) γ

b

)
∥ξ∥2L2(R3N )
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≥
(
min{0, α0} − (N−1) γ

b

)
2πN
µ
∥ξ̂∥2L2(R3N )

≥
min{0, α0}− (N−1)γ

b√
2λµ

4πN√
2µ

∫
R3N

dk1 · · · dkN

√
k21

2(m0+m)
+
∑N

j=2

k2j
2m

+λ |ξ̂(k1, . . . ,kN)|2

=
min{0, α0 b} − (N−1)γ

b
√
2λµ

Φλ
diag[ξ].

Collecting the results obtained so far, we get

Φλ[ξ] ≥
[
1− Λγ(N,M)− max{(N−1) γ, (N−1) γ−α0 b}

b
√
2λµ

]
Φλ

diag[ξ] . (2.113)

The last expression is positive if λ is large enough, i.e. if λ > λ∗0 , with

λ∗0 :=


(N−1)2 γ2

2µ [1−Λγ(N,M)]2 b2
, if α0 ≥ 0,

[(N−1)γ/b+ |α0| ]2

2µ [1−Λγ(N,M)]2
, if α0 < 0.

(2.114)

Concerning the upper bound, we proceed in the same way and we find

Φλ[ξ] ≤ [1 + Λ′
γ(N,M)] Φλ

diag[ξ] + Φ0[ξ] , ∀λ > 0, γ > 0. (2.115)

Moreover,

Φ0[ξ]≤ 2πN
µ

sup
R+

{β} ∥ξ∥2L2(R3N )=
(
α0 +

(N−1) γ
b

)
2πN
µ
∥ξ̂∥2L2(R3N )

≤
max{0, α0}+ (N−1)γ

b√
2λµ

4πN√
2µ

∫
R3N

dk1 · · · dkN

√
k21

2(m0+m)
+
∑N

j=2

k2j
2m

+λ |ξ̂(k1, . . . ,kN)|2

=
max{0, α0 b}+ (N−1)γ

b
√
2λµ

Φλ
diag[ξ].

Using the last estimate, we obtain

Φλ[ξ] ≤
[
1 + Λ′

γ(N,M) + max{(N−1) γ, (N−1) γ+α0 b}
b
√
2λµ

]
Φλ

diag[ξ]. (2.116)

Hence, Φλ is closed for any λ > λ∗0 , since it is equivalent to the H
1
2 -norm. Now let us give

an alternative lower bound for Φλ taking into account inequality (2.112), identity (2.41) and the

lower bound for θ in (1.10)

Φλ[ξ] ≥ 2πN
µ

[√
1−Λ2

γ(N,M)
√
2µλ + α0 − (N−1) γ

b

]
∥ξ∥2L2(R3N ). (2.117)

In particular, Φλ is coercive for any λ>λ0 with

λ0 :=


0, α0 ≥ (N−1) γ

b
,

[(N−1)γ/b− α0]
2

2µ [1−Λ2
γ(N,M)]

, α0 < (N−1) γ
b
.

(2.118)

Notice that λ0<λ∗0 .
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Next, we want to show that Φλ is closed for any λ > 0. To this end, consider the quantity

∥·∥2Φλ := Φλ[· ] + 2πN
µ

[√
2µλ

(
1−
√

1−Λ2
γ(N,M)

)
− α0 + (N−1) γ

b

]
∥·∥2L2(R3N ) (2.119)

that defines a norm in L2(R3N) for all λ> 0. Indeed notice that, owing to (2.117) one has

∥·∥2Φλ ≥ 2πN
√

2λ
µ
∥·∥2L2(R3N ),

hence ∥ξ∥Φλ = 0 implies ξ = 0. In order to prove the closedness of Φλ we need to show that

its domain is complete according to ∥·∥Φλ . To this end, let {ξn}n∈N ⊂ H
1
2 (R3N) be a Cauchy

sequence for ∥·∥Φλ such that ∥ξn− ξ∥L2(R3N )−→ 0 for some ξ ∈ L2(R3N). Since for all λ > 0

there holds

Φλ[·] ≥ [1−Λγ(N,M)]Φλ
diag[·] + 2πN

µ

[
α0 − (N−1) γ

b

]
∥·∥2L2(R3N ), (2.120)

provided γ > γNb+1
c , we also have

[1−Λγ(N,M)]Φλ
diag[ξn− ξ] + 2πN

√
2λ
µ

[
1−

√
1−Λ2

γ(N,M)
]
∥ξn− ξ∥2L2(R3N )

≤ ∥ξn− ξ∥2Φλ−→ 0.

Since both terms in the left hand side are positive, we observe that we have obtained

Φλ
diag[ξn− ξ] −→ 0.

Hence, {ξn}n∈N is a Cauchy sequence also for the H
1
2 -norm so that ξ ∈ H 1

2 (R3N) and the proof

is complete.

We have shown that, provided γ > γNb+1
c , the quadratic form Φλ is closed for any λ > 0 and it is

also bounded from below by a positive constant for any λ > λ0 . Thus, under these assumptions,

Φλ uniquely defines a s.a. and positive operator Γλ in L2(R3N) for all λ > λ0 . Such operator is

characterized as follows

D(Γλ) =
{
ξ ∈H

1
2 (R3N)

∣∣ ∃ g ∈L2(R3N) s.t. Φλ[φ, ξ ] = ⟨φ, g⟩, ∀φ ∈H
1
2 (R3N)

}
,

Γλξ = g, ∀ ξ ∈ D(Γλ)
(2.121)

where Φλ[· , · ] is the sesquilinear form associated to Φλ[· ] via the polarization identity. Moreover,

Γλ is invertible for all λ> λ0 .

We are now in position to conclude the proof of theorem 2.2.

Proof of theorem 2.2. Taking into account proposition 2.1, Q is bounded from below, since for

any ψ ∈ D(Q), one has

Q[ψ] = Fλ[w
λ]− λ ∥ψ∥2+ Φλ[ξ] ≥ −λ ∥ψ∥2, ∀λ > λ0 .
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Now, let us fix λ > λ0 . By construction Q is hermitian, hence, the associated sesquilinear form

Q[·, · ] is symmetric. In particular, this means that the sesquilinear form s[·, · ] given by

s[ψ, φ] := Q[ψ, φ] + (1 + λ)⟨ψ, φ⟩, ∀ψ, φ ∈ D(Q)

defines a scalar product in HNb+1 . Therefore, we equip D(Q) ⊂HNb+1 with the norm

∥ψ∥2Q := Q[ψ] + (1 + λ)∥ψ∥2 = Fλ[w
λ] + Φλ[ξ] + ∥ψ∥2. (2.122)

We prove thatQ is closed by showing the completeness of D(Q) with respect to ∥·∥Q . To this end,

let {ψn} ⊂ D(Q) and ψ ∈HNb+1 be respectively a sequence and a vector s.t. ∥ψn − ψm∥Q−→ 0

as n,m go to infinity and ∥ψn − ψ∥−→ 0. By (2.122), we have

Fλ[w
λ
n − wλ

m] + Φλ[ξn − ξm]−→ 0 (2.123)

and, since both Fλ and Φλ are closed and positive, (2.123) implies

Fλ[w
λ
n − wλ

m]−→ 0, Φλ[ξn − ξm]−→ 0, as n,m → +∞.

Hence, we have obtained that {wλ
n} and {ξn} are Cauchy sequences in H1(R3(N+1)) ∩HNb+1

and H
1
2 (R3N) ∩ H(N−1)b+1 , respectively. Thus, there exist wλ ∈ H1(R3(N+1)) ∩ HNb+1 and

ξ ∈H 1
2 (R3N) ∩H(N−1)b+1 such that∥∥wλ

n − wλ
∥∥
H1(R3(N+1))

−→ 0, ∥ξn − ξ∥H1/2(R3N )−→ 0, as n → +∞.

Furthermore, since Gλ defined in (2.11) is bounded for all λ > 0, one has that ψn = wλ
n + Gλξn

converges in HNb+1 to the vector wλ+Gλξ. By uniqueness of the limit, ψ = wλ +Gλξ and thus,

ψ ∈D(Q). We have shown that (D(Q), ∥·∥Q) is a Banach space, hence Q is closed.

From theorem 2.2, we know that Q uniquely defines a self-adjoint and bounded from below

Hamiltonian H, D(H) in the Hilbert space HNb+1 = L2(R3) ⊗ L2
sym(R3N). We conclude this

section with the proof of theorem 2.3 which characterizes domain and action ofH.

Proof of theorem 2.3. Let us assume that ψ = wλ+Gλξ ∈D(H), with λ>λ0 . Then, there exists

f ∈HNb+1 such that the sesquilinear form Q[·, · ] associated to Q[· ] via the polarization identity

satisfies

Q[v, ψ] = ⟨v, f⟩, ∀ v = wλ
v +Gλξv ∈ D(Q) (2.124)

where f =: Hψ. By definition one has

Q[v, ψ] = ⟨H
1
2
0w

λ
v , H

1
2
0w

λ⟩+ λ⟨wλ
v , w

λ⟩ − λ⟨v, ψ⟩+ Φλ[ξv, ξ]. (2.125)

Let us consider v ∈ H1(R3(N+1)) ∩HNb+1 , so that ξv ≡ 0 by injectivity of Gλ. Then

⟨H
1
2
0 v, H

1
2
0w

λ⟩+ λ⟨v, wλ⟩ − λ⟨v, ψ⟩ = ⟨v, f⟩, ∀ v ∈ H1(R3(N+1)) ∩HNb+1 .
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Hence, wλ ∈H2(R3(N+1)) ∩HNb+1 and

(H0 + λ)wλ − λψ = f (2.126)

which is equivalent to

Hψ = H0w
λ − λGλξ. (2.127)

Now, let v ∈D(Q). Taking account of (2.126), we have

⟨v, f + λψ⟩ = ⟨wλ
v , (H0 + λ)wλ⟩+ ⟨Gλξv, (H0 + λ)wλ⟩.

On the other hand, recalling (2.124) and (2.125),

⟨v, f + λψ⟩ = Q[v, ψ] + λ⟨v, ψ⟩ = ⟨wλ
v , (H0 + λ)wλ⟩+ Φλ[ξv, ξ],

hence,

Φλ[ξv, ξ] = ⟨Gλξv, (H0 + λ)wλ⟩ = 2πN
µ
⟨ξv, wλ|πN

⟩L2(R3N ), ∀ ξv ∈ H
1
2 (R3N) ∩H(N−1)b+1

where we have used definition (2.131) in the last step. Therefore, we conclude that ξ ∈ D and

Γλξ = 2πN
µ
wλ
∣∣
πN

. Comparing this identity with equation (2.142), the following relation holds

Γλξ = 2πN
µ

(ΓN,λ
diag + ΓN,λ

off + ΓN
reg)ξ, ∀ ξ ∈ D. (2.128)

Therefore, from equation (2.144), we have Γλ= Γλ . This means that, owing to (2.145), Γλ satisfies

the assumptions of proposition A.2, hence its definition can be extended to all λ∈−ρ(H0) so that

its extension fulfils conditions (A.2). Then, denoting this operator by Γ(z), with z ∈ ρ(H0), we

have obtained ρ(H) ⊇ C∖ [−λ0, +∞) and

RH0(z) +G(z)Γ(z)−1G(z̄)∗ = (H− z)−1,

according to the theory discussed2 in appendix A.

Remark 2.5. We stress that we have finally achieved a rigorous definition of the operator H as a

lowered semi-bounded s.a. extension of Ḣ0 defined by (2.6). In particular, this means that for any

ψ ∈ D(Ḣ0)⊂D(H) (roughly speaking, for all functions vanishing on π), we haveHψ = H0ψ .

Moreover, ψ = wλ+Gλξ ∈D(H) satisfies boundary condition (2.9) at least in the weak topology.

Indeed, because of equation (2.143), we have for any ξ ∈ D

Γλξ = 2πN
µ

ΓN
reg ξ +

2πN
µ

w−lim
xN →x0

[
ξ
(
mxN+m0x0

m+m0
,x1, ...,xN−1

)
|xN−x0| − (ψ − wλ)(x0,x1, . . . ,xN)

]
,

therefore,

Γλξ = 2πN
µ

ΓN
reg ξ +

2πN
µ
wλ|πN

+ 2πN
µ

w−lim
xN →x0

[
ξ
(
mxN+m0x0

m+m0
,x1, ...,xN−1

)
|xN−x0| − ψ(x0,x1, . . . ,xN)

]
2Actually, exploiting the results described in appendix A and proposition A.3, one can equivalently characterize

the s.a. and bounded from below Hamiltonian of the system in an alternative way, as we shall see in the next chapter.
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according to proposition B.5. Hence, owing to the boundary condition Γλξ = 2πN
µ
wλ|πN

one gets

w−lim
xN →x0

[
ψ(x0,x1, . . . ,xN)−

ξ
(
mxN+m0x0

m+m0
,x1, ...,xN−1

)
|xN−x0|

]
= (ΓN

reg ξ)(x0,x1, . . . ,xN−1).

In other words, requiring Γλξ = 2πN
µ
wλ|πN

in the domain of the Hamiltonian H is equivalent to

impose boundary condition (2.9) on the coincidence hyperplanes at least in weak-topology3 sense.

3In order to obtain the same result in the L2-topology, more information on D is required.
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Addendum

2.A POTENTIAL AND BOUNDARY CONDITION

In the next chapter, we will exploit the abstract setting described in Appendix A in a more

extensive and systematic way. In order to provide a preliminary hint, let us establish the connection

of such abstract theory with the problem dealt in this chapter.

The Hilbert space H is given by HNb+1 , while the free Hamiltonian H0 plays the role of the

operator A and S corresponds to Ḣ0 . The auxiliary Hilbert space X in our case is H(N−1)b+1.

Define

Xi := L2(R3, dx0)⊗L2
sym(R3(N−1), dx1 · · · dx̌i · · · dxN) (2.129)

and let Ti : D(H0)−→Xi be the trace operator f 7−→ 2π
µ
f |πi

. Observe that each Xi is isomorphic

to H(N−1)b+1 . Denoting with Ci the isomorphism sending H(N−1)b+1 to Xi , the continuous map

τ is represented by the operator T , given by

T : D(H0) ⊂HNb+1−→H(N−1)b+1,

T : ψ 7−→
N∑
i=1

C∗i Tiψ = 2π
µ

N∑
i=1

C∗i ψ|πi
= 2πN

µ
C∗jψ|πj

, for any j ∈ {1, . . . , N}.
(2.130)

The reason behind the constant 2π
µ

is clarified in remark 2.8. Notice that T is bounded since the

trace operators Ti : f 7−→ f |πi
are continuous between H

3
2
+s(R3(N+1)) and Hs(R3N) for any

s>0 (proposition B.4). Moreover, ran(T ) is dense and D(Ḣ0)=ker(T ) by construction.

Finally, the operator G(z) is represented by (TRH0(z̄))
∗=: G(z) ∈ B

(
H(N−1)b+1,HNb+1

)
.

Morally, our efforts in the previous sections have been devoted to the construction of the invertible

operator Γ(z) that encodes the ultraviolet regularization and, together with T , fully characterizes

the lower semi-bounded HamiltonianH.

In the following, we show that the operator G(−λ) can be identified with the potential Gλ, for

λ > 0, whose definition has been provided in (2.11) and then we discuss some of its properties.

Denote by ξi ∈ Xi the “charge” associated to the i-th coincidence hyperplane πi and the operator

Gi(z) : Xi −→ L2
sym(R6, dx0dxi) ⊗ L2

sym(R3(N−1), dx1 · · · dx̌i · · · dxN) the potential generated

by the i-th charge. Since the particles interacting with the impurity are all indistinguishable from

each other, all the charges must be equal, namely ξi = Ciξ. In other words, given ξ ∈H(N−1)b+1

we have

G(z)ξ = (TRH0(z̄))
∗ξ =

∑N
i=1Gi(z)Ciξ (2.131)
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with the action of Gi(z) yet to be determined. Next, we claim that the continuous operator G(−λ)
coincides with the definition of the potential Gλ given by (2.11) for any λ> 0. Let us prove this

assertion. For any ξ ∈H(N−1)b+1 , ψ ∈HNb+1 , by definition,

⟨G(−λ)ξ, ψ⟩= ⟨ξ, TRH0(−λ)ψ⟩L2(R3N ) = ⟨ξ̂, TRH0(−λ)ψ̂⟩L2(R3N ).

From (2.130), for any ϕ ∈ Hs(R3(N+1)) with s > 3
2
, one obtains

Ti ϕ̂(P,k1, . . . ǩi . . . ,kN) =
1

µ

1√
2π

∫
R3

dQ ϕ̂(Q,k1, . . . ,ki−1,P−Q,ki+1, . . . ,kN). (2.132)

Therefore, in our case,

⟨ξ̂, TRH0(−λ)ψ̂⟩L2(R3N )=
1√
2π µ

N∑
i=1

∫
R3N

dP dk1 · · · dǩi · · · dkN ξ̂(P ,k1, . . . ǩi . . . ,kN)×

×
∫
R3

dQ
ψ̂(Q,k1, . . . ,ki−1,P−Q,ki+1, . . . ,kN)

1
2m0

Q2 + 1
2m
|P−Q|2 + 1

2m

∑
j ̸=i k

2
j + λ

.

Finally, adopting the substitution P 7−→ Q+ ki ,

⟨TRH0(−λ)ψ̂, ξ̂⟩L2(R3N )=
1√
2π µ

∫
R3(N+1)

dQdk1 · · · dkN ψ̂(Q,k1, . . . ,kN)×

×
N∑
i=1

ξ̂(Q+ ki,k1, . . . ǩi . . . ,kN)
1

2m0
Q2 + 1

2m

∑N
j=1 k

2
j + λ

,

from which the following expression for G(−λ) in the space of momenta comes out

(G(−λ) ξ̂ )(p,k1, . . . ,kN) =
1√
2π µ

N∑
i=1

ξ̂(p+ ki,k1, . . . ǩi . . . ,kN)
1

2m0
p2 + 1

2m

∑N
j=1 k

2
j + λ

(2.133)

=:
N∑
i=1

(Gi(−λ)Ci ξ̂)(p,k1, . . . ,kN).

Notice that definition (2.11) has been recovered.

Remark 2.6. We stress that, since Gλ has been shown to be equal to G(−λ), its properties are

inherited, for instance, ran(Gλ) ⊂HNb+1 and ker(Gλ) = {0}.

Remark 2.7. Recall, from remark A.1, that ran(Gλ) does not share non-trivial elements with

H2(R3(N+1)). Moreover, from (2.133), one can verify that ran(Gλ) ∩H1(R3(N+1))={0} as well.

This fact is remarkable in defining the quadratic form Q in (2.16).

Next, our goal is to extract the asymptotic behaviour of the potential in a neighborhood of the

coincidence hyperplanes, in the position representation. We compute such asymptotic behavior

for a regular charge ξ ∈ S(R3N) ∩ Xj . From (2.133), we get

(
Gλ

j ξ
)
(x0,x1, . . . ,xN)=

2π

µ

∫
R3(N+1)

dqdk1 · · · dkN
e
iq ·x0+i

N∑
n=1

kn·xn

(2π)
3
2
(N+2)

ξ̂(q+kj,k1, . . . ǩj . . . ,kN)
1

2m0
q2 + 1

2m

∑N
n=1 k

2
n + λ
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=
2π

µ

∫
R3N

dpdk1 · · · dǩj · · · dkN
e
ip ·

(
mxj+m0x0

m+m0

)
+i

∑
n ̸=j

kn·xn

(2π)
3
2
(N+2)

ξ̂(p,k1, . . . ǩj . . . ,kN)×

× (m0m)
3
2

(m0+m)3

∫
R3

dκ
e
i
√
m0m

m0+m
κ · (x0−xj)

κ2+p2

2(m0+m)
+ 1

2m

∑
n̸=j k

2
n + λ

,

where a change of variables of Jacobian
(√

m0m

m0+m

)3
has occurred in the last step, wherep = q + kj ,

κ =
√

m
m0

q −
√

m0

m
kj

⇐⇒

q = m0

m0+m

(
p+

√
m
m0

κ
)
,

kj =
m

m0+m

(
p−

√
m0

m
κ
)
.

(2.134)

The last integral in dκ is well known, since, given a > 0, one has∫
R3

dk
eik ·x

k2 + a2
=

2π2

|x|
e−a |x| , ∀x ̸= 0 . (2.135)

Hence,

(
Gλ

j ξ
)
(x0,x1, . . . ,xN)=

∫
R3(N−1)

dk1 · · · ˇdkj · · · dkN
e
i
∑
n ̸=j

kn·xn

(2π)
3
2
(N−1)

∫
R3

dp
e
ip ·

(
mxj+m0x0

m+m0

)
(2π)

3
2

×

× ξ̂(p,k1, . . . ǩj . . . ,kN)

|x0− xj|
e
−
√
2µ |x0−xj |

√
p2

2(m0+m)
+ 1

2m

∑
n ̸=j k

2
n+λ

.

(2.136)

From the last equation, notice that the term Gλ
j ξ is regular in R3(N+1)∖πj . Furthermore, since we

are working with ξ̂ ∈ S(R3N), with a Taylor expansion of the exponential, we can easily expand

in terms of powers of |xj − x0|

(
Gλ

j ξ
)
(x0,x1, . . . ,xN)=

ξ
(

mxj+m0x0

m+m0
,x1, . . . x̌j . . . ,xN

)
|x0− xj|

+

−
√

2µ

∫
R3(N−1)

dk1 · · · ˇdkj · · · dkN
e
i
∑
n ̸=j

kn·xn

(2π)
3
2
(N−1)

∫
R3

dp
e
ip·

(
mxj+m0x0

m+m0

)
(2π)

3
2

×

×
√

p2

2(m0+m)
+ 1

2m

∑
n ̸=j k

2
n + λ ξ̂(p,k1, . . . ǩj . . . ,kN)+

+O(|x0− xj|) .

Therefore, one obtains an explicit behavior of the potential near πj

(
Gλ

j ξ
)
(x0,x1, . . . ,xN)=

ξ
(

mxj+m0x0

m+m0
,x1, . . . x̌j . . . ,xN

)
|x0 − xj|

− Γj,λ
diag ξ + o(1) , (2.137)

where

(Γj,λ
diag ξ)(x0,x1, . . . x̌j . . . ,xN)=

√
2µ

∫
R3N

dpdk1 · · · dǩj · · · dkN
e
ip ·x0+ i

∑
n̸=j

kn·xn

(2π)
3
2
N

×

×
√

p2

2(m0+m)
+ 1

2m

∑
n̸=j k

2
n + λ ξ̂(p,k1, . . . ǩj . . . ,kN) .

(2.138)
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A similar asymptotic expansion holds for Gλ in a neighborhood of πj

(Gλξ)(x0,x1, . . . ,xN)=
ξ
(

mxj+m0x0

m+m0
,x1, . . . x̌j . . . ,xN

)
|x0 − xj|

− (Γj,λ
diag+ Γj,λ

off )ξ + o(1) , (2.139)

with Γj,λ
off representing the contribution of all other potentials {Gλ

i }i ̸=j evaluated on πj , i.e.

(Γj,λ
off ξ)(x0,x1, . . . x̌j . . . ,xN)=− 1

4π2µ

∫
R3

dp

∫
R3N

dk1 · · · dkN
e
i(p+kj) ·x0+i

∑
ℓ̸=j

kℓ ·xℓ

(2π)
3
2
N

×

×
N∑

n=1
n ̸=j

ξ̂(p+ kn,k1, . . . ǩn . . . ,kN)
1

2m0
p2 + 1

2m

∑N
ℓ=1k

2
ℓ + λ

.

(2.140)

Remark 2.8. Notice that, in light of (2.139), we have obtained precisely the same singular be-

havior around πj for both Gλξ and ψ ∈ HNb+1 ∩ H2(R3(N+1) \ π) satisfying Minlos-Faddeev

boundary condition (2.9). Therefore, this suggests to write the vector ψ satisfying boundary con-

dition (2.9) as a sum of two terms, namely

ψ =Gλξ + wλ, (2.141)

where, taking into account definition (2.10), wλ ∈HNb+1 ∩H2(R3(N+1)) fulfils

wλ|πj
= (Γj,λ

diag+ Γj,λ
off + Γj

reg)ξ , ∀ j ∈ {1, . . . , N}. (2.142)

Next, let us define the symmetric operator Γλ : S(R3N) ∩H(N−1)b+1−→H(N−1)b+1 , given by

Γλ : ξ −→ 2πN
µ

w−lim
xN →x0

[
ξ
(
mxN+m0x0

m+m0
,x1,...,xN−1

)
|xN−x0| −Gλξ(x0,x1, . . . ,xN)

]
+ 2πN

µ
ΓN
reg ξ . (2.143)

Therefore, following (2.139), we can observe that

2πN
µ

(ΓN,λ
diag+ ΓN,λ

off + ΓN
reg) = Γλ . (2.144)

Furthermore, owing to proposition A.1, Gλ1−Gλ2 ∈ D(H0) for all λ1, λ2 > 0, hence

Γλ1− Γλ2 = T (Gλ2−Gλ1) (2.145)

because of proposition B.5. This means that the s.a. extension of Γλ (that has been proved to be Γλ

characterized by (2.121)) is a good candidate on which testing the assumptions of proposition A.2.

2.B HEURISTIC DERIVATION OF THE QUADRATIC FORM

Here we provide a heuristic discussion meant to justify the definition of the quadratic form Q

given in (2.16). Given ψ ∈HNb+1 ∩H2(R3(N+1) \π) a vector fulfilling boundary condition (2.9),
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our aim is to construct the energy form ⟨ψ, H̃ψ⟩ associated to the formal Hamiltonian H̃ discussed

at the beginning of this chapter. Recalling that the Hamiltonian acts as H0 outside π, given ϵ > 0,

let Dϵ :=
{
(x0,x1, . . . ,xN)∈ R3(N+1)

∣∣ min
1≤i≤N

|xi − x0|> ϵ
}

. Then

⟨ψ, H̃ψ⟩ = lim
ϵ→ 0

∫
Dϵ

dx0dx1 · · · dxN ψ(x0,x1, . . . ,xN)(H0ψ)(x0,x1, . . . ,xN). (2.146)

Introducing the decomposition of remark 2.8, ψ = wλ+Gλξ , equation (2.146) reads

⟨ψ, H̃ψ⟩ = ⟨wλ, (H0 + λ)wλ⟩ − λ ∥ψ∥2+ ⟨Gλξ, (H0 + λ)wλ⟩, (2.147)

since D(H0) ∩ ran(Gλ) = {0}. The last term can be simplified using (2.131)

⟨ψ, H̃ψ⟩ = ⟨wλ, (H0 + λ)wλ⟩ − λ ∥ψ∥2+ ⟨ξ, T wλ⟩L2(R3N )

= Fλ[w
λ]− λ ∥ψ∥2+ 2π

µ

∑N
i=1⟨Ciξ, wλ|πi

⟩Xi
.

In the last step, the first contribution has been rewritten using definition (2.17), while replacing

wλ|πi
via (2.142) in the last expression, one gets

⟨ψ, H̃ψ⟩ = F [wλ]− λ ∥ψ∥2+ 2π
µ

∑N
i=1⟨Ciξ, (Γ

i,λ
diag+ Γi,λ

off + Γi
reg)ξ⟩Xi

. (2.148)

Exploiting the symmetry, one obtains

⟨ψ, H̃ψ⟩ = F [wλ]− λ ∥ψ∥2+ 2πN
µ
⟨ξ, (ΓN,λ

diag + ΓN,λ
off + ΓN

reg)ξ⟩L2(R3N ) . (2.149)

Now, we want to show that the last term is equal to Φλ[ξ], given by (2.13). To this end, we consider

separately each component of the inner product in (2.149). Firstly, according to (2.138), we change

the order of integration, obtaining

2πN
µ
⟨ξ, ΓN,λ

diagξ⟩XN
= 4πN√

2µ

∫
R3N

dpdk1 · · · dkN−1

√
p2

2(m0+m)
+
∑N−1

n=1
k2n
2m

+λ |ξ̂(p,k1, . . . ,kN−1)|2

= Φλ
diag[ξ].

Indeed, notice that definition (2.14a) is recovered. Similarly, taking into account (2.140),

2πN
µ
⟨ξ, ΓN,λ

off ξ⟩XN
= − N

2π µ2

∫
R3(N+1)

dpdk1 · · · dkN ξ̂(p+ kN ,k1, . . . ,kN−1)×

×
N−1∑
n=1

ξ̂(p+ kn,k1, . . . ǩn . . . ,kN)
1

2m0
p2 + 1

2m

∑N
ℓ=1 k

2
ℓ + λ

.

Exchanging the role of k1 and kN , since ξ ∈H(N−1)b+1, one gets

2πN
µ
⟨ξ, ΓN,λ

off ξ⟩XN
= − N

2π µ2

N∑
n=2

∫
R3(N+1)

dpdk1 · · · dkN ξ̂(p+ k1,k2, . . . ,kN)×

× ξ̂(p+ kn,k1, . . . ǩn . . . ,kN)
1

2m0
p2 + 1

2m

∑N
ℓ=1 k

2
ℓ + λ

.
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In the last integral, we can change the variables setting κσn(i) = ki , for all i ∈ {1, . . . , N}, where

the permutation of N elements σn is given by

σn :=

(
1 2 3 . . . n− 1 n n+ 1 . . . N

1 3 4 . . . n 2 n+ 1 . . . N

)
, for n > 2, (2.150)

while, σ2 is the identity permutation. Applying this change of variables, one obtains

2πN
µ
⟨ξ, ΓN,λ

off ξ⟩XN
= − N

2π µ2

N∑
n=2

∫
R3(N+1)

dqdκ1 · · · dκN ξ̂(q+ κ1,κσn(2), . . . ,κσn(N))×

× ξ̂(q+ κ2,κ1,κ3 . . . ,κN)
1

2m0
q2 + 1

2m

∑N
ℓ=1 κ

2
ℓ + λ

.

Notice that the symmetry properties of ξ ∈ H(N−1)b+1 make the integrand actually independent

of n. Therefore, the expression in definition (2.14b) is achieved

2πN
µ
⟨ξ,ΓN,λ

off ξ⟩XN
=−N(N−1)

2π µ2

∫
R3(N+1)

dpdκ1 · · · dκN ξ̂(p+κ1,κ2, . . . ,κN)
ξ̂(p+κ2,κ1,κ3, . . . ,κN)
1

2m0
p2 + 1

2m

∑N
ℓ=1 κ

2
ℓ + λ

= Φλ
off [ξ].

Finally, from (2.10) and (2.8),

2πN
µ
⟨ξ,ΓN

reg ξ⟩XN
= 2πN

µ

∫
R3N

dx0dx1 · · · dxN−1

[
α0 + γ

N−1∑
n=1

θ(|xn− x0|)
|xn− x0|

]
|ξ(x0,x1, . . . ,xN−1)|2

= 2πN
µ

∫
R3N

dx0dx1 · · · dxN−1

[
α0 + (N −1) γ

θ(|x1− x0|)−1

|x1− x0|

]
|ξ(x0,x1, . . . ,xN−1)|2+

+ 2πN(N−1) γ
µ

∫
R3N

dx0dx1 · · · dxN−1
|ξ(x0,x1, . . . ,xN−1)|2

|x1− x0|
= Φ0[ξ] + Φreg[ξ].

We have shown that, for a sufficiently regular charge ξ ∈H(N−1)b+1, equation (2.149) reduces to

the action of Q defined in (2.16), since by definition (2.13) Φλ=Φ0 + Φλ
diag+ Φλ

off + Φreg .
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3. INTERACTING BOSE GAS

The aim of this chapter is to construct a regularized zero-range Hamiltonian for a Bose gas

in dimension three adopting the Minlos-Faddeev regularization. In particular, we consider1 a non-

relativistic quantum system of N identical spinless bosons of mass 1
2

interacting with each other

via a regularized contact interaction. The Hilbert space of the system is therefore given by

HNb := L2
sym(R3N), N ≥ 3. (3.1)

We denote by P the following set

P :=
{
{i, j}

∣∣ i, j ∈ {1, . . . , N}, i ̸= j
}
, |P| = N(N−1)

2
(3.2)

so that, the formal Hamiltonian associated with the two-body point interaction is

H̃ = −
N∑
i=1

∆xi
+ ν

N∑
P∋σ={i,j}

δ(xi − xj), (3.3)

where ν is a coupling constant. Clearly, in this case the free Hamiltonian is

H0 := −
N∑
i=1

∆xi
, D(H0) = HNb ∩H2(R3N). (3.4)

In order to rigorously define the Hamiltonian H associated with the formal operator (3.3) as a

s.a. and lower semi-bounded operator in HNb , we need to construct a singular perturbation ofH0

supported on the coincidence hyperplanes

π :=
⋃
σ∈P

πσ , πij :=
{
(x1, . . . ,xN) ∈ R3N

∣∣ xi = xj

}
. (3.5)

This means that, as already discussed in the previous chapters, we require H to coincide with the

free Hamiltonian on the space of H2-functions whose traces vanish along π

Hψ = H0ψ, ∀ψ ∈HNb ∩H2(R3N) s.t. ψ |π = 0. (3.6)

Ultimately,H can be defined as a proper s.a. and bounded from below extension of the operator

Ḣ0 := H0|D(Ḣ0)
, D(Ḣ0) := HNb ∩H2

0 (R3N \ π) (3.7)

which is symmetric and closed according to the graph norm ofH0 .
1The results of this chapter are going to appear in a forthcoming paper.
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By construction, one has D(H)⊂HNb ∩ H2(R3N \ π) and a class of extensions of Ḣ0 can be

characterized by imposing a proper boundary condition to a vector ψ ∈HNb ∩ H2(R3N \ π) on

each coincidence hyperplane πσ in some topology. More precisely, we are interested in obtaining

an energetically stable system by exploiting the Minlos-Faddeev regularization. To this end, let us

consider the function

α : R3⊗R3(N−2)−→R,

(z,y1, . . . ,yN−2) 7−→ α0 + γ

N−2∑
k=1

θ(|yk− z|)
|yk− z|

+
γ

2

∑
1≤k< ℓ≤N−2

θ(|yk− yℓ|)
|yk− yℓ|

(3.8)

with γ > 0 representing the strength of the regularization and θ : R+ −→ R an essentially

bounded function satisfying (1.10). The effective scattering length depending on the positions

of each particle, associated with the coincidence hyperplane πσ shall be given by

α
(xi+xj

2
, x1, . . . x̌σ . . . ,xN

)
where x̌σ={i,j} denotes the omission of the variables xi and xj . Setting x =

xi+xj

2
, one has on πσ

α : (x,x1, . . . x̌σ . . . ,xN) 7−→ α0 + γ
∑

1≤k≤N
k /∈σ

θ(|xk− x|)
|xk− x|

+
γ

2

N−1∑
k=1
k /∈σ

N∑
ℓ=k+1
ℓ /∈σ

θ(|xk− xℓ|)
|xk− xℓ|

. (3.9)

Heuristically, we are therefore describing a repulsive force that weakens the contact interaction.

In particular, two kind of repulsions are described by (3.9): the first term represents a three-body

force that makes the usual two-body point interaction weaker and weaker as a third particle is ap-

proaching the common position of the two interacting particles of the couple σ, while the second

term represents a four-body repulsion meant to regularize the singular ultraviolet behavior associ-

ated with the situation in which two other different particles compose an interacting couple ν, with

ν ∩ σ = ∅, that is getting closer to the interacting couple σ. Clearly, this latter kind of singularity

occurs in a smaller set, i.e. πσ ∩ πν .

With the above considerations, we characterize the regularized point interaction by introducing

the boundary condition (to be fulfilled in a suitable topology)

ψ(x1, . . . ,xN) =
ξ
(xi+xj

2
,x1, . . . x̌σ . . . ,xN

)
|xi − xj|

+

+(Γσ
reg ξ)

(xi+xj

2
,x1, . . . x̌σ . . . ,xN

)
+ o(1) , for |xi− xj| −→ 0,

(3.10)

with ξ ∈L2(R3)⊗L2
sym(R3(N−2)) some vector depending on ψ and Γσ

reg acting as follows

Γσ
reg : ξ 7−→ α(x,x1, . . . x̌σ . . . ,xN)ξ(x,x1, . . . x̌σ . . . ,xN). (3.11)

In this chapter we shall prove that the Hamiltonian constructed as a s.a. extension of Ḣ0 satisfy-

ing (3.10) at least in the weak topology, is bounded from below if one assumes γ larger than a

proper critical value γNb
c given by (3.19). The result is obtained by making a broader use of the
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abstract theory of s.a. extensions recovered in appendix A with respect to the previous chapters.

In particular, we shall see that the analysis is reduced to the study of the closedness and coercivity

of a densely defined hermitian quadratic form Φλ defined by (3.18). We are going to adopt the ap-

proach developed in section 1.3 in order to isolate the singularities contained in an unbounded (in

L2 sense) negative contribution of Φλ in its position-representation. In this way the choice of the

needed regularizing term associated with the effective scattering length introduced in (3.9) shall be

manifestly justified. The result is surely not optimal, since in chapter 1 a more detailed discussion

yields a smaller critical parameter γ3bc ≈ 0.782004 (proved to be optimal in section 1.2) whereas

in this framework the case N = 3 provides γNb
c ≈ 1.54984.

3.1 MAIN RESULTS

In this section we introduce some notation and the main objects of our analysis in order to

state the obtained results. Define the isomorphic spaces

Xσ := L2(R3, dx)⊗L2
sym(R3(N−2), dx1 · · · dx̌σ · · · dxN), (3.12a)

X := L2(R3)⊗L2
sym(R3(N−2)) (3.12b)

and let Cσ be the unitary transformation sending X to Xσ. Then, given Tσ : D(H0)−→Xσ the linear

bounded2 operator (according to proposition B.4) whose action in S(R3N) is explicitly given by

Tσ={i, j} : f(x1, . . . ,xN) 7−→ 8πf(x1, . . . ,xN)|xi=xj=x, (3.13)

we define a trace operator T ∈ B (D(H0),X) as follows

T : ψ 7−→
∑
σ∈P

C∗σTσψ = N(N−1)
2
C∗ν Tνψ, ∀ ν ∈P. (3.14)

Lastly, we introduce the injective operator Gλ∈B (X,HNb) given by

Gλ := (TRH0(−λ))
∗, λ > 0. (3.15)

More details about this operator are postponed to section 3.A. We are now in position to highlight

the connection of the abstract setting discussed in appendix A with our problem. First of all, the

Hilbert space H is given by HNb , while the s.a. operatorA represents the free HamiltonianH0 and

S corresponds to Ḣ0 . Concerning the operator τ , it is plain to see that it is associated in our frame-

work with T defined in (3.14). Indeed, notice that T satisfies the required properties: it is bounded

since the trace operators f 7−→ f |πσ are continuous between H
3
2
+s(R3N) and Hs(R3(N−1)) for

any s>0, ran(T ) is dense in X and lastly ker(T )=D(Ḣ0), by construction.

2Here we are considering D(H0) as a Hilbert subspace of HNb endowed with the graph norm ofH0 .
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We stress that (see proposition B.5) if there exists s > 0 such that f ∈HNb ∩ H
3
2
+s(R3N), then

the operator Tσ given by (3.13) can be rewritten as

(Tσf)(x,Xσ) = 8πw−lim
r→ 0+

(Uσf)(r,x,Xσ), (3.16)

where we denote for short Xσ := (x1, . . . x̌σ . . . ,xN) ∈ R3(N−2) and Uσ is the following unitary

operator

Uσ : HNb−→L2(R6, drdx)⊗L2
sym(R3(N−2), dXσ), σ ∈P,

(Uσ f)(r,x,Xσ) = f
(
x+ r

2
, x− r

2
,Xσ

)
.

(3.17)

The reason behind the constant 8π in the definition of Tσ will be clarified by remark 3.2.

According to appendix A, in order to characterize the lower semi-bounded Hamiltonian H we

need to construct a proper continuous map Γ : C ∖ R+−→L (X) satisfying properties (A.2) and

encoding the ultraviolet regularization described above. To this end, we focus our analysis on the

densely defined quadratic form in X given by

Φλ[ξ] := 8π
∑
σ∈P

[
⟨Cσ ξ, Γσ

reg ξ⟩Xσ + lim
r→ 0
⟨Cσ ξ, ξ(x,Xσ)

r
− (UσGλξ)(r,x,Xσ)⟩Xσ

]
, λ > 0

(3.18)

and we shall see that such a map Γ will be uniquely deduced by Φλ. In this way, we will prove

that characterization (A.9) holds for the Hamiltonian of the system.

In section 3.2 we motivate definition (3.18) of the quadratic form showing that it is associated

with a regularized zero-range Hamiltonian fulfilling boundary condition (3.10) at least in weak

topology (hence we are taking account of the Minlos-Faddeev regularization). We shall also prove

that Φλ is hermitian with D(Φλ) = H
1
2 (R3(N−1)). Defining for any fixed N ≥ 3 the threshold

parameter

γNb
c := 2− 4

√
2

π(N−2)(N+1)
(3.19)

our claim is that stability is achieved with the assumption γ > γNb
c . More precisely, the technical

difficulties lie in the following proposition.

Proposition 3.1.
Let Φλ be the hermitian quadratic form in X defined by (3.18) and assume γ > γNb

c . Then Φλ is

closed for any λ> 0 and satisfies

Φλ[ξ] ≥ 4πN(N − 1)

[√
λ
2

√
1−Λ2

N + α0 − (N+1)(N−2)γ
4 b

]
∥ξ∥2, ∀λ> 0, ξ ∈X,

where

ΛN = max
{
0, 1− (N+1)(N−2)π

4
√
2

(γ−γNb
c )
}
∈ [0, 1). (3.20)

Moreover, Φλ is coercive for any λ> λ0 with

λ0 :=
2max{0,−α0 + (N+1)(N−2) γ/(4b)}2

1−Λ2
N

. (3.21)
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We observe that proposition 3.1 provides the definition of a s.a. operator Γλ associated to Φλ for

any λ > 0, which is positive and invertible whenever λ > λ0 since Φλ is closed and bounded

from below by a positive constant under this condition. Actually one can show that the domain D

of Γλ does not depend on λ. These properties make the assumptions of proposition A.2 fulfilled.

In particular, in proposition A.2 we show how to construct the continuous map Γ starting from

this s.a. operator Γλ and we also prove that it is associated to a bounded from below Hamiltonian

(proposition A.3).

Theorem 3.2.
Let γNb

c and λ0 be respectively defined by (3.19) and (3.21). Then, assuming γ> γNb
c , the operator

characterized by

D(H) =
{
ψ ∈HNb

∣∣ ψ = ϕλ+ Gλξ, ϕλ∈H2(R3N), ξ ∈D, Γλξ = Tϕλ, λ > 0
}
,

Hψ = H0ϕλ− λGλξ.
(3.22)

is a s.a. extension of the operator Ḣ0 defined by (3.7) and the elements of its domain satisfy

boundary condition (3.10) in the weak topology. Moreover, there holdsH ≥ −λ0 .

We stress that theorem 3.2 provides the following estimate for the infimum of the spectrum of the

Hamiltonian

inf σ(H) ≥


0, if α0 ≥ (N+1)(N−2) γ

4b
,

− [(N+1)(N−2) γ − 4b α0]
2

8b2 (1− Λ2
N)

, otherwise.
(3.23)

The proof of the previous results is postponed to section 3.3.

In the end, in section 3.4, we take into account the approach based on the theory of Dirichlet

forms developed by Albeverio et al. in [2] and we will prove that the class of regularized zero-

range Hamiltonians there constructed is a special case of ours.

3.2 THE QUADRATIC FORM OF THE CHARGES

In this section we clarify the reason behind definition (3.18) of the quadratic form of the

charges and we provide some of its properties.

Let us consider a singular perturbation of H0 supported on π which, according to appendix A, is

characterized by the choice of a continuous map Γ: C∖R+−→L (X) fulfilling conditions (A.2).

By construction, this operator coincides withH0 on HNb ∩H2
0 (R3N \ π) and, according to (A.9),

any element of its domain ψ can be decomposed as ψ = ϕλ + Gλξ with ϕλ ∈ D(H0) and ξ

in the domain of Γ(−λ) satisfying the boundary condition Γ(−λ)ξ = Tϕλ . In order for this

singular perturbation to be the Hamiltonian of our system, we need to isolate the proper operator
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Γ(−λ) that encodes the Minlos-Faddeev ultraviolet regularization discussed at the beginning of

this chapter. To this end, we identify the action of the quadratic form associated to Γ(−λ) by

imposing on ψ boundary condition (3.10) in the weak topology, i.e.

w−lim
r→ 0+

[
(Uνψ)(r,x,Xν)− ξ(x,Xν)

r

]
= (Γν

reg ξ)(x,Xν), ∀ ν ∈P, (3.24)

that, in particular, implies

⟨Cν ξ, Γν
reg ξ⟩Xν + lim

r→ 0+
⟨Cν ξ,

[
ξ(x,Xν)

r
− Uν(Gλξ + ϕλ)(r,x,Xν)

]
⟩Xν = 0, ∀ ν ∈P.

Therefore, since ϕλ∈H2(R3N), taking into account (3.16) one gets for any ν ∈P

⟨Cν ξ, Γν
reg ξ⟩Xν + lim

r→ 0+
⟨Cν ξ,

[
ξ(x,Xν)

r
− (UνGλξ)(r,x,Xν)

]
⟩Xν− 1

8π
⟨Cν ξ, Tνϕλ⟩Xν = 0,

namely, exploiting (3.14)

⟨Cν ξ, Γν
reg ξ⟩Xν + lim

r→ 0+
⟨Cν ξ,

[
ξ(x,Xν)

r
− (UνGλξ)(r,x,Xν)

]
⟩Xν =

1
4πN(N−1)

⟨ξ, T ϕλ⟩X.

Thus, the boundary condition Γ(−λ)ξ = Tϕλ provides the expression of the quadratic form

associated to the s.a. operator Γ(−λ)

⟨ξ, Γ(−λ)ξ⟩X = 4πN(N−1)

{
⟨Cν ξ, Γν

reg ξ⟩Xν+ lim
r→ 0+

⟨Cν ξ,
[
ξ(x,Xν)

r
− (UνGλξ)(r,x,Xν)

]
⟩Xν

}
,

whose expression coincides with (3.18) because of the bosonic symmetry.

Therefore, let Φλ be the densely defined quadratic form in X given by (3.18). Our goal is to show

that Φλ is associated to a s.a. operator Γλ satisfying the hypotheses of propositions A.2 and A.3 so

that a s.a. and bounded from below extension of Ḣ0 can be defined by (A.9). This s.a. extension

shall be the Hamiltonian H of our system, since, by construction, it will coincide with H0 on

HNb∩H2
0 (R3N \π) and any element ψ ∈D(H) satisfies boundary condition (3.10) at least in the

weak topology.

Remark 3.1. Notice that definition (3.18) satisfies for any λ1, λ2 > 0

Φλ1 [ξ]− Φλ2 [ξ] = 8π
∑
σ∈P

lim
r→ 0+

⟨Cσ ξ, (UσGλ2ξ − UσGλ1ξ)(r,x,Xσ)⟩Xσ

= 8π
∑
σ∈P

⟨Cσ ξ, w−lim
r→ 0+

(UσGλ2ξ − UσGλ1ξ)(r,x,Xσ)⟩Xσ

=
∑
σ∈P

⟨Cσ ξ, Tσ(Gλ2− Gλ1)ξ⟩Xσ

thanks to (3.16), since ran(Gλ2− Gλ1)⊂D(H0). Hence, according to (3.14), we have obtained

Φλ1 [ξ]− Φλ2 [ξ] = ⟨ξ, T
(
Gλ2− Gλ1

)
ξ⟩X . (3.25)

Next, let us decompose Φλ as follows

Φλ= 4πN(N−1)
(
Φλ

diag+ Φλ
off;0+ Φλ

off;1+ Φreg

)
, (3.26)
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where, considering σ ∈P , we have defined

Φλ
diag[ξ] := lim

r→ 0+
⟨Cσ ξ,

[
ξ(x,Xσ)

r
− (UσGλσ Cσ ξ)(r,x,Xσ)

]
⟩Xσ , (3.27a)

Φλ
off;♯[ξ] := −

∑
ν ∈P :

|σ∩ ν |= ♯

lim
r→ 0+

⟨Cσ ξ, (UσGλν Cν ξ)(r,x,Xσ)⟩Xσ , ♯∈ {0, 1}, (3.27b)

Φreg[ξ] := ⟨Cσ ξ, Γσ
reg ξ⟩Xσ . (3.27c)

We point out that for any given σ ∈P∣∣{ν ∈P
∣∣ |ν ∩ σ|= 0

}∣∣ = (N−2)(N−3)
2

,
∣∣{ν ∈P

∣∣ |ν ∩ σ|= 1
}∣∣ = 2(N−2) .

Before proceeding, let us state the following proposition in which we ensure that Φλ is hermitian.

Proposition 3.3. Let ξ ∈ S(R3(N−1)) ∩ X and Φλ be the quadratic form given by (3.18). Then,

the components of Φλ, defined by (3.27) can be represented as follows

Φλ
diag[ξ] =

√
λ
2
∥ξ∥2+ 4π

∫
R3(N−1)

dxdXσ

∫
R3(N−1)

dydYσ |ξ(y,Yσ)− ξ(x,Xσ)|2Gλ

(
x, x, Xσ

y, y, Yσ

)
,

(3.28a)

Φλ
off;0[ξ] = −4π (N−2)(N−3)

∫
R3(N−1)

dxdx1 · · · dxN−2 ξ(x,x1, . . . ,xN−2)×

×
∫
R3(N−1)

dydy1 · · · dyN−2 ξ(y,y1, . . . ,yN−2)G
λ

(
x1, x2 , x, x, x3 , . . . , xN−2

y, y, y1, y2 , y3 , . . . , yN−2

)
,

(3.28b)

Φλ
off;1[ξ] = −16π (N−2)

∫
R3(N−1)

dxdx1 · · · dxN−2 ξ(x,x1, . . . ,xN−2)×

×
∫
R3(N−1)

dydy1 · · · dyN−2 ξ(y,y1, . . . ,yN−2)G
λ

(
x, x1, x, x2 , . . . , xN−2

y, y, y1, y2 , . . . , yN−2

)
,

(3.28c)

where the kernel Gλ is defined by equation (3.70) in section 3.A. Furthermore, Φλ is hermitian.

Proof. Concerning the diagonal term, in light of equation (3.75), we have

Φλ
diag[ξ] = lim

r→ 0+

∫
R3(N−1)

dxdXσ ξ(x,Xσ)

[
1− e−

√
λ
2
r

r
ξ(x,Xσ)+

− 8π

∫
R3(N−1)

dydYσ [ξ(y,Yσ)− ξ(x,Xσ)]G
λ

(
x+ r

2
, x− r

2
, Xσ

y, y, Yσ

)]
.

(3.29)

The first term has the integrable majorant
√

λ
2
|ξ(x,Xσ)|2, therefore

Φλ
diag[ξ] =

√
λ
2
∥ξ∥2− 8π lim

r→ 0+

∫
R3(N−1)

dxdXσ ξ(x,Xσ)

∫
R3(N−1)

dydYσ [ξ(y,Yσ)− ξ(x,Xσ)]×

×Gλ

(
x+ r

2
, x− r

2
, Xσ

y, y, Yσ

)
.
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Notice that the quantity |x+ r
2
−y|2+ |x− r

2
−y|2+ |Xσ−Yσ|2 is symmetric under the exchange

(x,Xσ)←→ (y,Yσ). Hence,

Φλ
diag[ξ] =

√
λ
2
∥ξ∥2+ 4π lim

r→ 0+

∫
R3(N−1)

dxdXσ

∫
R3(N−1)

dydYσ |ξ(y,Yσ)− ξ(x,Xσ)|2×

×Gλ

(
x+ r

2
, x− r

2
, Xσ

y, y, Yσ

)
.

Then, exploiting the decrease of Gλ and according to the elementary inequality

|x+ r
2
− y|2+ |x− r

2
− y|2 ≥ 1

2
|x+ r

2
− y + x− r

2
− y|2 = 2|x− y|2,

one gets

Gλ

(
x+ r

2
, x− r

2
, Xσ

y, y, Yσ

)
≤ Gλ

(
x, x, Xσ

y, y, Yσ

)
, ∀ r ∈R3.

Let us show that we have found an integrable majorant so that dominated convergence theorem

shall apply. Adopting the change of coordinates (z,Zσ) = (y − x,Yσ −Xσ), one gets∫
R3(N−1)

dxdXσ

∫
R3(N−1)

dydYσ |ξ(y,Yσ)− ξ(x,Xσ)|2Gλ

(
x, x, Xσ

y, y, Yσ

)
=

∫
R3(N−1)

dxdXσ

∫
R3(N−1)

dzdZσ |ξ(z + x,Zσ+Xσ)− ξ(x,Xσ)|2Gλ

(
0, 0, 0

z, z, Zσ

)
.

Clearly, because of (1.40c), the behavior at infinity is rapidly decaying, thus let us focus on a

compact K ⊂R3(N−1) containing the origin, so that∫
K

dxdXσ

∫
K

dzdZσ |ξ(z + x,Zσ+Xσ)− ξ(x,Xσ)|2Gλ

(
0, 0, 0

z, z, Zσ

)
≤ C|K|

∫
K

dzdZσ (z2+ Z2
σ )G

λ

(
0, 0, 0
z√
2
, z√

2
, Zσ

)
since each smooth function is at least locally Lipschitz continuous. According to (1.40b), the

previous integrand behaves at the origin as (z2 + Z2
σ )

2− 3N
2 that is an integrable contribution and

therefore, identity (3.28a) is obtained. In particular, Φλ
diag≥ 0.

Next, take into account Φλ
off;0 . Thanks to the symmetry in X, one has

Φλ
off;0[ξ] = −4π (N−2)(N−3) lim

r→ 0+

∫
R3(N−1)

dxdx1 · · · dxN−2 ξ(x,x1, . . . ,xN−2)×

×
∫
R3(N−1)

dydy1 · · · dyN−2 ξ(y,y1, . . . ,yN−2)G
λ

(
x1, x2 , x+ r

2
, x− r

2
, x3 , . . . , xN−2

y, y, y1, y2, y3 , . . . , yN−2

)
.

(3.30)

Observe that exploiting equation (3.75), one obtains the following inequality

|Φλ
off;0[ξ]| ≤

(N−2)(N−3)
2

∥ξ∥∞
∫
R3(N−1)

dxdx1 · · · dxN−2 |ξ(x,x1, . . . ,xN−2)|
e−
√

λ
2
|x1−x2|

|x1− x2|
< +∞.
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Therefore, since we can exhibit an integrable majorant uniformly in r ∈ R3, identity (3.28b) is

proven. Furthermore, notice that (3.28b) implies Φλ
off;0[ξ] = Φλ

off;0[ξ] thanks to the symmetry in

exchanging (x,x1, . . . ,xN−2)←→ (y,y1, . . . ,yN−2).

Lastly, we take account of Φλ
off;1 . In analogy with (3.30), we have

Φλ
off;1[ξ] = −16π (N−2) lim

r→ 0+

∫
R3(N−1)

dxdx1 · · · dxN−2 ξ(x,x1, . . . ,xN−2)×

×
∫
R3(N−1)

dydy1 · · · dyN−2 ξ(y,y1, . . . ,yN−2)G
λ

(
x+ r

2
, x1, x− r

2
, x2 , . . . , xN−2

y, y, y1, y2 , . . . , yN−2

)
.

(3.31)

Exploiting again equation (3.75), one finds

|Φλ
off;1[ξ]| ≤ 2(N−2) ∥ξ∥∞

∫
R3(N−1)

dxdx1 · · · dxN−2 sup
z∈R3

|ξ(z,x1, . . . ,xN−2)|
e−
√

λ
2
|x−x1|

|x− x1|
< +∞.

Notice that the dependence on r has been first moved to the argument of ξ and then removed by

taking the supremum. Hence, computing the limit inside the integral, identity (3.28c) has been

recovered. Again, the symmetry by exchange yields Φλ
off;1[ξ] = Φλ

off;1[ξ].

To conclude the proof, notice that the operator C∗σΓσ
reg is symmetric, since it is a multiplication by

a real function and therefore Φreg is also hermitian.

Remark 3.2. We stress that the cancellation of the singular leading order from equation (3.27a)

to (3.28a) is allowed by the properly tuned constant 8π in definition (3.13), in accordance with

proposition 3.7.

Remark 3.3. A negative part of the off-diagonal contributions can be highlighted since

Φλ
off;0[ξ] = −

(N−2)(N−3)
2

∫
R3(N−1)

dxdx′dx′′dX
e−
√

λ
2
|x′−x′′|

|x′− x′′|
|ξ(x,x′,x′′,X)|2+ (3.32a)

+2π (N−2)(N−3)

∫
R3(N−1)

dxdx′dx′′dX

∫
R3(N−1)

dydy′dy′′dY |ξ(y,y′,y′′,Y )− ξ(x,x′,x′′,X)|2×

×Gλ

(
x′, x′′, x, x, X

y, y, y′, y′′, Y

)
,

Φλ
off;1[ξ] = −2(N−2)

∫
R3(N−1)

dxdx′dX
e−
√

λ
2
|x−x′|

|x− x′|
|ξ(x,x′,X)|2+ (3.32b)

+8π (N−2)

∫
R3(N−1)

dxdx′dX

∫
R3(N−1)

dydy′dY |ξ(y,y′,Y )− ξ(x,x′,X)|2Gλ

(
x, x′, x, X

y, y, y′, Y

)
.

In the following, we prove that Φλ is bounded in the dense subspace H
1
2 (R3(N−1)) so that repres-

entations (3.28) for the components defined by (3.27), actually hold for the wider class of functions

X ∩H 1
2 (R3(N−1)).

Proposition 3.4. Let Φλ be the quadratic form given by (3.18). Then, there exists C > 0 such that

|Φλ[ξ]| ≤ C ∥ξ∥2H1/2(R3(N−1)) , ∀ ξ ∈ H
1
2 (R3(N−1)).
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Proof. Let us consider one by one all the terms of Φλ given by (3.26).

The regularizing contribution. First, owing to (3.11) and (3.27c), we have

Φreg[ξ] =α0 ∥ξ∥2+ (N−2)γ

∫
R3(N−1)

dxdx′dX
θ(x− x′)

|x− x′|
|ξ(x,x′,X)|2+

+
(N−2)(N−3)

4
γ

∫
R3(N−1)

dxdx′dx′′dX
θ(x′− x′′)

|x′− x′′|
|ξ(x,x′,x′′,X)|2.

(3.33)

Since translations preserve the Gagliardo semi-norm [· ] 1
2

introduced in (1.46), we can define

η0(x,x
′,x′′,X) := ξ(x,x′+ x′′,x′′,X), η1(x,x

′,X) := ξ(x+ x′,x′,X)

so that ∥η0∥H1/2(R3(N−1)) = ∥η1∥H1/2(R3(N−1)) = ∥ξ∥H1/2(R3(N−1)) . Therefore, one has

|Φreg[ξ]| ≤α0 ∥ξ∥2+ (N−2)γ ∥θ∥∞
[∫

R3(N−1)

dxdx′dX
|η1(x,x′,X)|2

x
+

+
N−3

4

∫
R3(N−1)

dxdx′dx′′dX
|η0(x,x′,x′′,X)|2

x′

]
.

Adopting Hardy-Rellich inequality (1.51) (with s= 1/2 and d= 3) and (1.47), we infer

|Φreg[ξ]| ≤ α0 ∥ξ∥2+
(N+1)(N−2)γ Γ

(
3N
2
−1
)

16π
3N
2

−2
∥θ∥∞ [ξ ]21

2
. (3.34)

The diagonal contribution. Taking into account (3.28a) and (1.46), one obtains

Φλ
diag[ξ] ≤

√
λ
2
∥ξ∥2+ 4π [ξ ]21

2
sup

x,y ∈R3

Xσ ,Yσ ∈R3(N−2)

{(
|x− y|2+ |Xσ−Yσ|2

)3N−2
2 Gλ

(
x, x, Xσ

y, y, Yσ

)}
.

Hence, exploiting (1.40d), one has

Φλ
diag[ξ] ≤

√
λ
2
∥ξ∥2+

Γ
(
3N
2
−1
)

π
3N
2

−1
[ξ ]21

2
sup

x,y ∈R3

Xσ ,Yσ ∈R3(N−2)

(
|x− y|2+ |Xσ−Yσ|2

2|x− y|2+ |Xσ−Yσ|2

)3N
2

−1

≤
√

λ
2
∥ξ∥2+ Γ(3N2 −1)

π3N/2−1 [ξ ]21
2
,

namely

Φλ
diag[ξ] ≤ max

{√
λ
2
,
Γ(3N2 −1)
π3N/2−1

}
∥ξ∥2H1/2(R3(N−1)). (3.35)

The off-diagonal sharing term. Analogously, in order to estimate Φλ
off;1 we can use (3.32b) to

achieve

Φλ
off;1[ξ]≤ 8π(N−2)[ξ ]21

2
sup

x,y,x′,y′∈R3

X,Y ∈R3(N−3)

{(
|x−y|2+ |x′−y′|2+ |X−Y |2

)3N−2
2 Gλ

(
x, x′, x X

y, y, y′, Y

)}
.
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Clearly, we have to ensure that

sN := sup
x,y,x′,y′∈R3

X,Y ∈R3(N−3)

{(
|x− y|2+ |x′− y′|2+ |X−Y |2

)3N−2
2 Gλ

(
x, x′, x X

y, y, y′, Y

)}
(3.36)

is finite for all N ≥ 3. A first simplification is obtained exploiting again (1.40d), i.e.

sN =
Γ
(
3N
2
−1
)

4π
3N
2

sup
x,y,x′,y′∈R3

X,Y ∈R3(N−3)

(
|x− y|2+ |x′− y′|2+ |X−Y |2

|x− y|2+ |x′− y|2+ |x− y′|2+ |X−Y |2

)3N
2

−1

.

In order to evaluate this supremum, let c be the positive solution to the equation

x4− 8
3
x2− 2

9
= 0, (3.37)

namely c =
√

4
3
+
√
2 . Then, consider the following change of coordinatesx= cr1 +

R1

3c
,

x′= −2cr1 + R1

3c
,

y = cr2 +
R2

3c
,

y′= −2cr2 + R2

3c
,

(3.38)

so that, one has

|x− y|2+ |x′− y′|2 7−→ 2
9c2
|R1−R2|2+ 5c2 |r1− r2|2− 2

3
(R1−R2) · (r1− r2),

|x− y|2+ |y′− x|2+ |x′− y|2 7−→ 1
3c2
|R1−R2|2+ 6c2 (r21 + r22 + r1 · r2).

Therefore, exploiting elementary estimates one has for the denominator

1
3c2
|R1−R2|2+ 6c2 (r21 + r22 + r1 · r2) ≥ 1

3c2
|R1−R2|2+ 3c2 (r21 + r22),

whereas in the numerator one gets

2
9c2
|R1−R2|2+ 5c2 |r1− r2|2− 2

3
(R1−R2) · (r1− r2)≤

≤
(

2
9c2

+ 1
3

)
|R1−R2|2+

(
5c2+ 1

3

)
|r1− r2|2

≤
(

2
9c2

+ 1
3

)
|R1−R2|2+

(
10c2+ 2

3

)
(r21 + r22)

=
(
2
3
+ c2

)
1
3c2
|R1−R2|2+

(
10
3
+ 2

9c2

)
3c2 (r21 + r22)

=
(
2
3
+ c2

)[
1
3c2
|R1−R2|2+ 3c2 (r21 + r22)

]
since c solves equation (3.37). Hence,

sN =
Γ
(
3N
2
−1
)

4π
3N
2

(2 +
√
2)

3N
2

−1. (3.39)

Indeed, the supremum attains its maximum value along the hyperplanes X = Y , R1−R2 = 2r2

and r1+ r2 = 0. Therefore, we have obtained

Φλ
off;1[ξ] ≤ 2(N−2) Γ

(
3N
2
−1
)(

2+
√
2

π

)3N
2

−1
[ξ ]21

2
. (3.40)
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The off-diagonal non-sharing term. Concerning Φλ
off;0 , we proceed by taking account of (3.28b)

in its Fourier representation. In particular, thanks to proposition 3.8 one has

Φλ
off;0[ξ] =−

(N−2)(N−3)
2π2

∫
R3(N−1)

dpdp1dp2dP ξ̂(p,p1,p2,P )

∫
R3

dq
ξ̂
(
p1+ p2,

p
2
+ q, p

2
− q,P

)
1
2
p2+ 2q2+ p21 + p22 +P

2+ λ

namely, replacing (p, q) 7−→ (p3+ p4,
p3−p4

2
) and setting P = (p5, . . . ,pN)

Φλ
off;0[ξ]=−

(N−2)(N−3)
2π2

∫
R3N

dp1 · · · dpN
ξ̂(p3+p4,p1,p2,p5, . . . ,pN) ξ̂(p1+p2,p3,p4,p5, . . . ,pN)∑N

j=1 p
2
j + λ

(3.41)

that is controlled by the H
1
2 -norm of ξ. Indeed, consider

fξ(p4,P ) :=

√∫
R6

dp1dp3 |ξ̂(p1,p3,p4,P )|2, (3.42a)

gξ(p2,P ) :=

√∫
R6

dp1dp3 |ξ̂(p3,p1,p2,P )|2 (3.42b)

so that one has

∥fξ∥H1/2(R3(N−3)) ≤ ∥ξ∥H1/2(R3(N−1)) , ∥gξ∥H1/2(R3(N−3)) ≤ ∥ξ∥H1/2(R3(N−1)) .

Notice that, exploiting the Cauchy–Schwarz inequality in the dp1dp3 integration, one obtains

|Φλ
off;0[ξ]| ≤

(N−2)(N−3)
2π2

∫
R3(N−2)

dp2dp4dP
gξ(p2,P )fξ(p4,P )

p22 + p24 +P
2 + λ

≤ (N−2)(N−3)
2π2

∫
R3(N−2)

dq1dq2dP
gξ(q1,P ) fξ(q2,P )

q21 + q22
.

The previous integral can be rewritten as the scalar product in L2(R3(N−3)) of
√
· gξ(·) against the

action on
√
· fξ of the integral operator Q defined in (2.43) that is bounded in L2(R3) with norm

2π2. Hence, since

√
q1 gξ(q1,P ) ∈ L2(R3(N−3), dq1dP ),

√
q2 fξ(q2,P ) ∈ L2(R3(N−3), dq2dP ),

clearly one has

|Φλ
off;0[ξ]| ≤

(N−2)(N−3) Γ
(
3N
2
−1
)

2π
3N
2

−1
[ξ ]21

2
. (3.43)

Notice that estimate (3.43) implies that decomposition (3.32a) is valid for all ξ ∈ H 1
2 (R3(N−1))

since the negative term is controlled in the H
1
2 -norm and, therefore, so must be the positive con-

tribution. We end the section by observing that proposition 3.4 implies D(Φλ) ⊇H 1
2 (R3(N−1)),

but since D(Φλ
diag) =H

1
2 (R3(N−1)) (see equation (3.46)), we also have the opposite inclusion.
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3.3 PROOF OF THE MAIN RESULTS

Before proving the results of section 3.1, let us state the following.

Proposition 3.5. Let Φλ be the hermitian quadratic form defined in X by (3.18). Then, considering

ΛN given by (3.20), one has for all λ> 0

Φλ[ξ] ≥ 4πN(N−1)
[
1− ΛN −max

{
0,−

√
2α0√
λ

}
− (N+1)(N−2)γ√

8λ b

]
Φλ

diag[ξ]. (3.44)

Furthermore, Φλ is coercive in H
1
2 (R3(N−1)) whenever λ> λ∗0 with

λ∗0 :=
2 [max{0,−α0}+ (N+1)(N−2) γ/(4b)]2

(1− ΛN)2
(3.45)

provided γ > γNb
c defined by (3.19).

Proof. First, we claim that Φλ
diag has the following Fourier representation

Φλ
diag[ξ] =

1√
2

∫
R3(N−1)

dpdPσ

√
1
2
p2+P 2

σ + λ |ξ̂(p,Pσ)|2. (3.46)

To show this, consider identity (3.28a) that can be manipulated as follows

Φλ
diag[ξ] =

√
λ
2
∥ξ∥2+ 4π

∫
R3(N−1)

dzdZσ

∫
R3(N−1)

dydYσ |ξ(y + z,Yσ+Zσ)− ξ(y,Yσ)|2Gλ

(
0, 0, 0

z, z, Zσ

)
=
√

λ
2
∥ξ∥2+ 4π

∫
R3(N−1)

dzdZσ G
λ

(
0, 0, 0

z, z, Zσ

)
∥ξ(y + z,Yσ+Zσ)− ξ(y,Yσ)∥2L2(R3(N−1), dydYσ)

=
√

λ
2
∥ξ̂∥2+ 4π

∫
R3(N−1)

dzdZσ

∫
R3(N−1)

dpdPσ |e−ip ·z−iPσ ·Zσ− 1|2 |ξ̂(p,Pσ)|2Gλ

(
0, 0, 0

z, z, Zσ

)
where in the last step we have exploited Plancherel’s theorem. Thanks to Tonelli’s theorem, we

can exchange the order of integration, obtaining

Φλ
diag[ξ]=

√
λ
2
∥ξ̂∥2+8π

∫
R3(N−1)

dpdPσ |ξ̂(p,Pσ)|2
∫
R3(N−1)

dzdZσ [1− cos(p ·z+Pσ ·Zσ)]G
λ

(
0, 0, 0

z, z, Zσ

)

=
√

λ
2
∥ξ̂∥2+ 8π

∫
R3(N−1)

dpdPσ |ξ̂(p,Pσ)|2 lim
r→ 0

e−
√

λ
2
r− e−

√
1
2
p2 +P 2

σ +λ r√
2

8π r

according to proposition 3.7. Evaluating the limit, equation (3.46) is recovered.

Taking account of remark 3.3, we get

(Φreg+ Φλ
off;0+ Φλ

off;1)[ξ]≥ (N−2)

∫
R3(N−1)

dxdx′dX
γ−2e−

√
λ
2
|x−x′|

|x−x′|
|ξ(x,x′,X)|2+

+
(N−2)(N−3)

4

∫
R3(N−1)

dxdx′dx′′dX
γ−2e−

√
λ
2
|x′−x′′|

|x′− x′′|
|ξ(x,x′,x′′,X)|2+

+

[
α0 −

(N+1)(N−2)γ

4 b

]
∥ξ∥2,
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where we have made use of the lower bound of assumption (1.10). Exploiting Hardy-Rellich

inequality (1.51)

(Φreg+ Φλ
off;0+ Φλ

off;1)[ξ]≥
(N + 1)(N−2) π

8
min{0, γ−2}

∫
R3(N−1)

dpdp′dP p′ |ξ̂(p,p′,P )|2+

+

[
α0 −

(N+1)(N−2)γ

4b

]
∥ξ∥2.

Moreover,

(Φreg+ Φλ
off;0+ Φλ

off;1)[ξ]≥ −ΛN Φλ
diag[ξ] +

[
α0 − (N+1)(N−2) γ

4 b

]
∥ξ∥2 (3.47)

that implies

(Φreg+ Φλ
off;0+ Φλ

off;1)[ξ] ≥ −ΛN Φλ
diag[ξ] +

[
min{0, α0} − (N+1)(N−2) γ

4 b

]√
2
λ
Φλ

diag[ξ]

which proves the first statement. Concerning the coercivity, the result can be obtained by noticing

that Φλ
diag defines an equivalent norm to H

1
2 (R3(N−1)) so that inequality (3.44) provides the result

by assuming ΛN < 1 (that holds if and only if γ > γNb
c ) and λ large enough.

Proof of proposition 3.1. We first show the lower bound for Φλ. In the course of proposition 3.5

we have seen that

Φλ[ξ]≥ 4πN(N−1)√
2

∫
R3(N−1)

dpdP

[√
1
2
p2+P 2+λ−ΛN

√
1
2
p2+P 2+

√
2α0− (N+1)(N−2)γ

2
√
2 b

]
|ξ̂(p,P )|2.

One can check that, as long as ΛN < 1, the quantity in square brackets in the integrand attains its

minimum along the hyperplane √
1
2
p2+P 2 = ΛN

√
λ

1−Λ2
N

,

therefore

Φλ[ξ]≥ 4πN(N−1)√
2

∫
R3(N−1)

dpdP

[√
λ
√
1−Λ2

N +
√
2α0 − (N+1)(N−2)γ

2
√
2 b

]
|ξ̂(p,P )|2

= 4πN(N − 1)

[√
λ
2

√
1−Λ2

N + α0 − (N+1)(N−2)γ
4 b

]
∥ξ∥2.

Hence, we have proved that Φλ is coercive in X for any λ> λ0 with

λ0 :=
2max{0,−α0 + (N+1)(N−2) γ/(4b)}2

1−Λ2
N

. (3.48)

Observe that λ0 < λ∗0 given by (3.45).

Next we focus on the closedness of the quadratic form. Owing to proposition 3.5 we trivially have

that Φλ is closed for any λ> λ∗0 thus we assume 0<λ≤ λ∗0 . Since Φλ is hermitian, the quantity

∥·∥2Φλ := Φλ[· ] + 4πN(N−1)

[√
λ
2

(
1−
√

1−Λ2
N

)
− α0 +

(N+1)(N−2) γ
4b

]
∥·∥2X (3.49)
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defines a norm in X for all λ > 0. Therefore, let us show that X ∩ H 1
2 (R3(N−1)) is closed under

this newly defined norm. Let ψ ∈ X and {ψn}n∈N ⊂ X ∩ H 1
2 (R3(N−1)) be respectively a vector

and a Cauchy sequence for ∥·∥Φλ such that ∥ψn− ψ∥X−→ 0. Therefore, since inequality (3.47)

reads

Φλ[· ] ≥ 4πN(N−1)
{
(1− ΛN)Φ

λ
diag[· ] +

[
α0 − (N+1)(N−2) γ

4b

]
∥·∥2X

}
, λ > 0

one has

(1− ΛN)Φ
λ
diag[ψn− ψm] +

√
λ
2

(
1−
√
1−Λ2

N

)
∥ψn− ψm∥2X ≤

∥ψn− ψm∥2Φλ

4πN(N−1)
−→ 0.

The left hand side is composed of positive terms, the second of which is vanishing in the limit.

This means that

Φλ
diag[ψn− ψm] −→ 0.

In other words, {ψn} is a Cauchy sequence also in H
1
2 (R3(N−1)) and, by uniqueness of the limit,

it converges to ψ ∈ X ∩H 1
2 (R3(N−1)).

Proof of theorem 3.2. Because of proposition 3.1 we can uniquely associate to Φλ a s.a. positive

and invertible operator Γλ for any λ> λ0 such that

Φλ[ξ] = ⟨ξ, Γλξ⟩, ξ ∈ D(Γλ). (3.50)

In light of remark 3.1, we know that

Γλ1− Γλ2 = T (Gλ2− Gλ1), ∀λ1, λ2 > λ0. (3.51)

This means that D(Γλ) actually does not depend on λ, because of equation (A.4) (with Γλ used

therein set equal to Γ−λ). Thus, we are in position to exploit proposition A.2 so that a continuous

map Γ: C∖R+−→L (X) satisfying conditions (A.2) can be defined. The Hamiltonian is therefore

characterized by (A.9). Furthermore, because of proposition A.3, we obtain the boundedness from

below, namelyH≥−λ0 , since Γ(−λ)> 0 for any λ> λ0 .

3.4 DIRICHLET FORMS

In this section, we compare the known results developed in [2] via the Dirichlet forms approach

with ours.

In order to exhibit the one-parameter family of regularized zero-range Hamiltonians obtained
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in [2] we need to introduce some notation. In particular, we set x := (x1, . . . ,xN) ∈ R3N and

∇ := (∇x1 , . . . ,∇xN
). Then, let us introduce the quadratic form

E[ψ] :=

∫
R3N

dx ϕ2(x)|∇ψ(x)|2, ψ ∈HNb ∩H1(R3N, ϕ2(x)dx), (3.52)

where

ϕ(x) :=
1

4π

∑
1≤i< j≤N

e−m |xi−xj |

|xi− xj|
∈ L2

loc(R3N), m ≥ 0. (3.53)

It is noteworthy that

∆ϕ(x) := (−H0ϕ)(x) = 2m2ϕ(x), ∀x ∈ R3N ∖ π. (3.54)

In [2, section 2, example 4] it is shown that the quantity

QD[ψ] := E[ψ/ϕ]− 2m2 ∥ψ∥2HNb
(3.55)

defines a singular perturbation of H0 ,HNb ∩ H2(R3N) supported on π. More precisely, for any

non-negative value of m, the quadratic form QD is associated to a bounded from below operator,

denoted by −∆m such that

−∆mψ = H0ψ, ∀ψ ∈HNb ∩H2
0 (R3N ∖ π),

−∆m ≥−2m2.

Thus, this approach surely defines a class of zero-range Hamiltonians with preassigned lower

bound −2m2 avoiding any instability issue. However, wondering what exactly is the characteriz-

ation of the domain of the Hamiltonian, or equivalently, which boundary condition is satisfied in

this framework, is a natural question arising at this point. Our goal is to exploit the general theory

discussed in appendix A in order to rewrite QD in our formalism so that a comparison with our

results can be made.

Since−∆m is a singular perturbation of the free Hamiltonian supported on the coincidence hyper-

planes, according to appendix A there exists a continuous map ΓD : C ∖ R+−→L (X) fulfilling

conditions (A.2) such that −∆m coincides with the s.a. extension −∆T
ΓD

, defined by (A.8) with

T given by (3.14). Furthermore, exploiting the characterization (A.9) of −∆T
ΓD

, we know that

ψ ∈ D(−∆T
ΓD
) can be uniquely decomposed as ψ = wz + G(z)ξ for all z ∈ C ∖ R+ , with

wz ∈ H2(R3N) and ξ in the domain of ΓD (z). Moreover, there holds the following boundary

condition

ΓD (z) ξ = Twz.

Clearly, we need to understand what kind of regularization lies underneath this map ΓD . To this

end, let us recover the energy form associated to −∆T
ΓD

by exploiting identity (A.11)

⟨ψ, −∆T
ΓD
ψ⟩HNb

= z ∥ψ∥2HNb
+ ⟨wz, (H0 − z)wz⟩HNb

+ ⟨ξ, ΓD (z)ξ⟩X
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provided z < 0 ∨ wz ⊥ G(z)ξ. Thus, according to (3.55), we have

QD[ψ] = ⟨ψ, −∆T
ΓD
ψ⟩, (3.56)

whose domain is given by those elements ψ ∈HNb that can be decomposed as ψ = wλ+Gλξ for

some wλ ∈H1(R3N) and ξ ∈ D(ΓD (−λ)1/2) ⊂ X that does not depend on λ > 0. Therefore, let

us consider an element in this form domain reading as

ψ = Gλξ, for some λ > 0.

With this position, we can isolate from (3.56) the quadratic form of the charges associated with

the operator ΓD , i.e.

Φλ
D [ξ] := E[Gλξ/ϕ ] + (λ− 2m2)

∥∥Gλξ∥∥2
HNb

. (3.57)

In the next proposition we prove that such quadratic form corresponds to a special case of the

quadratic form Φλ defined by (3.18).

Proposition 3.6. Let H be the Hamiltonian characterized in theorem 3.2 and −∆m the operator

defined by (3.55). Then, assuming α0 = −m ≤ 0, γ = 2 and θ(x) = eα0x one has

−∆m = H ≥ −2α2
0 .

Proof. The proposition is proved as soon as we show that, under our assumptions, Φλ= Φλ
D given

by (3.57). To this end, we proceed in evaluating E[Gλξ/ϕ].
Let D ϵ :=

{
(x1, . . . ,xN)∈ R3N

∣∣ min
1≤i< j≤N

|xi − xj|> ϵ
}

so that

E[Gλξ/ϕ] = lim
ϵ→ 0+

∫
Dϵ

dx ϕ2(x)

∣∣∣∣∇Gλξϕ
− Gλξ ∇ϕ

ϕ2

∣∣∣∣2
= lim

ϵ→ 0+

∫
Dϵ

dx

[
|∇Gλξ|2− 2ReGλξ ∇Gλξ ·∇ϕ

ϕ
+ |Gλξ|2 |∇ϕ|

2

ϕ2

]
= lim

ϵ→ 0+

∫
Dϵ

dx

[
|∇Gλξ|2−∇|Gλξ|2 · ∇ lnϕ+ |Gλξ|2 |∇ϕ|

2

ϕ2

]
.

Exploiting the first Green’s identity, one gets

E[Gλξ/ϕ] = lim
ϵ→ 0+

[∫
∂Dϵ

ds
(
Gλξ ∂nGλξ − |Gλξ|2∂n lnϕ

)
+

−
∫
Dϵ

dx

(
Gλξ∆Gλξ− |Gλξ|2∆ lnϕ− |Gλξ|2 |∇ϕ|

2

ϕ2

)]
,

where ∂n denotes the outer normal derivative. Furthermore, we stress that

∂D ϵ =
⋃

P∋σ={i,j}

{
(x1, . . . ,xN)∈ R3N

∣∣ |xi− xj|= ϵ, min
P∋ ν={k,ℓ}

ν ̸=σ

|xk− xℓ| ≥ ϵ
}
=:

⋃
P∋σ={i,j}

∂D ϵ
σ .

Taking into account the following identities for any x ∈ R3N ∖ π

(H0+λ)Gλξ(x) = 0, (3.58)
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(∆ lnϕ)(x) =
(∆ϕ)(x)

ϕ(x)
− |∇ϕ(x)|

2

ϕ2(x)
, (3.59)

the computation in the previous integral yields

E[Gλξ/ϕ] = (2m2− λ)
∥∥Gλξ∥∥2

HNb
+ 1

2
lim

ϵ→ 0+

∫
∂Dϵ

ds ϕ2(x) ∂n
|Gλξ|2
ϕ2

= (2m2− λ)
∥∥Gλξ∥∥2

HNb
+

1

2

∑
σ∈P

lim
ϵ→ 0+

∫
∂Dϵ

σ

ds ϕ2(x) ∂n
|Gλξ|2
ϕ2 .

Hence, because of (3.57) and the symmetry of the integrand in exchanging any couple xi←→xj ,

we obtain

Φλ
D[ξ] =

N(N−1)
4

lim
ϵ→ 0+

∫
∂Dϵ

σ

ds ϕ2(x) ∂n
|Gλξ|2
ϕ2 , ∀σ ∈P. (3.60)

In order to have an explicit representation of the previous identity, we adopt the change of variables

encoded by the unitary operator Uσ , given by (3.17). We stress that for, a generic f ∈H2(R3N \π),
one has3∫

Dϵ

dx |∇f |2 =
∫
R3(N−1)

dxdXσ

∫
|r|>ϵ

dr 2|∇rUσf |2+ 1
2
|∇xUσf |2+ |∇XσUσf |2 + o(1) , as ϵ −→ 0.

Therefore, the first Green’s identity for the domain D ϵ reads∫
Dϵ

dx |∇f |2 = −
∫
R3(N−1)

dxdXσ

∫
|r|>ϵ

dr (Uσf) (2∆rUσf + 1
2
∆xUσf +∆XσUσf)+

− 2

∫
R3(N−1)

dxdXσ

∫
|r|=ϵ

dr Uσf
(
r
ϵ
·∇rUσf

)
+ o(1) , as ϵ −→ 0

where −r
r

is the outer normal derivative in this framework. Hence, equation (3.60) can be repres-

ented in terms of these coordinates in the following way

Φλ
D[ξ] =

N(N−1)
2

lim
ϵ→ 0+

∫
R3(N−1)

dxdXσ

∫
|r|=ϵ

dr (Uσϕ)
2(r,x,Xσ)

(
−r

ϵ
·∇r

|UσGλξ|2
(Uσϕ)2

)
. (3.61)

Next, we proceed in writing the asymptotic expansion of the integrand for r small. To this end we

first provide the following asymptotic behavior for ϕ

(Uσϕ)(r,x,Xσ) =
1

4π

(
1

r
−m+ 2

∑
ℓ /∈σ

e−m |x−xℓ|

|x− xℓ|
+
∑

1≤k< ℓ≤N
k /∈σ, ℓ /∈σ

e−m |xk−xℓ|

|xk− xℓ|

)
+ o(1) (3.62)

=:
1

4π

[
1

r
−m+ Am(x,Xσ)

]
+ o(1) , r −→ 0+.

Moreover, in order to have a similar expansion for the potential, we take into account representa-

tion (3.71) and proposition (3.7), so that we can write the potential in the following way

(Gλξ)(x1, . . . ,xN) =
∑

P∋ν={k, ℓ}

1
|xk−xℓ|

∫
R3(N−1)

dpdPν
eip · xk+xℓ

2 + iPν ·Xν

(2π)3(N−1)/2 ξ̂(p,Pν) e
−
√

1
2
p2+P 2

ν +λ
|xk−xℓ|√

2 .

(3.63)
3We are replacing each domain ∂Dϵ

σ={i,j} with {(x1, . . . ,xN ) ∈ R3N | |xi − xj | = ϵ} taking into account

subleading orders vanishing as ϵ goes to zero.
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Applying the change of variables Uσ in identity (3.63) with σ = {i, j}, we can assume ξ suffi-

ciently regular so that one has

(UσGλξ)(r,x,Xσ) =
ξ(x,Xσ)

r
− 1√

2

∫
R3(N−1)

dpdPσ
eip ·x+ iPσ ·Xσ

(2π)3(N−1)/2 ξ̂(p,Pσ)
√

1
2
p2 + P 2

σ + λ +

+
∑

P∋ν={i, ℓ}
ℓ ̸=j

1
|x−xℓ|

∫
R3(N−1)

dpdPν
e
ip · x+xℓ

2 + ipj ·x+ iPν ∪{j} ·Xν ∪{j}

(2π)3(N−1)/2 ξ̂(p,Pν) e
−
√

1
2
p2+P 2

ν +λ
|x−xℓ|√

2 +

+
∑

P∋ν={j, ℓ}
ℓ ̸=i

1
|xℓ−x|

∫
R3(N−1)

dpdPν
e
ip · x+xℓ

2 + ipi ·x+ iPν ∪{i} ·Xν ∪{i}

(2π)3(N−1)/2 ξ̂(p,Pν) e
−
√

1
2
p2+P 2

ν +λ
|xℓ−x|√

2 +

+
∑

P∋ν={k, ℓ}
σ∩ ν=∅

1
|xk−xℓ|

∫
R3(N−1)

dpdPν
eip · xk+xℓ

2 + i(pi+pj) ·x+ iPν ∪σ ·Xν ∪σ

(2π)3(N−1)/2 ξ̂(p,Pν) e
−
√

1
2
p2+P 2

ν +λ
|xk−xℓ|√

2 + o(1)

=:
ξ(x,Xσ)

r
+Bλ

ξ (x,Xσ) + o(1) , as r −→ 0.

Elementary calculations yield

|(UσGλξ)(r,x,Xσ)|2

(Uσϕ)2(r,x,Xσ)
= (4π)2

{
|ξ(x,Xσ)|2+ 2rRe ξ(x,Xσ)B

λ
ξ (x,Xσ)+

+ 2r
[
m− Am(x,Xσ)

]
|ξ(x,Xσ)|2+ o(r)

}
.

(3.64)

Therefore, as r −→ 0 one has

(Uσϕ)
2
[
−r

r
·∇r

|(UσGλξ)|2
(Uσϕ)2

]
(r,x,Xσ) =

2
[
Am(x,Xσ)−m

]
|ξ(x,Xσ)|2−2Re ξ(x,Xσ)Bλ

ξ (x,Xσ)

r2
+O

(
1
r

)
,

hence, for sufficiently regular ξ we have obtained

Φλ
D[ξ] = 4πN(N−1)

∫
R3(N−1)

dxdXσ [Am(x,Xσ)−m]|ξ(x,Xσ)|2−Re ξ(x,Xσ)B
λ
ξ (x,Xσ). (3.65)

In particular, notice that the first term in the right hand side of (3.65) coincides with Φreg[ξ].

Furthermore, we claim that the second term satisfies

− Re

∫
R3(N−1)

dxdXσ ξ(x,Xσ)B
λ
ξ (x,Xσ) = (Φλ

diag+ Φλ
off, 0+ Φλ

off,1)[ξ]. (3.66)

Let us prove this statement. Clearly, owing to equation (3.46), one has

1√
2

∫
R3(N−1)

dxdXσ ξ(x,Xσ)

∫
R3(N−1)

dpdPσ
eip ·x+ iPσ ·Xσ

(2π)3(N−1)/2 ξ̂(p,Pσ)
√

1
2
p2+P 2

σ + λ = Φλ
diag[ξ].

Then∑
P∋ ν :

|ν ∩σ|=1

∫
R3(N−1)

dxdx′dX ξ(x,x′,X)

∫
R3(N−1)

dpdp′dP eip · x′+x
2 + ip′·x+ iP ·X ξ̂(p,p′,P ) e

−
√

1
2 p2+p′2+P2+λ

|x′−x|√
2

(2π)3(N−1)/2 |x′−x|

= 2(N−2)

∫
R3(N−1)

dxdx′dX ξ(x,x′,X)

∫
R3(N−1)

dydy′dY ξ(y,y′,Y )F λ

(
x , x′, X

y, y′, Y

)
where, having used Plancherel’s theorem, we have set

F λ

(
x , x′, X

y, y′, Y

)
:=

1√
2

∫
R3(N−1)

dpdp′dP e
−ip ·

(
y− x′+x

2

)
−ip′·(y′−x)−iP ·(Y−X)

(2π)3(N−1) f̂λ
|x′−x|√

2

( p√
2
,p′,P ), (3.67)
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with f̂λ
x defined by (3.73). Therefore,

F λ

(
x , x′, X

y, y′, Y

)
=

2

(2π)
3(N−1)

2

fλ
|x′−x|√

2

(√
2 (y − x′)− x−x′

√
2
,y′−x,Y −X

)
. (3.68)

Notice that, according to (3.74) we have obtained

F λ

(
x , x′, X

y, y′, Y

)
= 8π Gλ

(
x, x′, x, X

y, y, y′, Y

)
. (3.69)

Hence, according to identity (3.28c), we have proved that Φλ
off,1[ξ] corresponds to the sum of the

terms in the left hand side of (3.66) involving the couples ν such that |ν ∩ σ| = 1.

With completely analogous computations one finds out that the sum of the terms involving the

couples in P which do not share any element with σ is equal to Φλ
off, 0[ξ] and equation (3.66) is

therefore proven.
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Addendum

3.A PROPERTIES OF THE POTENTIAL

In this section, we focus on studying the operator Gλ introduced in section 3.1. Let us denote

by Gλ the kernel of the operator RH0(−λ) ∈B (HNb,D(H0)), with λ > 0, namely the Green’s

function associated to the differential operator (−∆+λ) : H2(R3N)−→L2(R3N). It is well known

that

Gλ
(
x
y

)
= 1

(2π)3N/2

( √
λ

|x−y|

)3N
2

−1

K 3N
2

−1

(√
λ |x− y|

)
, x,y ∈ R3N , (3.70)

where Kµ : R+−→R+ is the modified Bessel function of the second kind of order µ ≥ 0.

By definition (3.15), one has

⟨ψ, Gλξ⟩HNb
=
∑
σ∈P

⟨TσRH0(−λ)ψ, Cσ ξ⟩Xσ

= 8π
∑

P∋σ={i, j}

∫
R3(N−1)

dydYσ ξ(y,Yσ)

∫
R3N

dxidxj dXσ ψ(xi,xj,Xσ)G
λ

(
xi , xj , Xσ

y, y, Yσ

)
.

Therefore, one can deduce the explicit action of Gλ

(
Gλξ

)
(x1, . . . ,xN) = 8π

∑
P∋σ={i, j}

∫
R3(N−1)

dydYσ ξ(y,Yσ)G
λ

(
xi , xj , Xσ

y, y, Yσ

)
(3.71)

=:
∑
σ∈P

(Gλσ Cσ ξ)(x1, . . . ,xN).

With a slight abuse of terminology, we refer to Gλσ Cσ ξ ∈L2
sym(R6, dxidxj)⊗L2

sym(R3(N−2), dXσ)

as the “potential” generated by the “charge” Cσ ξ ∈ Xσ distributed on πσ , while Gλξ ∈ HNb

shall be consequently called the total potential generated by π. Clearly, owing to the bosonic

symmetry, each charge Cσ ξσ ∈ Xσ associated to the coincidence hyperplane πσ is equal to any

other charge Cν ξν∈Xν distributed along another hyperplane πν , in the sense that ξσ = ξν = ξ for

any σ ̸= ν ∈P .

One can check that in the Fourier space, equation (3.71) reads

(Gλξ̂)(p1, . . . ,pN) =
√

8
π

∑
P∋σ={i, j}

ξ̂(pi+ pj,p1, . . . p̌σ . . . ,pN)∑N
k=1 p

2
k + λ

. (3.72)

Here we state a useful property of Gλ.
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Proposition 3.7. Let Gλ be defined by (3.70) and σ = {i, j}. Then, provided xi ̸= xj one has

∫
R3(N−1)

dydYσ e
−iq ·y−iQσ ·YσGλ

(
xi , xj , Xσ

y, y, Yσ

)
=

e
−
√

q2

2
+Q2

σ+λ
|xi−xj |√

2

8π |xi− xj|
e−iq ·

xi+xj
2

−iQσ ·Xσ .

Proof. Adopting the change of coordinates z = y − xj , Zσ = Yσ −Xσ , one has∫
R3(N−1)

dydYσ e
−iq ·y−iQσ ·YσGλ

(
xi , xj , Xσ

y, y, Yσ

)
= e−iq ·xj−iQσ ·Xσ×

×
∫
R3(N−1)

dzdZσ e
−iq ·z−iQσ ·ZσGλ

(
xi− xj , 0 , 0

z, z, Zσ

)
.

Next, take into account the following identities

Gλ

(
xi− xj , 0 , 0

z, z, Zσ

)
=

1

(2π)3N

∫
R3N

dpidpjdPσ
eipi · (z−xi+xj)+ipj ·z+ iPσ ·Zσ

p2i + p2j + P 2
σ + λ

=
1

(2π)3N

∫
R3(N−1)

dpdPσ

∫
R3

dq
e
ip ·

(√
2z−

xi−xj√
2

)
+iq ·

(
xi−xj√

2

)
+ iPσ ·Zσ

p2 + q2 + P 2
σ + λ

=
2
√
2π2

(2π)3N |xi− xj|

∫
R3(N−1)

dpdPσ e
ip ·

(√
2z−

xi−xj√
2

)
+ iPσ ·Zσe

−
√

p2+P 2
σ +λ

|xi−xj |√
2 ,

where we have set (pi,pj) =
(

p− q√
2
, p+ q√

2

)
and exploited (2.135). Thus, if we define the function

f̂λ
x : R3⊗R3(N−2)−→R+, x, λ > 0,

(p,P ) 7−→ e−
√

p2+P 2+λ x

x
,

(3.73)

we can write

Gλ

(
xi− xj , 0 , 0

z, z, Zσ

)
=

2π2

(2π)
3
2
(N+1)

fλ
|xi−xj |√

2

(√
2z − xi−xj√

2
,Zσ

)
. (3.74)

Therefore,∫
R3(N−1)

dzdZσ e
−iq ·z−iQσ ·ZσGλ

(
xi− xj , 0 , 0

z, z, Zσ

)
=

=
π2e−iq ·

xi−xj
2

√
2(2π)

3
2
(N+1)

∫
R3(N−1)

dsdZσ e
−iq · s√

2
−iQσ ·Zσfλ

|xi−xj |√
2

(s,Zσ)

=
π2e−iq ·

xi−xj
2

√
2(2π)3

f̂λ
|xi−xj |√

2

(
q√
2
,Qσ

)
=

e
−
√

q2

2
+Q2

σ+λ
|xi−xj |√

2

8π |xi− xj|
e−iq ·

xi−xj
2 .

In particular, notice that proposition 3.7 implies∫
R3(N−1)

dydYσ G
λ

(
xi , xj , Xσ

y, y, Yσ

)
=

e−
√

λ
2
|xi−xj |

8π |xi− xj|
, xi ̸= xj . (3.75)

Lastly, let us state the following proposition.
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Proposition 3.8. Given ξ ∈ S(R3(N−1)) and σ = {i, j} ∈P one has

I(p,pi,pj,Pσ) := F
∫
R3(N−1)

dydyidyj dYσ ξ(y,yi,yj,Yσ)G
λ

(
xi, xj , x, x, Xσ

y, y, yi, yj ,Yσ

)
=

1

(2π)3

∫
R3

dq
ξ̂
(
pi+ pj,

p
2
+ q, p

2
− q,Pσ

)
1
2
p2+ 2q2+ p2i + p2j +P

2
σ + λ

.

Proof. Because of the regularity of ξ and equation (3.75), Fubini’s theorem applies, therefore

taking account of proposition 3.7

I(p,pi,pj,Pσ) =

=

∫
R3(N−1)

dydyidyj dYσ
e
−ip ·

yi+yj
2

−i(pi+pj) ·y−iPσ ·Yσ−
√

1
2
p2+p2i+p2j+P 2

σ+λ
|yi−yj |√

2

8π (2π)
3(N−1)

2 |yi− yj|
ξ(y,yi,yj,Yσ)

=

∫
R3(N−1)

dydrdsdYσ
e
−ip ·s−i(pi+pj) ·y−iPσ ·Yσ−

√
1
2
p2+p2i+p2j+P 2

σ+λ r√
2

8π (2π)
3(N−1)

2 r
ξ
(
y, s+ r

2
, s− r

2
,Yσ

)
=

∫
R3(N−1)

dydsdYσ

∫
R6

dqdt
e−iq ·t−ip ·s−i(pi+pj) ·y−iPσ ·Yσ

(2π)
3(N−1)

2
+3

ξ
(
y, s+ t

2
, s− t

2
,Yσ

)
2q2+ 1

2
p2+ p2i + p2j +P

2
σ + λ

where in the last step we have used Plancherel’s theorem and the well known identity∫
R3

dx
eiq ·x−a x

x
=

4π

a2+ q2
, ∀ a > 0, q ∈ R3. (3.76)

One obtains the result by changing the coordinates s+ t
2
7−→ u, s− t

2
7−→ v. Indeed

I(p,pi,pj,Pσ) =

=
1

(2π)3

∫
R3(N+1)

dqdydudvdYσ
e−i(p2+q) ·u−i(p2−q) ·v−i(pi+pj) ·y−iPσ ·Yσξ(y,u,v,Yσ)

(2π)
3(N−1)

2

(
2q2+ 1

2
p2+ p2i + p2j +P

2
σ + λ

)
=

1

(2π)3

∫
R3

dq
ξ̂
(
pi+ pj,

p
2
+ q, p

2
− q,Pσ

)
2q2+ 1

2
p2+ p2i + p2j +P

2
σ + λ

.
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A. SELF-ADJOINT EXTENSIONS OF RESTRICTIONS

In this section, we summarize some known results obtained in [31] and [32] (see [6] for further

information on this abstract setting).

Let H be a complex Hilbert space and A : D(A) ⊆ H −→ H a s.a. operator. Endowing D(A)

with the graph norm of A, we treat D(A) as a Hilbert subspace. Then, we consider a densely

defined, closed and symmetric operator S : D(S) ⊂ D(A) −→ H such that A|D(S) = S. Under

these prescriptions, we shall provide the characterization of the whole set of s.a. extensions of S.

To this end, let τ : D(A)−→X be a linear and continuous operator in an auxiliary complex Hilbert

space X , such that ran(τ) = X and ker(τ) = D(S).

Then, for each z ∈ ρ(A), we define the bounded operator G(z) := (τRA(z̄))
∗∈B (X ,H).

Remark A.1. The operator G(z) fulfils the following properties.

i) G(z) is injective, since ker(G(z)) = ran(τ)⊥ = {0}.

ii) Given a compact K ⊂ ρ(A), there exists C > 0 s.t. ∥G(z)∥L (X ,H)≤ C uniformly in z ∈K,

since τ is continuous and in general ∥RA(w)∥L (H,D(A))≤ dist(w, σ(A))−1 ∀w ∈ ρ(A).

iii) For any z ∈ ρ(A), ran(G(z)) ∩D(A) = {0} due to the density of ker(τ) in D(A).

Indeed, given ψ ∈ ker(τ), one has

0 = ⟨ϕ, τψ⟩X = ⟨ϕ, τRA(z̄)(A− z̄)ψ⟩X = ⟨G(z)ϕ, (A− z̄)ψ⟩H , ∀ϕ ∈ X .

By way of contradiction, assume that exists ϕ ̸= 0 such that G(z)ϕ∈D(A). Then,

0 = ⟨(A− z)G(z)ϕ, ψ⟩H , ∀ψ ∈ ker(τ)

that means (A− z)G(z)ϕ ∈ ker(τ)⊥, namely (A− z)G(z)ϕ = 0. Since z ∈ ρ(A), the only

solution to the previous equation is G(z)ϕ = 0 that implies ϕ = 0, which is absurd.

Another important property of the operator G(z) is proved in the following proposition.

Proposition A.1. Let z, w ∈ ρ(A) and ϕ1, ϕ2 ∈ X . Then, if ran(τ) is dense in X

G(z)ϕ1− G(w)ϕ2 ∈ D(A) ⇐⇒ ϕ1 = ϕ2 .

Proof. ⇐) Applying the operator τ in the first resolvent identity for the operator A, one gets

(z̄ − w̄)G(w)∗RA(z̄) = G(z)∗− G(w)∗, (A.1a)
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(z − w)RA(z)G(w) = G(z)− G(w) (A.1b)

and therefore ran(G(z)− G(w)) ∈ D(A).

⇒) Rewriting G(z) according to equation (A.1b), one obtains

G(z)ϕ1− G(w)ϕ2 = G(w)(ϕ1− ϕ2) + (z − w)RA(z)G(w)ϕ1 .

By hypothesis, the left hand side belongs to D(A) and the same is true for the last term in the

right hand side, whereas ran(G(w))∩D(A) = {0} thanks to point iii) of remark A.1. These facts

imply ϕ1− ϕ2 ∈ ker(G(w)) = {0}.

Notice that in the previous proposition the implication “⇐)” holds true even if ran(τ) is not dense.

Lastly, we consider a continuous map Γ: ρ(A)−→L (X ) satisfying

Γ : z 7−→ Γ(z) : D ⊆ X −→X is a densely defined operator, (A.2a)

Γ : z 7−→ Γ(z) = Γ(z̄)∗, (A.2b)

Γ(z)− Γ(w) = (w− z)G(w̄)∗G(z) = (w− z)G(z̄)∗G(w), ∀w, z ∈ ρ(A), (A.2c)

∃ z ∈ ρ(A) : 0 ∈ ρ(Γ(z)). (A.2d)

Remark A.2. Observe that condition (A.2b) makes the operator Γ(z) closed for any z ∈ ρ(A).
Moreover, by condition (A.2c), one has that the domain D is independent of z ∈ ρ(A) and the

map Γ is actually locally Lipschitz continuous, i.e. (see point ii) of remark A.1)

∥Γ(w)− Γ(z)∥L (X ) ≤ C |w − z|, ∀w, z ∈ K ⊂ ρ(A)

with some K compact and C positive. In particular, notice that for any w, z ∈ ρ(A), one has that

the difference Γ(w)− Γ(z) ∈B (X ), so that any unbounded contribution of Γ(z) cannot depend

on z .

In the next proposition, we establish a sufficient condition to check the validity of properties (A.2).

Proposition A.2. Let λ∈ ρ(A) ∩ R and Γλ : D ⊂ X −→X a s.a. operator satisfying

i) Γλ1− Γλ2 = τ(G(λ2)− G(λ1)), ∀λ1, λ2 ∈ ρ(A) ∩ R,

ii) ∃ λ0 ∈ ρ(A) ∩ R : Γλ0 is surjective.

Then, the map

z 7−→ Γ(z) := Γλ0 + (λ0 − z)G(λ0)∗G(z)

fulfils conditions (A.2).
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Proof. Condition (A.2a) is automatically satisfied due to the self-adjointness of Γλ .

Applying the operator τ to (A.1b), one gets for all z, w ∈ ρ(A)

τ [G(z)− G(w)] = (z − w)G(z̄)∗G(w) = (z − w)G(w̄)∗G(z). (A.3)

In particular, this means that

Γλ1− Γλ2 = (λ2 − λ1)G(λ2)∗G(λ1) = (λ2 − λ1)G(λ1)∗G(λ2), ∀λ1, λ2 ∈ ρ(A) ∩ R, (A.4)

and, moreover

Γ(z) = Γλ0 + (λ0 − z)G(z̄)∗G(λ0). (A.5)

Thus, (A.2b) can be proven, since

Γ(z̄)∗− Γλ0 = (λ0 − z)G(z̄)∗G(λ0) = (λ0 − z)G(λ0)∗G(z) = Γ(z)− Γλ0 .

Next, concerning condition (A.2c), we use equations (A.1), the definition of Γ(z) and iden-

tity (A.5)

Γ(z)− Γ(w) = Γλ + (λ− z)G(z̄)∗G(λ)− Γλ + (w − λ)G(λ)∗G(w)

= (λ− z)G(z̄)∗
[
G(w) + (λ− w)RA(λ)G(w)

]
+

+ (w − λ)
[
G(z̄)∗ + (λ− z)G(z̄)∗RA(λ)

]
G(w)

= (w − z)G(z̄)∗G(w).

Finally, we show that Γ(z) is invertible with bounded inverse for any z ∈ C ∖ R . According

to (A.2c)

Γ(z̄)− Γ(z) = (z − z̄)G(z)∗G(z),

while condition (A.2b) implies

⟨ξ, [Γ(z̄)− Γ(z)]ξ⟩X = −2i Im⟨ξ, Γ(z)ξ⟩X , ∀ ξ ∈ D.

Hence, one obtains

Im⟨ξ, Γ(z)ξ⟩X = −Im(z) ∥G(z)ξ∥2H , ∀ ξ ∈ D. (A.6)

Therefore, since Γ(z) + Γ(z̄) is s.a., one gets for any ξ ∈D

∥ξ∥2X ∥Γ(z)ξ∥
2
X ≥ |⟨ξ, Γ(z)ξ⟩X |

2 = |⟨ξ, Γ(z)+Γ(z̄)
2

ξ⟩X |2+ |⟨ξ, Γ(z)−Γ(z̄)
2

ξ⟩X |2

= |⟨ξ, Γ(z)+Γ(z̄)
2

ξ⟩X |2+ (Imz)2 ∥G(z)ξ∥4H ≥ (Imz)2 ∥G(z)ξ∥4H .

In other words, Γ(z) is injective for all z ∈ C ∖ R. Moreover, Γ(z) is also surjective because of

the surjectivity of Γλ0 and therefore it is invertible with bounded inverse.
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One of the main results of [31] and [32] is that the choice of τ and Γ identifies in an exhaustive

way every s.a. extension of S, denoted by Aτ
Γ . Indeed, for any z ∈ ρ(A) satisfying (A.2d), namely

such that Γ(z)−1 ∈ B (X ), the quantity

Rτ
Γ(z) := RA(z) + G(z)Γ(z)−1G(z̄)∗ (A.7)

defines the resolvent of a s.a. operator Aτ
Γ := Rτ

Γ(z)
−1+z that does not depend on z and coincides

with A on ker(τ). More precisely, it is characterized byD(Aτ
Γ) :=

{
ϕ ∈ H

∣∣ ϕ = ϕz + G(z)Γ(z)−1τϕz , ϕz ∈ D(A)
}
,

(Aτ
Γ − z)ϕ = (A− z)ϕz .

(A.8)

Notice that, given z ∈ ρ(A) s.t. condition (A.2d) is fulfilled, the decomposition of an element in

D(Aτ
Γ) is unique because of point iii) of remark A.1.

Equivalently, the domain of the operator Aτ
Γ can be represented in terms of a proper boundary

condition. Indeed, introducing the quantity ξ := Γ(z)−1τϕz ∈X , it is straightforward to see thatD(Aτ
Γ) =

{
ϕ ∈ H

∣∣ ϕ = ϕz + G(z)ξ, Γ(z)ξ = τϕz , ϕz ∈ D(A), ξ ∈ D
}
,

Aτ
Γϕ = Aϕz + zG(z)ξ.

(A.9)

We stress that the definition of ξ does not depend on z ∈ ρ(A). Indeed, the uniqueness of the

decomposition of an element in D(Aτ
Γ) implies

ϕz− ϕw = G(w)ξw− G(z)ξz , ∀w, z ∈ ρ(A) satisfying (A.2d).

Since the left hand side belongs to D(A), according to proposition A.1 one has ξz = ξw , namely

Γ(z)−1τϕz = Γ(w)−1τϕw .

One can verify that an equivalent z-independent way to characterize Aτ
Γ is the followingD(Aτ

Γ) =
{
ϕ ∈ H

∣∣ ∃! φ ∈ H : d
dz

Γ(z)−1τRA(z)(φ− zϕ) ≡ 0
}
,

Aτ
Γϕ = φ.

(A.10)

It is worth evaluating the quadratic form associated to the s.a. operator Aτ
Γ . In particular, one has

for any ϕ ∈ D(Aτ
Γ)

⟨ϕ, Aτ
Γϕ⟩H = ⟨ϕ, Aϕz + z G(z)ξ⟩H = z ∥ϕ∥2H+ ⟨ϕ, (A− z)ϕz⟩H

= z ∥ϕ∥2H+ ⟨ϕz, (A− z)ϕz⟩H + ⟨G(z)ξ, (A− z)ϕz⟩H
= z ∥ϕ∥2H+ ⟨ϕz, (A− z)ϕz⟩H + ⟨ξ, τϕz⟩X .

Therefore, the boundary condition implies

⟨ϕ, Aτ
Γϕ⟩H = z ∥ϕ∥2H+ ⟨ϕz, (A− z)ϕz⟩H + ⟨ξ, Γ(z)ξ⟩X . (A.11)
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Remarkably, since the left hand side of the previous equation is real, one has

Im(z) ∥ϕz + G(z)ξ∥2H − Im(z) ∥ϕz∥2H+ Im⟨ξ, Γ(z)ξ⟩ = 0.

Thus, thanks to (A.6) one obtains ϕ = ϕz + G(z)ξ ∈ D(Aτ
Γ) implies

Im(z) = 0 ∨ ϕz ⊥ G(z)ξ. (A.12)

We conclude this section by providing a revised version of [31, corollary 2.1].

Proposition A.3. Let A be a s.a. operator in H and Γ : ρ(A) −→ L (X ) a continuous map

satisfying (A.2). Suppose that there exist λ∈R and µ0 ≤ λ such that

i) A− λ > 0 ,

ii) Γ(µ) > 0, ∀µ < µ0 .

Then, the operator Aτ
Γ defined by (A.8) satisfies Aτ

Γ ≥ µ0 for any τ : D(A)−→X linear bounded

operator s.t. ran(τ) = X and ker(τ) = D(A).

Proof. Taking into account identity (A.11), one has for all ϕ ∈ D(Aτ
Γ) and µ < µ0

⟨ϕ, Aτ
Γϕ⟩H = µ ∥ϕ∥2H + ⟨ϕµ, (A− µ)ϕµ⟩H + ⟨ξ, Γ(µ)ξ⟩X

> µ ∥ϕ∥2H + ⟨ϕµ, (A− λ)ϕµ⟩H > µ ∥ϕ∥2H .
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B. TECHNICAL FACTS

In this appendix we prove some technical detail used in the text.

Proposition B.1. Let f : [−1, 1]−→R be an analytic function whose Taylor expansion

f(x) =
∑
n∈N0

cnx
n, cn ≥ 0

has a radius of convergence equal to 1. Defining

aℓ :=

∫ 1

−1

dy Pℓ(y)f(y), ℓ ∈ N0,

then, for all ℓ ∈ N0 one has aℓ ≥ 0 and aℓ ≥ aℓ+2 .

Proof. The proof can be found e.g. in [5, lemma 3.3], but we provide the details for easier reading.

Notice that, since the radius of convergence is 1, one can use Fubini’s theorem to get

aℓ =
∑
n∈N0

cn

∫ 1

−1

dy Pℓ(y)y
n =

1

2ℓ ℓ !

∑
n∈N0

cn

∫ 1

−1

dy yn
dℓ

dyℓ
(y2− 1)ℓ.

Integrating by parts ℓ times one achieves the non-negativity of aℓ

aℓ =
1

2ℓ ℓ !

∑
n∈N0

cn

∫ 1

−1

dy (1− y2)ℓ d
ℓ

dyℓ
yn ≥ 0.

Next, considering

d2

dy2
(y2− 1)ℓ+2 = −2(ℓ+ 2)(y2 − 1)ℓ+ 2(ℓ+ 2)(2ℓ+ 3)(y2− 1)ℓy2

= 4(ℓ+ 2)(ℓ+ 1)(y2− 1)ℓ+ 2(ℓ+ 2)(2ℓ+ 3)(y2− 1)ℓ+1,

the monotonicity property is recovered, since

aℓ+2 =
(−1)ℓ

2ℓ+2 (ℓ+ 2)!

∑
n∈N0

cn

∫ 1

−1

dy
d2

dy2
(y2− 1)ℓ+2

(
dℓ

dyℓ
yn
)

= aℓ −
(2ℓ+ 3)

2ℓ+1 (ℓ+ 1)!

∑
n∈N0

cn

∫ 1

−1

dy (1− y2)ℓ+1 d
ℓ

dyℓ
yn ≤ aℓ .

Proposition B.2. Consider a function f : R2
+× [−1, 1]−→C such that
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i) f(p, q, ·) ∈ L2([−1, 1]) for almost every p and q in R+ ,

ii) the quantity F (p, q) :=
∫ 1

−1

du f(p, q, u) is in L1(R+× R+, p
2q2 dpdq).

Then, one has ∫
R6

dpdq f
(
p, q, p ·q

pq

)
= 8π2

∫ +∞

0

dp p2
∫ +∞

0

dq q2F (p, q).

Proof. Recalling that one has Y 0
0 (ω̂)≡ 1√

4π
, we can use spherical coordinates to obtain∫

R6

dpdq f
(
p, q, p ·q

pq

)
= 4π

∫ +∞

0

dp p2
∫ +∞

0

dq q2
∫
S2
dω̂1

∫
S2
dω̂2 f(p, q, ω̂1 · ω̂2)Y 0

0 (ω̂1)Y
0
0 (ω̂2).

Next, because of i) we can decompose f(p, q, ·) in terms of Legendre Polynomials

f(p, q, x) =
∑
ℓ∈N0

2ℓ+1
2
⟨Pℓ , f(p, q, ·)⟩L2([−1, 1]) Pℓ(x), for almost every x ∈ [−1, 1]. (B.1a)

Exploiting the addition formula (2.53) one gets

f(p, q, ω̂1 · ω̂2) = 2π
∑
ℓ∈N0

∫ 1

−1

du Pℓ(u)f(p, q, u)
ℓ∑

m=−ℓ

Y m
ℓ (ω̂1)Y m

ℓ (ω̂2). (B.1b)

Hence, the orthonormality of the spherical harmonics yields∫
R6

dpdq f
(
p, q, p ·q

pq

)
= 8π2

∫ +∞

0

dp p2
∫ +∞

0

dq q2
∫ 1

−1

du f(p, q, u).

Proposition B.3. For any x ∈ [0, 1], p ∈ R and ℓ even we have

∫ 1

−1

dy Pℓ(y)
cosh[p arcsin(xy)]√

1− x2y2
=

2ℓ+1ℓ !xℓ

(2ℓ+1)!

ℓ
2∏

k=1

[
p2+(2k−1)2

]
2F1

(
ℓ+1+ip

2
, ℓ+1−ip

2
; ℓ+ 3

2
;x2
)
.

Proof. First let z ∈ (−1, 1) and take into account [20, p. 1007, 9.121.32], so that

cosh(p arcsin z)√
1− z2

= 2F1

(
1+ip
2
, 1−ip

2
; 1
2
; z2
)
=
∑
k∈N0

(
1+ip
2

)
k

(
1−ip
2

)
k(

1
2

)
k

z2k

k!

=
∑
k∈N0

z2k

(2k)!

k∏
n=1

[
p2+(2n− 1)2

]
,

(B.2)

where the last identity is given by the following simple computations

(
1+ip
2

)
k

(
1−ip
2

)
k
=
∣∣1+ip

2

∣∣2∣∣1+ip+2
2

∣∣2· · · ∣∣1+ip+2k−2
2

∣∣2= 1

22k

k∏
n=1

[
p2+(2n− 1)2

]
, (B.3)

(
1
2

)
k
=

1√
π

Γ
(
k + 1

2

)
=

1

22k
(2k)!

k!
. (B.4)
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Notice that (B.4) is a particular case of the Legendre’s duplication formula

Γ(z)Γ
(
z + 1

2

)
= 21−2z

√
πΓ(2z), z ∈ C∖−1

2
N0. (B.5)

Using the Rodrigues’ formula for Pℓ and integrating by parts ℓ times, one gets∫ 1

−1

dy Pℓ(y)
cosh[p arcsin(xy)]√

1− x2y2
=

1

2ℓℓ !

∫ 1

−1

dy (1− y2)ℓ ∂
ℓ

∂yℓ
cosh[p arcsin(xy)]√

1− x2y2
.

By (B.2), the function y 7−→ cosh[p arcsin(xy)]√
1−x2y2

is analytic in (−1, 1) for all x ∈ [0, 1] and p ∈R, thus

one can compute the ℓ-th derivative:

∂ ℓ

∂yℓ
cosh[p arcsin(xy)]√

1− x2y2
=

+∞∑
k= ℓ

2

x2k

(2k)!
ak(p

2)
(2k)! y2k−ℓ

(2k − ℓ)!
=
∑
k∈N0

xℓ+2k

(2k)!
ak+ ℓ

2
(p2) y2k,

where we have set ak(p2) :=
∏k

n=1[p
2+(2n−1)2] for the sake of notation. Using Tonelli’s theorem

to interchange the integral with the summation, one obtains∫ 1

−1

dy Pℓ(y)
cosh[p arcsin(xy)]√

1− x2y2
=

xℓ

2ℓℓ !

∑
k∈N0

x2k

(2k)!
ak+ ℓ

2
(p2)

∫ 1

−1

dy (1− y2)ℓy2k.

The last integral can be explicitly computed, namely∫ 1

−1

dy (1− y2)ℓy2k =
Γ(ℓ+ 1)Γ

(
k + 1

2

)
Γ
(
ℓ+ k + 3

2

) =
22ℓ+2 ℓ ! (ℓ+ k + 1)! (2k)!

(2ℓ+ 2k + 2)! k!
, (B.6)

where in the last equality we have used (B.5). Therefore,∫ 1

−1

dy Pℓ(y)
cosh[p arcsin(xy)]√

1− x2y2
= 2ℓ+2xℓ

∑
k∈N0

(ℓ+ k + 1)!

(2ℓ+ 2k + 2)!
ak+ ℓ

2
(p2)

x2k

k!
.

Using (B.4) and (B.3), the last expression can be rewritten in terms of the Pochhammer symbols∫ 1

−1

dy Pℓ(y)
cosh[p arcsin(xy)]√

1− x2y2
=
xℓ

2ℓ

∑
k∈N0

x2k

k!

ak+ ℓ
2
(p2)

22k
(
1
2

)
ℓ+k+1

= xℓ
∑
k∈N0

x2k

k!

(
1+ip
2

)
k+ ℓ

2

(
1−ip
2

)
k+ ℓ

2(
1
2

)
ℓ+k+1

.

By definition (2.75a), one has

(·)n+m = (·)m ( ·+m)n , ∀n,m ∈ N0 , (B.7)

hence ∫ 1

−1

dy Pℓ(y)
cosh[p arcsin(xy)]√

1− x2y2
=
xℓ
(
1+ip
2

)
ℓ
2

(
1−ip
2

)
ℓ
2(

1
2

)
ℓ+1

∑
k∈N0

x2k

k!

(
ℓ+1+ip

2

)
k

(
ℓ+1−ip

2

)
k(

ℓ+ 3
2

)
k

.

Using again (B.3), (B.4) and definition (2.76) one concludes the proof.
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In order to state the following propositions, let us define the following trace operator

(τ f̂)(p) :=
1

(2π)
m
2

∫
Rm

dq f̂(q,p),

D(τ) =

{
f ∈ L2(Rm+n)

∣∣ ∫
Rn

dp

∣∣∣∣∫
Rm

dq f̂(q,p)

∣∣∣∣2< +∞
} (B.8)

Proposition B.4. Let τ be the operator acting in L2(Rm+n) defined by (B.8). Then, for any s > 0

Hs+m
2 (Rm+n)⊂D(τ), τ ∈ B

(
Hs+m

2 (Rm+n), Hs(Rn)
)
.

Proof. First we verify that Hs+m
2 (Rm+n) is contained in the domain of τ .

Given any f ∈ Hs+m
2 (Rm+n) one has by Cauchy–Schwarz inequality∫

Rn

dp

∣∣∣∣∫
Rm

dq f̂(q,p)

∣∣∣∣2≤∫
Rn

dp

[∫
Rm

dq (1 + p2+ q2)s+
m
2 |f̂(q,p)|2

∫
Rm

dk
1

(1 + p2+ k2)s+
m
2

]
=

π
m
2 Γ(s)

Γ
(
s+ m

2

)∫
Rm+n

dqdp
(1 + q2+ p2)s+

m
2

(1 + p2)s
|f̂(q,p)|2

≤ π
m
2 Γ(s)

Γ
(
s+ m

2

)∥f∥2Hs+m/2(Rm+n) .

Hence, f is also in D(τ) and the first statement is therefore proven.

Moreover, since we have shown that for any f ∈ Hs+m
2 (Rm+n) one has

|(τ f̂)(p)|2 ≤ Γ(s)

(4π)
m
2 Γ
(
s+ m

2

) 1

(1 + p2)s

∫
Rm

dq (1 + q2+ p2)s+
m
2 |f̂(q,p)|2,

we conclude that (1 + p2)s |(τ f̂)(p)|2 ∈L1(Rn, dp) or, equivalently

∥τf∥2Hs(Rn) ≤
Γ(s)

(4π)
m
2 Γ
(
s+ m

2

) ∥f∥2Hs+m/2(Rm+n).

Proposition B.5. Given f : Rm× Rn−→C, suppose f ∈ H m
2
+s(Rm+n) for some s > 0. Then

f(x,y)|x=0 = w−lim
x→0

f(x,y), for almost every y ∈ Rn.

Proof. Let τ : H
m
2
+s(Rm+n)−→Hs(Rn) be the bounded operator given by (B.8) for any s > 0.

We want to show that

lim
x→0

∫
Rn

dy g(y)f(x,y) =

∫
Rn

dy g(y) (τf)(y), ∀ g ∈ L2(Rn), (B.9a)

or, equivalently

lim
x→0

∫
Rn

dp ĝ(p)

∫
Rn

dy
e−ip·y

(2π)
n
2

f(x,y) =

∫
Rn

dp ĝ(p) (τ f̂)(p), ∀ g ∈ L2(Rn). (B.9b)

Clearly, one has ∫
Rn

dy
e−ip ·y

(2π)
n
2

f(x,y) =

∫
Rm

dq
eix·q

(2π)
m
2

f̂(q,p). (B.10)
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We claim that |ĝ(p)||f̂(q,p)| is an integrable majorant uniformly in x, since∫
Rn+m

dpdq |ĝ(p)||f̂(q,p)| ≤

√
π

m
2 Γ(s)

Γ
(
s+ m

2

) ∥g∥ ∥f∥Hm/2+s(Rn+m) . (B.11)

Indeed, exploiting Cauchy–Schwarz inequality(∫
Rn+m

dpdq |ĝ(p)||f̂(q,p)|
)2

≤
∫
Rn+m

dpdq
|ĝ(p)|2

(p2 + q2 + 1)
m
2
+s

∫
Rn+m

dpdq (p2 + q2 + 1)
m
2
+s |f̂(q,p)|2

≤ 2π
m
2

Γ
(
m
2

) ∥f∥2Hm/2+s(Rn+m)

∫
Rn

dp |ĝ(p)|2
∫ +∞

0

dq
qm−1

(q2 + 1)
m
2
+s
.

Therefore, exploiting (B.10) and the dominated convergence theorem, one has

lim
x→0

∫
Rn

dp ĝ(p)

∫
Rn

dy
e−ip·y

(2π)
n
2

f(x,y) =

∫
Rn

dp ĝ(p)
1

(2π)
m
2

∫
Rm

dq f̂(q,p).

and equation (B.9b) has been proved.
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