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1. Introduction

In [11] Choi and Latrémolière proved that the so-called flip-flop automorphism λf of the Cuntz algebra 
O2 enjoys rather remarkable properties. We recall that O2 is the universal C∗-algebra generated by two 
isometries, S1 and S2, such that S1S

∗
1 + S2S

∗
2 = 1, and λf ∈ Aut(O2) acts by switching S1 and S2

with each other. By definition the flip-flop is an automorphism of order 2. In particular, it implements 
an automorphic action of Z2 on O2. Now actions of as simple mathematical objects as finite groups on 
C∗-algebras may nevertheless give rise to fixed-point subalgebras or crossed products which are difficult to 
describe concretely, cf. [14,15]. In fact, the flip-flop is one of the few known examples of any interest where 
the associated structures are not only comparatively easy to describe but also very surprising. Indeed, both 
fixed-point subalgebra and crossed product by its action turn out to be ∗-isomorphic with O2 itself, [11]. 
To the best of our knowledge, not many examples of this sort have appeared in the literature. Therefore, 
the present note aims to exhibit more examples with properties similar to those of the flip-flop. It is quite 
natural to try to find such examples on the Cuntz algebras On for any natural n ≥ 2, and this is exactly 
what is done here. Now there are at least two ways to define a generalized flip-flop on On. The first we 
consider is what we call the cyclic automorphism λC , which act on the generating isometries by translation 
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mod n. This is now an automorphism of order n. Interestingly, its fixed-point subalgebra is still ∗-isomorphic 
with On, as we show in Section 3. One may of course ask whether On is acted upon by an automorphism of 
order 2 such that the corresponding fixed-point subalgebra is again ∗-isomorphic with On. It is this question 
that naturally leads us to consider the so-called exchange automorphism, already appeared in [7]. This is the 
automorphism λE associated with the n × n matrix E = (δn−i+1,j)ni,j=1. Unlike the cyclic automorphism, 
the exchange automorphism can fix one of the generating isometries. This happens precisely when n is odd, 
and in this case the fixed isometry is Sn+1

2
. The exchange automorphism, though, proves to be far more 

difficult to treat. We describe the fixed-point subalgebra of the exchange subalgebra only when it does not 
fix any of the generating isometries, namely when n is even. The resulting C∗-algebra is no longer a Cuntz 
algebra. However, it is generated by n copies of On, as we show in Section 4.

Quite interestingly, the main ingredient of the result of Choi and Latrémolière is a convenient realization 
of O2 as a subalgebra of the tensor product M2(C) ⊗ O2 ∼= M2(O2), in which the flip-flop, despite being 
outer, can be implemented by a unitary Z ∈ M2(O2) of a particularly simple form. However, this realization 
fails to be compatible with the inclusion of O2 in the so-called 2-adic ring C∗-algebra Q2, which has been 
the focus of much recent work [16,1–5,9,6], in a sense that we make precise in Section 5.

2. Preliminaries and notation

We denote by On the universal C∗-algebra generated by n (proper) isometries S1, . . . , Sn such that ∑n
i=1 SiS

∗
i = 1. It is well known that On is a simple C∗-algebra, [12]. We denote by Fk

n ⊂ On the linear span 
of words in the generating isometries of the type Sα1Sα2 · · ·Sαk

S∗
β1
S∗
β2

· · ·S∗
βk

with αi, βi ∈ {1, 2, . . . , n} for 
any i = 1, 2, . . . , k. Endomorphisms of On are in bijection with its unitaries via the so-called Cuntz-Takesaki 
correspondence, cf. [13]. This is realized as follows. To any unitary u ∈ On it is possible to associate an 
endomorphism λu defined by λu(Si) := uSi, i = 1, 2, . . . , n. Conversely, if one starts with an endomorphism 
λ, it is easy to see that u :=

∑n
i=1 λ(Si)S∗

i is a unitary and λ = λu.
On the Cuntz algebra O2 we can consider the so-called flip-flop automorphism λf ∈Aut(O2), first ap-

peared under this name in [10]. This is nothing but the involutive automorphism that switches the generating 
isometries S1 and S2, namely λf (S1) = S2, λf (S2) = S1. Obviously, λf is associated with the unitary 
S1S

∗
2 + S2S

∗
1 . The cyclic automorphism λC ∈ End(On) is defined as λC(Si) = Si+1 for i = 1, . . . , n − 1 and 

λC(Sn) = S1. If sums between indices are understood mod n, then the foregoing formula simply becomes 
λC(Si) = Si+1 for every i = 1, 2, . . . , n. It is easy to see that λC is associated with the unitary matrix 
C = (δi−j,1)ni,j=1 identified with the corresponding unitary in F1

n (again, the operations between indices are 
understood mod n). Note that when n = 2, λf = λC . The exchange automorphism (introduced in [7]) is 
the automorphism λE , with E = (δn−i+1,j)ni,j=1 ∈ F1

n. Again, when n = 2 we have λE = λf . This means 
that both exchange automorphism and cyclic automorphism may be regarded as natural generalizations of 
the flip-flop. Finally, the 2-adic ring C∗-algebra Q2 is the universal C∗-algebra generated by a unitary U
and a (proper) isometry S2 such that S2U = U2S2 and S2S

∗
2 + US2S

∗
2U

∗ = 1. It contains a copy of the 
Cuntz algebra O2 since S2 and S1 := US2 satisfy the Cuntz relations. As shown in [1], the flip-flop uniquely 
extends to an automorphism λ̃f of Q2, determined λf (U) := U∗.

Throughout the paper sums and differences between indices of the generating isometries of On will always 
be understood mod n.

3. The fixed-point algebra under the cyclic automorphism

In [11, Section 1], Choi and Latrémolière proved that the fixed-point algebra of O2 with respect to the 
action of the flip-flop automorphism is ∗-isomorphic with O2. This section shows how their result can be 
generalized to On, for every n ≥ 2, when the flip-flop is replaced by the cyclic automorphism λC . We first 
discuss the spectral decomposition of On into the direct sum of the n eigenspaces of λC , which are commonly 
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referred to as the spectral eigenspaces associated with the action of Zn through λC . Henceforth i will always 
denote the imaginary unit of C when it appears in the argument of the exponential function.

Proposition 3.1. The algebra On decomposes as a direct sum of Banach spaces ⊕n
k=1OλC

n vk, where v =∑n
k=1 e

2πki/nSkS
∗
k ∈ U(On), and OλC

n is the fixed-point subalgebra of On w.r.t. the cyclic automorphism.

Proof. First we check that v is an eigenvector corresponding to the eigenvalue e−2πi/n. Indeed,

e2πi/nλC(v) =
(

n−1∑
k=1

e2πki/nSk+1S
∗
k+1 + S1S

∗
1

)

= e2πi/n

(
n∑

h=2

e2π(h−1)i/nShS
∗
h + S1S

∗
1

)

= e2πi/n

(
n∑

h=1

e2πhi/nShS
∗
h

)
= v .

Accordingly, vj is an eigenvector corresponding to the eigenvalue e−2πji/n, for any j = 1, 2, . . . , n. The 
conditional expectation onto OλC

n is now obtained by averaging the action of Zn through λC , that is

F (x) := 1
n

n∑
k=1

λk−1
C (x) x ∈ On .

For every x ∈ On, we note that x =
∑n−1

k=0 F (xvk)v−k; the terms of the sum on the right-hand side of this 
equality are called the spectral components of x associated, respectively, with the eigenvalue e

2πki
n . �

The following technical lemma is at the core of the proof of the main result of the present section. First, 
it provides an explicit copy of On as a subalgebra of Mn(On) by exhibiting the new generators. Second, it 
shows that the copy of On thus obtained is a small subalgebra of Mn(On) insofar as the entries of a n × n

matrix of Mn(On) sitting in this copy are constrained by rigid relations involving the cyclic automorphism 
itself.

Lemma 3.1. Let V := (Vi,j)ni,j=1 be the matrix in Mn(On) with Vi,j = Sj for any i, j = 1, 2, . . . , n. Let 
Z be the diagonal matrix (e2π(k−1)i/nδk,h)nh,k=1. Then, the C∗-algebra generated by Tl := 1√

n
Zl−1V Z−l+1, 

l = 1, 2, . . . , n, is ∗-isomorphic with On. Moreover, C∗(T1, T2, . . . , Tn) consists of all the elements A =
(Ah,k)nh,k=1 in Mn(On) such that Ah+1,k+1 = λC(Ah,k) for all h, k = 1, 2, . . . , n (mod n).

Proof. It is a matter of routine computations to see that

(Tl)h,k = 1√
n
Ske

2πil(h−k)
n

for any l, h, k = 1, 2, . . . , n. We first show that each Tl is an isometry. To this end, it is enough to make the 
relative computation only for T1. For any h, k = 1, 2, . . . , n, we have

(T ∗
1 T1)h,k =

n∑
(T ∗

1 )h,j(T1)j,k =
n∑

(T1)∗j,h(T1)j,k

j=1 j=1
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=
n∑

j=1
S∗
hSkn

−1 = δh,k

In order to show that C∗(T1, T2, . . . , Tn) is ∗-isomorphic with On, we also need show that 
∑n

l=1 TlT
∗
l = 1. 

For any h, k = 1, 2, . . . , n we have

n∑
l=1

(TlT
∗
l )h,k =

n∑
l=1

n∑
j=1

(Tl)h,j(T ∗
l )j,k

=
n∑

l=1

n∑
j=1

(Tl)h,j(Tl)∗k,j

= n−1
n∑

l=1

n∑
j=1

(Sje
2πi(h−j)l/n)(Sje

2πi(k−j)l/n)∗

= n−1
n∑

l=1

n∑
j=1

(Sje
2πi(h−j)l/n)(S∗

j e
2πi(−k+j)l/n)

= n−1
n∑

l=1

n∑
j=1

SjS
∗
j e

2πi(h−k)l/n

= n−1
n∑

j=1
SjS

∗
j

(
n∑

l=1

e2πi(h−k)l/n

)
= δh,kI

and the claimed equality is thus proved. This allows us to define an automorphism α : On → C∗(T1, . . . , Tn)
given by

α(Sk) = Tk, k = 1, 2, . . . , n. (1)

Let A := (ahk)nh,k=1 and B := (bhk)nh,k=1 two matrices such that ah+1,k+1 = λC(ah,k) and bh+1,k+1 =
λC(bh,k). Then it is easy to see that (ch,k)nh,k=1 = AB enjoys the same property, namely ch+1,k+1 = λC(ch,k)
for any h, k = 1, . . . , n. By definition T1, . . . , Tn enjoy this property and thus all the elements A = (Ah,k)nh,k=1
in C∗(T1, T2, . . . , Tn) satisfy the condition Ah+1,k+1 = λC(Ah,k) for all h, k = 1, 2, . . . , n.

To prove the converse inclusion, we need to make some preliminary computations.
We observe that w := α(v) is equal to the matrix (δp−q+1,0)np,q=1, where v =

∑n
k=1 e

2πki/nSkS
∗
k is the 

unitary considered in Proposition 3.1. Indeed, for any p, q = 1, 2, . . . , n we have

wp,q = α(v)p,q =
n∑

k=1

e2πik/n(TkT
∗
k )p,q

=
n∑

k=1

n∑
a=1

e2πik/n(Tk)p,a(T ∗
k )a,q

=
n∑

k=1

n∑
a=1

e2πik/n(Tk)p,a(Tk)∗q,a

=
n∑

k=1

n∑
a=1

e2πik/nSaS
∗
ae

2πi k(p−a+a−q)
n

=
n∑ n∑

e2πik/nSaS
∗
ae

2πi k(p−q)
n

k=1 a=1
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=
n∑

a=1
δp−q+1,0SaS

∗
a = δp−q+1,0I.

We also observe that for j = 1, . . . , n, one has (wj)h,k = δk−h,−j for any h, k = 1, . . . , n. We give a proof by 
induction on j. The formula is true for j = 1. Suppose that it is true for j ≥ 1. Now for j + 1 ≤ n we have

(wj+1)h,k = (wjw)h,k =
n∑

p=1
(wj)h,p(w)p,k

=
n∑

p=1
δp−h,−jδk−p,−1 = δk−h,−j−1

Set now T := 1√
n

∑n
k=1 Sk and sl := (λh−1

C (Sl)δh,k)nh,k=1, l = 1, . . . , n. We aim to verify that sl sits 
in C∗(T1, T2, . . . , Tn) for every l = 1, 2, . . . , n. To this end, we first show that α(T ) = s1. Indeed, for any 
p, q = 1, 2, . . . , n we have

α(T )p,q = 1√
n

(
n∑

l=1

(Tl)p,q

)

= 1√
n

(
n∑

l=1

1√
n
Sqe

2πil(p−q)
n

)

= 1
n
Sq

(
n∑

l=1

e
2πil(p−q)

n

)

=
{

Sp if p = q

0 if p �= q

= (s1)p,q

In particular, s1 is in C∗(T1, T2, . . . , Tn). We will see that the remaining sl are in C∗(T1, T2, . . . , Tn) by 
showing the equality wslw∗ = sl−1, which holds for any l = 1, 2, . . . , n with the convention that for l = 1
one has ws1w

∗ = sn. To this aim, we point out that for any h, k = 1, . . . , n, (wjsl)h,k = Sk+l−1δk−h,−j , 
which is verified below

(wjsl)h,k =
n∑

p=1
(wj)h,p(sl)p,k

=
n∑

p=1
δp−h,−jSl+k−1δp,k = Sk+l−1δk−h,−j

But then we have

(wslw∗)h,k =
n∑

p=1
(wsl)h,p(w∗)p,k

=
n∑

p=1
Sp+l−1δp−h,−1(w)k,p

= Sh−1+l−1δp−h,−1δp−k,−1

= Sh+l−2δh,k = (sl−1)h,k
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We finally move on to ascertain that the converse inclusion holds as well. First we observe that, for any 
x ∈ On, the diagonal matrix of the form (λh−1

C (x)δh,k)nh,k=1, l = 1, . . . , n, belongs to C∗(T1, . . . , Tn). Indeed, 
this follows from the fact that (λh−1

C (Sl)δh,k)nh,k=1 is equal to sl by definition and sl ∈ C∗(T1, . . . , Tn), for 
every l = 1, . . . , n.

Now let A = (Ah,k)nh,k=1 be a matrix in Mn(On) such that Ah+1,k+1 = λC(Ah,k) for all h, k = 1, 2, . . . , n. 
In particular, A is determined by the elements A1,1, . . . , A1,n ∈ On. For any l = 1, . . . , n, the diagonal 
matrices Dl := (λh−1

C (A1,l)δh,k)nh,k=1 are in C∗(T1, . . . , Tn). Since w = (δp−q+1,0)np,q=1, D1, . . . , Dn all belong 

to C∗(T1, . . . , Tn), it suffices to show that A =
∑n−1

l=0 wlDl+1. But this can be ascertained by means of the 
following computations (

n−1∑
l=0

wlDl+1

)
h,k

=
n∑

p=1
(wl)h,p(Dl+1)p,k

=
n−1∑
l=0

n∑
p=1

δp−h,−lλ
k−1
C (A1,l+1)δp,k

= λk−1
C (A1,h−k+1) = Ah,k �

As an easy yet useful application of the previous lemma, we get the following corollary, where we keep 
the same notation as in Lemma 3.1.

Lemma 3.2. The fixed-point algebra of C∗(T1, . . . , Tn) under the order-n automorphism Ad(Z), with 
Ad(Z)(A) := ZAZ∗ for A ∈ C∗(T1, T2, . . . , Tn), is given by the diagonal matrices (λh−1

C (x)δh,k)nh,k=1 ∈
Mn(On), where x varies in On.

Proof. Let A be in Mn(On). It is easy to see that the entry (h, k) of Ad(Z)(A) is Ah,ke
2πi(h−k)/n and, 

therefore, it is fixed only if h = k or Ah,k = 0. �
We are finally in a position to prove the announced result.

Theorem 3.1. The fixed-point algebra of On under λC is ∗-isomorphic with On. Moreover, OλC
n is generated 

by Ad(vl)(T ) with l = 0, 1, . . . , n − 1, where T = 1√
n

∑n
k=1 Sk and v =

∑n
k=1 e

2πki/nSkS
∗
k.

Proof. Recall that by (1) α : On → C∗(T1, . . . , Tn) is the ∗-isomorphism mapping Sk to Tk, k = 1, 2, . . . n. 
By definition α ◦ λC = Ad(Z) ◦ α. It follows from the previous lemma that the fixed-point subalgebra of 
On under λC is ∗-isomorphic with On. In addition, this copy of On in C∗(T1, T2, . . . , Tn) is generated by 
sl := (λh−1

C (Sl)δh,k)nh,k=1, l = 1, . . . , n. The generators of OλC
n ⊂ On can thus be obtained as α−1(sl). Indeed, 

we saw in the proof of Lemma 3.1 that α(T ) = s1 and α(Ad(vl)(T )) = s1−l+n for all l = 0, . . . , n − 1. �
Remark 3.1. The inclusion OλC

n ⊂ On is an example of a non-commutative self-covering of the type consid-
ered in [8].

4. An application: the fixed-point algebra of the exchange automorphism of O2n

We want to exploit the analysis of the previous section to describe the subalgebra OλE
2n ⊂ O2n of all ele-

ments fixed by the exchange automorphism. Notice that we are only dealing with Cuntz algebras associated 
with even numbers of generating isometries. If Z ∈ M2n(O2n) is the matrix (e2π(k−1)i/2nδk,h)2nh,k=1, we can 
define an inner automorphism ρ by setting ρ := Ad(Z)n = Ad(Zn). Obviously, ρ is an automorphism O2n of 
order 2. To ease the computations that we will need to make, we prefer to rename the generating isometries 
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considered in the previous section. We set T̃k := Tk for all k = 1, . . . , n, T̃2n−k+1 := ρ(T̃k) = ρ(Tk) = Tk+n. 
By Lemma 3.1 the C∗-algebra generated by T̃1, . . . , T̃2n is ∗-isomorphic with O2n and by construction the 
exchange automorphism on this algebra coincides with ρ. We denote by β the ∗-isomorphism mapping Sk

to T̃k for k = 1, . . . , 2n. As before, unless otherwise stated, operations between indices are always meant 
mod 2n.

Lemma 4.1. The fixed-point algebra of C∗(T̃1, . . . , T̃n) under the order-2 automorphism ρ is given by the 
matrices A in Mn(On) whose entries are all zero except those with indices (h, k) with h − k ∈ 2Z and such 
that λC(Ah,k) = Ah+1,k+1 for any h, k = 1, . . . , n.

Proof. Easy computations show that for any h, k = 1, 2, . . . , n the entry ρ(A)h,k is (−1)h−kAh,k. The 
remaining part of the claim follows from Lemma 3.2. �
Theorem 4.1. The fixed-point algebra of O2n under λE is generated by yjl := (2n)−1/2Ad(ṽl)((ṽ2jT )) for 
j = 0, . . . , n − 1, l = 0, . . . , 2n − 1, where

T = 1√
2n

2n∑
k=1

Sk

ṽ =
n∑

k=1

e2πki/(2n)SkS
∗
k +

n∑
k=1

e2π(k+n)i/(2n)S2n−k+1S
∗
2n−k+1

Moreover, for any fixed j, C∗({yjl }2n
l=1) is ∗-isomorphic with O2n.

Proof. By Lemma 4.1, an element in the fixed-point algebra is determined by the n non-zero elements on 
the first row of the matrix. The elements

(s̃jl )h,k := (2n)−1/2Ad(wl)((w2js1))h,k = (2n)−1/2Sk+lδk−h,−2j

j = 0, . . . , n −1 and l = 0, . . . , 2n −1 are easily seen to generate the algebra. For every fixed j, the C∗-algebra 
C∗({s̃jl }2n−1

l=0 ) is ∗-isomorphic with O2n. In other terms, the isometries of the set {s̃jl }2n−1
l=0 satisfy the Cuntz 

relations, as easily follows from the equality s̃jl = w2jsl for any j = 0, 1, . . . n − 1 and l = 0, 1, . . . , 2n − 1.
Now in order to find the generators of OλE

2n , it suffices to compute β−1(s̃0
0) and β−1(w) = β−1(α(v)). 

Clearly, β−1(s̃0
0) = α−1(s1) = T . As for β−1(w), the following computations show it equals the ṽ in the 

statement. Indeed, one has

β(ṽ) = β

(
n∑

k=1

e2πki/(2n)SkS
∗
k +

n∑
k=1

e2π(k+n)i/(2n)S2n−k+1S
∗
2n−k+1

)

=
n∑

k=1

e2πki/(2n)TkT
∗
k +

n∑
k=1

e2π(k+n)i/(2n)Tk+nT
∗
k+n = α(v) �

5. A no-go result on a Choi-Latrémolière type matrix model for Q2

When n = 2, the construction described in the previous section provides us with a pair of orthogonal 
isometries T1 and T2 that generate a (proper) C∗-subalgebra of M2(C) ⊗ O2 ∗-isomorphic with O2. The 
generating isometries take now the simpler form

T1 = 1√
2

(
S1 S2
S1 S2

)
T2 = 1√

2

(
S1 −S2
−S1 S2

)
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The principal merit of this construction of the Cuntz algebra O2, which was first pointed out in [11, Lemma 
1.2], is that it is in a sense the more economical realization in which the flip-flop is implemented by a 
unitary of a particularly simple form. Indeed, the flip-flop λf can be seen as the restriction to O2 of the 
inner automorphism implemented by the unitary Z, [11, Lemma 1.3], given by

Z =
(

1 0
0 −1

)

More explicitly, the equalities ZT2Z
∗ = T1 and ZT1Z

∗ = T2 are seen at once to hold.
It is worth recalling that the flip-flop is well known to be an outer automorphism, which makes the above 

presentation of O2 as a subalgebra of M2(O2) even more interesting. This obviously implies that Z cannot 
belong to C∗(T1, T2) ∼= O2. In fact, adding Z to C∗(T1, T2) yields the whole M2(C) ⊗ O2, as observed in 
[11, Remark 2.4]. In [1] the flip-flop was shown to uniquely extend to an automorphism λ̃f of the 2-adic ring 
C∗-algebra Q2 with λ̃f (U) = U∗. Furthermore, its action on Q2 is still outer. This is actually a consequence 
of a general result proved in [1] that any automorphism of Q2 that sends U to U∗ is automatically outer. 
At this point one might wonder whether the realization of O2 as a subalgebra of M2(O2) is compatible with 
the inclusion O2 ⊂ Q2. Phrased differently, one may seek to find a unitary V ∈ M2(Q2) ⊃ M2(O2) such 
that T2V = V 2T2 and T1 = V T2 in such a way that λ̃f is still implemented by Z. Possibly because of the 
rigidity of the inclusion of the Cuntz algebra in the 2-adic ring C∗-algebra, which is discussed at length in 
[1], the answer to this question is negative, as the result below shows.

Theorem 5.1. There exists no unitary V ∈ M2(C) ⊗Q2 such that V T2 = T1, V T1 = T2V , and ZV Z∗ = V ∗.

The proof is by contradiction. Le us suppose that there does exist a unitary

V =
(
a b

c d

)
∈ M2(C) ⊗Q2

that enjoys the properties listed in the statement, for some a, b, c, d ∈ Q2. The condition V T2 = T1 reads as

V T2 =
(
a b

c d

)
1√
2

(
S1 −S2
−S1 S2

)
= 1√

2

(
S1 S2
S1 S2

)
= T1

while T2V = V T1 rewrites as

V T1 =
(
a b

c d

)
1√
2

(
S1 S2
S1 S2

)
= 1√

2

(
S1 −S2
−S1 S2

)(
a b

c d

)
= T2V

Reading the former equalities componentwise, we are led to the following system of equations

aS1 − bS1 = S1 (2)

− aS2 + bS2 = S2 (3)

cS1 − dS1 = S1 (4)

− cS2 + dS2 = S2 (5)

aS1 + bS1 = S1a− S2c (6)

aS2 + bS2 = S1b− S2d (7)

cS1 + dS1 = −S1a + S2c (8)
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cS2 + dS2 = −S1b + S2d (9)

Equations (1) and (2) yield

aS1S
∗
1 − bS1S

∗
1 + aS2S

∗
2 − bS2S

∗
2 = a− b = S1S

∗
1 − S2S

∗
2 =: F

We observe that F is a self-adjoint unitary of Q2. Similarly (3) and (4) give

cS1S
∗
1 − dS1S

∗
1 + cS2S

∗
2 − dS2S

∗
2 = c− d = S1S

∗
1 − S2S

∗
2 = F

We still have to impose the last condition, namely that ZV Z∗ = V ∗. We have

ZV Z∗ =
(

1 0
0 −1

)(
a b

c d

)(
1 0
0 −1

)
=

(
a −b

−c d

)

=
(
a∗ c∗

b∗ d∗

)
=

(
a b

c d

)∗

which yields an additional set of equations

a∗ = a (10)

b∗ = −c (11)

c∗ = −b (12)

d∗ = d (13)

However, this implies that

− b = c∗ = (d + F )∗ = d∗ + F ∗ = d + F

Now equations (5) and (7) imply

aS1 + bS1 = −cS1 − dS1

while equations (6) and (8) imply

aS2 + bS2 = −cS2 − dS2

Therefore, we have

a + b = −c− d (14)

Since a = b + F , we have a = a∗ = b∗ + F ∗ = −c + F . But because a = F + b and a = F − c, we must have 
b = −c. From (13) we get a = −d. Since V V ∗ = 1, we get these new equations

c2 + d2 = 1 (15)

dc + cd = 0 (16)

Since c = d + F , we get
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0 = (d + F )2 + d2 − 1 = d2 + F 2 + dF + Fd− 1 = d2 + dF + Fd (17)

0 = d(d + F ) + (d + F )d = d2 = 0 (18)

So far we have found that d2 = 0 and c2 = 1 − d2 = 1. But d = d∗, so d∗d = 0 and d = 0, c2 = 1. We also 
have a = −d = 0 and c = d + F = F and b = −c = −F . Therefore we get

V =
(

0 −F

F 0

)
∈ M2(C) ⊗O2

from which we see that V 2 = −I. In particular, the spectrum of V is a finite set. Thus a contradiction has 
been arrived at because if such a V existed, then its spectrum should in fact be the whole one-dimensional 
torus: see e.g. [1], where C∗(U) ⊂ Q2 is shown to be ∗-isomorphic with C(T ).
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