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Abstract: Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically
located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array
of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and
to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors
that enter the circulation and mature in peripheral organs under the influence of microenvironment
factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has
been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological
conditions including tumor progression has recently emerged. However, several aspects of MC
biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the
opportunity to understand MCs’ origin and differentiation as well as their phenotype and functions
within different tissues, including the gut. This review recapitulates how single-cell transcriptomic
studies provided insight into MC development as well as into the functional role of intestinal MC
subsets in health and disease.
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1. Introduction

MCs arise from BM progenitors that enter the circulation and mature in peripheral
tissues under the influence of microenvironment factors [1–3].

Mature MCs are tissue-resident innate immune cells that are present in all organs,
particularly in skin, lung, and intestinal mucosa, and are distributed close to blood and
lymphatic vessels and nerves. Thanks to their strategical localization and to the expression
of a wide array of receptors, mature MCs act as tissue sentinels, able to firstly detect
the presence of bacteria and parasites and to respond to different microenvironmental
stimuli [4–7].

Their functions are mediated by the secretion of a vast array of biologically active
molecules, including histamines and proteases that are stored in secretory granules and
immediately released upon activation [8,9]. A plethora of newly synthesized lipid inflam-
matory mediators are secreted within hours [9]. Moreover, by releasing various cytokines
and chemokines, MCs orchestrate the recruitment and activation of immune cells to the
site of infection and regulate innate and adaptive immunity [10].

Among the main surface receptors, mature MCs are characterized by the expression
of c-Kit (CD117) that upon interaction with its ligand (stem cell factor, SCF) regulates MC
migration and activation [11], and the high-affinity receptor for immunoglobulin E (FcεRI)
that orchestrates the IgE-mediated allergic reactions [12,13]. Indeed, cross-linking of FcεRI-
bound IgE by multivalent antigens results in the release of granule-stored mediators such as
histamine, accompanied by the generation of newly synthetized soluble mediators [13,14]
and high quantities of extracellular vesicles, emerging as important players in intercellular
communication [15,16].
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Similarly, activation by anaphylatoxins or neuropeptides, including substance P, re-
sults in the degranulation of preformed mediators and the de-novo synthesis of chemo-
kines/cytokines [17,18].

However, MCs also express a wide range of receptors that are pivotal in the host’s
defense against pathogens, such as Toll-like receptors [19]. More recently, a selective
expression of human mas-related G protein-coupled receptor X2 (MRGPRX2) and its
mouse homologue, Mrgprb2, have been also reported [20]. This receptor can promote
IgE-independent pseudo-allergic reactions by binding an array of host and microbial
peptides, often generated from proteolytic cleavage of inactive precursors solely in inflamed
tissues [20]. Thus, MC activation has been linked not only to allergy but also to other
inflammatory conditions within different tissues, including the gut, where a cross-talk
between MCs and nerves can also provide a neuroimmune network necessary to control
local responses [21,22].

Notably, the presence of MCs has also been reported in several solid cancers accom-
panied by MC’s ability to shape the tumor microenvironment [23,24]. However, MCs
can both orchestrate antitumoral responses, promoting the recruitment of other immune
cells, and tumor progression favoring angiogenesis, lymphoangiogenesis, fibrosis, and
metastasis [23–25].

More recently, several aspects of MC biology have been solved thanks to the develop-
ment of single-cell transcriptomic profiling technologies [26–28], as depicted in Figure 1.
This novel approach was able to differentiate MCs from other immune cells, including
basophils and eosinophils, and to reveal a unique mouse and human MC identity [26–28].
Moreover, the presence of distinct MC subsets in different connective tissues has been
elucidated [29,30], revealing a high degree of MC heterogeneity [31,32].
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Figure 1. MC origin and tissue heterogeneity analyzed by single-cell RNA sequencing (RNAseq). 
Single-cell RNAseq offers the possibility to identify the transcriptomic profiles of several cells from 
a tissue of interest. Transcripts associated with individual cells are sequenced and analyzed, result-
ing in cell clustering based on gene expression. (A) Identification of MC progenitors in bone mar-
row, fetal liver, and yolk sac has defined MC developmental trajectories; (B) gene expression profiles 
of MCs resident in different organs have clarified MC tissue heterogeneity; (C) transcript analysis 
of intestinal MCs has provided information on MC phenotypical and functional plasticity in health 
and disease. Created using BioRender.com. 

2. Transcriptomic Analysis and MC Development 
A first transcriptomic study on MC differentiation by Saito and coauthors has been 

performed using progenitors derived from human umbilical cord blood and adult periph-
eral blood and has revealed a series of MC-specific genes, including TPSAB1/2 (tryptase 
α1 and β1), HDC (L-histidine decarboxylase), and CPA3 (carboxypeptidase A) [33].  

More recently, a single-cell transcriptomic analysis revealed a temporal association 
between the appearance of FcɛRI and an MC signature in hematopoietic progenitor iso-
lated from human peripheral blood [34]. 

Regarding the existence of a common progenitor between basophils and MCs, a first 
study integrating flow cytometric and transcriptomic data has been performed on pri-
mary BM-derived hematopoietic stem cells showing the presence of a cluster of cells ex-
pressing a set of common signature genes between basophils, eosinophils, and MCs [35]. 
Similarly, a single-cell RNA sequencing of progenitors from human cord blood identified 
an intermediate-stage progenitor that co-expresses gene modules of basophil, eosinophil, 
and MC lineages [36].  

Notably, erythro-myeloid progenitors were found also in yolk sac, suggesting that, 
as happens in mice, human MCs arise from multiple compartments during and after em-
bryogenesis [37].  

More recently, by analyzing a single-cell dataset of human BM, Hamey and coauthors 
have provided a road map of MC and basophil development supporting the existence of 
a common progenitor until a bifurcation into the two specific cell lines [38]. However, a 

Figure 1. MC origin and tissue heterogeneity analyzed by single-cell RNA sequencing (RNAseq).
Single-cell RNAseq offers the possibility to identify the transcriptomic profiles of several cells from a
tissue of interest. Transcripts associated with individual cells are sequenced and analyzed, resulting
in cell clustering based on gene expression. (A) Identification of MC progenitors in bone marrow,
fetal liver, and yolk sac has defined MC developmental trajectories; (B) gene expression profiles of
MCs resident in different organs have clarified MC tissue heterogeneity; (C) transcript analysis of
intestinal MCs has provided information on MC phenotypical and functional plasticity in health and
disease. Created using BioRender.com.
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However, MC’s phenotype and functions between and within different organs remain
to be clarified. Moreover, how MC plasticity is shaped in different physiological and
pathological conditions is largely unexplored.

This review recapitulates data obtained from recent single-cell-based studies mainly
focusing on intestinal MC subsets and their roles in health and disease.

2. Transcriptomic Analysis and MC Development

A first transcriptomic study on MC differentiation by Saito and coauthors has been
performed using progenitors derived from human umbilical cord blood and adult periph-
eral blood and has revealed a series of MC-specific genes, including TPSAB1/2 (tryptase α1
and β1), HDC (L-histidine decarboxylase), and CPA3 (carboxypeptidase A) [33].

More recently, a single-cell transcriptomic analysis revealed a temporal association
between the appearance of FcERI and an MC signature in hematopoietic progenitor isolated
from human peripheral blood [34].

Regarding the existence of a common progenitor between basophils and MCs, a
first study integrating flow cytometric and transcriptomic data has been performed on
primary BM-derived hematopoietic stem cells showing the presence of a cluster of cells
expressing a set of common signature genes between basophils, eosinophils, and MCs [35].
Similarly, a single-cell RNA sequencing of progenitors from human cord blood identified
an intermediate-stage progenitor that co-expresses gene modules of basophil, eosinophil,
and MC lineages [36].

Notably, erythro-myeloid progenitors were found also in yolk sac, suggesting that,
as happens in mice, human MCs arise from multiple compartments during and after
embryogenesis [37].

More recently, by analyzing a single-cell dataset of human BM, Hamey and coauthors
have provided a road map of MC and basophil development supporting the existence of a
common progenitor until a bifurcation into the two specific cell lines [38]. However, a tran-
scriptome analysis of mature human skin MCs demonstrated a unique MC transcriptional
landscape, delineating a limited relation between MCs and basophils [39].

Thus, although human basophils and MCs express common marker genes (e.g., HDC
and FcεRI), further studies are needed to explore in depth the transcriptional differences
between them in order to better discriminate their developmental trajectories.

In regard to similarities between distinct lineages, recent human and murine studies
have suggested the existence of a hematopoietic progenitor with MC–erythrocyte poten-
tial [36,37,40–42]. However, the contributions of these progenitors to the resolution of
infection-induced inflammation remain only poorly defined [42], as further discussed in
Section 4.

3. Insights into Intestinal MC Origin and Phenotype through Single-Cell RNAseq

A tissue compartment in which MCs are particularly abundant is the gut. Intestinal
MCs are involved in the maintenance of tissue homeostasis and at the same time act as sen-
tinels of the host’s defense against different pathogens, orchestrating inflammation [22,43].

In the mouse, the small intestine represents a large reservoir of MC-committed pro-
genitors (MCps) that are recruited by a mechanism involving α4β7 integrin and the CXC
chemokine receptor-2 (CXCR2) [44]. As in all organs, critical signals for homing and mat-
uration of MCps are also provided by SCF binding to c-Kit [3], and murine models with
spontaneous mutations in white spotting locus coding for c-Kit have been used to identify
and understand the contribution of MCs in several biological processes [45].

The study performed by Hamey and coauthors [38] offers valuable insights into
the intricate process of MC differentiation in the gut, shedding light on the nuances of
gene regulation during maturation. Focusing on peritoneal MCs, they observed that
MC differentiation/maturation is characterized by the downregulation of β7 integrin, as
well as the protease genes Mcpt8 and Gzmb (Granzyme B). Notably, they also reported the
upregulation of MC-specific protease genes including Cpa3, Cma1, Mcpt4, Tpsb2, and Tpsab1,
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revealing that their induction occurs in distinct temporal stages (Cpa3 first, followed by
Tpsb2, and finally Tpsab1) [38].

Mature MCs in the intestine are heterogeneous and comprise two main subsets that
differ in localization and protease content [46]. In rodents, MCs are divided into mucosal
MCs (MMCs) present in the intestinal lamina propria close to the epithelium and positive
for Mctp1 and Mcpt2 proteases, and connective-tissue MCs (CTMCs) that reside in gut
submucosa and are characterized by the expression of proteases Mcpt4-7 and Cpa3 as well
as a higher amount of histamine and heparin compared to MMCs [47].

In humans, mucosal MCs present in lamina propria contain only tryptase in their
granules (MCT), while MCs that predominate in the intestinal submucosa contain tryptase,
chymase, Cpa3, and cathepsin G (MCTC) [48,49]. MCs that exclusively express chymase
have also been identified as a rare population that resides in both lamina propria and
submucosa [50]. Similarly, an intraepithelial MMC subpopulation has also been described
in mice [51]. However, the role of these rare MC populations is still unclear.

Recent advancements in RNAseq profiling technologies and fate mapping revealed
different developmental origins between the two main MC populations in mice: MMCs
originate from fetal hematopoietic stem cells and depend on adult stem cells for their
replacement, while CTMCs originate from yolk sac and can self-maintain independently
from BM-derived stem cells [41]. A similar conclusion came from the study by Gentek and
coauthors revealing that CTMCs are maintained independently of adult hematopoietic
stem cells [52].

In the human gut, a transcriptomic profile obtained by single-cell RNAseq analysis
revealed that MCs express specific transcripts such as Vascular Endothelial Growth Factor
A (VEGFA), the cytoskeleton component utrophin (UTRN), the chemokine receptor CXCR4,
the aryl hydrocarbon receptor (AHR), and the interleukin 1 receptor-associated kinase 3
(IRAK3) [53]. However, this signature is not a unique characteristic of human intestinal
MCs but is shared by MCs resident in bladders, lymph nodes, skeletal muscle, trachea, and
tongue [53].

Furthermore, by integrating datasets from Mouse Cell Atlas derived from different
tissues, the same authors demonstrated that CTMCs and MMCs are characterized by
diverse gene signatures across organs [53]. In the gastrointestinal tract, MMCs, in addi-
tion to mucosal Mcpt1 and Mcpt2 protease genes, are characterized by a high expression
of genes encoding adhesion molecules (Itgae, Itga2a, Ly6e) and the chemokine receptor
Cxcr1, whereas CTMCs are enriched in Cma1, Mcpt4, Tpsb2, and Cpa3 protease genes,
Ccl2 chemokine genes, and lipid metabolism genes (Apoe) together with the expression
of Mgbrb2 genes [53]. This latter result is in line with previous studies showing that the
mouse ortholog of human MRGPRX is exclusively expressed on connective tissue-like
MCs [26,54].

The origin of the two subsets was further explored, comparing mice at different
ages [53]. CTMCs positive for Mrgprb2 were found in both neonatal pups and adults,
while Mrgprb2− Mcpt1+ MMCs were exclusively detected in adult mice, suggesting that
Mrgprb2+ CTMCs originate embryonically, whereas Mrgprb2− MMCs originate after birth.
Moreover, the use of BM chimeras confirmed that the Mrgprb2− MMCs are continuously
renewed from BM progenitors, whereas the Mrgprb2+ CTMC population appears to be
independent of BM-derived cells for turnover not only in the gut but also in the skin and
peritoneal cavity [53]. Notably, CTMCs in distinct organs showed a high degree of differen-
tial gene expression [26], definitively demonstrating a microenvironment-dependent MC
differentiation and suggesting that tissue-specific MC subsets exist beyond the traditional
MMC/CTMC classification.

4. Deciphering Intestinal MC Function in Homeostasis and Inflammatory Conditions

Intestinal MCs contribute to homeostasis by controlling physiological processes such
as mucosal integrity and epithelial barrier activity [43,55]. Indeed, mice deficient in MCs
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or Mcpt4 protease have reduced small intestinal permeability and altered epithelial cell
migration as well as intestinal morphology and tight junctions [55].

The crucial role of MCs in epithelial integrity is confirmed by their involvement
in intestinal inflammatory conditions but also in food allergy and nematode infections
(Figure 2).
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Figure 2. Intestinal MC phenotype and functions in homeostasis and inflammatory conditions. In
healthy colons, two MC subsets have been identified: mucosal MC (MMC) and connective tissue-like
MC (CTMC). In disease states, distinct MC subsets with unique gene expression profiles contribute to
intestinal inflammation, as highlighted by different transcriptomic approaches. UC: ulcerative colitis;
CD: celiac disease. Created using BioRender.com.

During parasite infections, including Trichinella spiralis and Trichuris muris, MMCs
are the main subset that increases in number due to a shift from a connective tissue-like
phenotype to a mucosal phenotype characterized by the expression of the proteases Mcpt1
and Mcpt2 [56–58].

In particular, Mcpt1 appeared to be responsible for the degradation of occludin, thus
increasing intestinal permeability and facilitating worm expulsion [56–58]. On the other
hand, the connective tissue MC-specific tryptase Mcpt6 was shown to be required for
eosinophil recruitment and the eradication of T. spiralis [59].

Notably, by single-cell RNAseq, Inclan-Rico and coauthors demonstrated that infection
by T. spiralis induces the recruitment into the intestine of a hematopoietic progenitor with
dual MC–erythrocyte potential [42], likely contributing to eradicate the infection and to
alleviate blood loss.

In addition to parasite infections, intestinal MCs are involved in IgE-mediated re-
sponses to food antigens contributing to both local and systemic development of food
allergies [60,61].
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An increase in MC number, mainly due to the expansion of intestinal MMCs, has been
demonstrated both in humans and mice sensitized by food allergens, and correlates with the
severity of symptoms [60,61]. However, using two common models of IgE-mediated food
allergy, Benedé and Berin demonstrated that systemic anaphylaxis was uniquely associated
with the activation of connective tissue-like MCs, while gastrointestinal manifestations of
food allergy were associated with an increase of Mcpt1-expressing MCs together with a
clear activation of both mucosal and connective tissue-like MCs [62]. More recently, Tauber
and coauthors confirmed these findings, demonstrating that depletion of the Mrgprb2+

CTMC subset protects murine models from anaphylactic shock, while Mrgprb2− MMCs in
the gut are not implicated in anaphylaxis, despite being the first population to encounter
the allergen [53].

MCs’ ability to rapidly sense and adapt to specific triggers including neuropeptides
can explain the activated MC phenotype described in different human gastrointestinal
disorders such as celiac disease, irritable bowel syndrome (IBS), and inflammatory bowel
disease (IBD) [22,63]. IBDs are complex multifactorial diseases of the gastrointestinal
tract, including ulcerative colitis (UC), triggered by environmental factors in genetically
susceptible individuals [22]. Current therapies based on the use of monoclonal antibodies
directed against cytokines offer amelioration and a prolonged period of remission but have
important limitations. Indeed, more than 30% of patients do not initially respond to therapy,
while others lose response over time [64,65]. Thus, new treatment strategies are needed.

Several studies have reported MCs’ accumulation in patients affected by celiac disease
(CD) and UC, but their contribution in disease progression remained unclear.

In this context, Atlasy and coauthors compared transcriptomic profiles of immune
infiltrate isolated from small intestines of patients affected by active CD [66]. They found
enrichment of different MC subsets in healthy and affected intestine: MCs that were more
abundant in control patients showed a profile associated with “humoral immune response”
and “positive regulation of B cell activation” biological processes, whereas MC clusters
accumulated in active disease displayed a transcriptomic profile associated with “protein
to ER process”, “antigen processing and presentation”, and “positive regulation of T cell-
mediated cytotoxicity” processes [66], suggesting their active role in disease progression.

Similarly, Smillie and coauthors focused on colonic tissues from UC patients and
healthy donors and, using single-cell RNAseq, mapped different cell circuits [67]. They
identified 51 cell subsets (including epithelial, stromal, and immune cells) and revealed
an increase in inflammatory-associated genes in UC patients compared with healthy vol-
unteers. Notably, together with cytotoxic and regulatory T cells, a selective MC subset
expressing the activation marker CD69 was increased in inflamed tissues [67]. However,
this MC subset was not further characterized in terms of protease content.

More recently, Chen and coauthors compared acutely inflamed and uninflamed UC
tissue to establish the requirement of MRGPRX2-mediated MC activation in inflamed
colonic tissues [68]. Using both bulk RNAseq and single-cell RNAseq, they reported a key
role for adrenomedullin (ADM) and its proteolytic product, PAMP-12, in perpetuating UC
inflammation. Moreover, by single-cell RNAseq, they were also able to show that both acti-
vated fibroblasts and epithelial cells express ADM and that interferon γ is a key upstream
regulator of MC gene expression [68], thus defining a new potential therapeutic target.

5. Exploring Intestinal Mast Cells’ Role in Tumor Biology: Colon Cancer under RNAseq
Microscope

MCs’ physiologic function in tumor biology has raised particular interest for decades
since these cells potentially influence different aspects of tumorigenesis including angio-
genesis, invasiveness, and immunosuppression [69–71]. However, the MC contributions
in cancer initiation and progression remain controversial [71]. Indeed, several studies
have demonstrated both positive and negative correlation of MCs in the development of
different types of cancers, including colorectal cancer (CRC) [72–74].
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CRC is the third most common type of malignancy that affects the colon or rectum [75].
Most CRC cases emerge sporadically, while up to 20% of cases present a familial history
including familial adenomatous polyposis and Lynch syndrome [76,77]. Moreover, lifestyle
as well as chronic inflammation represent independent risk factors for CRC development
in patients with IBD [78].

The cross-talk between cancer cells and surrounding stromal cells in the tumor mi-
croenvironment (TME) and cancer metabolic reprograming also influence the development
of CRC [79,80].

The density of tumor-infiltrating cytotoxic and memory T cells, which are associated
with a better prognosis, defines the “immunoscore” as an additional parameter to classify
CRC [81]. However, the knowledge about innate immune cell infiltration, including MCs,
is limited [74,82]. Recent advancements in sequencing approaches have provided crucial
opportunities to dissect the heterogeneity and functional role of MCs within the CRC
microenvironment and adjacent normal tissue.

By examining the transcriptomic profile among wild-type (WT) mice, MC-deficient
mice (KitW-sh), and KitW-sh mice engrafted with MCs derived from WT mice, Ko and
coauthors identified several genes downregulated in the absence of MCs but recovered
by MC engraftment [83]. These genes, named “mast cell-dependent genes”, were found
to be associated with pathways related to cancer progression including immunosuppres-
sion, apoptosis, and angiogenesis. Interestingly, these pathways were enriched in lung,
breast, and colon cancer compared to normal tissues, supporting a pro-angiogenic and
anti-apoptotic role for MCs in tumor microenvironments. Moreover, genes associated with
lymphocyte cytotoxicity were upregulated in the absence of MCs, suggesting that these
cells promote immunosuppression [83]. These results support in vitro and in vivo evidence
demonstrating a role for tumor-infiltrating MCs in favoring a suppressive microenviron-
ment and/or in promoting tumor growth [69,84–87].

However, by an RNAseq approach, Sakita and coauthors showed that MCs’ role in
colon cancer development and progression is multifaceted and context-dependent [86].
Indeed, in a model of spontaneous CRC, MC deficiency promoted tumor development,
whereas in colitis-dependent CRC, the absence of MCs reduced tumor burden and increased
the frequency of tumor-infiltrating CD8+ T cells [86]. Bulk RNAseq analysis of colitis-
dependent tumor masses showed that MC deficiency upregulated the cytokine–cytokine
receptor pathways, further supporting a role for MCs in suppressing immune responses
during tumorigenesis [86].

Thus, a characterization of murine CRC-infiltrating MCs and their role in tumor
progression is currently unclear. Moreover, whether different MC subsets may play an
antitumorigenic or protumorigenic role in different stages of the disease is still unknown.

Using a murine colitis-dependent model of tumorigenesis, we have recently demon-
strated that tumor masses are enriched by CTMCs showing an activated phenotype [87].
However, a single-cell RNAseq approach is necessary to better define tumor-infiltrating
MC subsets and to compare them in different murine models of CRC.

Regarding human CRC, several groups have profiled immune and non-immune cells
isolated from tumoral lesions [88–100]. A discrete MC population was identified in the TME
based on a unique set of genes including those coding for c-Kit receptor (KIT), chymase
(CMA1), carboxypeptidase 3 (CPA3), and tryptases (TPSAB2 and TPSB2) [88–100].

However, there is still inconsistency regarding the real frequency of MCs in trans-
formed and not-transformed tissue and their pro/antitumor activity (Table 1).

Notably, the different isolation procedures may influence the number and the quality
of the cells used to generate single-cell data. Moreover, the methods employed to prepare
the library, the use of diverse sequence platforms, and the sequencing depth can lead to
different outcomes. Finally, the diverse thresholds used to exclude dead cells and duplets
can induce variability in clustering results and data visualization.

Regarding MC numbers, two studies reported a reduced MC frequency in tumor
lesions with respect to healthy tissues [94,99]. However, the first study was performed by
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transcriptomic profiling a very low number of CRC patients [94], and the second result was
obtained by a bioinformatic analysis of bulk RNAseq datasets [99].

On the other hand, by employing a single-cell RNAseq approach, two different re-
search groups demonstrated a comparable MC number in both tumors and normal mu-
cosa [89,90], while single-cell analysis of tumor-infiltrating immune cells demonstrated
accumulation of MCs in different kinds of cancers, including CRC, compared to nontumoral
adjacent tissue [93]. Furthermore, a higher number of MCs was also reported by other
groups in advanced CRC stages [92] and in right-sided tumors compared to the left part of
the colon [96].

A limit of all these data is that they were obtained by the analysis of CRC biopsies,
which are a small portion of the tumor mass. Moreover, in most studies, a stratification
in different CRC stages was not performed. Of note, the accumulation of MCs was only
observed in the late stages [92]. Thus, further research is necessary to clarify these aspects.

Regarding the role of MCs in human CRC, few data are currently available (Table 1).

Table 1. MC characterization by single-cell RNAseq analysis of human CRC samples.

Sample Type Cells Method MC Frequency MC Function Ref.

CRC biopsies and
adjacent tissues Immune cells 10X Genomics

Smart-seq2
Comparable

frequency n.d. Zhang et al.,
2020 [90]

CRC biopsies
(different stages)

and adjacent tissues
Immune cells Smart-seq2

DNBelab C4
Increased frequency
in advanced stages n.d. Wang W et al.,

2021 [92]

CRC biopsies and
adjacent tissues Immune cells

10X Genomics
Analysis of

published datasets

Increased
frequency in CRC

Protumoral
activity

Cheng et al.,
2021 [93]

CRC biopsies and liver
metastasis Immune cells 10X Genomics

Smart-seq2
Increased

in metastasis
Protumoral

activity
Liu et al.,
2022 [98]

CRC biopsies and
adjacent tissues Immune cells Analysis of

published datasets n.d. Protumoral
activity

Sakita et al.,
2022 [86]

CRC biopsies and
adjacent tissues

Immune, epithelial,
and stromal cells 10X Genomics Comparable

frequency n.d. Lee et al.,
2020 [89]

CRC biopsies and
adjacent tissues

Immune, epithelial,
and stromal cells 10X Genomics Reduced

frequency in CRC n.d. Becker et al.,
2022 [94]

CRC biopsies and
adjacent tissues

Immune, epithelial,
and stromal cells

Analysis of
published datasets

Reduced
frequency in CRC

Antitumoral
activity

Xie et al.,
2023 [99]

CRC biopsies and
adjacent tissues

Immune, epithelial,
and stromal cells

Analysis of
published datasets

Increased
frequency in CRC

Protumoral
activity

Wang Q et al.,
2023 [100]

CRC biopsies
(LCC and RCC)

and adjacent tissues

Immune, epithelial,
and stromal cells 10X Genomics Increased

frequency in RCC n.d. Guo W et al.,
2022 [96]

CRC biopsies
(LCC and RCC)

and adjacent tissues

Immune, epithelial,
and stromal cells

Analysis of
published datasets n.d. Antitumoral

activity
Guo JN et al.,

2022 [97]

LCC: left-sided colon cancer; RCC: right-sided colon cancer.

Sakita and co-workers found a negative correlation in CRC between the number of
activated MCs and infiltrating CD8+ T lymphocytes, supporting a protumoral role for
MCs [86].

Cheng and coauthors performed a meta-analysis by combined previously published
and newly generated sc-RNAseq datasets to compare transcriptomic signatures associ-
ated with MCs infiltrating different cancer types [93]. Focusing on CRC patients, they
found a down-modulation of TNFA transcript and an upregulation of VEGFA with respect
to adjacent healthy tissue, associating this signature with a decreased patient survival
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rate. However, the implication of a selective MC subset (mucosal vs connective) was
not investigated.

By an integrated analysis of different CRC datasets, Xie and coauthors revealed the
presence of distinct activation MC features in tumor lesions, including high expression
of transcripts for specific receptors and mediators as well as transcripts related to the
TNFA-NFKB pathway [99]. In addition, they found a positive correlation between the MC
activation state and a good CRC prognosis [99], supporting a protective role of MCs during
tumor progression.

These discrepant results may depend on the existence of phenotypical and functional
heterogeneity between active MC clusters. Thus, single-cell RNAseq analysis performed
after cell sorting could reveal unique MC clusters associated with CRC development and
progression. Moreover, patients’ stratification into distinct tumor stages could help to un-
derstand whether different MC subsets are involved at the onset of intestinal transformation
and in more advanced stages.

Regarding a potential interplay between MCs and other cells in the TME, Wang and
coauthors conducted cell–cell communication analysis mapping the expression of ligand–
receptor pairs. Their finding highlighted a possible MC interaction with B cells, epithelial
cells, and fibroblasts [100]. Notably, MC co-localization with fibroblasts and endothelial
cells was also reported in the stromal region of CRC tissue by spatial transcriptomic
analysis [99].

Thus, in future studies, the exact localization of MCs within tumor tissue and their
interaction with different cell types in CRC could be clarified by integrating single-cell with
spatial transcriptomic analysis.

6. Conclusions and Future Perspectives

MCs are innate immune cells distributed in all tissues and particularly abundant in
the intestine, where they play different roles in homeostasis as well as in inflammatory
diseases. Moreover, the increase in MCs in different tumors including colonic tumors has
been demonstrated in recent years. MCs are characterized by a vast heterogeneity among
tissues, and their phenotypical and functional plasticity allow them to respond to different
environmental stimuli. However, whether distinct MC subsets are involved in intestinal
diseases and their functions are poorly understood.

The advent of single-cell RNAseq platforms has provided a step forward in the
understanding of many biological processes and in the definition of cell functions. Several
aspects of MC origin and differentiation into peripheral tissues have been elucidated.

Even though MCs represent an abundant population in healthy intestines, their num-
ber appeared to be increased during inflammation. It could be interesting to clarify whether
and how the recruitment of new progenitors contributes to the expansion of MCs during
inflammation. Moreover, the role of classical MMC and CTMC subsets in different inflam-
matory states including allergy to food antigens, parasite infections, or autoinflammatory
diseases is still poorly investigated. It is also largely unknown whether MC populations
with unique phenotypes and functions arise during inflammation.

In regard to MCs’ role during colonic transformation, it is still unknown how the
tumor microenvironment shapes MC plasticity in terms of phenotype and function and
whether unique MC subset(s) differentiate in diverse stages of progression. As discussed
above, single-cell RNAseq analysis performed on sorted MCs could help to solve discrepant
results but also to discriminate between different MC clusters and subclusters associated
with CRC development and progression.

Finally, MCs are located near nerves, and the bidirectional interaction of MCs with the
enteric nervous system plays an important role in gastrointestinal inflammation. It could be
interesting to investigate whether these interactions are also involved in tumor progression.

Spatial transcriptomic analysis combined with single-cell RNAseq could help to deci-
pher MC cross-talk with the nervous system as well as additional MC interactions in the
TME and with the construction of an immune landscape for CRC.
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A better characterization of intestinal MCs at various stages of gut inflammation and
tumorigenesis would help to define novel potential targets for a therapeutic intervention.
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