
ARBORESCENCE OF POSITIVE THOMPSON LINKS

VALERIANO AIELLO AND SEBASTIAN BAADER

Abstract. We show that the links associated with positive el-
ements of the Thompson group F coincide with the closures of
bipartite arborescent tangles.

1. Introduction

The Thompson group F shares two important features with the
union of the braid groups: it contains a natural positive monoid F+

generated by countably many generators x0, x1, x2, . . ., and it comes
with a link construction, recently described by Jones [12, 14]. The ele-
ments of the Thompson group can be encoded by pairs of finite rooted
binary plane trees. As in the braid groups, every group element of the
Thompson group is a product of a positive and a negative element, each
of which is determined by a single tree [7]. We refer to links associated
with positive elements of the Thompson group as positive Thompson
links. In [11, Problem 6.16] Golan and Sapir asked what types of links
correspond to F+. As we will see, these links are all arborescent. More-
over, their underlying rooted plane trees are bipartite, in the following
sense: their vertices carry weights ±1, so that all pairs of neighbouring
vertices carry different signs, and so that all vertices with positive sign
have valency two.

Theorem 1. The set of positive Thompson links coincides with the set
of closures of bipartite arborescent tangles.

Arborescent links are described by rooted plane trees with integer
weights [6]; they are traditionally also called algebraic [15]. Our con-
vention is such that alternating tangles correspond to trees all of whose
weights have the same sign. This is compatible with the usual conven-
tion for rational tangles [8, 10]. Our second result shows that all clo-
sures of positive arborescent tangles are realised as positive Thompson
links.

Corollary 1. The set of positive Thompson links contains the set of
arborescent links associated with weighted plane rooted trees with all
strictly positive weights.
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The class of links associated with positive arborescent tangles con-
tains all two-bridge knots, in particular positive and negative ones. In
order to prevent confusion, we should point out that positive/negative
vertex signs do not necessarily stand for positive/negative crossings.
The two examples shown at the top of Figure 1 illustrate the sign con-
vention and demonstrate that the positive and negative trefoil knots
are both realised as arborescent tangles with negative weights.
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Figure 1. Arborescent knots

While unoriented links are encoded in the Thompson group F , for
oriented links one has to consider Jones’ oriented subgroup ~F ([12],
see also [1, 4]). In a predecessor of this paper, we proved that links
associated with positive elements of the oriented Thompson group are
positive [2]. The links there are a subfamily of the ones considered
here. The examples of Figure 1 show that link positivity does not
persist when dropping the orientability.

The proofs of Theorem 1 and Corollary 1 are presented in Sections
2 and 3, respectively.

2. Arborescent diagrams and bipartite trees

The Thompson group F consists of all piecewise affine homeomor-
phisms of the unit interval with slopes being powers of 2 and dyadic
breakpoints. The action of such a homeomorphism can be stored
by pairs of finite rooted planar binary trees with equal numbers of
leaves [7]. A tree with 2 leaves is herein referred to as caret (see Figure
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4). We usually denote such pairs of trees by the symbol T+

T−
and as

customary, we draw a pair of trees in the plane with the tree T+ upside
down on top of the other T−. The tree T+ is called the top tree, while
T− is the bottom tree. Whenever two pairs of trees differ by a sequence
of additions/deletions of pairs of opposing carets (see Figure 2) they
are said to be equivalent. Thanks to this equivalence relation, the rule
T+

T
· T
T−

= T+

T−
defines the multiplication in F . The trivial element is

represented by any pair T
T

and the inverse of T+

T−
is just T−

T+
. Each finite

rooted planar binary tree may be obtained from the tree consisting of
one vertex by repeated additions of carets.

T+

T−
= =

T ′+
T ′−

∼

Figure 2. A pair of opposing carets and two equivalent
pairs of trees.

A few years ago Jones introduced a machinery that allows one to
construct unitary representations of the Thompson group [12, 13, 5, 3].
This also led him to define a link diagram out of such a pair of trees
by gluing together a pair of tangles along a horizontal line. Every link
arises from his construction [12].

We now review Jones’s construction with a simple example. Let T+

T−
be a pair of rooted binary plane trees with n leaves, for instance

T+

T−
=

We are going to associate a tangle to T+. For this purpose we think
of T+ as sitting in the upper-half plane, with leaves on the positive
integers of the x-axis. First we turn the trivalent vertices into 4-valent
ones, then we turn the new 4-valent vertices into crossings and extend
the strand sprouting from the root until it meets the zero point on the
x-axis.

T+ = 7→ 7→
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The tangle associated with T+ is a union of n half-circles in the upper
half-plane with endpoints on the x-axis and with the innermost circles
passing on top (thus the tangle is alternating).

Repeat the same for T− in the lower half-plane.

T− = 7→ 7→

Now pairs of trees with matching numbers of leaves give rise to pairs
of tangles that can be glued together. For example, for the element T+

T−
we get the following link

L(T+, T−) =

See Figure 3 for more examples.
In the case of positive elements, the bottom tree can always be chosen

to have the following shape

. . .

which corresponds to a standard tangle, to be found in Figures 3 and 5.
For this reason the links produced by elements of F+ are simply denoted
by L(T+).

In summary, the links associated with positive elements of the Thomp-
son group are defined as special closures of tangles determined by a
single rooted binary plane tree. As we can see from Figure 3, the posi-
tive and negative trefoil knot 31 and 3∗1, as well as the figure-eight knot
41, arise from this construction.

In the rest of this section, we explain why positive Thompson link
diagrams are closures of arborescent tangles. The class of arborescent
tangles is the minimal class of tangles closed under tangle composition,
and containing all rational tangles. The latter are described by finite
sequences of integers, viewed as the coefficients of a continued fraction
expansion of a rational number [8]. The closure of an arborescent tangle
is described by a finite rooted plane tree with integer vertex weights.
Each weight w gives rise to a twist region with |w| crossings. The
orientation of these crossings, as well as the interconnections between
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Figure 3. Positive Thompson knots 31, 3
∗
1, 41.

these twist regions, are determined by the plane tree in the following
way. The root vertex corresponds to a horizontal twist region, in which
crossings are called positive if their strand going from the bottom left
to the top right is above the other strand. If the weight is zero, then
we have just two horizontal lines. The vertices adjacent to the root
vertex correspond to vertical twist regions attached to this horizontal
twist region. The order in which they are attached is determined by the
plane cyclic arrangement of the branches around the root vertex. We
keep the convention that the overcrossing strand of a positive crossing
is going from the bottom left to the top right. In the end, this means
that arborescent tangles whose weights carry the same sign give rise to
alternating links. The vertices at distance two from the root give again
rise to horizontal twist regions, and so on. The three examples depicted
in Figure 1 illustrate this construction. A more detailed definition can
be found in [6, 9].

Going back to positive Thompson links, let us start with the simplest
positive element, represented by a binary top tree with just two leaves.
The corresponding link diagram is a union of two overlapping circles,
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which we may interpret as the closure of an arborescent tangle in many
ways. We choose quite an unusual interpretation, with two vertices of
weight zero, corresponding to crossingless tangles, as shown in Figure 4.
The reason for this choice is the inductive argument, which will soon
follow. More precisely, we will associate a planar, weighted tree to a
binary tree so that there are two consecutive vertices of the planar tree
associated to each trivalent vertex of the binary tree. The construction
is inductive. Indeed, the tree T may be constructed from a single caret,
by adding a sequence of carets to it. Correspondingly, the weighted
tree, may be obtained by adding to the weighted tree (depicted in
Figure 4) a pair of vertices/edges for each caret. In the next lemma,
we describe how to add such vertices/edges.

0

0

1

−1

Figure 4. Basic arborescent tangle.

Lemma 1. Let T be a plane rooted binary tree and denote by t the
weighted tree corresponding to the link L(T ). By adding a caret below
one of the leaves of T we obtain a new tree T ′ and correspondingly a
new weighted t′. The tree t′ may be obtained from t in the following
way depending on where we add the new caret

a) if we attach a caret below a left leaf of T , two new vertices are
added to t: one with weight 1 and connected to a terminal vertex
of weight −1, another one of weight −1 connected by one edge
only to this new vertex of weight 1,

7→

...
−1/0

1
−1

...
−1/0

1
−1

1
−1

7→

,

where we put −1/0 to indicate that the vertices may have weight
−1 or 0 (the zero weights can occur only on the root and on the
adjacent vertex).
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b) if we attach a caret below a right-inner leaf of T , two new ver-
tices are added to t: one with weight 1 and connected to a vertex
of weight −1, one with weight −1 connected by an edge only to
this new vertex of weight 1,

7→

...
−1

1
−1

...
−1

1
−1 −1

17→

,

c) if we attach a caret below the right-most leaf of T , two new
vertices are added to t: one with weight 1 and connected to a
vertex of weight 0, one with weight −1 connected by an edge
only to this new vertex of weight 1,

?
7→

?

0

1
−1

0

...

0

1
−1

0

−1
1

...

7→

,

where we put the label ? below the right-most leaf of the tree.

Here the gray triangles represent an arbitrary subtree and the new edges
are drawn in red.

Proof. We now give a pictorial proof of the three rules. For all the three
cases here follow the portions of the knot diagrams which are affected
by the addition of the caret (first the link diagram before adding the
caret, then the one after the addition1). The same diagrams represent

1For a) we only draw the case where the weights of the last three vertices are
−1, 1, −1, the case where the first vertex has zero weight can proved in a similar
manner
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the the arborescent link described by the weighted trees drawn above.

. . .

a)
. . .

7→

b)
. . .

7→
. . .

c) . . . 7→ . . .

�

An easy application of the previous lemma yields the following result.

Proposition 1. For every g ∈ F+, the link L(g) admits an arborescent
description with two adjacent vertices of weight zero, one of which is
the root, all other weights ±1, and with all the vertices of weight 1
having degree 2.

We observe that all crossings corresponding to vertices of weight −1
belong to the bottom tangle. A global example is shown in Figure 5:
the full binary tree with sixteen leaves, together with its link diagram
and the arborescent tangle description obtained from the above proce-
dure. From this example, we can guess an explicit arborescent tangle
description for the Thompson links associated with full binary trees;
they all represent the trivial link with two components.

Arborescent tangles are made up of finitely many twist regions that
are wired in an arborescent pattern. In practice, these twist regions
are chosen to be as large as possible. We will do the contrary, in order
to realize the closures of all the arborescent tangles with only positive
coefficients (recall that these tangles are all alternating) as positive
Thompson links. We call a finite rooted plane tree bipartite, if it
carries a bipartite structure, encoded by vertex weights ±1, so that
the root, as well as all leaves, carry the weight −1, and the vertices of
weight 1 have degree 2.

Our goal is to prove Theorem 1. First we present the following lemma
and then we will prove the first inclusion.

Lemma 2. For any a ∈ N, the following move does not affect the
corresponding arborescent links

. . .
a ±1 ∓1 ±1

↔ . . .
a
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1 1

−1

1

−1

1

−1

1

−1

1

1 1

1 1 1

−1 −1−1

1 1 1

−1−1 −1 −1 −1

−1 −1 −1

1

0

0

Figure 5. Full binary tree with sixteen leaves.

Proof. We only consider the case where the last 3 vertices have weights
-1, 1, -1; the case 1, -1, 1 is analogous. The claim follows at once by
drawing the corresponding tangles

a
= a

�

Proposition 2. The closure of every arborescent tangle associated with
a finite rooted plane bipartite tree is realised as a link of a positive
element of the Thompson group.

Proof. Bipartite trees have root with weight −1, while the roots of
the weighted trees associated with arborescent links constructed from
elements of F+ have weight 0. Starting from a bipartite tree, first we
manipulate the bipartite tree in such a way to obtain a weighted tree
whose corresponding link is (up to isotopy) the same, but it has a new
root of weight 0 connected only to another vertex of weight 0, which
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in turn is connected to a vertex whose weight is 1.

...

−1
1
−1 −1

1. . .
...

. . .
−1

1
−1

1

1
−1 −1

17→ . . .
...

−1
1
−1

1
0
0

1
−1 −1

17→ t =

The first step does not affect the corresponding link thanks to Lemma
2. The second step clearly does not change the link. Now repeated ap-
plications of Lemma 1 produce an element g of F+ whose corresponding
link L(g) is the same as the arborescent link associated with t. Indeed,
starting from the tree with two leaves (which is depicted in Figure 4)
we may add carets to the tree with 2 leaves in such a way that the
corresponding weighted tree is t. �

We now prove that the converse inclusion holds.

Proposition 3. Every positive Thompson link is the closure of an
arborescent tangle associated with a finite rooted plane bipartite tree.

Proof. Given an element g ∈ F+, let (t+, t−) be the minimal pair of trees
representing g. It is easy to check that applying the transformation
depicted below does not affect the corresponding positive Thompson
link

t+
t−

= . . . 7→ . . .

where the gray triangle represents the rest of the tree. Thanks to
this move, we may assume that in the tree constructed by means of
Lemma 1 the two vertices of weight 0 have degree 1 and 2. Below the
corresponding tree is displayed, along with a bipartite tree yielding the
same link (see Lemma 2).

...

−1
1
−1

1
0
0

1
−1 ...

−1
1
−1

1

1
−1

7→
...

−1
1
−1

7→
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�

3. Trees with positive signs

The aim of this section is to prove Corollary 1. Our strategy is to
show that the links associated with plane rooted trees with all strictly
positive weights, that is all the vertices have weight positive and non-
zero, can also be realised by bipartite trees. We give a proof by in-
duction on the number of vertices of the tree by presenting an explicit
algorithm.

We start with the simplest tree, a single vertex with a positive
weight k. The corresponding tangle, a single twist region with k cross-
ings, is realised by the rooted plane bipartite tree depicted on the left
of Figure 6. The three trees in that figure represent the same tangle.
Here the first equality is a consequence of Lemma 2, the second one is
obvious.

−1

1

1

−1

1 −1 1

1 −1 1 −1

−1

k+1 k+1 k

Figure 6. Realising a single twist region with k crossings.

Suppose now that the number of vertices is strictly larger than 1.
The first step is to subdivide each edge into four parts by inserting 3
vertices, two of weight -1 and one of weight 1. In the following lemma
we show that this does not affect the corresponding link.

Lemma 3. For any a, b ∈ N, the following move does not affect the
corresponding arborescent links

. . . . . .
a ±1 ∓1 ±1 b

↔ . . . . . .
a b

Proof. We only consider the case where we add the the sequence -1, 1,
-1. The claim follows at once by drawing the corresponding tangles

b

a

= a b

�
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In the second step we need to replace the vertices whose weight is
strictly greater than 1 by suitable bipartite trees.

Lemma 4. Any vertex of weight a ∈ N can be replaced by

. . . . . .1 a 1 ↔ . . . . . .1 −1 1

1 1 1

a + 1

. . .

without affecting the corresponding link.

Proof. In the figure below we represent both tangles

. . .

a

. . .. . . = . . . . . .. . .

a + 1

�

Finally if there are two consecutive vertices of weight 1 (this happens
whenever some of the vertices of the original tree have weight 1) insert
3 vertices of weight -1, 1, -1 (this does not affect the corresponding link
thanks to Lemma 3). The same sequence can be attached to all leaves
with sign +1, leaving us with a bipartite tree. This concludes the proof
of Corollary 1.
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