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ARTICLE INFO ABSTRACT

Keywords: Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) is an advanced tech-
Climate change nique enabling effective ground deformation monitoring. In this study, PS-InSAR time series of
Rainfall/runoff Sentinel-1 ascending and descending orbits for period 2015-2022 are utilized for an industrial
Remote and satellite sensing zone in Sacco River Valley, Central Italy. The Sequential Turning Point Detection (STPD) is

Sacco river valley

cubeid applied to estimate the trend turning points and their directions in PS-InSAR time series. In
ubsidence

addition, river flow and climate time series for Sacco River near the industrial zone are analyzed
using the coefficient of determination and the Least-Squares Cross-Wavelet Analysis (LSCWA) to
investigate their potential impact on ground deformation. A significant land subsidence was
observed prior to Fall 2016 likely as the result of drought and excessive water extraction followed
by land uplift after Fall 2017 likely due to groundwater rebound. The LSCWA showed statistically
significant seasonal coherency between precipitation and streamflow in 2018 when relatively
much higher precipitation and streamflow were observed in this year compared to 2016 and
2017, potentially contributing to the land uplift in the study zone during 2018. These results not
only highlight the capabilities of STPD for detecting trend turning points and LSCWA for
analyzing streamflow and precipitation time series but also can help policymakers and stake-
holders for developing a sustainable city and environment.

Turning point detection
Wavelet analysis

1. Introduction

Ground deformation can modify the Earth surface physical parameters and cause severe damage to infrastructure, including
railroads, buildings, pipelines, and others. In industrial zones, variations in groundwater level due to hydrocarbon extraction or aquifer
overexploitation can result in land subsidence, especially during drought periods (Beccaro et al., 2019; Coda et al., 2019b). On the
other hand, stopping overexploitation can result in groundwater rebound which can trigger land uplift, especially during relatively
wetter periods (Allocca et al., 2022; Bai et al., 2016; Coda et al., 2019a; Colombo et al., 2017). For example, Tang et al. (2022)
demonstrated how groundwater rebound of aquifer system in Taiyuan basin in northern China resulted in land uplift by analyzing
Sentinel-1 satellites data. Jasechko et al. (2024) utilized groundwater level data for 1693 aquifer systems and 170,000 monitoring
wells in many countries. They demonstrated that groundwater level has been declining more rapidly in 30% of regional aquifers across
the world over the past four decades, and they also showed specific cases where groundwater level declining trend has been reversed
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following proper managements and policy changes. Therefore, it is crucial to continuously monitor ground deformation and develop a
sustainable management plan to reduce the potential risks.

Interferometric SAR (InSAR) is a ground deformation mapping technique that uses radar images of the Earth surface acquired from
orbiting satellites (Hu et al., 2018; Moretto et al., 2021; Rosen et al., 2000). Differential InSAR (DInSAR) is another technique that can
observe phase changes between two images in each time and has been utilized in various studies for ground deformation monitoring
(Calo et al., 2014; Crosetto et al., 2016; Mazzanti et al., 2015; Rocca et al., 2014). However, interferograms often contain wide areas
where the signals decorrelate, and it is not possible to acquire measurements (Sousa et al., 2010). Bozzano et al. (2015) utilized the
Advanced DInSAR technique to investigate the land subsidence in Acque Albule Plain in the east of Rome, central Italy for period
1993-2010. They showed that the groundwater level fluctuations triggered the land subsidence, and the magnitude of deformation
depended on the thickness of the compressible deposits in their study area.

Persistent Scatterer InSAR (PS-InSAR) is an advanced technique which determines resolution elements such that their echo is
highly significant by a single scatterer in a series of interferograms, overcoming the decorrelation problem in DInSAR technique
(Crosetto et al., 2016; Sousa et al., 2010). Ascending and descending PS-InSAR time series are employed in many studies for ground
deformation monitoring, such as land subsidence by ground water extraction in urban areas and landslide monitoring (Hussain et al.,
2022; Mateos et al., 2017; Yao et al., 2022). The Sentinel-1 satellites revisit the same geographic location along both ascending (from
the south pole to the north pole) and descending (from the north pole to the south pole) orbits. Therefore, ascending and descending
data are acquired over the same location in different times, allowing an effective estimation of the vertical and east-west components of
displacement (Ren et al., 2022). Though PS-InSAR time series are unevenly sampled and contain seasonal noise due to atmospheric
noise and phase unwrapping issues, their cumulative deformation and velocity are very good (Yao et al., 2022; Zhang et al., 2011). The
European Ground Motion Service (EGMS) has recently provided Sentinel-1 PS-InSAR time series that are already pre-processed and
publicly available, spanning 2015-2021 (7 years).
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Fig. 1. (a) Google map of Italy showing the study region inside the red box, (b) Google hybrid map showing the hydrometric and weather stations along with the
locations of two PS-InSAR as an example of ground deformation, (¢) A 10 m resolution Digital Elevation Model (DEM) of the study region with an overlaid river
network, and (d) Geological/hydrogeological structural map of Sacco River Valley (SRV), a section of the map shown by Saroli et al. (2019), where the numbers in the
legend correspond to (1) Plio-Quaternary marine to continental clastic deposit (Pliocene-Holocene); (2) Quaternary volcanic deposit (Middle Pleistocene-Upper
Pleistocene); (3) Messinian to Tortonian foredeep clayey sequence; (4) Miocene to Oligocene clayey units of the Molise-Sannio basin (Sicilidi Auct.); (5) Miocene to
Trias shallow water carbonate sequence; (6) main thrust fronts; and (7) normal and/or strike-slip faults. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)



E. Ghaderpour et al. Remote Sensing Applications: Society and Environment 34 (2024) 101191

In literature, there are many Change-Point (CP) detection methods for time series, proposed for various purposes, including
environmental monitoring (Awty-Carroll et al., 2019; Ghaderpour et al., 2021a). A CP in a time series is a date when there is an abrupt
change (jump) or when the linear trend changes its gradient (turning point), or a phenological change (Li et al., 2022). The Sequential
Turning Point Detection (STPD) is a fast and robust method of detecting turning points (Ghaderpour et al., 2024). A turning point (TP)
in PS-InSAR displacement time series may be caused by slow-moving landslides, land subsidence or uplift. Enforcing the condition of
no jumps, i.e., connected linear trend pieces, Ghaderpour et al. (2024) showed that STPD can estimate the location of TPs more
accurately and faster than other CP detection methods, such as Pettitt and Running Slope Difference. Note that a TP is always a CP, but
a CP may be an abrupt change or sudden jump that is not a TP. Therefore, one of the applications of STPD is detecting the dates when
land started to subside or uplift (vertical displacement) through processing of PS-InSAR time series. Hereafter, a TP corresponds to a
date when the gradient of linear trend in a time series changes significantly (in case of connected linear pieces only). The direction of a
TP in a time series is the gradient of the linear trend piece after the TP (and before the next TP if any) minus the gradient of the linear
trend piece before the TP (and after the previous TP if any).

Climate change and anthropogenic activities can significantly affect surface water and groundwater levels (Wuetal., 2020; Zaghloul
etal., 2022). High temperature increases evaporation which can limit the water amount to recharge groundwater. On the other hand,
anthropogenic influence on groundwater is due to excessive water pumping that can potentially cause land to subside (Li et al., 2021;
Teatini et al., 2005; Wu et al., 2020). Many researchers studied the impact of groundwater variation and climate change on land
subsidence and uplift through machine learning models, such as random forest (Chen et al., 2020; Fu et al., 2023). The quantitative
interaction between groundwater and surface water is a challenging task (Jiang et al., 2022; Wang et al., 2023). Groundwater can be
recharged by surface water in flooding seasons while groundwater can contribute to surface water in dry periods (Saha et al., 2017). In
the present study, since groundwater data were not available, the surface water (river discharge) and climate data were utilized as an
alternative solution. The main contributions of this study are.

e Mapping dates when the velocity of ground displacement changes (mapping TPs) and mapping the directions of TPs in an industrial
zone in Sacco River Valley (SRV) in Central Italy using ascending and descending PS-InSAR time series. Also, mapping the overall
velocities of ground motion toward satellite line-of-sight and reprojected vertical and east-west directions.

e Analyzing meteorological and streamflow time series around the industrial zone using the coefficient of determination and wavelet
analyses.

e Discussing how climate and streamflow variations may have triggered the observed ground deformation in the industrial zone.

The rest of this article is organized as follows. Section 2 briefly describes the study region and employed datasets, as well as a brief
description of the utilized data analytics methods. Section 3 demonstrates the geospatial maps of ground deformation as well as the
meteorological and streamflow results. Section 4 discusses the potential causes of the ground deformation in the study region, and
finally Section 5 concludes this article.

2. Materials and methods

2.1. Study region

The study region includes an industrial zone located between towns of Colleferro and Ceccano in the province of Frosinone in Lazio,
central Italy, see Fig. 1. The Sacco River passes through this zone with an average discharge of 16 m>/s. This river is formed by the
confluence of two streams of the Monti Simbruini in the Apennines of Abruzzo in Lazio and has a total length of 87 km which flows into
the Liri River from the right. There are numerous industrial settlements along the Sacco River (Massimo et al., 2014). The annual
average precipitation of the study region is about 1600 mm estimated from the precipitation record from 2015 to 2022 (7 years). The
annual average minimum and maximum temperatures of the region in that period are also 10 °C and 20 °C, respectively. In addition,
the topographic slope in the industrial zone is less than 5°, Fig. 1(c).

Sacco River Valley (a part of Latina Valley), a vast territory between the provinces of Rome and Frosinone, has been mainly formed
by lava flows from volcanoes (Saroli et al., 2020). The Quaternary deposits thickness in this region has been influenced by inherited
paleo-morphologies, Fig. 1(d). The groundwater surface depth in SRV is approximately between 5 and 15 m, and its closeness to topsoil
has favored water wells and aquifers pollution. A high amount of precipitation, particularly during fall and winter, and presence of flat

Table 1
Datasets utilized in this study and their brief descriptions. The discharge time series record for Cosa ad Alatri was available until 2020.
Dataset Spatial Resolution Date Description Source/Reference
DEM 10 m 2023 TINITALY Tarquini and Nannipieri (2017),
Tarquini et al. (2023)
PS-InSAR 20 m in azimuth by 5m in  February 2015-December Ascending and Descending https://egms.land.copernicus.eu/
ground-range 2021 (6-day) PS-InSAR Time Series EGMS - Basic Products (Level 2)
PS-InSAR 100 m January 2016-December Vertical and East-West PS- https://egms.land.copernicus.eu/

2021 (6-day) InSAR EGMS- Ortho Products (Level 3)
Precipitation and 3 Weather Stations January 2015-December For Colleferro, Alatri, and https://www.3bmeteo.com
Temperature 2021 (Monthly) Ceccano
Discharge 3 Hydrometric Stations January 2015-December For Colleferro, Alatri, and https://temporeale.regione.lazio.it/

2021 (Monthly)

Ceccano

aegis/map/map2d
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areas, high permeability of karst rocks, and quaternary volcanic deposits significantly contribute to groundwater recharge processes in
central-southern parts of Italy, including SRV (Allocca et al., 2015). Karst aquifers are the main source of drinking water supplies in the
study region and have a high impact on other groundwater dependent ecosystems (Allocca et al., 2014). Due to improper management,
SRV has been heavily polluted by industrial waste over the years which led to unprecedented environmental and health issues (Perrone
et al., 2022). The SRV is one of the Italian contaminated sites of national interest (https://www.isprambiente.gov.it/).

2.2. Datasets and preprocessing

The descriptions of the datasets utilized in this work are listed in Table 1. The ascending and descending PS-InSAR time series, the
EGMS basic products (Level 2), available from 2015 to 2022 are downloaded from the EGMS website. The EGMS basic products
provide InSAR displacement measurements in the direction of satellite line-of-sight and are spatially referenced to a virtual reference
point which are meaningful just for the processed area, see the EGMS product guide available online at https://land.copernicus.eu/.
The sampling frequency of these time series is 6-day with many missing values. To perform STPD, the PS-InSAR time series are monthly
resampled using the MATLAB spline interpolation code. Since there was at least one displacement measurement for each month from
2015 to 2022, the monthly resampled time series nicely captured the overall fluctuation of the displacement time series while
attenuating noise. The EGMS Ortho products (Level 3), available from 2016 to 2022, are also employed herein to map the overall
velocities of vertical and east-west ground motion for the industrial zone. These products contain vertical and east-west displacement
components at spatial resolution of 100 m, derived by combining all the ascending and descending time series and considering the
information of GNSS (Global Navigation Satellite Systems) measurements (Notti et al., 2014; Festa et al., 2022).

The monthly average discharge, minimum and maximum temperatures, and accumulated precipitation were also calculated from
the downloaded datasets. Thus, for comparison purposes, all the datasets employed in this study are monthly resampled. The monthly
scale is chosen herein for visualization purposes which is also robust for monitoring slow-moving ground deformation and climate
studies. The names of hydrometric gauging stations with available discharge record within the study region are Sacco a Colleferro, Cosa
ad Alatri, and Sacco a Ceccano whose altitudes are respectively 218 m, 316 m, and 130 m (Fig. 1). Cosa River is a tributary of Sacco
River and streamflow direction is from Colleferro to Ceccano.

2.3. Methods

The workflow of this research is illustrated in Fig. 2. The data analytics methods used in this research are briefly described below.
The reader is referred to Ghaderpour and Vujadinovic (2020); Ghaderpour et al. (2018, 2021b, 2024) for more details.

2.3.1. Sequential turning point detection (STPD)

The STPD is briefly described here, similar to a special case of Jumps Upon Spectrum and Trend (JUST) (Ghaderpour and Vuja-
dinovic, 2020; Ghaderpour, 2021). First, the special case of JUST that is only based on linear fit (not seasonal fit) is briefly described
below, then STPD is described. Assume that S; = {y1,...,y,} and Sz = {¥.41. ..., ¥n} are two segments of a time series of size n, where 7
is the potential change point (1 < 7 < n). Let

yi=mti+b +¢& for 1<i<7 (@)
yi=mt;+by+¢g for 1<j<n 2)

where m; and m; are the gradients, b; and b, are the intercepts, and ¢; and ¢; are the error terms to be estimated by the Ordinary Least-
Squares method (OLS) (Ghaderpour and Vujadinovic, 2020; Ghaderpour et al., 2021a). The JUST algorithm is sensitive to jumps
starting at 7, i.e., the estimated pieces can be discontinuous at 7. For example, in environmental monitoring a jump or abrupt change in
vegetation index time series might occur due to wildfire or harvesting (Ghaderpour and Vujadinovie, 2020). Though JUST can also
detect TPs, the accuracy of the dates of TPs can be less than STPD. In fact, in STPD, it is assumed that there is no jump in the time series
at time 7, i.e., the two linear pieces are connected.

Filtering:
PS-InSAR Monthly [ 1 ol =0s
ASC & DESC STPD =0
Resampling
Time Series —J Coupling
ASC & DESC
Pearson Correlation
Ground-Based Analysis Results Geospatial Maps
Meteorological — Showing
Time Series Months & Directions

[ [ Monthly | of Turning Points

r [ Resampling ] H

f y o
Discharge
Time Series [ Coherency &
| LscwA Phase Delay Discussion
: ) Results

Fig. 2. The workflow of this study. The abbreviations ASC and DESC are for ascending and descending orbits.
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Mathematically, in STPD, m; and b, in equation (1) are first estimated by OLS, then m; in equation (2) is only estimated because b,

is replaced by 32 = myt, + Bl with tj«t; — t,, 7 < j < n. The potential turning point Zforward (1 < Tforward < 1) is the one that minimizes
the L2 norm of the residual series. The same process is done on the flipped time series to estimate the linear trend with a potential TP,
flipped to get Thackward (1 < Tbackward < 7). There is a potential TP if Diff = |Tf0rward — rbackward| is close enough to zero (e.g., less than 4).
If 0 < Diff < 4, then the potential TP is the one that has the lowest L2 norm of residuals. The gradient direction or simply direction of
the TP is fmy — my. If a time series has a TP, then JUST may not accurately detect its date, and accidently estimate a jump due to a high
noise level. Likewise, if there is a jump in the time series, then STPD may detect it as a TP with an inaccurate date. Therefore, it is
important to define a statistical metric to distinguish jumps from TPs. It is shown that the Normalized Difference Residual Index (NDRI)
can do this task effectively, defined as
|72l = llr

NDRI:‘
[rall+ T

)
where || - || is the L2 norm, r; and ry are the residual series of the first and second segments with turning point at 7, respectively. The
closer the absolute value of NDRI is to zero, the higher the probability that the detected TP is the true TP. Through an extensive
simulation, Ghaderpour et al. (2024) found an effective threshold to distinguish jumps from TPs when applying STPD that is 0.3.

The windowing technique in STPD is the same as the one in JUST. In this technique, a potential TP is estimated for each segment
within a moving window that translates or slides over time. Depending on the desired number of CPs or TPs, the window size and step
size can be selected by users (Ghaderpour, 2021). Finally, if there are / detected TPs, then a connected linear trend with /+ 1 pieces is
fitted to the entire time series to re-estimate the directions of the TPs. Herein, these re-estimated directions are illustrated for the
geospatial maps.
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Fig. 3. The maps show the velocities of ground motion for east-west (a), vertical (b), ascending (c), and (d) descending geometries in the industrial zone. Note that the
overall velocities shown in panels (a) and (b) are provided by EGMS for the period 2016-2021 while the velocities shown in panels (¢) and (d) are estimated by OLS for
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panels (c) and (d) - toward satellite line-of-sight).
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2.3.2. Correlation analysis — coefficient of determination

The Pearson’s correlation coefficient (r) shows the linear dependency between two variables (e.g., Ratner, 2009; Renaud and
Victoria-Feser, 2010). The value range of this coefficient is from —1 to 1. Mathematically, Pearson’s method estimates the linear
dependency between variables x; and y; (1 <i<n) as

s Y =X —y)
> (=B L 01 -9

i=1

C)

where X and ¥ are the means of the values of x and y variables, respectively. The value of 2 or R? is called the coefficient of deter-
mination, showing the amount of variation in one variable explained by another variable (e.g., Renaud and Victoria-Feser, 2010). This
coefficient is used in the present study to identify the strength of linear dependency between normalized precipitation and discharge
variables for each station. The R? values from 0 to 0.1, from 0.1 to 0.5, and from 0.5 to 1 typically indicate weak, moderate, and strong
linear relationships between variables, respectively (e.g., Ratner, 2009).
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2.3.3. Least-squares cross-wavelet analysis (LSCWA)

The LSCWA is a time-frequency analysis technique that estimates a cross-spectrogram and phase delays between the wavelike
components of two time series. Choosing unique sets of frequencies and times, the cross-spectrogram is obtained by entry-wise
multiplication of two spectrograms, where each spectrogram is associated with a time series (Ghaderpour et al., 2018, 2021b). A
spectrogram is estimated by fitting sinusoids to segments of the time series, where the segment size decreases as frequency increases
and vice versa. The percentage variance, displayed on the color bar in a cross-spectrogram, shows how much the wavelike components
of the two time series are coherent within a local time-frequency neighborhood: the higher the percentage variance, the higher the
coherency. The phase lags/leads, displayed by arrows on the cross-spectrogram, show how much the periodic and aperiodic com-
ponents in the two time series lag/lead from each other (Ghaderpour et al., 2018, 2021b). The LSCWA is included in the Least-Squares
WAVEIet software (LSWAVE) (Ghaderpour and Pagiatakis, 2019) and is implemented here (choosing Morlet wavelet) for studying the
coherency and phase delay between streamflow and precipitation.
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E. Ghaderpour et al. Remote Sensing Applications: Society and Environment 34 (2024) 101191

3. Results

3.1. The PS-InSAR turning point results

To have an idea of the extension of the type of ground movement (e.g., subsidence, uplift, or stable area), especially if it is localized,
OLS is applied to all available PS-InSAR time series within the industrial zone, and their overall velocities for entire period 2015-2021
are illustrated in Fig. 3(c) and (d). The estimated velocities of EGMS Ortho products (vertical and east-west directions) are also dis-
played in Fig. 3(a) and (b) for comparison purposes. Note that year 2015 is not considered for the velocity estimation in Fig. 3(a) and
(b) because the Level 3 data for 2015 are not provided by EGMS.

Next, STPD is applied to all the available monthly resampled ascending and descending PS-InSAR time series. The window size and
step selected for this analysis are 60 (five years) and 12 (one year), respectively, following the recommendation by Ghaderpour et al.
(2024). After the estimation of all the TPs, only the ones with condition [NDRI| < 0.3 are selected to ensure that the detected changes
are TPs not jumps, see Ghaderpour et al. (2024). This filtering only removed an insignificant number of TPs for the industrial zone.
Since the industrial zone is flat, both ascending and descending acquisitions show approximately the same increasing/decreasing trend
pattern. Therefore, to further increase the reliability of the detected TPs, only ascending and descending PSs are selected that have the
same TPs and are within 50 m apart from each other. After the filtering, 317 ascending and 298 descending time series remain, where
each time series has two TPs. The geospatial maps of the TPs and their corresponding gradient directions for these time series are
illustrated in Figs. 4 and 5, respectively. The STPD is set to not estimate any TPs in the years 2015 and 2022 due to potential seasonal
noise. Therefore, the geospatial maps only show TPs for the years 2016-2021. Two examples of these time series are shown in Fig. 6,
where |NDRI| and DIR (direction) are written in red, and the overall velocities are written in black. These velocities are illustrated in
Fig. 3. It can be seen from Fig. 3 that in areas near the coordinates 41°38” N and 13°16" E, most of descending PS-InSAR time series
show a positive overall velocity. From Figs. 5 and 6, the displacement time series has a negative gradient before the TPs in 2016 and
2017, where the directions of TPs become positive. During 2018, the displacement has a positive gradient until 2019 and 2020, where
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Fig. 6. Two examples of coupled ascending and descending PS-InSAR having the same turning points.
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Fig. 7. The number of TPs detected for each calendar month during 2016-2020.
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Fig. 9. The discharge time series for Colleferro, Alatri, and Ceccano and their coefficients of determination.

the directions of TPs become negative. To better visualize the temporal distribution of TPs, the frequency bar charts of the TPs
illustrated in Fig. 4 are displayed in Fig. 7. One can see that not many TPs are estimated in 2018. The displacement time series have a
positive gradient (velocity) during 2018 for the entire industrial zone, indicating land uplift.

3.2. The meteorological and streamflow results

Monthly precipitation, maximum and minimum temperature time series for towns of Colleferro, Alatri, and Ceccano are illustrated
in Fig. 8. The temperature in 2017 was significantly higher than the temperature in 2018. For example, the maximum temperature was
36 °C in August of 2017 while it reduced to 32 °C in August of 2018 for Ceccano. The special case of JUST as modeled by equations (1)
and (2) was applied to the accumulated precipitation time series to detect CPs using a three-year-long moving window. The JUST
estimated trend is also illustrated in Fig. 8. Comparing the gradients of the linear pieces in 2017 and 2018 (S3 and S4), one can see that
the gradient of accumulated precipitation increased more than 2.5 times. Monthly streamflow (discharge) time series for the three
hydrometric stations shown in Fig. 1 are illustrated in Fig. 9. The amount of discharge recorded at stations Sacco a Ceccano is much
higher at stations Sacco a Colleferro and Cosa ad Alatri due to factors, such as tributaries, characteristics of drainage basins, and man-
made surfaces. Herein, the relative discharge is more important at each station as it shows the influence of anthropogenic activities and
climate change. The coefficient of determination between Colleferro and Ceccano is R? = 0.92 while a much lower coefficient is
observed between Alatri and Ceccano (R? = 0.11). This may be explained by the fact that Cosa River is a tributary of Sacco River and
has its own hydrological characteristics, and it travels through the town of Frosinone.

The cross-spectrograms of the monthly discharge and precipitation time series are displayed in Fig. 10. Panel (a) clearly shows that
the periodic and aperiodic components of discharge time series are in-phase. There are statistically significant seasonal peaks in 2018
and 2019 (4 cycles/year or three-month period) as shown in Fig. 10(a). The wavelike components of discharge time series for Alatri
and Ceccano are less significant as can be seen from panel (b). Panels (c) and (e) show a phase lag of about 30° for annual and seasonal
cycles of streamflow and precipitation. In other words, the annual cycle of precipitation generally leads the one in the discharge time
series by about one month. Similarly, the seasonal cycles of precipitation lead the ones in the discharge time series. Interestingly, there
is no statistically significant coherency between the discharge and precipitation time series for Colleferro and Ceccano in 2017 while in
2018 there are statistically significant seasonal cycles in precipitation and discharge time series, significantly coherent with a time
delay, see Fig. 10(c) and (e). This shows a clear interaction between climate and streamflow. The coefficients of determination (R?
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Fig. 10. The monthly precipitation and streamflow time series and their LSCCWA and coefficients of determination. The peaks inside the black contour lines are
statistically significant at 95% confidence level. The white arrows show the phase delays that are displayed on the most significant coherent peaks. The arrows pointing
to the east and west mean in-phase and out-of-phase. The arrows pointing toward north and south mean the cycles of the time series in black leads and lags from the
ones in blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

between precipitation and streamflow are also shown in Fig. 10(f), but they do not show how the components of the time series are
correlated at different periods, highlighting the advantages of using LSCWA.

4. Discussion

An advantage of STPD over traditional regression models is the ability to estimate the dates when the displacement trends have
changed their directions. For example, Fig. 3(d) shows that many PS-InSAR time series have an increasing trend during 2015-2021
with a velocity between 4 and 8 mm/year near 41°38” N and 13°16” E. On the other hand, Figs. 4 and 6 show that these time series have
a negative velocity during 2015 and 2016 which turns to positive after late 2016. While the same behavior is observed in the ascending
time series (e.g., see time series A and C in Fig. 6), their overall trends remain insignificant, displayed in green in Fig. 3(c). Moreover,
the velocities toward the vertical direction, shown in Fig. 3(b), near 41°38” N and 13°16" E are positive, indicating land uplift.
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The selection of five-year-long moving window in STPD allowed robust detection of slow-moving ground deformation and was less
sensitive to seasonal noise. In other words, smaller window sizes could potentially increase the false positive rate, e.g., turning points
may be near the minimum or maximum values of seasonal or annual cycles observed in PS-InSAR time series. Coupling the PS-InSAR
time series of ascending and descending orbits increased the reliability of the estimated TPs, though this filtering reduced the spatial
coverage of the PSs. A random set of PS-InSAR time series were also selected and their estimated TPs were visually inspected to ensure
their accuracy. The STPD results showed mainly two TPs for each PS-InSAR time series, where the first one with a positive direction
was in 2016 or 2017 and the second one with a negative direction was in 2019 or 2020. This indicated land subsidence prior to 2018
followed by land uplift during 2018.

This study has some limitations. Unfortunately, there was no information available on groundwater level to conduct a more
rigorous statistical analysis. In addition, no information was available for water extraction amount by the industrial settlements in the
study region. However, climate and surface streamflow are highly correlated with groundwater (Jiang et al., 2022; Saha et al., 2017).
Relatively higher temperature and lower precipitation and streamflow in 2016 and 2017 (the drier period) as well as water pumping
likely reduced the groundwater level, resulting in land subsidence as observed in PS-InSAR time series. On the other hand, relatively
lower temperature and higher precipitation and streamflow in 2018 (the wetter period) as well as reduction of pumping water likely
increased the groundwater level, resulted in significant land uplift during 2018 as observed by Sentinel-1 satellites. These results also
agree with the results presented by Allocca et al. (2015) who demonstrated how an increased amount of precipitation has a significant
impact on groundwater recharge in the central-southern part of the Terminio Mount karst aquifer in Campania region, Italy. The use of
PS-InSAR and STPD techniques for detecting changes in ground motion velocity as presented herein may also help hydrogeologists in
estimating and/or calibrating groundwater level (Allocca et al., 2014, 2015).

5. Conclusions

In this study, ground deformation for an industrial zone in Sacco River Valley in Central Italy was studied though processing PS-
InSAR time series by STPD. The correlation between the detected displacement TPs and ground-based measurements were also
investigated. The direction of the estimated TPs in the PS-InSAR time series agreed with the change in gradients of precipitation and
streamflow fluctuation. The LSCWA showed that the seasonal cycles of precipitation and streamflow time series were significantly
coherent with time delay of few weeks in 2018 while no significant peaks were observed in 2017. The significant increase in the
accumulated precipitation in 2018 and relatively lower temperature have increased the discharge of the river and potentially
recharged groundwater which can explain the land uplift during 2018 in the industrial zone. The results of this study may be useful for
geologists, hydrologists, and other scientists as well as stakeholders and responsible authorities for building a sustainable environment
and reduce the potential risks to infrastructures and public health.
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