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Abstract: Microwave imaging is emerging as an alternative modality to conventional medical di-
agnostics technologies. However, its adoption is hindered by the intrinsic difficulties faced in the
solution of the underlying inverse scattering problem, namely non-linearity and ill-posedness. In this
paper, an innovative approach for a reliable and automated solution of the inverse scattering problem
is presented, which combines a qualitative imaging technique and deep learning in a two-step frame-
work. In the first step, the orthogonality sampling method is employed to process measurements
of the scattered field into an image, which explicitly provides an estimate of the targets shapes and
implicitly encodes information in their contrast values. In the second step, the images obtained in
the previous step are fed into a neural network (U-Net), whose duty is retrieving the exact shape of
the target and its contrast value. This task is cast as an image segmentation one, where each pixel is
classified into a discrete set of permittivity values within a given range. The use of a reduced number
of possible permittivities facilitates the training stage by limiting its scope. The approach was tested
with synthetic data and validated with experimental data taken from the Fresnel database to allow a
fair comparison with the literature. Finally, its potential for biomedical imaging is demonstrated with
a numerical example related to microwave brain stroke diagnosis.

Keywords: microwave imaging; deep learning; inverse scattering; orthogonality sampling method;
U-Net; convolutional neural network

1. Introduction

In the last few years, microwave imaging (MWI) has emerged as a candidate tech-
nology to perform medical diagnostics, being non-invasive, non-harmful, low-cost, and
portable [1,2]. Medical MWI is enabled by the heterogeneous dielectric properties (relative
permittivity and conductivity) that different human tissues exhibit at microwave frequen-
cies, based on their typology and on their physio-pathological status [3]. More precisely,
MWI has been mainly considered for breast cancer screening [4], the diagnosis of cere-
brovascular diseases [1], treatment monitoring [5–9], and, more recently, Alzheimer’s
disease monitoring [10].

Despite the growing interest, one of the factors hampering the widespread adoption
of MWI in the clinical sphere is the need for solving an inverse scattering problem (ISP) to
obtain the relevant diagnostic information (i.e., the dielectric properties of the inspected
tissue). ISPs belong to the class of non-linear and ill-posed inverse problems [11], whose
solution may lead to unreliable diagnostic outcomes, if not properly tackled.

Coping with these difficulties calls for a methodological effort aimed at developing
reliable solution strategies for the ISP. In this respect, deep learning (DL) is rising as a
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powerful tool to provide accurate and reliable solutions for ISPs in a computationally
efficient way [12–14].

Several DL approaches to ISPs have been proposed in the literature. Among them,
physics-assisted approaches have attracted remarkable attention [13]. In these approaches,
domain knowledge on wave scattering physics is incorporated into the input or in the inter-
nal architecture of the neural network, having a beneficial effect on its performance [15,16].
In particular, embedding domain knowledge by pre-processing the MWI scattering mea-
surements with a traditional imaging algorithm is a convenient strategy, since the DL
architecture does not need to learn the physics behind the transformation from the mea-
surement domain to the imaging domain. This circumstance results in a simpler problem
and, consequently, a less-demanding training of the DL model. For instance, Wei et al. [17]
provided a comparison of training a U-Net [18] using scattering measurements as the inputs
versus using images, depicting an estimation of the corresponding currents induced in the
imaging domain. The comparison shows the superior performance of aiding the training
with an MWI algorithm instead of directly training with the scattering measurements. Simi-
lar outcomes were obtained in [19], where a rough image obtained via backpropagation was
fed into a generative adversarial network trained to retrieve the salient high-level features
of the unknown targets. Moreover, in [20], a U-Net was employed to refine an image
depicting a preliminary coarse guess of the permittivity based on the Born approximation.

In [21], the authors proposed a physics-assisted approach in which a U-Net was
trained to transform images obtained via an MWI technique, the orthogonality sampling
method (OSM) [22,23], into a binary image for a reliable, user-independent, and real-time
retrieval of the shape of the unknown targets. However, this approach could not retrieve
the electromagnetic properties of the targets, thus having limited applicability for medical
diagnostic purposes. To overcome this limitation without resorting to a different MWI
algorithm, it is possible to exploit a distinctive characteristic of the OSM. Besides providing
an estimate of the shape of the targets, the OSM images also embed qualitative information
on the relative variation of their dielectric properties with respect to the host medium [23].
However, such information on the contrast is encoded in a subtle way, so that retrieving
the contrast would require facing another inverse problem [23].

In this paper, the problem of retrieving the morphological and electromagnetic proper-
ties of unknown targets encoded in the OSM images is cast in terms of a segmentation task
performed by a U-Net architecture. In particular, the U-Net is trained to associate the pixels
of the OSM imaging results with a finite set of contrast values. In doing so, the training
stage is remarkably simplified, as the network will just need to learn how to perform in a
robust way the OSM image contrast association within the given interval. Moreover, as
the framework relies on the OSM to supply the domain knowledge to the U-Net, it is able
to deliver real-time automated results. Finally, such an approach is well matched with
medical MWI scenarios, wherein each tissue in the interested portion of the body can be
effectively described by an average complex permittivity [24].

It is worth remarking that, since the OSM imaging results encode the information
on the contrast in a non-obvious way, the adoption of standard segmentation algorithms
(based on, e.g., thresholding) is ineffective, as it would require a priori assumptions on
the relationship between the quantitative changes in the OSM images and the contrast
variations. Conversely, the capability of supervised machine learning to build models to
tackle complex regression tasks provides the appropriate tool to perform this task efficiently.
In this respect, the choice of U-Net is due to the fact that this neural network architecture
was designed primarily for image segmentation [18], so that it can be conveniently exploited
to prove the feasibility of the proposed approach.

Considering the positioning of this work in the relevant literature, this is the first
time in which, to the best of our knowledge, the inverse scattering problem is approached
in terms of a segmentation problem. Limiting the number of admissible contrast values
to a discrete set was exploited in [25] for breast MWI, but there are some fundamental
differences between [25] and the approach proposed herein. The authors of [25] presented
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a segmentation technique to partition microwave images achieved by previously solving
the ISP. Since the ill-posedness and the non-linearity of the problem significantly impact
the MWI results, the goal of the technique proposed in [25] was indeed to facilitate the
evaluation of the image quality by segmenting it. To this end, the authors combined an
unsupervised machine learning method with statistical techniques. Here, a computational
framework to solve the ISP using the concept of segmentation is instead proposed. This
original methodology was implemented using a purely supervised machine learning
approach. In doing so, the network is fed an input that is repeatable and reliable, since the
OSM image is formed without explicitly solving the ISP, but processing the MWI raw data
by means of direct computations (scalar products) [23]. Hence, the U-Net in charge of the
segmentation has an active role in solving the ISP and is not a post-processing tool.

In the following, the proposed DL-MWI framework is presented in the canonical 2D
scalar problem (TM polarized fields) in free space and validated with experimental data
taken from the Fresnel institute database [26], which represents the commonly adopted
benchmark to assess MWI algorithms. The potential of the approach for biomedical imaging
is then shown by means of a numerical example related to brain stroke diagnosis.

The rest of the paper is organized as follows. In Section 2, the ISP is formulated. The
OSM is described in Section 3. In Section 4, the core of the approach is discussed, and its
implementation to tackle the canonical ISP at hand is given in Section 5. Sections 6 and 7
provide the performance assessment on simulated and experimental data, respectively.
Section 8 presents the example dealing with brain stroke imaging. Conclusions follow.
Throughout the paper, a time-harmonic behavior was supposed and the corresponding
time factor ejωt assumed and dropped.

2. Problem Formulation

Let Ω denote the imaging domain, which hosts the cross-section Σ of a collection of
targets invariant along one direction (say the z-axis). The domain Ω is embedded in a
background medium, which, for the sake of simplicity, but without loss of generality, is
assumed to be homogeneous and lossless; let εb denote the relative permittivity of the
background medium. Each target is characterized by a relative dielectric permittivity
ε(r) and an electric conductivity σ(r), with r = (x, y). All materials are supposed to be
non-magnetic, i.e., the magnetic permeability is everywhere that of vacuum µ0.

A multi-frequency multi-static measurement configuration is adopted to probe the
targets. For each frequency f belonging to the set of N f frequencies used for the imaging
experiment, the incident fields Einc are radiated by Nv antennas located in rt ∈ Γ, with
v = 1, . . . , Nv and Γ being a closed curve located in the far-zone of Ω. For each transmitter,
the interaction between the incident field and the targets gives rise to the scattered field
Es. The superposition of these two fields becomes the total field E = Einc + Es, which is
measured by a set of Nm receivers, which, without any loss of generality, are assumed to be
located on Γ as well, with the receiver position being rm with m = 1, . . . , Nm.

Given the frequency f and the pair of Tx–Rx antennas, the overall phenomenon is cast
through a Fredholm-type integral equation as:

Es(rm, r′) = k2
0

∫
Ω

G(rm, r′)τ
(
r′
)
E
(
r′, rt

)
dr′ (1)

where G(rm, r′) is the Green’s function of the assumed homogeneous background medium,
k0 = ω

√
µ0ε0 is the wave number in free space at the working frequency, and

τ(r) = εeq(r)/εb − 1 is the contrast function encoding the properties of the targets.
εeq(r) = ε(r)− jσ(r)/ωε0 denotes the relative complex permittivity of the targets, with j
being the imaginary unit, ω = 2π f the angular frequency, and ε0 the dielectric permittivity
of the vacuum.

The total field E is defined through another Fredholm integral equation of the first
kind as:

E(r, rt) = Einc(r, rt) + k2
0

∫
Ω

G
(
r, r′
)
W
(
r′, rt

)
dr′ (2)
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where W(r′, rt) = τ(r′)E(r′, rt) is the contrast source.
The retrieval of the contrast function τ from measurements of the fields they scatter is

the objective of the ISP. However, due to the smoothing kernel of (1) and the dependence of
the total field on τ, the problem turns out to be non-linear and ill-posed.

3. Orthogonality Sampling Method

The OSM provides an estimate of the unknown targets’ shape through the plot of an
indicator function over the imaging domain. Such an indicator attains its higher values at
points that are expected to belong to the targets [22].

For a given frequency belonging to the set of frequencies adopted for the imaging
experiment, the OSM indicator I is defined as:

I(rp) = ||Ered(rp, rt)||2Γ, (3)

where || || denotes the L2-norm computed on Γ, rp is a point of an arbitrary grid sampling
the imaging domain Ω, and Ered is the reduced field, which is computed as:

Ered(rp, rt) =< Es(rm, rt), G(rm, rp) >Γ (4)

where <,> denotes the scalar product on Γ.
In [23,27], it was shown that the reduced field is related to the contrast source W as

Ered(rp, rt) = β
∫

Ω
J0(k0|r′ − rp|)W

(
r′, rt

)
dr′ (5)

where J0 is the first kind Bessel function of zero order and β is a constant.
Since the contrast sources W are null outside of the targets, (5) shows that the OSM

indicator allows retrieving their shape, (3) being related to the superposition of the square
amplitude of the contrast sources at hand. In addition to this, and more important for
our purposes in this work, since W is directly related to the contrast distribution, from (5),
it also follows that the spatial distribution of the OSM indicator locally depends on the
electromagnetic properties of the investigated objects. In particular, in the case of piecewise
homogeneous targets, W will exhibit discontinuities when the target properties abruptly
change, and its values across the boundary will mainly depend on the contrast values.
In fact, in the 2D TM case at hand, the electric field will be continuous across those
boundaries. Accordingly, in the neighborhood of any discontinuity, also the OSM indicator
will be characterized by larger relative values at those points corresponding to higher
contrast values.

4. Contrast Retrieval via Deep Learning Segmentation of OSM Imaging Results

As discussed above, the OSM indicator map can be used to provide not only an
estimate of the shape of the targets, but also a qualitative image of the behavior of the
contrast τ in the imaging domain. However, quantifying the value of the contrast is not
straightforward, since the relationship between the indicator value and the corresponding
contrast is not obvious; see (5).

To cope with this difficulty, it is possible to exploit DL approaches, taking advantage
of their known capability of tackling complex regression problems and outperforming
traditional methods. In the case at hand, the regression problem would consist of associating
with each pixel of the OSM indicator map a contrast value, to build a quantitative image of
the EM properties of the targets.

Considering that the OSM map encodes the relative contrast variation, the approach that
is herein proposed is to cast the regression problem at hand as a segmentation task. In so
doing, the contrast τ to be retrieved is restricted to a limited number, say Nc, of possible values
(segmentation classes) within a given interval, instead of belonging to a continuous range.

The segmentation classes can be selected in two ways. The first one consists of setting
a range of τ values for a given problem and defining the number of classes accordingly.
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This approach requires the contrast range to be known a priori, while the number of classes
is to some extent arbitrary, and its choice is mainly dictated by a tradeoff between a finer
discretization of τ and the computational complexity (A larger number of classes entails
the need for a larger training set.). The second option is application-specific and consists
of matching the number of structures with different properties appearing in the imaging
domain relevant to the specific application at hand. This, for instance, is the case of medical
applications, where the different electromagnetic properties corresponding to the different
tissues of interest have to be matched. As the first approach is more general, it will be
adopted to describe the proposed framework and validate its performance. The second
approach is instead adopted in Section 8, wherein the proposed framework is exploited in
the specific case of brain stroke imaging.

Figure 1 describes the flow of the proposed approach: the raw data are processed
via the OSM, and the obtained imaging results are fed into the DL model in charge of
predicting the segmented contrast map. To build the DL model, a U-Net CNN [18] was
exploited. This kind of neural network is a powerful architecture suitable to process data
with a high spatial correlation, such as images [25], and allows its output to be retrieved as
an image as well. In particular, a U-Net similar to the one in [17] was implemented. The
structure of the network is shown in the lower part of Figure 1, wherein the operations the
U-Net internally carries out are also indicated (see [18] for details).

Figure 1. Flow diagram of the DL-MWI framework. The internal architecture of the U-Net with its
different operations is shown inside the dashed line box.

The task performed by the U-Net can be cast as:

T̂ = Fθ(I) (6)

where Fθ is the DL model, θ denotes the network parameters to be optimized in the training,
I ∈ RNp×N f is the input of the network given by the array of OSM indicator images
obtained in the pre-processing step, and T̂ ∈ RNp×Nc is the segmented contrast map
predicted by the network. Np = Nx × Ny is the number of pixels into which the imaging
domain is discretized to compute the OSM indicators, and N f is the number of frequencies
adopted in the MWI experiment. It is worth noting that the exploitation of frequency
diversity is crucial. As a matter of fact, OSM indicator maps are first normalized and,
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then, fed into the U-Net. As such, targets having the same shape and position, but with
different electromagnetic properties, may be indistinguishable if a single image (either
achieved with monochromatic data or merging information across the frequencies into a
single OSM indicator) is supplied to the network. Instead, feeding the U-Net with an array
of maps introduces a diversity in the input data, which allows the network to compare the
information across frequencies and learn how to properly retrieve the contrast value.

To determine the optimal set of parameters of the U-Net, say θ̂, a supervised learning
approach was adopted. To this end, a set of N contrast functions τn is exploited to build the
training pairs (T n, In), with n = 1, . . . , N, where T n ∈ RNp×Nc is the segmented map of
τn and In is the array of OSM maps obtained from the scattered field data corresponding
to τn. The optimal parameters distribution θ̂ is chosen by minimizing the categorical
cross-entropy [28]. This minimization is performed iteratively by sequentially scanning the
training set P times, where P is referred to as the number of epochs. For the n-th sample,
the corresponding estimate of the optimal distribution, say θ̂n, is defined as:

θ̂n = arg min
θ

[
−

Np

∑
i=1

Nc

∑
c=1
T n

i,c · log T̂ n
i,c

]
(7)

where T̂ n
i,c is the segmented contrast map predicted by the U-Net using the parameter

distribution at the previous iteration. Finally, the optimal distribution is achieved after PN
iterations (θ̂PN).

Once the training has been successfully carried out, the framework is ready to process
new data. Notably, such an operation is carried out in real-time and without human
supervision, since the OSM does not need to explicitly determine any regularization
parameter to provide the N f indicator images and since both the OSM and the optimized
network architecture Fθ̂ work in real-time.

5. Implementation of the DL-MWI Framework for the 2D ISP in Free Space

In this section, the implementation of the proposed DL-MWI framework to deal with
the 2D canonical ISP in free space is presented.

Similar to [17,21], the adopted training set is made of a collection of lossless circular
cylinders with a variable size, location, and permittivity. Note the lossless targets assump-
tion does not entail a loss of generality and allows us to show that the trained framework
can successfully process slightly lossy targets without retraining; see Section 7. Each sample
of the training set consists of two, possibly overlapping cylinders, whose permittivities
were selected to cover a wide range of contrast values, not necessarily limited to Born-like
approximations. Furthermore, no profile was allowed to be partially outside of the imaging
domain. More details of the setup conditions are listed in Table 1. The considered contrast
range was [0, 2.5], which was divided into Nc = 7 classes, as specified in the first two
columns of Table 2.

For the training, the U-Net is fed by a pair made by the segmented ground truth
and the corresponding OSM images. To build these pairs, the first step is to simulate the
data corresponding to the targets constituting the training set, and the forward scattering
problem has to be numerically solved. An approach based on the method of moments [29]
was exploited, and the resulting convex optimization problem was solved by means of a
conjugate gradient method made efficient by the use of the fast Fourier transform. This
approach for the solution of the forward problem was implemented in a proprietary code
(tested against analytical solutions) and applied to compute the field scattered by each
target in the training set considering a multi-frequency multi-static configuration in which
the curve Γ where the antennas are located is a circumference. The details of the adopted
configuration, including the number of transmitters Nv, the number of receivers Nm, and
the number of frequencies N f , are reported in Table 1. Note the angular spacing for
transmitters and receivers is the same as the one used in the Fresnel database [26,30], which
is used in Section 7 to validate the proposed approach.
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Table 1. Simulations for training data generation.

Size of imaging domain 25× 25 cm2

Image size in pixels 64× 64

Pixel size 0.1526 cm2

Background medium Air

Number of illuminating antennas Nv 8

Angular spacing between emitters 45◦

Number of receiving antennas Nm 241

Angular spacing between receivers 3/2◦

Distance of the source from the center of Ω 167 cm

Distance of the receiver from the center of Ω 167 cm

Number of frequencies N f 8

Frequency range [2, 9] GHz

Frequency step 1 GHz

Target radius range [1.2, 5] cm

Maximum target electrical size 1.3λ

Minimum target electrical size 0.08λ

Target relative permittivity range [1.3, 3.5]

Table 2. Ten-fold cross-validation averaged performance for the different segmentation classes.

Segmented Classes and Color Label Contrast τ DSC MCC

6 (2.2, 2.5] 0.890 0.797

5 (1.8, 2.2] 0.873 0.798

4 (1.4, 1.8] 0.867 0.777

3 (1.0, 1.4] 0.841 0.801

2 (0.6, 1.0] 0.872 0.813

1 (0, 0.6] 0.886 0.853

0 0 0.998 0.979

Previous work on the effect of corrupting Es with noise prior to computing the OSM
indicators confirmed the robustness of the framework against noise thanks to the filter-
ing effect of the OSM [21]. Therefore, noiseless data were used in the training stage
and processed with the OSM. The resulting OSM indicators In were calculated defining
Nx = Ny = 64 and N f = 8. A [0, 1] normalization was carried out for each indicator before
feeding them into the network [31].

Regarding T n, ground truth segmented contrast images were obtained from the
thresholding of the simulated targets, with Nx = Ny = 64 and Nc = 7. As shown in Table 2,
each class was defined as the range of τ, whose values fall between two thresholds, making
six classes for the targets and one for the background medium.

As far as the size of the training set is concerned, considering the positive results
obtained in [21] using a 2000-sample training set for binary classification, a similar rule
was adopted herein to set the size N of the training set. Accordingly, the number Nc
of segmentation classes dictated the size of the training set, which was assumed to be
N = Nc × 1000. Consequently, a total set of N = 7000 scattering experiments involving
lossless homogeneous circular cylinders were simulated. Among them, 90% were used as



Sensors 2023, 23, 643 8 of 16

the training set and 10% as test set. The selection of the samples belonging to either set was
performed using a 10-fold cross-validation scheme, leading to 10 experiments with varying
training and test sets to be used in the performance evaluation, as detailed in Section 6.

The optimization of the network was carried out using the Adam optimizer [32], with a
learning rate of 10−4. To improve convergence, a common strategy for the training is using
a batch of samples Nb in (7) instead of a single sample to obtain the optimal distribution in
each iteration. In this work, Nb = 16. The optimal solution was found after p = 200. The
overall training time was about 1 hour on a dual-GPU workstation, and Figure 2 shows the
training and validation convergence curves.

Figure 2. U−Net optimization: training and validation convergence.

6. Assessment of Proposed Framework: Simulated Data

The proposed DL-MWI framework as trained and optimized in the previous section
was assessed with simulated data taken from the test cases excluded from the training.
Accordingly, for each fold, the 700 samples excluded from the training were fed into the
network, and the corresponding predictions were retrieved.

6.1. Performance Evaluation Metrics

The performance of the optimized model were quantitatively evaluated using two
metrics. The first considered metric is the Dice similarity coefficient (DCS) [33], which is
defined as:

DSC =
2 · TP

2 · TP + FP + FN
(8)

where TP, TN, FP, and FN stand for the count of true positives, true negatives, false
positive,s and false negatives, respectively. In the problem at hand, TP was considered to
be the count of all pixels correctly labeled in the corresponding segmented class. Conversely,
TN was considered the count of all pixels correctly labeled as not belonging to a specific
segmented class.

Although, as shown in [21], the DSC provides a more robust performance score than
other metrics such as, e.g., accuracy, it may overestimate the performance in segmentation
problems, if not used carefully. In particular, when a class has a proportion of pixels
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superior to the rest of the classes (typically the background), the DSC may provide an
inflated performance score. This is because in those situations, the TP and FP outnumber
the FN. The double contribution of the TP to the DSC worsens the estimation further [34].
Therefore, for the sake of comparison, the second metric called Matthews correlation coefficient
(MCC) [35] was calculated as well:

MCC =
TP · TN − FP · FN√

DM
(9)

where DM = (TP + FP)(TP + FN)(TN + FP)(TN + FN).

6.2. Results

For each sample, the considered metrics, reported in Table 2, were calculated and
averaged over the 10 folds. Overall, high performance scores were achieved in terms of the
DSC for all contrast ranges. Regarding the MCC, performance scores were inferior to their
DSC counterparts, as expected. Additionally, the MCC scores showed a decreasing pattern
for increasing contrast values. This is possibly due to the increasing non-linear behavior of
the ISP with higher contrast values [36].

An example of the U-Net predictions in the most-challenging conditions is given in
Figure 3. As the network always retrieves the correct answer when the cylinders do not
intersect, Figure 3 shows the results for four samples randomly selected among the subset
of samples wherein the targets are nested. Consistent with the performance metrics, the
framework appears to be capable of retrieving both targets with high accuracy, even if one
of the targets has a high contrast. In doing so, the most critical pixels are of course those at
the shared boundaries, where the OSM image may bias the result, as for instance happens
for the sample in the third row, where the network assigns the round shape to the stronger
scatterer, in agreement with the OSM reconstruction at 8 GHz.

Figure 3. Imaging results of 4 test samples. One sample per row, with the first column representing
the targets with their dielectric properties. The following 4 columns show 4 out of 8 single-frequency
OSM indicators at 2, 4, 6, and 8 GHz. The 6th and 7th columns depict the segmented contrast
prediction made by the U−Net and the ground truth segmented contrast map, respectively.
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7. Validation on Experimental Data: The Fresnel Database

The proposed framework, as implemented and trained in Section 5, was validated with
the experimental data provided by the Fresnel Institute of Marseille [26], which represents
the commonly adopted benchmark for MWI methods. The targets of this database are
depicted in the first column of Figure 4.

Figure 4. Imaging results of 4 experimental cases. The first column depicts the contrast of the
imaged samples. The following 4 columns represent the OSM indicators at 2, 4, 6, and 8 GHz. The
6th and 7th column show the predictions made by the U−Net and their corresponding ground
truths, respectively.

The Fresnel database includes cases and conditions that are substantially different
with respect to those considered so far. In particular, the dielectric materials employed
to build all the targets are not exactly lossless, and no sample in the training set exactly
corresponds to Targets 1 and 2. Moreover, the third case is made of three cylinders, whereas
only two cylinders were considered in the training. Last but not least, the fourth case has a
metallic target, while only dielectric targets were generated for the training. Finally, the
Fresnel targets were measured under an aspect-limited configuration, which poses a further
difficulty, as that lack of data may lead to a worse OSM estimate.

Despite the above, the assessment was carried out without performing a specific
training to accommodate the Fresnel measurement configuration and targets, but using the
network resulting from the training described in Section 5. In this way, a proof-of-concept
of the flexibility and robustness of the proposed approach is provided. As a matter of
fact, while the OSM can handle a broad variety of targets and measurement configurations
without changing the size in pixels of the resulting images, the OSM imaging results are of
course affected by these different targets and measurement conditions. Hence, the images
the OSM provides to the U-Net when processing Fresnel data are different from those
the network was trained with in Section 5, thus making this validation a challenging and
cogent test.

The obtained results are reported in the sixth column of Figure 4, while the seventh
column reports the nominal ground truth. As can be seen, despite the aforementioned
difficulties, the targets were quite successfully retrieved. More in detail:
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• In the first three cases, it appears that there is an inherent difficulty for the network
in differentiating the two upper contrast classes. This is a consequence of the re-
ported 10% measurement error in the high-contrast target of the experimental data
[26]. As a matter of fact, such and error makes the small targets fit into three of the
segmented classes.

• The network was able to process the third sample even though it was not trained
to identify and process samples with three targets. Nevertheless, it retrieved all
the targets, but for a slight shape degradation of the low-contrast target. This is a
consequence of the fact the U-Net performs a pixelwise classification.

• The presence of the metallic target in the fourth sample significantly affects the spatial
distribution of the OSM indicator. This influences the U-Net prediction of the unknown
targets’ shapes. However, the class assignation for both targets is correct. In particular,
the metallic target was allocated to the highest contrast class.

• Due to the above-mentioned uncertainty on the EM target’s properties and the fact
the position of the targets can be slightly different from the expected ground truth,
the metrics for the experimental cases were not computed. However, the qual-
ity of the results can be assessed by comparison with the literature. For instance,
References [37–40] reported some very recent DL-MWI methods, which were assessed
with some targets taken from the Fresnel database. It is worth noting that, unlike those
papers, the framework herein presented was not specifically retrained to deal with the
Fresnel data, thanks to its inherent robustness and flexibility.

8. A Preliminary Example on Brain Stroke Imaging

Brain stroke imaging is one of the main perspective applications of MWI [1]. In
this framework, it is crucial to discriminate between ischemic and hemorrhagic stroke, in
order to administer the proper treatment in a timely manner [1]. Since ischemic tissue
and hemorrhages have different electromagnetic properties, MWI represents a potential
candidate technology, capable of providing a diagnosis in real-time and using a low-cost
apparatus [1].

To show the potential of the proposed DL-MWI approach, a preliminary example of
stroke classification from MWI raw data is presented in the following. To implement the
framework, the selection of the segmentation classes was based on the specific application
requirements. Accordingly, NC = 3 classes of contrast values are defined, one for each
type of the stroke and one for the non-stroke tissue, i.e., the background. The network was
trained with the OSM imaging results corresponding to the two types of stroke, for different
sizes and positions within the brain. The training set was constituted by N = 3000 samples.
Among them, 90% were used as the training set and 10% as the test set.

Since, in this case, lossy media are involved, the framework has to be trained consid-
ering this condition. However, this does not represent a difficulty for the data simulation
needed to build the training pairs, since the same approach to the solution of the forward
problem as in Section 5 can be exploited. Furthermore, since OSM indicators encode the
variation of the complex contrast, no change was needed in the U-Net architecture, since
the inputs were similar to those treated so far. The MWI raw data were simulated with
respect to the 3000 contrast maps built on the basis of a brain slice taken from the available
tissue segmentation of the Zubal phantom [41], in which a stroke is inserted. For the sake
of simplicity, the stroke was modeled as a circular cylinder, with the radius in the (1–2.6)
cm range. Note that, in generating the samples, it was assumed that only one kind of stroke
at the time was present and that at least a stroke was present in the inspected scenario.
Accordingly, each sample of the dataset had at most two classes (background and one kind
of stroke).

The dielectric properties of each tissue were assigned according to [42], in which tissue
frequency dependence is based on a four-Cole–Cole model [43]. Moreover, tissues within
the dataset were randomly perturbed with ±10% variability with respect to the values
given in [42] to mimic inter-subject variability. For the ischemic and hemorrhagic strokes,
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the resulting amplitudes of the mean contrast values characterizing each class are reported
in Table 3. The contrast values were computed with respect to the background medium.

For each brain slice contrast map, the MWI raw data were simulated using Nv = Nm = 16
antennas and N f = 4 evenly spaced frequencies in the (0.5–1.25) GHz range and consid-
ering as a background a matching medium with a permittivity of 23 and conductivity of
0.19 S/m [1].

These data were finally used to generate the OSM indicators. In doing so, the Green’s
function in (4) was replaced with the one pertaining to the healthy brain scenario, which
was assumed to be known. Moreover, the OSM indicator was computed processing the dif-
ferential data obtained by subtracting the healthy brain data from the stroke-affected ones.

For each sample of the test set, the considered metrics were calculated and averaged
over 10 folds. Overall, performance scores above 87% were achieved for both metrics, as
shown in Table 3. In Figure 5, some random samples from the test set are shown to give a
visual idea of the obtained results and of the fact that the U-Net succeeded in extracting
information that was not obvious at all in the OSM imaging results.

Table 3. Performance of the DL-MWI approach for stroke imaging and classification, split by kind
of tissue.

Segmented Classes and Color Label Contrast Amplitude Range 1 GHz DSC MCC

Ischemia 0.96± 10% 0.861 0.876

Hemorrhagic 2.33± 10% 0.936 0.923

Background 0.0± 10% 0.999 0.918

Figure 5. Sample results for the brain imaging example. The first column depicts the contrast of
the imaged samples. The following 4 columns represent the OSM indicators at 0.5, 0.75, 1.00, and
1.25 GHz. The 6th and 7th columns show the predictions made by the U−Net and their corresponding
ground truths, respectively.
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9. Conclusions

In this work, an innovative DL-MWI framework for an effective, reliable, and fully
automatic solution of the ISP was presented. The proposed approach combines qualitative
microwave imaging and deep learning in a synergistic framework, which exploits a qualita-
tive imaging technique called the OSM jointly with a DL architecture called the U-Net. The
former, though qualitative, provided an estimation of the contrast distribution. The latter
managed to address the ill-posedness and non-linearity of the ISP to retrieve the electromag-
netic properties of the targets. On top of that, both the OSM and U-Net are computationally
efficient techniques, allowing, after the training stage, real-time imaging results.

The choice of the OSM was motivated by the fact that it allows automatic and real-
time processing of MWI raw data gathered under different measurement conditions and
from different targets. These features are important to make the pre-processing as robust
as possible and allow the overall framework to be deployed in real-time, with no need
for human supervision, and in different situations. In addition, the OSM image has
also the added value of providing information on the spatial variations of the contrast.
However, this information is implicit in the OSM image, meaning that there is no obvious
connection between the OSM indicator value and the contrast value. The choice of U-Net
then comes from the need to handle this difficulty: U-Nets have a proven capability of
solving classification problems underlying complex models, and the proposed approach
aims to take advantage of their capabilities. In particular, the problem was cast in terms of a
segmentation task by training the U-Net to associate the pixels of the OSM imaging results
to a finite set of contrast values. To the best of our knowledge, the proposed approach is
the first one in which the concept of segmentation is exploited to solve the ISP.

A performance analysis of the processing framework was carried out on simulated
data and quantitatively assessed by means of two metrics. The outcome of this analysis
led to performance scores above 77% for both metrics, which may represent a satisfactory
result, depending on the targeted application. In any case, performance scores can be
further improved in several ways. A first and straightforward approach would consist of
increasing the size of the training set, instead of using the criterion derived from [21]. A
more subtle strategy would consist of implementing a different sampling scheme of the
permittivity values, using a finer discretization for the higher permittivity range. In this
respect, sampling the contrast range unevenly based on the different degree of nonlinearity
pertaining to the contrast values of interest could be an interesting path to explore [36].

Validation results on Fresnel experimental samples were provided, showing the com-
pelling capabilities of the proposed DL-MWI approach. In fact, some of those results were
based on samples and conditions that were significantly different from the ones considered
in the optimization of the network. The successful retrieval of outliers of the dataset demon-
strates the generalization capability of the framework, also considering that the U-Net was
not specifically retrained to handle the Fresnel data, as usually performed in the literature.

An example concerned with brain stroke imaging and classification was reported.
While preliminary, the achieved results show the potential of the proposed approach when
dealing with complex scenarios relevant to applications and call for a more extensive
assessment considering a larger set of cases and conditions, as well as limiting or avoiding
the need for a priori information on the healthy brain.

While the above-described results support the validity of the proposed approach
and its flexibility in handling different conditions, it must be remarked that the quality of
the OSM imaging results is influenced by the measurement configuration. On the other
hand, the implications of the low quality of the OSM images on the overall results are not
straightforward, since simply increasing the size of the training set could counteract it.
Would this not be possible or effective, then a possible way to overcome such a limitation
can be to train the network with the imaging results obtained from OSM along with
those obtained from other MWI approaches. Of course, the choice of the proper MWI
approach to exploit would be dictated by the specific measurement configuration at hand
and the application.
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A very important aspect that deserves further investigation is the choice of the neural
network architecture. In this paper, the U-Net is a “natural” choice since this network was
designed to perform segmentation tasks [18] and the aim of the work was to prove the
feasibility of the DL-MWI framework. However, several architectures have been developed
in the last few years [44], which are worth being considered to possibly improve the
performance of the approach to solve the ISP, as well as to handle specific scenarios more
effectively. A first option is the enhanced version of the U-Net, U-Net++, which is a deeply
supervised encoder–decoder network that achieves improved segmentation results [45].
The attention U-Net [46], making use of an attention gate to trim features that are not
relevant to the ongoing task, can be instead exploited when the targets of interest are
localized and the surrounding is not relevant, such as in monitoring tasks. Finally, to
handle scenarios in which features at different scales are relevant, the MDC-Net or feature
pyramids with the U-Net++ could be considered to accommodate multi-scale segmentation
or feature extraction [47,48].

Finally, the approach was herein developed and presented for the 2D scalar ISP, which
is appropriate to demonstrate the validity of a novel approach and useful in many cases.
However, it is important to pursue the extension to the 3D geometry, which is both more
challenging and important for applications. While this extension is not straightforward
from a computational point of view, it is worth noting that all the “building blocks” are
available, since 3D U-Net architectures have been already implemented [49] and the 3D
version of the OSM has been recently developed [50].
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