The elusive coordination of the Ag⁺ ion in aqueous solution: evidence for a linear structure

Matteo Busato^{‡,†}, Andrea Melchior[‡], Valentina Migliorati[†],

Andrea Colella[†], Ingmar Persson[§], Giordano Mancini[#],

Daniele Veclani[‡], Paola D'Angelo^{*,†}

[‡] Dipartimento Politecnico di Ingegneria e Architettura (DPIA),

Laboratori di Chimica, Università di Udine,

via delle Scienze 99, 33100 Udine, Italy

[†] Dipartimento di Chimica, Università di Roma "La Sapienza",

P.le A. Moro 5, 00185 Roma, Italy

§ Department of Chemistry and Biotechnology,

Swedish University of Agricultural Sciences (SLU),

SE-750 07 Uppsala, Sweden

[#] Centro HPC, Scuola Normale Superiore,

Piazza San Silvestro 12, 56125 Pisa, Italy

* p.dangelo@uniroma1.it

E-mail:

^{*}To whom correspondence should be addressed

Figure S1: Upper panel: analysis of the Ag K-edge EXAFS spectrum of the 0.2 mol dm⁻³ AgClO₄ aqueous solution with CN=4. From the top the best fit theoretical Ag-O and Ag-H two-body contributions are shown, as well as the total theoretical signal (blue line) together with the experimental spectrum (red dots) and the corresponding residuals (green line). Lower panel: non-phase shift corrected Fourier Transforms of the best-fit EXAFS theoretical signal (blue line) of the experimental data (red dots) and of the residual curve (green line).

Figure S2: Ag-O radial distribution function g(r) obtained from the CPMD simulation of the neutral system (red dots) and corresponding Γ -like function obtained from the fitting procedure up to an Ag-O distance of 2.5 Å (black line).

Figure S3: Ag-O radial distribution function g(r) obtained from the CPMD simulation of the positively charged system (red dots) and corresponding Γ -like function obtained from the fitting procedure up to an Ag-O distance of 2.5 Å (black line).

Figure S4: Instantaneous Ag-O coordination number (CN) distribution, expressed in percentage, obtained from the CPMD simulation of the neutral system up to a cutoff Ag-O distance of 2.5 Å.

Coordination	Database Identifier	Ag-O bond distance (Å)	References
2-fold	RUKZUT	2.112	1
	DELVAR	2.125	2
	UFAGEO, UFAGEO01	2.135	3,4
	YUCMIT	2.137	5
		Mean bond: 2.128 Å	
2/4-fold	432327	2.271 + 2.620 (2F)	6
	RUDPOW	2.248 (ca. 3.2 Å)	7
4-fold	DAGCOG	2.432	8
	HAQNIY	2.395	9
	74965	2.469	10

Table S1: Details about literature crystal structures of Ag^+ aquo-complexes involving 2 - 4 water molecules.

Table S2: Coordination number CN, first maximum position R_{max} , first peak average value R, Debye-Waller factor σ^2 and peak asymmetry β of the CPMD Ag-O g(r) as obtained by modeling the first peak with a Γ -like function.

CN	R_{max} (Å)	R (Å)	σ^2 (Å ²)	β
2.0	2.21	2.24	0.006	0.6

References

- Wu, H.; Dong, X.-W.; Ma, J.-F.; Liu, H.-Y.; Yang, J.; Bai, H.-Y. Influence of anionic sulfonate-containing and nitrogen-containing mixed-ligands on the structures of silver coordination polymers. *Dalton Trans.* 2009, 0, 3162–3174.
- (2) Makhmudova, N.K. and Sharipov, Kh.T. and Khodashova, T.S. and Porai-Koshits, M.A. and Parpiev, N.A., -. *Doklady Akademii Nauk SSSR* 1985, 280, 1360.
- (3) Li, Y.-J.; Dong, X.-W.; Wu, H. Diaquasilver(I) 6-aminonaphthalene-1-sulfonate monohydrate. *Acta Cryst. Sec. E* 2007, *63*, 2230.
- (4) Liu, H.-Y.; Wu, H.; Ma, J.-F.; Song, S.-Y.; Yang, J.; Liu, Y.-Y.; Su, Z.-M. Structural Study of Silver(I) Sulfonate Complexes with Pyrazine Derivatives. *Inorg. Chem.* 2007, *46*, 7299–7311, PMID: 17685508.
- (5) Wang, G.-H.; Li, Z.-G.; Jia, H.-Q.; Hu, N.-H.; Xu, J.-W. Constructing mixed-metal coordination polymers from copper(II)–pyridinedicarboxylate metalloligands. *Acta Cryst. Sec. C* 2009, 65, m333–m336.
- (6) Mazej, Z.; Goreshnik, E. Crystal structures of [SbF6]⁻ salts of di- and tetrahydrated Ag⁺, tetrahydrated Pd²⁺ and hexahydrated Cd²⁺ cations. *Zeits. Kristallogr. Cryst. Mater.* 2017, 232, 339 347.
- (7) Zhao, L.; Mak, T. C. W. Assembly of Silver(I) Two- and Three-Dimensional Coordination Networks with Complementary Tridentate Heteroaryl Ethynide Ligands. *Inorg. Chem.* 2009, 48, 6480–6489.
- (8) Malischewski, M.; Peryshkov, D. V.; Bukovsky, E. V.; Seppelt, K.; Strauss, S. H. Structures of M₂(SO₂)₆B₁₂F₁₂ (M = Ag or K) and Ag₂(H₂O)₄B₁₂F₁₂: Comparison of the Coordination of SO₂ versus H₂OH and of B₁₂F₁₂ versus Other Weakly Coordinating Anions to Metal Ions in the Solid State. *Inorg. Chem.* **2016**, *55*, 12254–12262, PMID: 27934406.

- (9) Li, B.; Zang, S.-Q.; Li, H.-Y.; Wu, Y.-J.; Mak, T. C. Diverse intermolecular interactions in silver(I)-organic frameworks constructed with flexible supramolecular synthons. *J. Organom. Chem.* 2012, 708-709, 112 – 117.
- (10) Molinier, M.; Massa, W. New Fluoromanganate(III) Hydrates: Mn₃F₈ů12H₂O and AgMnF₄
 4H₂O. *Zeit. anorg. und allgem. Chemie* 1994, 620, 833–838.