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Status epilepticus (SE) is a medical emergency resulting from the failure of the
mechanisms involved in seizure termination or from the initiation of pathways
involved in abnormally prolonged seizures, potentially leading to long-term
consequences, including neuronal death and impaired neuronal networks. It can
eventually evolve to refractory status epilepticus (RSE), in which the
administration of a benzodiazepine and another anti-seizure medications (ASMs)
had been ineffective, and super-refractory status epilepticus (SRSE), which
persists for more than 24 h after the administration of general anesthesia.
Objective of the present review is to highlight the link between inflammation
and SE. Several preclinical and clinical studies have shown that
neuroinflammation can contribute to seizure onset and recurrence by increasing
neuronal excitability. Notably, microglia and astrocytes can promote
neuroinflammation and seizure susceptibility. In fact, inflammatory mediators
released by glial cells might enhance neuronal excitation and cause drug
resistance and seizure recurrence. Understanding the molecular mechanisms of
neuroinflammation could be crucial for improving SE treatment, wich is
currently mainly addressed with benzodiazepines and eventually phenytoin,
valproic acid, or levetiracetam. IL-1β signal blockade with Anakinra has shown
promising results in avoiding seizure recurrence and generalization in
inflammatory refractory epilepsy. Inhibiting the IL-1β converting enzyme (ICE)/
caspase-1 is also being investigated as a possible target for managing drug-
resistant epilepsies. Targeting the ATP-P2X7R signal, which activates the NLRP3
inflammasome and triggers inflammatory molecule release, is another avenue of
research. Interestingly, astaxanthin has shown promise in attenuating
neuroinflammation in SE by inhibiting the ATP-P2X7R signal. Furthermore, IL-6
blockade using tocilizumab has been effective in RSE and in reducing seizures
in patients with febrile infection-related epilepsy syndrome (FIRES). Other
potential approaches include the ketogenic diet, which may modulate pro-
inflammatory cytokine production, and the use of cannabidiol (CBD), which has
demonstrated antiepileptic, neuroprotective, and anti-inflammatory properties,
and targeting HMGB1-TLR4 axis. Clinical experience with anti-cytokine agents
such as Anakinra and Tocilizumab in SE is currently limited, although promising.
Nonetheless, Etanercept and Rituximab have shown efficacy only in specific
etiologies of SE, such as autoimmune encephalitis. Overall, targeting
inflammatory pathways and cytokines shows potential as an innovative
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therapeutic option for drug-resistant epilepsies and SE, providing the chance of
directly addressing its underlying mechanisms, rather than solely focusing on
symptom control.
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Introduction

According to the International League Against Epilepsy

(ILAE), Status epilepticus (SE) is a condition resulting either

from the failure of the mechanisms responsible for seizure

termination or from the initiation of mechanisms which lead to

abnormally prolonged seizures. It is a condition that can have

long-term consequences, including neuronal death, neuronal

injury, and alteration of neuronal networks, depending on the

type and duration of seizures (1). Based on the clinical

presentation, SE can be classified into convulsive SE (featured by

motor symptoms and impairment of consciousness), and non-

convulsive SE (2). Given the severity of SE and the potential

development of irreversible brain damage, there is an urgent

need to dissect its pathogenesis to find new potential therapeutic

targets. Specifically, the most relevant therapeutic challenges are

represented by refractory status epilepticus (RSE), in which the

administration of a benzodiazepine bolus and another anti-

seizure medication (ASM) does not resolve the clinical picture

(3), and super-refractory status epilepticus (SRSE), which

persists for more than 24 h after the administration of general

anesthesia (2).

During the last years, an increasing interest has been posed on

the involvement of neuroinflammation in epileptogenesis and in

the pathogenesis of developmental and epileptic encephalopathies

(4). Neuroinflammation is also implicated in enhancing and

maintaining the pathogenic mechanism of SE. Therefore, the use

of drugs acting on the inflammatory response (especially, anti-

cytokine agents) has been empirically introduced in patients with

RSE to achieve seizure control, while preclinical studies have

focused on the identification of potential targets to regulate

neuroinflammation in epilepsy and SE.

In this paper, we will present the main molecular mechanisms

responsible for neuroinflammation in SE and the effect of currently

available therapeutic strategies for convulsive SE on the

inflammatory response. Furthermore, the potential new

therapeutic agents targeting neuroinflammation will be presented,

focusing on data deriving from preclinical and clinical studies.
Materials and methods

In this narrative review, we performed comprehensive analysis

of existing literature through three reputable databases: PubMed,

Embase, and Cochrane. Our search was carefully guided by a

thoughtfully curated set of keywords, designed to ensure a

thorough investigation of pertinent research. These keywords

included terms such as “epilepsy,” “inflammation,” “neuro-
02
inflammation,” “status epilepticus,” “FIRES,” “NORSE,” “RSRE,”

and “SRSE.” To maintain consistency, we specifically focused on

articles published in the English language.

Our inclusion criteria were designed to encompass a wide

spectrum of studies that delved into various facets of the

relationship between status epilepticus (SE) and

neuroinflammation. This included both clinical and preclinical

investigations, studies exploring the role of cytokines and

biomarkers, and an examination of how current and future SE

therapies intersect with inflammatory pathways. Studies that

exclusively concentrated on clinical aspects of SE or those that

did not directly contribute to our primary research question were

excluded.

To ensure a rigorous and methodical approach to our review,

two independent reviewers conducted an initial screening by

evaluating study titles and abstracts. This initial screening aimed

to assess the relevance of each study to our research question.

Subsequently, full-text articles of potentially relevant studies

underwent a more detailed review to determine their suitability

for inclusion in our narrative review. In instances where

differences or uncertainties arose during the review process, a

third reviewer was engaged to facilitate discussion and achieve

consensus. This collaborative effort was instrumental in

maintaining the quality and consistency of study selection

throughout our review process.
Results

Neuroinflammatory mechanisms involved
in status epilepticus

The main results of our research are listed in Table 1. SE can

lead to significant morbidity and mortality, and the mechanisms

underlying its development and progression are complex and not

fully understood. However, several studies suggest that

inflammation plays a significant role in the pathogenesis of SE.

Higher levels of pro-inflammatory cytokines, such as

interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor

necrosis factor-alpha (TNF-α), have been reported in SE (4).

These molecules can be secreted by activated glial cells, such as

microglia and astrocytes, and can be associated with the release

of pro-inflammatory molecules by damaged neurons, including

high-mobility group box 1 protein (HMGB1) and damage-

associated molecular patterns [DAMPs (5)]. This molecular

cascade has been suggested to trigger glia-mediated

neuroinflammation. On the other hand, different authors have

suggested that changes in neuronal activity and energy
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TABLE 1 Overview of the main clinical studies involving monoclonal antibodies targeting neuroinflammation in status epilepticus.

Author Year Patients
(n)

Population Treatment Outcome

Lai et al. (151) 2020 25 FIRES Anakinra Reduction of the seizure frequency >50% in more than half of the patients. 3/25 died during
treatment

Sa et al. (152) 2019 2 FIRES Anakinra P1: Transient improvement and resolution of SE, with relapse after discontinuation
P2: No clinical improvement

Shrestha et al. (154) 2023 6 FIRES Anakinra Reduction of the seizure frequency in all the analyzed patients
Progression of neurocognitive impairment in 3 patients

Aledo-Serrano et al. (153) 2022 5 FIRES Anakinra
(5 patients)

3/5 experienced a 20%–50% reduction in seizure frequency

Tocilizumab
(1 patient)

30% reduction in seizure frequency

Girardin et al. (155) 2023 2 FIRES/
NORSE

Tocilizumab P1: Resolution of SE and improved neurocognitive outcome.
P2: Transient resolution of SE, with relapse of seizures at discontinuation. Persistence of
neurocognitive impairment, despite improvement

Jun et al. (132) 2018 7 NORSE Rituximab Persistence of SE. Patients eventually received Tocilizumab

Tocilizumab SE was resolved in 6/7 patients

Cantarin-Extremera
et al. (133)

2020 2 NORSE Tocilizumab Decrease in the seizure frequency in both patients

SE, status epilepticus; FIRES, febrile infection-related epilepsy syndrome; NORSE, new-onset refractory status epilepticus.
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metabolism caused by SE could also activate microglia and

astrocytes. For example, prolonged seizures can induce an

increase in extracellular potassium, which eventually lead

astrocytes to release neurotransmitters that, in turn, can

modulate synaptic activity (6). Seizures may also directly activate

microglia and astrocytes by triggering receptors on their cell

surfaces. For instance, seizures activate the P2X7 receptor of

microglia, leading to the release of pro-inflammatory cytokines (7).

Activated microglia and astrocytes have been shown to express

IL-1β (8), which might promote seizures through the upregulation

of NMDA receptors on postsynaptic cells (9). Interestingly, the

IL-1β antagonist, Anakinra, has been shown to ameliorate

long-term potentiation impairment (10). Furthermore, preclinical

studies have showed that TNF-α is also released by activated glial

cells. It has been reported to regulate N-cadherin (11), which in

turn plays a pivotal role in modulating the organization of

excitatory and inhibitory synapses. Moreover, TNF-α could

potentially promote seizures by increasing microglial glutamate

release through the upregulation of glutaminase enzyme (12), as

well as by enhancing the expression of AMPA receptors (13).

Finally, it has also been shown that TNF-α affects inhibitory

neurotransmission by promoting GABA receptor endocytosis (14).

Astrocytes and microglia could also increase the levels of IL-6

within the central nervous system (CNS), which eventually reduce

long-term potentiation and hippocampal neurogenesis, while

promoting gliosis. These effects could contribute to creating a

subset for epilepsy (15).

The blood-brain barrier (BBB) is a critical component of the

immune control within the brain, moduling the access of

immune cells and cytokines. In SE, the BBB might become

dysfunctional, allowing immune cells and cytokines to access

the brain more easily. Such disruption eventually participates

in the development of neuroinflammation and neuronal

damage (16). Inflammatory mediators, namely IL-1, IL-6, and

TNF alpha, can contribute to the BBB breakdown, leading to

increased permeability and leukocyte infiltration (17). Increased
Frontiers in Pediatrics 03
levels of white blood cells into the hippocampus, such as

neutrophils, have been associated with neurodegeneration and

temporal lobe epilepsy (18). Moreover, it has been

hypothesized that the upregulation of adhesion molecules

promoted by seizures, such as VCAM-1 and CD44, might

contribute to BBB permeability, neuro-inflammation, and

subsequent seizure generation (19).

Inflammatory response in SE can also lead to the activation of

the complement system, a key component of the immune

response. Notably, the activation of C1q-C3 signaling pathway

has been observed in animal models and in humans with SE

(20). The activation of the complement system can concur to the

recruitment of immune cells and the development of

inflammation in the brain.

Finally, the activation of the inflammasome, which plays a

pivotal role in innate immune response, has also been

implicated in the development of SE. In fact, the inflammasome

is activated in response to danger signals, such as those

produced during seizures, leading to the release of IL-1β (5). In

animal models of SE, blocking inflammasome activation has

been proved to reduce seizure activity and improve epilepsy

outcomes (21).

In addition to the excitatory processes mentioned earlier,

inhibitory neurotransmission appears to play a significant role in

the complex inflammatory mechanisms associated with the

development of epilepsy. Notably, elevated levels of IL-1β have

been correlated with a reduced GABA-A currents in cases of

temporal lobe epilepsy. Furthermore, TNF-α has been observed

to promote the endocytosis of GABA receptors.

Nonetheless, the role of anti-inflammatory molecules has been

increasingly studied during the last years, including COX-2-

selective and nonselective inhibitors (22, 23).

These findings underscore the intricate interplay between

inflammatory cytokines and the regulation of inhibitory

neurotransmission in the pathogenesis of epilepsy. Understanding

these multifaceted processes holds promise for advancing our
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knowledge of epilepsy development and potentially uncovering

new avenues for therapeutic intervention.
Preclinical and clinical evidences on
neuroinflammation and status epilepticus

Preclinical studies
Preclinical studies with transgenic murine models clearly show

that neuroinflammation can promote the generation and

recurrence of seizures by increasing neuronal excitability and

therefore lowering seizure threshold (13, 22, 24). For instance,

overexpression of caspase-1 in subicular pyramidal neurons was

sufficient to induce pharmacoresistant temporal lobe epilepsy in

rats (25). On the other hand, preventing activation mediated by

the IL-1 receptor 1 (IL-1R1)/TLR4 signaling pathway both

pharmacologically or via genetic intervention, leads to a decrease

in both acute and chronic seizure frequency (26). IL-1R1

co-localizes with the N-methyl-d-aspartate (NMDA) receptor,

which is involved in excitotoxicity and seizures (27–29).

Induction of the IL-1β/IL-1R1 cascade causes post-translational

modifications in NMDAR, resulting in NMDA-induced Ca2 +

influx, neuronal activation, and hippocampal kainate (KA)

seizures in mice (9, 30, 31). HMGB1 activation of TLR4 exerts

similar effects (32) and TLR4 KO mice show reduced

KA-induced seizure activity (33). TNF-α also plays a

pro-inflammatory role and mice with excessively high levels of

this cytokine are at high risk of epilepsy (34). However, this

signaling cascade plays a dual role in seizure susceptibility in

mice, depending on whether TNF-α acts through TNFR1 or 2

(35). While TNFR1 KO mice show a decreased incidence of

seizure, TNFR2 KO mice display increased seizure behavior (36).

Glial cells surrounding neurons in the brain are the main

source of these inflammatory cytokines and their functions affect

neuroinflammation and susceptibility to seizures. Microglia are a

CNS-resident macrophage population which can have

inflammatory properties during infection or sterile insult to the

brain (37). The communication between microglia and neurons

is important to maintain homeostasis and has been demonstrated

to be neuroprotective in epilepsy. In fact, mice lacking the

microglial P2Y2 receptor display worsened seizure behavior (38).

Furthermore, inhibiting mTOR leads to delayed microglial

activation in the hippocampus of mice with KA-induced epilepsy

(39). Another type of glia, the astrocytes, perform metabolic,

structural, homeostatic, and neuroprotective tasks in the CNS.

One of their functions is to regulate extracellular glutamate levels

through the glutamate uptake system. Inhibition of the astrocyte

glutamate transporter GLT-1 in mice with cortical dysplasia

lowers seizure threshold and enhances neuronal excitability (40).

Furthermore, activation of the astrocytic TLR4-MyD88-ERK1/2

pathway in mice leads to over-excitation at the neuronal level

and increased density of excitatory synapses following LPS

injection, which could increase seizure susceptibility (41).

Interestingly, it is not always neuroinflammation that causes

seizures, but also the other way around. Seizures can induce

brain injury, which in turn can activate microglia and astrocytes
Frontiers in Pediatrics 04
to release a wide spectrum of inflammatory mediators with

neurotoxic properties. High levels of inflammatory mediators can

lead to enhanced neuronal excitation and BBB dysfunction in the

mouse brain, ultimately causing drug resistance in epilepsy and

recurrence of seizures, giving rise to a vicious cycle (42). Thus,

understanding the unique molecular mechanisms of

neuroinflammation in seizure disorders is crucial to identify

inflammatory mediators and pathways which could act as

biomarkers for development and severity of epilepsy, as well as

becoming novel therapeutic targets. Pharmacological

immunomodulation of these pathways might provide a novel

avenue for treating epilepsy (42). For instance, it has been shown

that inhibiting leukotriene D4 signaling attenuates seizure

development in a murine model of chemically induced kindled

seizure (43). Similar results were obtained by inhibiting IL-1β

biosynthesis (44), as well as by administering an agonist of the

prostaglandin E2 EP1 receptor and inhibiting COX-2 (45).

Administration of different COX-2 inhibitors lead to affect the

status epilepticus (SE) in rats. Furthermore, IL-1β, TLR4,

HMGB1, P2X7 receptor, and EP2/PGE2 receptor antagonists

have also been shown to modify SE in mice and rats (46). Lastly,

a recent study in a mouse model of pentylenetetrazole-induced

epileptic seizures also showed that administration of selenium

nanoparticles had an anticonvulsant effect, which was mediated

by decreased oxidative stress and neurotoxicity (47).

Due to the profound association between neuroinflammation

and epileptogenesis, it is crucial to find diagnostic and

monitoring biomarkers to provide biological insights on the role

of inflammatory metabolism in neurological conditions and to

develop novel diagnostic and therapeutic strategies to manage

these disorders. In particular, cerebrospinal fluid (CSF) levels of

neopterin, quinolinic acid, kynurenine, and tryptophan have been

identified as potential biomarkers for neuroinflammation.

Neopterin is a byproduct of the tetrahydrobiopterin de novo

pathway synthesized by myeloid cells upon IFN-γ stimulation

and it is found at increased levels in the CSF of individuals with

neuroinflammatory disorders (48, 49). Furthermore, a preclinical

study found increased levels of neopterin in the supernatant of

primary rat astrocytes and mouse hippocampal slices following

oxidative stress. These observations suggest that neopterin can

also be produced by nerve cells under stress conditions (50).

Another CSF biomarker of neuroinflammation is quinolinic acid

(QA), a metabolite of the kynurenine pathway of tryptophan

metabolism (49). QA has been implicated in the pathogenesis of

neurological diseases in humans due to its potency as an

excitotoxin. Elevated levels of QA can lead to oxidative stress,

cytoskeletal disruption, behavioral alteration, and even cell death.

At least some of the effects of QA can be attributed to its

activation of the NMDA receptors (51). Kynurenine levels can

also act as biomarkers for neuroinflammation and the activation

of the kynurenine pathway of tryptophan metabolism can lead to

immune suppression and neurotoxicity. Interestingly, it has been

shown that modulation of this pathway can limit

neurodegeneration in a murine multiple sclerosis model (52).

Furthermore, the kynurenine/tryptophan ratio is used as a

measurement for activity of indoleamine 2,3-dioxygenase, which
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is usually low under basal condition but can greatly increase during

immune activation (49, 53). The downregulation of indoleamine

2,3-dioxygenase and the upregulation of hippocampal kynurenic

acid lead to antiepileptic effects in a brain injury neonatal rat

model of infantile spasms treated with antibiotics in combination

with a ketogenic diet (54). Another recent study using a

temporal lobe epilepsy rat model also showed reduced levels of

tryptophan in the hippocampus and the anterior temporal lobe,

which led to an enhanced frequency and amplitude of

spontaneous excitatory postsynaptic currents in these brain

regions (55). Because of their involvement in neuroinflammation,

these metabolites can be used as reliable biomarkers in

preclinical and clinical models. In particular, CSF neuropteran

has an 82% sensitivity for defining neuro inflammation, followed

by quinolinic acid with a 57% sensitivity, the kynurenine/

tryptophan ratio with a 47% sensitivity, and finally kynurenine

alone with 37% sensitivity in a pediatric cohort (49).

Clinical studies
In a study published by Hanin et al. involving 51 patients with

new-onset refractory status epilepticus (NORSE), the levels of 12

cytokines/chemokines were measured in serum or cerebrospinal

fluid (CSF). A comparison was made between patients with and

without SE, as well as between the 51 patients with cryptogenic

NORSE (cNORSE) and the 47 patients with known-etiology

refractory status epilepticus (RSE).

Interestingly, The results showed a significant increase in

the levels of IL-6, TNF-α, CXCL8/IL-8, CCL2, MIP-1α, and

IL-12p70 pro-inflammatory cytokines/chemokines in patients

with SE compared to those without SE, both in serum and CSF.

Among patients with cNORSE, the serum levels of innate

immunity pro-inflammatory cytokines/chemokines (CXCL8,

CCL2, and MIP-1α) were significantly higher compared to

patients with non-cryptogenic RSE (56).

In a separate study involving 85 children with idiopathic

epilepsy, the concentrations of CSF neuron specific enolase

(NSE), IL-1β, and EPO were measured. The epileptic groups

showed a significant increase in the mean concentrations of CSF

NSE, IL-1β, and EPO compared to the control groups (P < 0.01).

Additionally, positive correlations were observed between the

levels of IL-1β, NSE, and EPO (57).

Febrile infection-related epilepsy syndrome (FIRES) is a

condition where individuals experience a NORSE following a

febrile illness that occurred within two weeks to 24 h before the

onset of refractory SE. In this case, febrile illness may or may not

be accompanied by fever at SE onset. Seizures in FIRES are often

resistant to treatment and can lead to long-term cognitive and

neurological impairments. Understanding the underlying

mechanisms and immune responses associated with FIRES is

crucial for developing targeted therapeutic approaches. Kothur

et al. have analyzed 32 cytokines and chemokines in CSF of

pediatric patients with different epilepsy syndromes, including

FIRES/FIRES-related disorders (FRD), febrile/afebrile status

epilepticus (FSE and ASE), and chronic epilepsy with frequent

daily seizures. Surprisingly, the elevation of such molecules was

higher in FIRES, and in FSE, when compared to chronic epilepsy
Frontiers in Pediatrics 05
and controls without neurological or immunological disorders.

Moreover, in FIRES Th1-associated cytokines and chemokines, as

well as IL-6, CCL2, CCL19, and CXCL1, resulted elevated when

compared to the levels observed in encephalitis, which involved a

broader network of cytokines/chemokines. In FSE, CXCL9,

CXCL10, CXCL11, and CCL19 were elevated compared to ASE,

despite similar median seizure duration and timing of CSF

testing in relation to seizures (58).
Current treatments for status epilepticus
and their effects on neuroinflammation

According to the American Epilepsy Society (AES) guidelines

(59) published in 2016, the management of convulsive status

epilepticus should start in the first 5 min with an early

stabilization phase consisting in primary first aid for seizures

based on the “ABC” approach, followed by administration of

benzodiazepines (BDZs) (60–62).

About the role of BDZ in contrasting neuroinflammation, one

of the first evidences in literature dates to 1996, when Park and

colleagues demonstrated that BZDs could produce anti-

inflammatory effects binding to microglial cells (63). According

to this, Midazolam and Diazepam would be able to reduce the

synthesis and release of proinflammatory and neurotoxic

molecules generated by activated microglia (64) and to inhibit

microglial activation and proliferation itself.

Moreover, diazepam seems to be able of inducing a state of

cellular inactivation defining a reduced transcription factors

activity and chemotactic aptitude, inhibition of Ca2C-mediated

signaling and a diminished production of cytokines (65). If the

seizures continue beyond 20 min, second-line therapy will be

started.

Giving the lack of evidence about a better approach option,

choices are often dictated by local availability, cost, and patient-

specific factors. The options are IV phenytoin or Fosphenytoin,

Valproic acid, or Levetiracetam (66). If none of the above

suggested therapies are obtainable, IV phenobarbital could be

considered (67).

Phenytoin can reduce the activation of m-TOR Pathway,

decreasing the levels of proinflammatory cytokines such as IL-1β,

IL-6 and TNF-α (68). VPA has antioxidant properties, inducing

the suppression of lipid peroxidation and oxidative DNA

damage, as well as anti-inflammatory effects, resulting in

diminution of MPO permeation and microglial activation (69). It

also promotes a decrease in brain inflammation and degeneration

by regulation the NF-κB pathway (70) and discourages

lipopolysaccharide-induced production of TNF-α and IL-6

(71, 72).

In the end, recent evidence suggests that Levetiracetam exerts

neuroprotective effects via anti-inflammatory actions (73). It

seems to be able to suppress the expression of proinflammatory

molecules, such as TNF- α, IL-6 and IL-1β (74) and to reduce

mononuclear phagocyte-mediated phagocytosis (75).

The third therapy stage should be contemplated when the

seizure duration reaches 40 min and status epilepticus became
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refractory. Possibilities include repeating a second-line medication

or resorting to an anesthetic drug (59).

Usually, the most used anesthetic agents include Midazolam,

short-acting barbiturates (Pentobarbital/Thiopentone), and

propofol. Currently, Midazolam is perhaps the most used due to

faster onset of action and short duration of effect (76).

Midazolam is recently reported to exert a neuroprotective effect

by inhibiting inflammation. Through the regulation on the

RhoA/ROCK2 pathway, it ameliorates the impairment of the

blood–brain barrier against LPS (77). Then, based on recent

findings, it is conceivable that midazolam might inhibit IL-1b-

induced STAT3 phosphorylation and IL-6 release suppressing

ROS production (78). However, further investigation will be

required to clarify this concept.

According to some preclinical studies, use of anesthetics such

as Propofol moderates the stimulation and minimizes the

secretion of proinflammatory cytokines (79–81). Newly, Lu and

colleagues validated that the favorable effects of Propofol are

mediated by the JAK1/STAT3 way and that it could reveal anti-

neuroinflammatory action by repression of proinflammatory

mediators from microglial cells (82). However, its use in children

should be limited because of the increased risk of Propofol

infusion syndrome (PRIS), a life-threatening state characterized

by rhabdomyolysis, arrhythmias, metabolic acidosis, myocardial

and renal failure that can occur using doses greater than 65 mcg/

kg/min for 48 or more hours (83).

As about one-third of the patients continue seizing despite

these treatment lines, thus evolving to refractory SE, and half of

these subsequently develop super-refractory SE, it seems

important to consider further treatment alternatives (84).

Ketamine recently emerged as a promising treatment, due to

advantageous hemodynamics and a singular mechanism of

action than conventional anesthetics (85). Its great lipid

solubility establishes a rapid CNS uptake and onset of action

(86), moreover in late stages of SE, there is a decrease in the

number of effective GABA-A receptors and up-regulated

glutamate NMDA receptors that potentiate its action (87). It

has also been shown that Ketamine may reduce

neuroinflammation by diminishing the quantity of microglia

and active macrophages in cerebral cortical tissues as well as

TNF- α production (88, 89).

A variety of immunomodulatory treatments have been

proposed over the past years. The most used include

corticosteroids, IV immunoglobulin (IVIG) and plasmapheresis.

Their application is sustained by modern findings on

immunologic (antibodies against neural receptors such as

voltage-gated potassium channels and NMDA receptors) and

inflammatory (stimulation of inflammatory signaling pathways

such as Interleukin-1 receptor/toll-like receptor pathway) actions

that may provide to their basic pathophysiology (90–92).

The outcomes of these cures are inconstant, and researches are

yet to have not confirmed a clear a certain efficacy response. They

probably may be beneficial in recognized autoimmune epilepsies or

entities with supposed immunological basis, such as febrile-

infection related epilepsy syndrome (FIRES) (60), but further

studies are needed necessaries.
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Finally, therapeutic hypothermia could be pondered as an

adjunctive therapy for RSE/SRSE (93). In fact, multiple case

reports have shown its efficacy in resolution of RSE in children

(94, 95) and this outcome seems to be due to its ability to

diminish cerebral metabolic rate, cerebral edema, inflammation,

oxidative stress, and glutaminergic inducement (96, 97).
Innovative approaches to the management
of neuroinflammation in patients with status
epilepticus

Assuming its possible feasible role in the pathophysiology of

epilepsy, targeting affecting the epileptogenic proconvulsant-

convulsant effect of inflammatory cytokines appears as an

innovative therapeutic option in drug resistant epilepsies and

SEs. In this way we have the possibility of acting directly on

the pathogenetic mechanisms rather than only on symptom

control (98).

Many pharmacological studies involving IL-1β/IL-1R1,

HMGB1/TLR4, COX-2/ prostaglandins or the complement

system have revealed that these inflammatory pathways

suggestively provide to the beginning and/or recurrence of SE

and that their targeting may be potentially disease- modifying

(99–103).

IL-1 beta blockade
The 2022 International consensus recommendations for

management of new onset refractory status epilepticustreatment

(104) supports the use of the human recombinant interleukin 1

(IL-1) receptor antagonist (Anakinra) in refractory SE.

Interleukin 1β (IL-1β) is a proinflammatory cytokine released

by glial cells promoting neuroinflammation, enhancing neuronal

excitability and contributing to refractories of seizures (105).

Recent studies have shown that Anakinra could have a

therapeutic role in controlling seizure recurrence and

generalization in inflammatory refractory epilepsy (106–108),

emerging as a suitable option for the treatment of SE of

unknown cause in the early stages.

Moreover, the interleukin converting enzyme (ICE)/caspase-

1, able to inhibit the conversion of pro-IL-1b to the pro-

convulsant IL- 1b, has been recently contemplated as a possible

target for the management of drug-resistant epilepsies (109).

Pralnacasan (inhibitors of the IL-1b converting enzyme) and

Belnacasan (elective inhibitor of caspases from the ICE/caspase-

1 family) are currently undergoing phase III clinical trial,

and the preliminary results are promising: In mice,

intracerebroventricular administration of Pralnacasan and

intraperitoneal administration of Belnacasan, appears to reduce

50% seizure duration (110, 111). Furthermore, a recent phase

2b double-blind randomized controlled trial involving the

selective inhibitor of interleukin converting enzyme VX765,

showed that in the 60 patients undergoing the therapy the

percentage of responder-rate, of patients who were seizure-free

for 2 weeks, and percentage of reduction in seizure rates ranged

from 13% to 19% (112).
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HMGB1-TLR4 axis
HMGB and TLR4 antagonists are also a potential novel anti-

convulsive strategy (113, 114).

Resveratrol, for example, a type of natural phenol, has shown

anti-inflammatory and neuroprotective properties (115). It has

been recognized that it can suppress NFkB induced by TLRs 3

and 4 and the expression of INF-beta (116). Moreover, according

to some research, this phenol reduces microglial activation and

cyclooxygenases stimulation, often involved in epileptogenesis

(117, 118). A study has also defined an antioxidant effect of

Resveratrol against epileptogenic oxidative stress in the brain (119).

ATP-P2X7R signal
The ATP-gated purinergic P2X7 receptor (P2X7R) is an ion

channel receptor situated on the superficial of microglia that can

be activated by the ATP effluence following exposure to an

exogenous stimulus, such as seizures (120–122). This stimulates

the P2X7R-mediated NLRP3 inflammasome and the successive

release of inflammatory molecules (123). According to recent

data, demonstrating the defection in P2X7R expression after SE

in both experimental animals and patients, the development of

P2X7R antagonists could be useful in the treatment of refractory

SE. Most reports (124–129) have suggested that Astaxanthin

(AST), a molecule belonging to the carotenoid family, could be

helpful in attenuating neuroinflammation in SE by inhibiting the

ATP-P2X7R signal.

It has been demonstrated that it can reduce the extracellular

ATP concentration, thereby constraining P2X7R activation and

upregulation, causing the inhibition of the inflammatory

signaling pathway. It can also considerably suppress the

expression of inflammatory cytokine genes such as TNF-α, Cox-

2, and IL-1β and it has strong antioxidant properties.

Interleukin-6 blockade
Increased serum and CFS levels of IL-6, an inflammatory

cytokine having a pivotal role in enhancing and maintaining the

inflammatory response and activating adaptive immunity, have

been demonstrated in patients with refractory epilepsy (130, 131).

Supporting its involvement in these conditions, clinical and

experimental data have reported some cases responding to

treatment with Tocilizumab.

In 2018, Jun et al. (132) investigated the therapeutic potential

Tocilizumab in 7 patients with new onset refractory status

epilepticus (NORSE), reporting a resolution of SE after 1 or 2

doses of therapy in 6 patients with a median interval of 3 days

from the initiation and no recurrence of SE during the

observation period. Furthermore, in two children with

Refractory Febrile Infection-Related Epilepsy Syndrome

(FIRES), a decrease in seizures after Tocilizumab administration

was documented with no side effects (133). The same favorable

outcome was reported in a 6-year-old boy with Anakinra-

Refractory FIRES (134).

Ketogenic diet
Ketogenic diet (KD) represents a promising approach: it is a

therapeutic dietary characterized by low-calorie, low-carbohydrate,
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high-fat, and standard protein intake which collectively sustain a

state of ketosis, closely resembling the metabolic state induced

by fasting.

Although literature data about its anti-inflammatory properties

are poor, recent studies (135) have shown that it may influence

neurotransmitter levels related to seizure onset. Specifically, the

KD appears to enhance the activity of the inhibitory

neurotransmitter gamma-aminobutyric acid (GABA). This effect

is achieved through different pathways, including the activation

of glutamic acid decarboxylase and the inhibition of

transaminase activity. Furthermore, the KD could elevate the

epileptic threshold by increasing ATP-sensitive potassium

channels (136, 137). Beyond these seizure-related benefits, the

KD may also exert a neuroprotective action. This includes the

upregulation of calbindin, the inhibition of apoptotic factors like

caspase 3, and an increase in the concentration of kynurenic

acid. Additionally, the diet reduces the presence of oxygen free

radicals (ROS) through the elevation of polyunsaturated fatty

acids and neuronal uncoupled proteins (138–140).

Moreover, several studies have consistently observed that the

ketogenic diet (KD) influences the diversity of the microbiome,

leading to changes in the production of gut metabolites. In the

context of epilepsy, it is noteworthy that children with this

condition exhibit alterations in their gut microbiota, potentially

contributing to the development or severity of seizures. Some

research has postulated that changes in the expression of short-

chain fatty acids (SCFA), which are gut metabolites capable of

crossing the blood-brain barrier, may provide valuable insights

into the modulatory effects of the KD on certain diseases.

However, the precise mechanisms through which SCFA may

influence disease expression remain to be fully elucidated

(138, 141).

Cannabidiol
The management of epilepsy with cannabidiol (CBD), a

cannabis derivative, has engendered impressive enthusiasm in

recent years.

Numerous experimental reports indicate that CBD can

diminish seizure occurrence and length with standard and

unconventional antiepileptic properties, along with a

neuroprotective and anti-inflammatory function (142). Several

preclinical studies suggested that CBD revealed strong inhibitory

effects of neurotoxic molecules and inflammatory cytokines,

emphasizing its therapeutic potential for the treatment of

refractory SE (143). Although CBD’s effects on

neuroinflammation appear to be still poorly understood, its

molecular mechanism of action seems to be related to the

downregulation of NADPH oxidase-mediated ROS, TLR4-NFκB

and IFN-β-JAK-STAT pathways (144, 145). Gofshteyn et al.

(142) reported the potential therapeutic effect of cannabidiol for

FIRES in a series of 7 pediatric patients. Moreover, Rajsekar

R. Rajaraman et al. (146) described the situation of a child with

long-standing super-refractory status epilepticus (SRSE) who

exhibited quick and complete resolution of SRSE upon exposure

to pure cannabidiol. These evidences suggest that CBD can be

considered as a potential treatment in SRSE.
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FIGURE 1

The dynamic role of neuroinflammation and seizure activity in the pathogenic process of status epilepticus.
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Targeting neuroinflammation in patients
with status epilepticus

The involvement of the inflammatory response in SE led to the

search for therapeutic strategies targeting inflammatory mediators

in this condition (2, 147). Currently, clinical experience is limited

to the use in isolated case reports or series of the anti-cytokine

agents Anakinra and Tocilizumab (148). However, this field is in

continuous expansion, since studies on animal models of epilepsy

and SE have led to the identification of potential new therapeutic

targets.

Both Anakinra and Tocilizumab are currently used in the

treatment of several autoinflammatory disorders (such as familial

Mediterranean fever), other rheumatic diseases (arthritis,

vasculitis), and cytokine-release syndromes (CRS) (3, 149, 150).

In SE, the most well-recognized application of Anakinra is the

administration in patients with the febrile infection-related epilepsy

syndrome (FIRES), and other reports describe its use in new-onset

refractory status epilepticus (NORSE) or refractory/super refractory

status epilepticus (SRSE) (148) To date, in the published cases

Anakinra has been administered with different regimens (timing

for drug initiation, posology, treatment duration) and resulted in

a clinically relevant reduction of seizures in more than half of

the reported patients (148, 151–154), while data on the long-

term neuropsychological outcome have to be better defined7,10.

Concerning the safety profile of Anakinra in epileptic individuals,

the occurrence of infections has been reported in about 30% of

the patients, but drug withdrawal due to severe adverse events is

only rarely reported (148, 151–154).

The experience with the use of Tocilizumab in SE is limited to

less than 50 patients, mostly suffering from NORSE or SRSE.

Similarly to Anakinra, Tocilizumab has shown a clinical effect of

reduction/arrest of seizures in most of the patients, while the

safety profile showed the development of clinically relevant

infections in about 20% of the described patients (132, 133, 148,

153, 155).

Interestingly, Tocilizumab has been effectively used to treat a

patient with COVID-19-associated SE, as well as patients with
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CRS following chimeric-antigen T cell receptor (CAR-T) cells

administration (156, 157).

Although the role of Anakinra and Tocilizumab in SE is

promising, the interpretation of their efficacy is complicated by

the heterogeneity of the available studies, together with the

frequent concomitant administration of other treatments

(immunosuppression, ASMs). Also, the use of biomarkers, such

as the analysis of serum and CSF cytokines, has been performed

only in a reduced percentage of patients, and the correlation

between their trend and the clinical outcome is not defined (148).

The role of other biologic agents, including the anti- TNF- α

Etanercept and the anti-CD20 antibody Rituximab, is limited to

patients with specific etiologies of epilepsy and SE. Targeting

TNF- α represents a promising strategy for patients suffering

from Rasmussen encephalitis, in which the administration of

Etanercept has shown a decrease in seizure frequency, although

there are no specific data regarding its use in SE (158, 159). On

the other hand, the application of Rituximab is limited to

patients with drug-resistant epilepsy in the context of

autoimmune encephalitis (160), while the use in cryptogenic RSE

did not provide a clinically relevant effect in a recent small case

series published by Jun et al. (132). Regarding therapies targeting

integrins, a recent trial on the administration of the anti-α4-

integrin antibody Natalizumab evidenced a reduction in the

seizure frequency in patients with drug-resistant epilepsy (161),

although the drug has not yet been investigated in SE.
Conclusions

SE represents a hard therapeutic challenge, and there is

currently no standard approach to refractory or super-refractory

cases. The use of animal models of SE, as well as the in vivo

determination of serum and inflammatory biomarkers and the

analysis of bioptic/surgical specimens have pointed out the

central role of neuroinflammation in initiating and perpetrating

the pathogenic process leading to SE. Therefore, there is an

urgent need to develop therapeutic strategies targeting
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neuroinflammation in this category of patients. Although the

clinical experience with drugs targeting neuroinflammation in SE

is currently limited to the use of anti-IL-1 and anti-IL-6 agents,

preclinical research is rapidly progressing and will hopefully lead

to the identification of new targeted therapies (Figure 1),

including chemokines and their receptors, and intracellular

signaling molecules.
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