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Modeling linkage errors in species diversity estimates: an ABC approach

D. Di Cecco1,∗ and A. Tancredi1
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Abstract. The estimation of species diversity of ecological communities relies on surveying species
abundances, that is, counting the number of units by species in a sample. Diversity estimators are
particularly sensitive to rare species, that is, to low abundance cases. In microbial studies, rare species,
in particular singletons, often represent the vast majority of the specimens in a sample. Many studies
hypothesize the spurious nature of these cases, and various methodological contributions focus on
estimating and eliminating the spurious singletons to avoid a gross overestimation of the total diversity
of a community. We present a different approach that treats the spurious singletons as the result of false
negative errors in the clustering step of the RNA sequencing. We demonstrate that the estimation of the
total number of species under our scenario is equivalent to that one can obtain by discarding spurious
cases. On the converse, diversity as measured by Shannon’s index for example, can differ considerably.
The computation of such index requires to estimate all true abundances counts, which appears to be
computationally challenging. We then propose a likelihood–free Bayesian approach to the problem.

Keywords. Microbial Diversity; Sequencing Errors; Linkage Errors; Approximate Bayesian Compu-
tation.

1 Introduction

The development in recent years of next generation high-throughput sequencing technology has provided
the capability of analyzing an unprecedented number of DNA and RNA sequences. This technology has
greatly benefited the study of microbial communities. In microbial diversity studies, environmental sam-
ples are processed in order to detect, amplify and sequence RNA genomes. The sequences are clustered
into distinct species (or Operational Taxonomic Units) according to their similarities in specific genomic
regions. The species are then counted by abundance, (i.e., by the number of specimens representing it).
Those counts are utilized to estimate the microbial community diversity. The main interest is in estimat-
ing the “total diversity”, that is, the total number of distinct species, captured or not, and in evaluating
the heterogeneity of the species structure of the community. For the latter purpose, Hill’s numbers are
a common choice, representing a family of indexes with different degrees of sensitivity to the species
abundances. Shannon’s and Simpson’s indexes represent particular cases. This kind of analysis can pro-
vide an indication of an ecosystem health; for example, in analysing the human gut microbiota, one can
measure and compare the richness of the same community in different occasions (e.g., before and after
an antibiotic treatment).



1 INTRODUCTION

The species problem in the microbial context appears to have some peculiarities. While in macroe-
cological studies rare species represent a small portion of the total abundance, microbial datasets are
characterized by a large number of low abundance cases. In particular, singletons, that is, species repre-
sented by one specimen in the sample, often constitute the vast majority (up to 80%) of the number of
observed species.

Several authors seem to agree on the fictitious nature of many rare species in microbial diversity stud-
ies (see, e.g., [8]). Even if there is no clear consensus on the frequency of such errors, or on the way their
distribution is associated to the sample composition, their presence is confirmed in several ways. Ex-
periments on samples from population with known diversity, both simulations with mock databases, and
communities cultivated in vivo, confirmed an important overcount of the rare species, with consequent
overestimation of the observed and total diversity.

An error in any phase of the bioinformatics pipeline can produce spurious singletons [7]. Errors
in RNA sequencing produce artefactual sequences (known as chimeric sequences). Those sequences
will constitute, in general, novel species which cannot be matched with any other sequence. A chimera
removal step is included in many of the widely used pipelines [4]. Nonetheless, apparently, their presence
is confirmed even in various curated databases of S16 sequences [5].

Since the complete removal of fictitious sequences in a pre-analysis step does not appear to be fea-
sible at the moment, various methodological contributions aims at estimating and removing the spurious
cases count (in particular singletons). See, for example, [2], [10], [11], [3]. We will call this approach
where we remove units (possibly) affected by error, “discounting”. This approach is consistent for a
model where spurious singletons are added to the baseline counting distribution of the true abundances.
This model then results in a mixture of a counting distribution (truncated in zero as the number of un-
captured species has to be estimated), and a Dirac’s measure modeling the spurious singletons. Various
authors propose to completely ignore the observed singletons and base the estimation solely on the other
(supposedly error–free) counts.

We believe that the nature of the spurious cases is best described by linkage errors. That is, we
assume that random errors occurring in sequencing result in the impossibility of a correct classification
of the specimen, which cannot be associated to the correct existing species. Therefore, we can describe
these cases as false negative linkage errors (or missing links), which are added to the true singletons.
This approach implies a re–estimation of the “real” frequency counts for all the abundances, not just the
singletons. We found that treating the excess of singletons in this way leads to significant differences in
the diversity estimates with respect to the discounting approach.

In this work we focus on a secondary perspective to the linkage problem, that is, we assume the (not
uncommon) condition of not having access to the actual record linkage process. Instead, we admit the
possibility that our observed counts data are affected by linkage errors, and include them in our esti-
mation process. Modeling record linkage errors in this secondary setting, appears as a computationally
formidable task. We fix some simplifying assumptions on the type of error in order to tackle the issue.
In particular, we assume that

• we just have missing links and no false positive record linkage errors;

• missing links create additional singletons only;

• each captured specimen has the same probability of being mistakenly classified as a singleton
independently of the other.

GRASPA 2023 Workshop 2



2 THE MISSING LINKS MODEL

Despite these assumptions, we resorted to a Bayesian likelihood–free approach as the most conve-
nient method in order to estimate the true observed abundances.

2 The missing links model

Say we observed n species in our sample with abundances y1, ...,yn. Let n j be the number of species
with j observed captures, such that ∑ j≥1 n j = n. We denote as D the observed data (n1,n2, ...). We
assume that these counts can be affected by linkage errors, in particular, a portion of the singletons are
due to missing links errors, and the number of true distinct captured species n∗ is a portion of n. Let n∗j
be the number of true species with j captures, j ≥ 0, and let N∗ be the total number of distinct species
(captured or not), N∗ = ∑ j≥0 n∗j . Let X∗

i be the latent true number of times species i has been captured
in the sample, X∗

i ≥ 0, i = 1, ...,N∗. The generating process of our missing links model is the following:
each specimen has the same probability µ of being missclassified as a singleton. Then, for each species i
captured X∗

i times we have Mi missing links, such that the registered abundance for species i is reduced
from X∗

i to Xi = X∗
i −Mi. Then, Mi has the following Binomial conditional distribution:

P(Mi = mi |X∗
i = x∗i ) = P(Xi = x∗i −mi |X∗

i = x∗i ) =
(

x∗i
mi

)
µmi(1−µ)x∗i −mi . (1)

Let us denote as f ∗(θ) the baseline counting distribution of the true captures X∗
i , defined up to a parameter

θ: { f ∗j (θ)} j=0,1,... = {P(X∗ = j)} j=0,1,.... Clearly, a missing links model is completely defined by f ∗(θ)
and the probability µ.

In order to estimate all counts n∗0,n
∗
1,n

∗
2, ..., we adopt a Bayesian likelihood–free approach exploiting

the generating process of our model described above. We first adopt an ABC rejection sampling and then
a sequential ABC to accelerate the estimation procedure as described in [6].

Mixtures of Poisson are a popular parametric choice for the baseline f ∗(θ). For the sake of simplicity,
in the present work we just consider Poisson and Geometric families for the baseline distribution f ∗(θ).
The prior setting is the following: We set π(θ) as the appropriate conjugate prior depending on f ∗:
λ ∼ Gamma(αλ,βλ) for a Poisson baseline of parameter λ, and p ∼ Beta(αp,βp)) for a Geometric of
parameter p. For the linkage error probability, we set µ ∼ Beta(αµ,βµ). Finally, we set an improper
prior over N∗ in the family π(N∗) ∝ 1/(N∗)k (see, e.g., [1] for a sensible choice of k). All priors are
independent of one another.

2.1 Rejection ABC algorithm

Note that the total number of captured specimens in our sample, call it s, remains unaltered under a
missing links model. That is, we have

n

∑
i=1

yi =
n∗

∑
i=1

x∗i = ∑
j≥1

j n j = ∑
j≥1

j n∗j = s.

As a consequence, while the ABC rejection algorithm, in its simplest form, utilizes draws of the param-
eters from the (independent) priors, in order to exploit all the available information, we want to generate
values of the parameters conditionally on the observed value s. That is, we adopt the following scheme:

GRASPA 2023 Workshop 3



3 THE EFFECT OF MISSING LINKS ON DIVERSITY

1. generate values for (θ,N∗) given s and the priors π(θ) and π(N∗)

2. generate values (n∗0,n
∗
1,n

∗
2, ...) conditional on N∗, θ and s

3. generate a value for µ from the prior π(µ)

4. generate values D̃ = (n∗0, ñ1, ñ2, ...) by simulating missing links over (n∗0,n
∗
1,n

∗
2, ...) given µ

5. retain the current generated values if a measure of distance ρ between the generated data D̃ and
the observed data D is below a certain threshold ε:

ρ(D̃,D)< ε.

In the first step, under a Poisson or a Geometric baseline distribution, we can derive the analytical
form of P(N∗ |s,π(θ),π(N∗)) and generate values of N∗ accordingly. (N∗,s) constitute a sufficient statis-
tic for the Poisson and the Geometric. Hence, the posterior distribution π(θ |N∗,s) is easily derived and
values of θ can be easily sampled.

In step 2., we note that the distribution of (n∗0,n
∗
1,n

∗
2, ...) conditional on N∗ and s is independent of θ.

In fact, the joint distribution of N∗ independent Poisson having fixed sum s is Multinomial with constant
probabilities:

P((x∗1, ...,x
∗
N∗) | N∗,s) = Mult

(
s,(1/N∗, ...,1/N∗)

)
,

and, consequently,

P((n∗0,n
∗
1, ...,n

∗
s ) | N∗,s) =

(
N

n∗0 . . .n∗s

)(
s

y∗1 . . .y
∗
N

)
1

(N∗)s .

Then we can easily generate values for (n∗0,n
∗
1,n

∗
2, ...). Similarly, under a Geometric assumption, all

vectors (x∗1, ...,x
∗
N∗) having fixed sum s have the same probability regardless of p, which is then equal

to the reciprocal of the number of possible nonnegative integer N∗-vectors summing to s (or weak N∗–
compositions of s):

(N∗+s−1
s

)−1
, that is,

P((n∗0,n
∗
1, ...,n

∗
s ) |N∗,s) =

(
N∗

n∗0 . . .n∗s

)(
N + s−1

s

)−1

.

As a consequence, we can generate (x∗1, ...,x
∗
N∗) with fixed sum s with an algorithm to generate a random

compositions, (see, e.g., [9]).

In step 3. we simply generate from the prior as µ is independent of N∗ and s. In step 4., we simply
generate missing links at random according to the binomial described in (1), modify accordingly the
observed counts, and increment the number of singletons. (Note that the missing links mechanism has
no effect on n∗0). In step 5. we use the simple euclidean distance.

3 The effect of missing links on diversity

To illustrate the effect of (ignoring) a missing links mechanism on the estimation of diversity, we show
the results of a simulation. As a measure of diversity we consider Shannon’s diversity H (see, e.g., [3])
calculated as:

H = exp

(
− ∑

j≥1
n j

j
s

ln
j
s

)
. (2)
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3 THE EFFECT OF MISSING LINKS ON DIVERSITY

We fix a scenario with N∗ = 10000 true species and a baseline Poisson distribution f ∗ of parameter λ= 3.
We simulated a million datasets (n∗1,n

∗
2, ...) from the baseline distribution, then, for each such sample, we

generated 30 datasets (n1,n2, ...) by simulating the effect of missing links errors for 30 different values of
µ ranging in [0,0.25]. We calculated (2) for the original data and for the data affected by missing links.
In addition, we considered the discounting procedure presented in [3] where the spurious singletons
are eliminated from the observed data. The true number of singletons is estimated on the basis of this
formula:

ñ1 =
2n2

2
3n3

+2n2

(
2n2

3n3
− n3

4n4

)
, (3)

and Shannon’s diversity is calculated over the “adjusted” data (ñ1,n2,n3, ...).

Figure 1 summarizes the simulation results. The horizontal line indicates the average value of H
(8332) over the baseline datasets (n∗1,n

∗
2, ...). The continuous curve going upward represents the average

values of H based on the simulated n1,n2, ..., that is, what we would obtain by ignoring any one–inflation
mechanism. The continuous curve going downward represents the average values of H based on the
adjusted data obtained by substituting the value n1 with (3). That is, what we would obtain by assuming a
discounting approach. The gray areas limited by red dotted lines represent the 95% confidence intervals.

Our Bayesian approach implies the generation of all counts (n∗1,n
∗
2, ...) at each iteration of the algo-

rithm. This allows us to estimate with ease the expectation of H under the missing links model. However,
the computational complexity of the ABC approach does not allow the same number of simulations pre-
sented above. Then, we replicated the simulation 20 times with µ = 0.1 and 20 times with µ = 0.2 with
5000 generations for each ABC. To obtain 5000 accepted generations, each replication of the ABC re-
quired about 50 millions tries. The results were quite encouraging, producing an average of H equal to
8290 for µ = 0.1 and 8420 for µ = 0.2.

In conclusion, we believe that our error model represents a sensible hypothesis for the generation
of additional singletons. Ignoring an existing one–inflating mechanism of this kind, implies a severe
overestimation of the diversity. A discounting approach reduce sensibly the error one commits, but still
leads to different results than what can be achieved with an ABC simulating the actual generating process.

0.00 0.05 0.10 0.15 0.20 0.25

80
00

10
00
0

12
00
0

μ

Figure 1: Shannon diversity over simulated data under different values of missing link probability µ
ranging in [0,0.25].
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