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Abstract
The problem of the information representation and interpretation coming from senses by the brain has plagued scientists 
for decades. The same problems, from a different perspective, hold in automated Pattern Recognition systems. Specifically, 
in solving various NLP tasks, an ever better and richer semantic representation of text as a set of features is needed and a 
plethora of text embedding techniques in algebraic spaces are continuously provided by researchers. These spaces are well 
suited to be conceived as conceptual spaces in light of the Gärdenfors’s Conceptual Space theory, which, within the Cognitive 
Science paradigm, seeks a geometrization of thought that bridges the gap between an associative lower level and a symbolic 
higher level in which information is organized and processed and where inductive reasoning is appropriate. Granular Com-
puting can offer the toolbox for granulating text that can be represented by more abstract entities than words, offering a good 
hierarchical representation of the text embedded in an algebraic space driving Machine Learning applications, specifically, 
in text mining tasks. In this paper, the Conceptual Space Theory, the Granular Computing approach and Machine Learning 
are bound in a novel common framework for solving some text categorization tasks with both standard classifiers suited for 
working with ℝn vectors and a Recurrent Neural Network (RNN) — an LSTM — able to deal with sequences. Instead of 
working with word vectors, the algorithms process more abstract entities (concepts), where patterns, in a first approach, are 
obtained through the construction of a symbolic histogram starting from a suitable set of information granules, represent-
ing a document as a distribution of concepts. For the RNN case, as a further novelty, a text is represented as a random walk 
over prototypes within the conceptual space synthesized over a suitable text embedding procedure. A comparison of the 
performance and a critical discussion are offered for both a neural embedding technique and the well-known LSA, showing 
how the conceptual level leads also to Knowledge Discovery applications.

Keywords Conceptual spaces · Granular computing · Text classification · Word Embedding · Conceptual embedding · 
Long Short Term Memory

Introduction

The human brain can be thought as the best pattern rec-
ognizer in the known universe. Since our early childhood, 
we have been observing patterns in the objects around us 
(e.g., flowers, toys, pets and faces). Learning patterns also 
reinforces, and is reinforced by, the acquisition of language. 
It is well known that most 5-year-old children are already 

able to recognize digits and letters [1]. At the same time, 
scientists, engineers and practitioners know that designing a 
general-purpose machine for Pattern Recognition (PR) able 
to contend in performances the brain remains, today, an elu-
sive goal. PR, intended as a superordinate field, involve dis-
ciplines as Cognitive Sciences, Psychology, Artificial Intel-
ligence (AI), and for some extent, Neuroscience, Linguistics 
and Philosophy. As a discipline which studies the ability of 
discovering and recognizing regularities in observations, PR 
can help to understand how human perception works and to 
discover the secrets behind the ability to gain new knowl-
edge and to exploit it in appropriate ways. So forth, besides 
giving more insights into the study of human senses and the 
neural system, PR allows to build up automated systems 
adopted in medical diagnosis, industrial inspection, personal 
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identification, man-machine interaction, Natural Language 
Processing (NLP) tasks, etc.

From its own side, an open issue in Cognitive Science is 
the causal relation of low level phenomena occurring in the 
senses and the nerves onto higher levels of understanding 
and conceptual thinking [2, 3]. Interestingly, it is an open 
issue even in automated mechanical PR, even if we are deal-
ing with sensors, actuators, processing units etc.

In fact, one of the main problems that affect both disci-
plines (namely automated PR and Cognitive Sciences), each 
one within its own phenomenology, is the “representation” 
[4, 5]. In other words, Cognitive Science, in studying the 
cognitive activities of humans and other animals, provides 
us with a set of explanatory theories and even a set of con-
structive prescriptions that can aid to design artifacts like 
robots, animats, and chess-playing programs, with the aim 
of accomplishing various cognitive tasks. A key issue is the 
representation of information or data, in such a way that 
the cognitive system can be modeled, starting from stimuli 
coming from biological or digital sensors to high-level pro-
cessing capabilities, for example, to perform tasks on higher 
semantic levels. It can be affirmed, without pretense of com-
pleteness, that self-organizing phenomena of the physical 
world are relevant also for understanding cognitive processes 
[6]; hence, some properties of cognitive systems are in reso-
nance with the ones attributed to Complex Systems. Even 
language and text production can be thought as activities 
of complexly organized brains [7] and semantic meaning 
can be hidden in the middle-ware of the complexity around 
us. The engineer Alfred Korzybski, the inventor of General 
Semantics, giving great importance to language and the use 
of words, in 1933 affirmed that thinking is a matter of mul-
tilevel order of abstraction and content is a declination of 
the structure with complex relationships [8]. The multilevel 
order of abstraction can be found even in the organization 
of most Complex Systems where emergent properties and 
vertical information processing generate new abstract levels 
dominated by its own semantic content.

From a computational point of view Granular Computing 
(GrC) is the umbrella term to cover any theories, method-
ologies, techniques, and tools that make use of information 
granules in complex problem solving [9, 10]. Information 
granules are atomic units [11] that naturally give rise to 
hierarchical structures: the same problem or system can be 
perceived at different levels of specificity (detail), depending 
on the complexity of the problem, the available computing 
resources and the particular needs to be addressed [9, 12]. 
Some authors (e.g., W. Pedrycz) conceive GrC as a concep-
tual and algorithmic platform supporting analysis and design 
of human-centric intelligent systems [13]. Zadeh, the scien-
tist who made fuzzy logic great, considers GrC as a basis for 
computing with words, i.e., computation with information 
described in natural language [14, 15]. For example, the text 

in a book can be seen as an increasing granulation of the 
information content starting from the alphabet letters and 
ending with the aggregation of concepts and topics, passing 
through “mesoscopic” structures such as words, sentences, 
paragraphs, chapters and so on. In this regard, E. G. Altmann 
et al. affirm that [16]: “literary texts are an expression of 
the natural language ability to project complex and high-
dimensional phenomena into a one-dimensional, semanti-
cally meaningful sequence of symbols. For this projection 
to be successful, such sequences have to encode the informa-
tion in form of structured patterns, such as correlations on 
arbitrarily long scales”.

Moreover, dealing with text, in automated PR systems the 
representation problem becomes more difficult because text 
is intrinsically structured at various levels, while classical 
PR problems solved by standard Machine Learning (ML) 
approaches need to work with the ℝn vector space geometry. 
In general, the GrC approach allows designing automated PR 
problems able to deal directly with structured or unconven-
tional input domains [17]. Hence, a challenging task is find-
ing effective models and algorithms able to represent and 
process a set of samples coming from a structured domain.

The aim of the current work is twofold:

– from a more general point of view, it tries to investi-
gate how to bridge the gap between some findings in 
Cognitive Science (the Conceptual Spaces and Prototype 
Theory [3, 18] and so forth) and the GrC approach in 
light of the problem of representation of text excerpts in 
text mining problems;

– from a specific point of view, the objective of the current 
study is to experiment some text embedding methods 
through a GrC approach, known as symbolic histograms 
[19, 20], in solving two specific text classification prob-
lems through some standard Machine Learning algo-
rithms able to process n-tuple of real numbers or more 
structured objects, such as sequences.

It is well known that in PR applied to text data a traditional 
representation approach consists in embedding words or 
documents in a mathematical space with useful algebraic 
properties, such as a linear vector space, also known as fea-
ture space. The essence of such algebraic space, capturing 
some kind of co-occurrence between words and contexts, 
is built on the top of Distributional Semantics (DS) [21], 
grounded, in turn, on the distributional hypothesis: simi-
larity of meaning correlates with similarity of distribution. 
After all, Wittgenstein claimed in his Philosophical Inves-
tigations, that “the meaning of a word is its use in the lan-
guage” [22]. In other words, as the American linguist Z.S. 
Harris sustained: “words that are used and occur in the same 
contexts tend to purport similar meanings” [23] or para-
phrasing the British J. R. Firth “a word is characterized by 
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the company it keeps” [24]. In ML, specifically in document 
classification or even in Computer Vision [25], the approach 
is known as “bag of words (BoW)” — sometimes known as 
surface form — pointing out the fact that the text is repre-
sented as the frequency of occurrence of each word building 
a feature space for training a classifier [26], disregarding 
grammar and even the order of words. The methodology is 
heavily adopted in Information Retrieval (e.g., the so-called 
traditional Vector Space Model (VSM) [27]) and text mining 
but is well known that it has some limitation, such as (i) the 
orthogonality, (ii) the construction of the vocabulary that 
requires a careful design due to its size, (iii) the sparsity of 
the model and the lack of context due to the discarding all 
information brought by surrounding words.

Researchers have attempted to address the representations 
of natural language that are capable of capturing meaning 
through what they call semantic spaces, a set of language 
models that adopt the DS. For example, the Hyperspace 
Analogue to Language (HAL) [28] is a method for creating 
a simulation that exhibits some of the characteristics of a 
human semantic memory finding lexical co-occurrences by 
moving a window of length l over the corpus. HAL allows 
representing words as vectors.

In general, authors refer to the word-context models as 
explicit models, while some family of transformations of the 
underlying data structure leads to implicit representations 
[29]. Canonical co-occurrence models are simpler to imple-
ment and they work well within standard ML pipelines. 
However, they possess a number of drawbacks, for example, 
sparsity (a lot zeros due to Zipf’s law) and high dimensions 
when dealing with huge corpora with large vocabularies. 
A simple frequency count, for example, does not embed 
intrinsically the fact that two words have the same meaning 
(synonymy) because they are treated as named entities, that 
is, they are symbols. Moreover, contexts can be similar too, 
or high-correlated. Furthermore, these raw representations 
can be very noisy.

In order to avoid some drawbacks, a number of implicit 
representations are provided in literature, some of which 
are known as dense representations, because they reach 
a non-sparse representation, often in a reduced feature 
space. The most adopted methodologies, in practice, use 
an implicit representation of features in a latent space 
where latent features are computed starting from the dis-
tributional models. For example, Latent Semantic Analysis 
(LSA), representing the text in a latent space through a set 
of linear algebraic transformations, aims at constructing a 
rich semantic space. LSA is obtained by means of (linear) 
matrix decomposition procedure known as Singular Value 
Decomposition (SVD), allowing dimensionality reduction 
(truncated SVD) and noise filtering. The dense embed-
dings produced by SVD sometimes perform better than the 
raw ones (grounded on PPMI matrices) on semantic tasks 

like word similarity. Various aspects of the dimensionality 
reduction contribute to improved performance. If low-order 
dimensions represent unimportant information, the trun-
cated SVD may be able in removing noise. By reducing the 
input dimension, the truncation may also help the models 
to generalize better to unseen data. Due to interesting, and 
in some ways unexpected, properties, LSA has also been 
proposed as a cognitive model for human language use 
[30, 31]. Other techniques adopt other matrix factoriza-
tion methods, such as the non-negative matrix factorization 
(NMF) or ML methods such as GloVE [32], which is based 
on a regression technique.

Recently, in technical literature there are some powerful 
neural approaches, for example, the word2vec algorithm [33, 
34], which embeds the meaning of text in a similar way to 
HAL (windowing), but constructing a dense representation 
training a shallow Artificial Neural Network (ANN) — e.g., 
Skip-gram with negative sampling (SGNS). More recent 
approaches in neural language embedding adopt sophisti-
cated Recurrent Neural Networks (RNN) bound with atten-
tion mechanisms for language modeling, such as the Bidirec-
tional Encoder Representations from Transformers (BERT) 
[35] and related architectures. Another technique that uses 
an external corpus to build a semantic space is the Explicit 
Semantic Analysis (ESA) [36], where words are represented 
as vectors and each entry is a Wikipedia article. In other 
words, each Wikipedia article is a kind of concept and words 
are embedded in a “concept space”. Hence, some attempts in 
embedding “meaning” and working with concepts are based 
on the so-called Bag of Concepts (BoG) [37] that, rather 
than identifying features directly with some surface form, 
utilizes some artifices to make practical the intuition that the 
meaning of a document can be approximated by the union 
of the meanings of terms appearing in the document itself. 
There are a number of practical implementations of BoC 
that uses concept vectors. They differ on how they construct 
the concept space, for example, adopting implicit or explicit 
representations, such as Word-net [38] like approaches or 
hyper-linked encyclopedic textual corpora.

In this paper, as concerns the textual conceptualization, 
we deal with a simple type of BoC useful for building a suit-
able feature space, where both traditional ML algorithms or 
advanced ones, such as RNN — for example, a Long Short 
Term Memory (LSTM) — can safely operate.

In doing so, as stated above, we adopt GrC as a general 
toolbox, while the road-map of the proposed approach is 
grounded by a specific approach mediated from Cognitive 
Psychology and in general from Cognitive Science, that 
is the “Conceptual Space” [3]. The theory of Conceptual 
Spaces is a modern extension of Prototype Theory developed 
by Rosch [39, 40]. P. Gärdenfors affirmed that the problem 
of representation in Cognitive Science, thus the problem of 
the vertical information processing where stimuli and senses 
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data become high-level thinking and concepts, is due to the 
lack of a middle level between the Sub-conceptual Repre-
sentations based on associations and the Symbolic Repre-
sentations where rational thinking operate. This level is the 
Conceptual Level, a bridge where information is organized 
in a smooth space and where the notion of prototype and 
similarity (intended as a mathematical distance) allows to 
deal with concepts and properties (as a particular instance 
of concepts) in representing real-world objects. Concepts 
are particular “natural” regions of the Conceptual Space [3].

The proposed methodology foresees first the embeddings 
of words in a given corpus through either (i) the neural word 
embedding technique — word2vec — that is based on the 
association between words and contexts computed through 
a neural technique or (ii) the classical LSA. The aim here 
is to build a semantic space — a Conceptual Space — were 
words coded by vectors are embedded.

The space of word vectors is, thus, partitioned in “natu-
ral” regions (Voronoi regions) through a clustering algo-
rithm, where regions are intended as a semantically homoge-
neous containers around its prototype. Once constructed the 
Conceptual Space, each word in a given document takes part 
in a new representation, known as a symbolic histogram.

Symbolic histograms [17] is an embedding technique, 
where a pivotal role is played by a set of meaningful and 
recurrent substructures in the original data space, often 
adopted for representing other structured objects lying in 
a non-metric structured space, such as graphs, sequences, 
strings, and images. In the current approach each document 
in a given corpus is represented as a symbolic histogram.

Specifically, concepts are represented by symbols (i.e., 
prototypes). In this sense, the vectors correspond to sub-
symbols [41] that are transformed into symbols through a 
process characterized by information loss.

In other words, a documents is represented as a prob-
ability distribution on a set of alphabet symbols — we will 
call representatives of concepts among the Conceptual 
Space — used as feature vector for feeding a classification 
algorithm. Specifically a comparison will be offered among 
Random Forest (RF), a Support Vector Machine (SVM) 
and an advanced RNN model able to deal with sequences 
(LSTM). In the last case, as further novelty, instead of a clas-
sical features space where features are concepts, the RNN 
processes sequences of concepts, that is, ultimately, a new 
representation of a document. By the way, Wiggins argues 
[42] that learning is not only a matter of acquiring static 
co-occurrences, unless it includes generalization and the 
ability of processing sequences of events or even sequences 
of concepts.

In light of the Conceptual Space Theory this approach 
adds a middle layer in the representation/embedding of 
text in documents. Hence, starting from a sub-conceptual 

layer where associations dominate the representation (neu-
ral embedding or LSA), the construction of the alphabet 
— obtained at training time — is based on a conceptual 
organization of the underlying associative layer, where are 
elicited a set of (read a small number of) prototypes that, in 
turn, offer a symbolic level used to build the embedding rep-
resentation by symbolic histograms. The proposed embed-
ding allows representing documents in a smaller feature 
space in term of dimension compared to BoW approaches, 
providing a good performance for further recognition tasks. 
Moreover, the new feature space constructed on the top of 
the granulation of the semantic information contained in 
the word embedding model is a classical real-valued feature 
space, allowing the adoption of standard ML algorithms (as 
mentioned earlier). This is a strong point of the proposed 
approach. It is worth to note that the proposed methodologi-
cal framework opens the way to knowledge discovery appli-
cations and, in general, to the Explainable AI paradigm [43, 
44]; a fact not so obvious for the modern neural architectures 
used in the NLP context.

The paper is organized as follows.
In “Related Works’’ a brief overview of related works is 

reported. In “Background: Prototypes and Conceptual Spaces’’ 
the Conceptual Space Theory and the Prototype Theory are 
outlined. In “Methods’’ is presented the adopted approach 
and the problem framing. The description of the data sets for 
the experiments and the main results are provided in “Experi-
ments’’. Lastly, conclusions are drawn in “Conclusions’’.

Related Works

The symbolic histograms technique within the GrC model is 
widely adopted in many PR tasks [17], such as online hand-
writing recognition [45] or protein classification [46]. This 
technique is heavily adopted when dealing with unconven-
tional structured data, such as graphs, for example, performing 
frequent substructures mining in graphs seriation [47, 48] and 
classification methods [19, 49]. In the specific field of text 
mining and text categorization GrC is found very promising 
[50, 51]. Concerning Knowledge Discovery applied to text 
mining problems, authors in [52] deal with concept formation 
and concept relationships identification through constructing 
a granules’ network. An automatic text categorization system 
is proposed in [53] considering a document as an ordered 
sequence of words, proposing a system able to automatically 
mine frequent terms, considering as a term not only a single 
word, but also a sub-sequence of a few consecutive words 
(i.e., n-grams). The categorization system is tailored to pro-
cess sequences of atomic elements (i.e., encoded words) by 
means of an embedding procedure based on clustering and 
adopting the symbolic histograms technique.
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Many authors have adopted the BoC terminology refer-
ring to some technique for dealing with more general repre-
sentations of words or sentences rather than the BoW model. 
In [37] authors adopt a particular technique within the BoC 
paradigm called Random Indexing, training a SVM with 
good results. Random Indexing is even used in [54] along 
with the Holographic Reduced Representation, previously 
proposed in cognitive models, which can encode relations 
between words. In [55] authors propose the cross-language 
concept matching (CLCM) technique, which relies on Wiki-
pedia inter-language links to convert concept vectors from 
the Spanish to the English language space. They synthesize a 
classifier of text documents, represented as vectors in spaces 
of Wikipedia concepts, and provide an analysis of its suit-
ability for classification of Spanish biomedical documents 
when only English documents are available for training. 
An approach, called Mined Semantic Analysis, is proposed 
in [56]. The study tries to address and mitigate problems 
arising in concept space models, such as the limitation to 
direct association between words and concepts, affecting 
the ability of models to transfer the association relation to 
other implicit concepts which contribute to the meaning of 
these words. The particular BoC paradigm is able to build 
concepts through concept rich encyclopedic corpora, even 
exploring the “see also” link graph in Wikipedia. A different 
declination of the BoC technique is provided in an interest-
ing investigation [57] in line with the current research work, 
where authors creates concepts through clustering word vec-
tors generated from word2vec and using the frequencies of 
clusters’ representatives to compute document embedding 
vectors. They propose a suitable weighting scheme, such as 
the concept frequency-inverse document frequency. Through 
these data-driven concepts, the method allows semantically 
similar words to be preserved effectively in a suitable docu-
ment proximity measure. A related BoC approach is pro-
posed in [58] solving an emotion estimation task from text 
excerpts, characterized even by youth slang, an ambiguous 
and difficult task when using existing dictionaries, such as 
thesaurus. In an interesting work [59] authors try to out-
perform the lack of concept overlapping in some text min-
ing tasks,resulting in a data sparsity problem, proposing an 
efficient vector aggregation method, grounded on a neural 
embedding model, able to generate fully continuous BoC 
representations.

Background: Prototypes and Conceptual Spaces

Humans are extremely efficient at learning new concepts. 
Cognitive Science is interested in how to model concept 
learning starting from the ability of humans to learn con-
cepts from a few examples. On the other side, ML, along 
with the data-driven approach, uses its own models to learn 

from examples. The main approaches in modeling con-
cept learning are the one known as “symbolic” and the one 
known as “associationist” [3]. The symbolic approach starts 
from the assumption that cognitive systems can be described 
as Turing machines. Hence, cognition is a matter of symbol 
manipulations. Within the associationists paradigm associa-
tions between different kinds of information elements carry 
the main burden of representation [60]. The Swedish cogni-
tive scientist P. Gärdenfors sustains that connectionism — 
the ANN approach — is a special case of associationism [3]. 
However, the same author admits that there is no unique cor-
rect way of describing cognition. There are phenomena that 
neither the symbolic representation nor the associationist 
appears to offer appropriate modeling tools. He proposes the 
“Conceptual Spaces”, as the framework placed in the middle 
of the two main approaches, that is the most appropriated for 
modeling concept learning and representation. The theory of 
conceptual spaces, due to its versatility and capability even 
when in dealing with high-dimensional spaces, has been 
extended together to the 3-way formal analysis to investi-
gate phenomenal consciousness, within a quantum frame-
work [61]. By the way, the three approaches mentioned can 
be seen as three levels of representations of cognition with 
different scales of resolution or “granulation”. Conceptual 
Spaces are able to geometrize the thought, because world 
objects are embedded in a geometric space where the notion 
of distance, region and prototype can be used to model con-
cepts [62]. Actually, the embedding of real-world objects, 
through a series of suitable measures on them, is a normal 
procedure in automated PR systems. Measurable proper-
ties in automated PR and ML are called “features”, while 
in Conceptual Space theory they are called “quality dimen-
sions”. However, neither with the symbolic approach (as an 
example, the first-order logic) nor with the associanist/con-
nectionist approach, it is easy to deal with similarities [3]. 
While the associationist approach suffers for the black-box 
problem — think to ANN — the symbolic approach seems 
not working at the appropriate abstraction level, for example, 
lacking in creative induction, new knowledge creation and 
basically being not able to perform conceptual discoveries. 
Moreover, the symbolic approach lacks in automatic man-
agement of semantic and meaning. On the contrary, in Con-
ceptual Spaces induction can be derived “naturally” from the 
metric properties of the underlying algebraic space, allowing 
what is known in automated PR and ML as “generalization 
capability”. That is, the capability of generalizing predic-
tions on unseen data. By the way, P. Gärdenfors asserts that 
the symbolic level is not completely non-significant and it 
depends strictly on the underlying conceptual level [3].

An important distinction, useful in the context of the cur-
rent work and due to Palmer [63], is about intrinsic and 
extrinsic representation. The former, is valid when the 
representing relation has the same inherent constraints as 
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its represented relation. For example, in the isomorphism 
between the dimension “age” and the “height” of a bar in 
a chart, the structure of the represented relation (age) is 
intrinsic in the representing relation (height). In contrast, 
extrinsic representations must be accompanied by a rule 
that specifies how the representation is to be interpreted; 
such a rule provides the “meaning” of the representation. 
On the symbolic level, atomic concepts are not modeled, just 
named by the basic symbols. Even if complex concepts can 
be constructed through compositions of logical or syntacti-
cal rules, they remain extrinsically represented. In DS the 
BoW model considers intrinsically words as named entities, 
that is, as symbols with no further relational structure and 
the frequency count for representing documents is a symbol 
count. This leads to the synonymy problem.

Within the Conceptual Space theory the geometric char-
acteristics of the quality dimensions are utilized to introduce 
a spatial structure for properties:

Criterion P: A Natural Property is a Convex Region in Some 
Domain A subset C of a conceptual space S is said to be 
convex if, for all points x and y in C, all points between x 
and y are also in C [3]. It’s worth to note that Criterion P 
assumes that a notion of “betweenness” among objects is 
provided when each concept is represented as a point in a 
given space [3]. Convexity, for example, is mantained for 
the color naming and the three-dimensional representation 
of the color space. It is worth to note that properties defined 
by the Criterion P are a special case of concept.

Studying the phenomenology of colors and its percep-
tual representation in Cognitive Psychology E. Rosch and 
collaborators defined the Prototype Theory providing us 
with a model of categorization [39, 40]. The main idea in 
this theory is that within a category of objects, like those 
instantiating a property or a concept, certain members are 
judged to be more representative of the category than oth-
ers. That prototype representation of a category is gener-
ally taken to be a generalization or abstraction of a class of 
instances falling into the same category [64]. In cognitive 
linguistics a prototype is a typical instance of a category and 
other elements are assimilated to the category on the basis 
of perceived similarity to the prototype [65].

The appealing feature of Conceptual Space lies in the 
underlying algebraic structure, that can be metric. This 
means that are fulfilled all or some properties of metric 
spaces [66]. A natural partition of such spaces is the Voro-
noi tessellation, a particular tessellation of the space based 
on a simple rule. If p1, p2, ..., pn are prototypes of a space 
S, the Euclidean distance dE(p, pi) among a point p and the 
prototypes pi can be defined. If we now state that p belongs 
to the same category as the closest prototype pi , it can be 

shown that this rule will generate a partitioning of the space, 
the so-called Voronoi tessellation [67]. Not every distance 
metric (e.g., Manhattan or in general the Minkowski dis-
tance for some values of its parameter) generates a set of 
regions that fulfill the convexity property, however, for the 
Euclidean distance this property holds. Among the many 
methods used to compute Voronoi cells [67], the cluster-
ing algorithm k-means can help, in an unsupervised fash-
ion, to compute centroidal Voronoi regions, where centroidal 
points are the centroids of the regions [68]. Hence, centroids 
are isomorphic to prototypes of some Conceptual Space. 
Thereby, depending on the nature of the space S (i.e., the 
nature of dimensions), the Conceptual Space becomes a 
semantic space (here the term semantic is used in a weak 
interpretation). In this way, the Voronoi tessellation provides 
a constructive geometric answer to how a similarity meas-
ure, together with a set of prototypes, determines a set of 
categories [3]. The Conceptual Spaces have been adopted 
even in trying to pragmatically untie the knot of semantics, 
intended as the relationship between an expression and an 
extralinguistic reality, within the riverbed of the cognitive 
semantics. The last assumes that the referents of words are 
identified with conceptual structures in people’s minds. 
However, semantics is a huge field of study where numer-
ous discipline converges, such as Semiology, Semiotics, 
Linguistics, Psychology, Pragmatics, Communication, and 
Philosophy of Language. In Linguistics and, specifically, in 
Computational Linguistics the meaning, and in general the 
semantic content of a word or expression, assumes a specific 
way of being related to a context, which is empirical and 
measurable. For example, it is common to refer to space 
generated by the BoW model as a semantic space, specifi-
cally, a mathematical space grounded on the DS.

Methods

The approach presented in details hereinafter is an attempt 
of systematizing the theory of Conceptual Spaces with a spe-
cific declination of the BoC paradigm built upon the back-
ground of the GrC approach. The overall processing pipeline 
is composed by several steps where information extracted 
from the text is granulated, and information granules are 
adopted, in turn, in constructing a new embedding space 
grounded on the symbolic histogram technique. The main 
objective is to find an economic representation of documents 
as BoC for classification purposes, hence for text categori-
zation. Following the scheme proposed in Fig. 1, given a 
corpus of documents, the first step is to perform the embed-
ding of words in an algebraic space, called in the following 
Conceptual Semantic Space (CSS). The embedding of words 
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can be performed through various methodologies outlined 
in “Introduction’’. In this work the LSA and the neural word 
embedding through the word2vec algorithm are performed.

The word embedding step is grounded on the co- 
occurrences (collocates) of words obtained through a con-
text window of suitable length. In the case of LSA, the 
word vectors within the reduced latent space are obtained 
on the top of a BoW model with TF-IDF weighting, where 
contexts are documents. Hence, this layer fits with the 
“associative layer” [3]. The word vectors generate a vector 
semantic space endowed with the standard Euclidean norm, 
thus, it is defined a dissimilarity measure based on the 
Euclidean distance [69]. In the case of neural embedding 
through the word2vec algorithm, word vectors are directly 
obtained by the training procedure, ready to be further pro-
cessed. Instead of using directly the word vectors, a Voronoi 

tessellation is computed, where each region coincides with 
a concept whose instances are linked by semantic rela-
tions. The Voronoi tessellation is obtained by computing 
the representatives — the prototypes — through a clustering 
algorithm. The k-means algorithm used in the following, 
but in principle other clustering algorithms can be adopted. 
This step embodies the “conceptual layer” that is the layer 
interposed between the “associative” and the “symbolic” 
one. Figure 2 depicts an example of CSS obtained for a 
corpus of scientific paper abstracts (“Abstracts” data set 
hereinafter), with four classes (“Anatomy”, “Information 
Theory”, “String Theory”, “Semiconductors”) of which a 
deep description will be given in the experiment section. 
The CSS in Fig. 2 is synthesized by a Voronoi tessella-
tion in k = 8 regions, where the prototypes are highlighted 
by crosses. Dots represent words embedded (initially in a 

Fig. 1  Information processing scheme

Fig. 2  Centroidal Voronoi 
regions of the Conceptual 
Semantic Space for the 
Abstracts data set obtained 
through the k-means. Dots 
are words computed with the 
word2vec algorithm (word 
embedding) and projected in a 
bi-dimensional space through 
PCA. Crosses are the prototypes 
for each region. In this explana-
tory example the number of 
conceptual regions are k = 8
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100-dimensional space) through the word2vec algorithm. 
Principal Component scores are computed for dimensional-
ity reduction with the aim of data visualization.

Accordingly, the conceptual semantic layer is the ground 
for a symbolic representation of documents, namely each 
word is abstracted by its concept computed measuring the 
semantic similarity of the vector representation of words and 
the prototypes on the underlying CSS. Thus, documents are 
represented as discrete probability distributions on concepts.

Prototypes are intended, therefore, as symbols of a 
suitable alphabet A of concepts used for the symbolic 
representation.

Let H =
{
D1,D2, ...,DL

}
 be a corpus with L documents, 

where each document D, D =
{
w1,w2, ...w|D|

}
∈ H , hence 

D is a collection of words wi, i = 1, 2, ..., |D| in a vocabulary 
V . The prototype cj ∈ A, j = 1, 2, ..., k , abstracting a con-
cept of a region Rj, j = 1, 2, ..., k of the Conceptual Space 
P, defines what we can call a symbol of a suitable alpha-
bet A . It is worth to note that the parameter k defines the 
level of granulation of the CSS. Each document can be suit-
ably represented by some statistics on the alphabet symbols 
ci ∈ A , namely, if the prototypical region pertaining the par-
tition obtained by word embedding vectors is a “concept”, 
the document is represented as a “bag of concepts”. In the 
limit where the number of prototypes (aka the cardinality of 
the alphabet A ) equals the number of words in the corpus 
of documents H , the standard BoW model is recovered. It 

is worth to note that the symbol ci is obtained by a suit-
able mapping M from the underlying word vector �i ∈ W , 
obtained through the word embedding, and concepts in A , 
that is M ∶ W → A , where M(�i) = cj, j = 1, 2, ..., k , for 
the i-th word within a document.

Figure 3 depicts the word clouds for a CSS P partitioned in 
k = 8 semantic regions. The thickness of each word is propor-
tional to the similarity (based on the Euclidean distance) to the 
prototype computed as the centroid of the conceptual region.

Moreover, in Fig. 4 the symbolic histograms for four 
documents pertaining the classes “Anatomy”, “Informa-
tion Theory”, “String Theory”, and “Semiconductors” of 
the Abstracts data set are reported. The length of a bar rep-
resents the number of occurrences of each one of the (ten) 
symbols (prototypes) for a given class.

The symbolic histogram representation allows naturally 
to embed documents in a vector space giving the way for 
classification or regression ML algorithms. However, there 
are possible other representations. Instead, it is possible to 
build a centroidal prototype for each document simply com-
puting the average of word vector representations of proto-
types. In other words, instead of having a prototype derived 
from a count histogram, we have an average value of word 
vectors prototypes associated to each word in a document. 
This alternative will be introduced more formally below. 
Another quite different representation of documents adopt-
ing prototypes is conceiving a document as a sequence of 

Fig. 3  Concept cloud for each one of the k = 8 conceptual regions for the Abstracts data set. The thickness of each word is proportional to the 
similarity (Euclidean distance) to the prototype computed as the centroid of the conceptual region
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words, hence as a sequence of the prototypes associated to 
words. Namely, a document is represented by a sequence of 
concepts, where concepts are semantic abstraction of words. 
Words, in this setting, are fine-grained representation, while 
concepts pertain to coarser one. This new representation 
gives the way for sequence-based ML algorithm, such as 
the deep learning-based LSTM. Interestingly, this sequence-
based representation allows framing a document as a random 
walk of concepts, instead of a random walk of words.

Classification Problem Framing with  
Symbolic Histograms

A general classification problem instance is defined as a 
triple of disjoint sets, namely training set ( Str ), validation set 
( Svs ), and test set ( Sts ). Given a specific parameters setting, 
a classification model is built based on Str and it is validated 
at training stage on Svs . The generalization capability of the 
optimized model (the one synthesized by the whole training 
procedure) is finally measured on Sts . Hence, given a corpus 
H =

{
D1,D2, ...,DL

}
 composed by L documents D, we have

The CSS P is conceived as a hard partition of order k, as a col-
lection of k disjoint and non-empty clusters, P = {C1, C2, ..., Ck} . 
In this study the partition is obtained through the well-known 
k-means algorithm [70, 71]. Each cluster Ci ∈ P is syntheti-
cally described by a representative or prototype element, which 
we denote as �i = R(Ci) ; let R(P) = {�1, �2, ..., �k} be the set of 
representatives of the partition P.

(1)
H =

{
Str ∪ Svs ∪ Sts|Str ∩ Svs = �,Str ∩ Sts = �,Svs ∩ Sts = �

}
.

The definition of a cluster representative is well defined 
for vector feature spaces equipped with an algebraic struc-
ture, where it can be simply computed as the average vector 
in a set of real-valued vectors, i.e., �i =

∑
�i∈Ci

�

�Ci� .
Alternatively, the representative of Ci can be computed 

as the element �i that minimizes the sum of distances (Min-
SOD) [72]:

In this case the representative is an object of the cluster, 
that is �j ∈ Ci . Note that computing the MinSOD does not 
require an algebraic structure, demanding just the defini-
tion of a dissimilarity measure. From this point of view, the 
MinSOD representative is much more general, and can be 
applied in any data domain.

Finally, each prototype �j identifies a centroidal Voronoi 
region Rj through the Euclidean distance dj =

‖‖‖�i − �j
‖‖‖2 , with 

�i ∈ W , where W is the set of word vocabulary vectors.

Embedding Words

As concerns the word embedding procedure, a compari-
son will be offered between the word embedding obtained 
through LSA, by means of the SVD decomposition, and the 
neural embedding, by means of the word2vec algorithm — 
see “Introduction’’. In particular the two techniques allow 
new ways to represent each word w ∈ V through suitable vec-
tors � ∈ W , just considering a mapping Φ ∶ V → W , from 
the set of vocabulary words to word vectors, i.e., Φ(w) = �.

(2)�i = arg min
�j∈Ci

∑

�k∈Ci

d(�j,�k).

Fig. 4  Symbolic histogram for 
four documents pertaining the 
classes “Anatomy”, “Informa-
tion Theory”, “String Theory”, 
“Semiconductors” of the 
Abstracts data set



 Cognitive Computation

1 3

The Symbolic Histogram Construction

In abstracting a concept, hence a prototype for a word of a 
given document, it is necessary to associate a prototype to 
each word of a given document. Hence, given a document 
D =

{
w1,w2, ...w|D|

}
∈ H as a collection of words wi , and 

its vector representation Φ(wi) = �i first, the nearest cluster 
prototype �∗ ∈ R(P) is individuated according to the follow-
ing expression:

The construction of the symbolic histogram is performed 
as follows. An array �wi

= [�1, �2, ..., �k]
T of indicator func-

tions is constructed, where:

Finally, the symbolic histogram for a document d is pro-
vided by:

Alternatively, instead of constructing a symbolic histo-
gram as an array of counters, it is possible to represent the 
document D ∈ H as the average of the associated centroids 
c(�i) , for each word w ∈ D , that is:

At this point, each document in the corpus has an associ-
ated symbolic histogram, hence a vector of Integers or Real-
valued numbers, depending on the specific rule adopted. In 
other words, documents are embedded in a bag of concept 
vector space.

Classification Layer

Once obtained the new representation, that is, the new vec-
tor space (through the symbolic histograms) or the new 
sequence of concepts, a learning layer can be designed 
depending on the problem at hand. In this work it is faced 
a classification problem comparing three different classi-
fication algorithms, namely SVM with Gaussian Kernel 
[73, 74], Bagged Tree RF [75, 76] and LSTM [77–79]. The 
first two learning algorithms are suited for working with 
Real-valued patterns, while LSTM is conceived for learn-
ing with a representation grounded by sequences of objects. 
Specifically, in the current approach LSTM is fed by the 
sequences of prototype vectors c(�)i obtained through Eq. 3 

(3)c(�) = �
∗
�
= argmin

�j∈R(P)

d(�, �j).

(4)�j =

{
1 if c(�i) = �j, i = 1, 2, ..., |D|
0 otherwise.

(5)�
D =

|D|∑

i= 1

�wi
.

(6)�
D
avg

=

|D|∑

i= 1

c(�i)

|D|
.

corresponding to the sequence of words wi pertaining a 
given document D. These classification algorithms belong 
to three big and heterogeneous families of learning algo-
rithms, namely kernel-based, where learning is conceived as 
a convex optimization problem (SVM), random tree-based 
(RF), and deep learning-based, specifically RNNs. Hence, 
this choice guarantees the diversity of the learning para-
digms applied to the proposed method. It is worth noting that 
RF algorithms are based on the bootstrap technique (some 
samples will be used multiple times) and the observations 
that are out of the bootstrap sample are called out-of-bag 
(OOB). This technique allows estimating the importance of 
variables (features) through a suitable procedure described, 
for example, in [80].

Experiments

Data Sets

As concerns text data for experiments, the “Reuters-21578” 
data set and the “Abstracts” data set have been used. Reuters- 
21578 is a benchmark data set for document classification 
consisting in 8 classes. The collection of documents appeared 
on the Reuters news-wire in 1987. The documents were 
assembled and indexed with categories by personnel from 
Reuters Ltd. [81]. The adopted splitting is the “ModApte” 
split [82] on 7674 documents and 8 classes. The “Abstracts” 
data set is a collection of 575 abstracts of scientific papers 
belonging to 5 classes (‘Anatomy’, ‘Information theory’, 
‘Smart Grid’, ‘String Theory’, ‘Semiconductors’), collected 
by authors. Some statistics on the experimented data sets are 
reported in Tables 1 and 2. The former provides some general 
information about the data set, while the latter reports some 
statistic per class, such as the mean and standard deviation of 
document length per class.

Specifically, in Table 1 the total number of documents ( # 
docs), the dimension of the vocabulary before pre-processing 
( |V| ), the dimension of the vocabulary after the pre-processing 
( |V|pre ), the number of classes ( # class) and the average length 
of documents in terms of tokens (words) ( ||D̄|| ) with stand-
ard deviation in brackets are reported. In Table 2 the class 
names (class), the average length of documents in term tokens 

Table 1  Data set statistics (in brackets it is reported the standard deviation)

# docs. |V| |V|
pre

# class. ||D̄||

Reuters-21578
7674 23585 20768 8 67.649 (68.080)
Abstracts
575 8722 6585 5 65.464 (31.687)
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(words) ( ||D̄|| ) with standard deviation in brackets and the num-
ber of documents per class ( # docs) are reported. In Fig. 5 the 
statistics on document lengths per class and for each data set 
are reported, while in Fig. 6 the histograms of the length of 
documents for both data sets are depicted. This information 
will be useful for setting the sequence length parameter for 
experiment with the LSTM algorithm.

In Fig. 7 the class distributions for both the data sets are 
reported. We note that the “Reuters-21578” data set has a 
heavy skewed class distribution leading to a strong unbal-
anced data set, making challenging the classification task, 
while the “Abstracts” data set classes are equally distributed.

Experimental Settings

As concerns the performance measures of the classifiers, 
several metrics for the multi-class case are adopted.

Specifically, considering the i-th class ( i = 1, 2, ...|C| ) of 
the available data sets it is possible to define:

– TPi (true positive): number of patterns belonging to the 
i-th class and correctly classified by the system;

– FNi (false negative): number of patterns belonging to the 
i-th class whose class is incorrectly assigned to the ith 
class predicted by the system;

– FPi (false positive): number of patterns not belonging to 
the i-th class whose class is incorrectly by the system.

– TNi (true negative): number of patterns belonging to the 
i-th class and correctly classified by the system.

Starting from these metrics a set of derived indicators 
for each class can be computed, such as the Accuracyi , 
Precisioni and Recalli together with other global figures of 
merit, such as the Informedness and the Cohen’s Kappa. 
Besides these metrics, the global classification performances 
can be assessed in two ways: (i) macro-averaging that is the 
average of the same measure calculated for each class, (ii) 
micro-averaging that is the sum of counts to obtain cumula-
tive TP, FN, TN, FP and then calculating the performance 
measure. Macro-averaging treats all classes equally while 
micro-averaging favors classes characterized by a relative 
higher number of patterns [83].

The final metrics adopted in the current study are (the 
higher, the better):

– the average Accuracy (Acc.) in [0,1], that is the average 
per-class effectiveness of a classifier;

– the Precision (P) in [0,1], that is the fraction of relevant 
instances among the retrieved instances by the classifier;

– the Recall (R) in [0,1], that is the fraction of the total 
amount of relevant instances that were actually retrieved 
by the classifier;

– the Informedness (Inf.) in [0,1] — known as J-index — is 
the maximum distance between the bisector diagonal line 
of the Receiver operating characteristic (ROC) [84] dia-

Table 2  Data set statistics per class (in brackets it is reported the stand-
ard deviation)

class ||D̄|| # docs.

“Reuters-21578”
  ‘acq’ 118.240(113.866) 2292
  ‘crude’ 187.297(155.367) 374
  ‘earn’ 65.642(76.740) 392
  ‘grain’ 183.765(182.954) 51
  ‘interest’ 118.672(154.255) 271
  ‘money-fx’ 161.867(173.211) 293
  ‘ship’ 149.924(85.788) 144
  ‘trade’ 234.460(179.296) 326

“Abstracts”
  ‘Anatomy’ 96.400(43.593) 115
  ‘Information theory’ 146.148(52.508) 115
  ‘Smart Grid’ 148.843(51.823) 115
  ‘String Theory’ 84.809(44.047) 115
  ‘Semiconductors’ 126.565(63.512) 115

(a) (b)

Fig. 5  Document length per class
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gram and the ROC curve estimated. It indicates the prob-
ability of an informed decision compared to a chance;

– the Cohen’s kappa (kappa) in [0,1] that, considering 
the classification task as a rating process, measures 
inter-rater reliability (sometimes called inter-observer 
agreement) [85];

– the macro F1 score (Fmacro) in [0,1] that is the 
unweighted mean of the F1 scores calculated per class, 
where F1 =

2TP

2TP+FP+FN
 [83];

– the micro F1 score (Fmicro) in [0,1] the same expression 
as Fmacro, but using the total number of TP, FP and FN, 
instead of computing these scores for each class [83].

The experimental settings are organized as follows.
In order to assess the proposed approach, two main sets 

of experiments are provided. The first set aims at compar-
ing the three learning algorithms (namely, LSTM, C-SVM, 
RF) adopting both the word2vec and the LSA embedding, 

for both “Abstracts” and “Reuters-21578” data sets. The 
embedding is computed on the given corpus. In this case 
the cardinality of the alphabet A , that is the number of 
clusters k or the number of concept regions, is left to vary 
in the integer range [2,1002] (see Fig. 8), while a snapshot 
of the performance, for k = 502 , is provided in Table 3 for 
the “Reuters-21578” data set and, for k = 202 , in Table 4 
for the “Abstracts” data set. The specific choice of the 
granularity level k has been made simulating an arbitrary 
setting where we have no information about the variability 
of the performance as function of the granularity level. 
In other words, this setting simulates the case in which 
the performance cannot be computed for an increasing set 
of granularity levels due to, for example, computational 
and time constraints. The best granularity level, instead, 
is considered in the second set of experiments. In fact, 
the second set of experiments — reported in Tables 5 
and 6 — allows evaluating and comparing the proposed 

Fig. 6  Document length histogram

(a) (b)

Fig. 7  Class distribution for the experimented data sets
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methodology with a baseline approach. Specifically, for 
the mentioned learning algorithms the best level of gran-
ulation k in terms of performances is compared with a 

classical approach where the feature vectors representing 
documents are obtained either from the TF-IDF represen-
tation or from the LSA representation. In other words, the 
features for the classification task are the TF-IDF weighted 
words count or the weights related to the latent variables, 
respectively. In the end, taking advantage of the implicit 
features weighting offered by the RF algorithm, a task 
of knowledge discovery is performed. Hence, a thresh-
old filtering is adopted in order to select and show the 
most important concepts within the concept region that, in 
turn, allowed reaching a good classification performance. 
Before discussing the main results, it is worth to deal with 
the text pre-processing steps and the parameter setting of 
the adopted learning algorithms.

Regarding the pre-processing steps, words in documents 
are lowercased and stop words are eliminated using a stop 
words list.

As concerns the LSTM algorithm, it is preceded by a 
word embedding layer (through the word2vec algorithm)  
— namely a concept embedding layer — with a dimen-
sion of the word vectors equal to 100. The LSTM layer 
foresees 180 cells followed by a fully connected layer and 
a softmax layer. The classification layer computes the 
cross entropy loss for multi-class classification problems 
with mutually exclusive classes. The maximum number 
of epochs is set to 50, while the initial learning rate is 
set to 0.005. In the case of SVM, a C-SVM with multiple 
kernels is used. A set of hyper-parameters are optimized 
with the Bayesian optimization technique and 5-fold 
cross validation. Specifically, the hyper-parameters  
optimized are the multi-class coding (One-versus-All 
and One-versus-One), the Box Constraint, the scale of 
the kernel, the type of kernel function (Gaussian, linear, 
polynomial), the polynomial order and the binary vari-
able indicating whether standardize data or not. For the 
ensemble learning, an ensemble of boosted classification 
trees is experimented, hence with trees as weak learn-
ers. Even in this case, a Bayesian hyper-parameters opti-
mization has been chosen and 5-fold cross validation is 
performed. In particular the optimization of the training 
algorithm (Bag, Subspace, AdaBoostM1, AdaBoostM2, 
GentleBoost, LogitBoost, LPBoost, RobustBoost, RUS-
Boost, TotalBoost) and the number of learning cycles [80, 
86–88]. The OOB performance is measured for establish-
ing the predictor importance.

Where not specified, for robustness purposes, the opti-
mizations of hyper-parameters or the simple learning rou-
tines (for example, in LSTM) are repeated three times and 
performance results are averaged. The data set splitting for 
the training set Str and test set Sts is 80%, 20%, respectively, 
both for C-SVM and RF. In the case of LSTM the data set is 
split in training set Str , validation set Svs , test set Sts with the 
following percents: 50%, 25%, 25%, respectively.

Table 3  Classification performances for a given granularity level k 
for LSTM, C-SVM and RF (“Reuters-21578” data set)

Reuters-21578 data set

LSTM C-SVM RF

word2vec
k 502 502 502
Acc. 0.9469(0.0000) 0.9495(0.0000) 0.9322(0.0000)
P 0.8294(0.0009) 0.8568(0.0000) 0.8856(0.0000)
R 0.8305(0.0002) 0.8339(0.0002) 0.6985(0.0002)
Inf. 0.8219(0.0002) 0.8251(0.0001) 0.6861(0.0002)
Kappa 0.7571(0.0000) 0.7647(0.0000) 0.6902(0.0000)
Fmicro 0.9469 0.9485 0.9322
Fmacro 0.8255 0.8448 0.7766
LSA
k 502 502 502
Acc. 0.9092(0.0004) 0.9545(0.0000) 0.9325(0.0000)
P 0.7148(0.0004) 0.8921(0.0007) 0.9101(0.0001)
R 0.7274(0.0010) 87321(0.0001) 0.7020(0.0003)
Inf. 0.7125(0.0013) 0.8653(0.0001) 0.6895(0.0003)
Kappa 0.5851(0.0069) 0.9545(0.0003) 0.6916(0.0004)
Fmicro 0.9092 0.9545 0.9325
Fmacro 0.7188 0.8817 0.7930

Table 4  Classification performances for a given granularity level k 
for LSTM, C-SVM and RF (“Abstracts” data set)

Abstracts data set

LSTM C-SVM RF

word2vec
k 202 202 202
Acc. 0.8527(0.0022) 0.9478(0.0000) 0.9275(0.0001)
P 0.8662(0.0016) 0.9492(0.0000) 0.9296(0.0001)
R 0.8547(0.0021) 0.9478(0.0000) 0.9275(0.0001)
Inf. 0.8179(0.0033) 0.9348(0.0000) 0.9094(0.0002)
Kappa 0.5397(0.0216) 0.8370(0.0000) 0.7736(0.0017)
Fmicro 0.8527 0.9478(0.0000) 0.9275
Fmacro 0.8552 0.9485(0.0000) 0.9283
LSA
k 202 202 202
Acc. 0.8721(0.0034) 0.9302(0.0001) 0.9362(0.0000)
P 0.8686(0.0040) 0.9334(0.0000) 0.9400(0.0000)
R 8728(0.0034) 0.9305(0.0001) 0.9362(0.0000)
Inf. 0.8407(0.0053) 0.9130(0.0002) 0.9203(0.0000)
Kappa 0.6003(0.0033) 0.7815(0.0014) 0.8007(0.0002)
Fmicro 0.8721 0.9301 0.9362
Fmacro 0.8702 0.9313 0.9378
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Results and Granularity Assessment

Fixing the concept granularity value to k = 202 — see 
Table 4 — where the three classification algorithms are 
compared both with the word2vec embedding and the LSA 
embedding in building the concept space over the “Abstracts 

dataset” (that is balanced), best classification performances 
in term of Accuracy (0.94) are obtained with C-SVM with 
word2vec. The second best performances are obtained with 
RF and C-SVM (Accuracy 0.93) with the LSA embedding. 
LSTM reaches lower performances on both embeddings 
with an Accuracy of 0.85 for word2vec and 0.87 for the 

Fig. 8  Classification performance varying the number of concept regions from 2 to 402 (“Abstracts” data set) for the LSTM, SVM, RF algo-
rithms, for both word2vec and LSA techniques
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LSA embeddings. Interestingly, if we compute the figures 
of merits as the granularity of the concept space increases 
(varying k), by inspection of Fig. 8, it is found that with a 
very low number of concepts all classifiers achieve higher 
performances that, in turn, stabilize till the end of the experi-
mented range ( k = 1002 ). A similar behavior can be found 
analyzing the “Reuters-21578” data set. Here the granularity 
level is fixed to k = 502 . Also in this case the performance 
in terms of classification capability increases quickly ris-
ing k (graphs not shown for the sake of brevity). However, 
in this case, examining the results reported in Table 3, the 
higher Accuracy value is attained by C-SVM (0.95 with LSA 
embedding), but even the LSTM obtains a good Accuracy 
(0.94 with word2vec embedding).

If we consider the classification task as a rating process, 
Cohen’s kappa coefficient is low for LSTM and RF, for 
both embeddings, but reaches the highest value for C-SVM 
with word2vec embedding. In terms of Fmicro and Fmacro 
C-SVM obtains its best results with the word2vec embed-
ding. The best informed decision, taking into account the 
unbalance of the “Reuters-21578” data set is achieved by 
C-SVM with Informedness of 0.86 (LSA embedding). 
In general, as an expected behavior, we have a moderate 
variability of the classifiers’ performances for both embed-
dings and data sets. The low Accuracy attained by LSTM 

for the “Abstracts” data set is likely to be addressed to the 
low granularity level and the short dimension of the data 
set, in terms of the number of documents and documents 
length. However, if we look at results for the best granular-
ity level reported in Table 6 (“Abstracts” dataset), where 
the three classifiers are compared for both embedding types 
and with the TF-IDF features, LSTM obtains better perfor-
mances with Accuracy 0.90 (word2vec embedding for best 
k = 222 ) and 0.92 (LSA embedding for best k = 162 ), out-
performing the plain case (Accuracy 0.70), where sequences 
are directly generated without conceptualizing the corpus. In 
this particular setting, C-SVM with LSA embedding, for the 
best k = 382 , outperforms both LSTM and RF. For C-SVM 
the LSA embedding adopted for constructing the concep-
tual space is found better than the TF-IDF case (Accuracy 
0.98 and 0.96, respectively). It is worth to note that for both 
C-SVM and RF the results for the plain case (TF-IDF feature 
space) are good (RF attains an Accuracy of 0.97 for k = 342 
and 0.95 with TF-IDF) in spite of the high dimensionality of 
the features space. This confirms the capability of both clas-
sifiers to work well in high-dimensional spaces. Both algo-
rithms achieve high Accuracy and high Informedness for a 
similar granularity level above k = 300 in the LSA embed-
ding case, while LSTM obtain even good performances 
(Accuracy 0.92) with the same embedding with a very low 

Table 5  Performances comparison over the “Reuters-21578” data set 
between LSTM, C-SVM and RF for both word2vec and LSA embed-
dings. Results of the best granulation level k are compared with the 

plain solution given by a sequence formed by the word vectors related 
to words in the given text for LSTM, and the TF-IDF weighting 
scheme for the other classifiers

Reuters-21578 data set

LSTM C-SVM RF

word2vec sequence word2vec Term Frequency word2vec Term Frequency

best plain best plain best plain

k 622 x 662 x 542 x
Acc. 0.9551(0.0000) 0.9094(0.0002) 0.9657(0.0000) 0.9667(0.0000) 0.9505(0.0000) 0.9332(0.0000)
P 0.8396(0.0001) 0.7449(0.0049) 0.9198(0.0001) 0.9386(0.0000) 0.9207(0.0000) 0.9130(0.0004)
R 0.8350(0.0005) 0.6669(0.0022) 0.8697(0.0005) 0.8942(0.0000) 0.7684(0.0003) 0.6865(0.0006)
Inf. 0.8277(0.0005) 0.6507(0.0025) 0.8639(0.0005) 0.8884(0.0000) 0.7598(0.0003) 0.6764(0.0006)
Kappa 0.7946(0.0003) 0.5628(0.0049) 0.8434(0.0000) 0.8475(0.0000) 0.7738(0.0001) 0.6944(0.0000)
Fmicro 0.9551(0.0000) 0.9094(0.0000) 0.9657(0.0001) 0.9667(0.0000) 0.9505(0.0000) 0.9332(0.0000)
Fmacro 0.8356(0.0000) 0.6961(0.0000) 0.8939(0.0001) 0.9159(0.0000) 0.8376(0.0000) 0.7895(0.0000)

LSA LSA LSA
k 782 x 722 x 962 x
Acc. 0.9260(0.0000) / 0.9621(0.0000) 0.9660(0.0000) 0.9356(0.0001) 0.9595(0.0000)
P 0.7812(0.0004) / 0.9250(0.0002) 0.9249(0.0000) 0.7800(0.0002) 0.9150(0.0004)
R 0.7680(0.0001) / 0.8952(0.0000) 0.9056(0.0000) 0.7061(0.0023) 0.8279(0.0001)
Inf. 0.7556(0.0001) / 0.8886(0.0000) 0.9000(0.0000) 0.6945(0.0025) 0.8209(0.0001)
Kappa 0.6617(0.0002) / 0.8267(0.0001) 0.8449(0.0000) 0.7055(0.0018) 0.8148(0.0003)
Fmicro 0.9260(0.0000) / 0.9621(0.0000) 0.9670(0.0000) 0.9356(0.0000) 0.9595(0.0000)
Fmacro 0.7712(0.0000) / 0.9095(0.0000) 0.9148(0.0000) 0.7979(0.0000) 0.8668(0.0000)
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granularity ( k = 162 ). Furthermore, considering the “Reuters- 
21578” data set on the same experimental setting, we have 
C-SVM that outperforms the other classifiers in terms of 
Informedness and Fscores in TF-IDF case, with a not so 
great separation from the LSA embedding with a granularity 
level of k = 722 . For this data set even LSTM achieves good 
results in terms of Accuracy and Informedness, specially 
for the word2vec embedding (Accuracy 0.95, Informedness 
0.82, Fmicro 0.95, Fmacro 0.83). Similar performances 
are obtained with RF that only in the word2vec embedding 
case outperforms the TF-IDF setting. In fact, for the LSA 
embedding, despite the high granularity level ( k = 962 ) the 
TF-IDF setting attains a high Accuracy (0.95 v.s. 0.93) and 
a higher Informedness (082 v.s. 0.89). A similar behavior 
can be found for the Fmicro and Fmacro and for the kappa 
coefficient. Comparing the two data sets, that are very dif-
ferent in their structure and contents, the granularity level 
needed for attaining good results is found proportional to the 
complexity of the data set itself. In fact, the “Abstracts” data 
set consists of a set of short documents and each class is well 
separated in term of contents, at least at a semantic point of 
view. The “Reuters-21578” data set possesses more classes 
that are strongly unevenly distributed (see Fig. 7). For both 
data set, the conceptualization does not degrade the results, 

instead we obtain good performances with a lower granular-
ity level. This means a low complexity of the feature space, 
that instead to be equal to the cardinality of the vocabulary 
(in the plain TF-IDF case) it matches the number of concepts 
adopted for representing the documents.

In the current experiments, there is no supremacy among 
the word2vec and the LSA in building the concept space. In 
fact, even if for both embeddings a smaller concept space 
attains good performances, there are classifiers that perform 
well for LSA and classifiers that do the best for the word-
2vec embedding. It is well known that both the embeddings 
possess suitable semantic characteristics, and the general 
performances depend on the entire processing chain and the 
particular hyper-parameter settings.

In general, the granulation of the word embedding space 
can be seen as a dimensionality reduction paradigm at the 
cost of inserting a new block in the downstream processing 
of texts before the classification task. However, this concep-
tualization block can be constructed once and for all even 
adopting richer corpora (e.g., Wikipedia), conversely to the 
one employed for the specific classification task. It is impor-
tant to take care of the granulation parameter, significant for 
the classifier performances due to their attitudes in working 
with high or low dimensionality.

Table 6  Performances comparison over the “Abstracts” data set between 
LSTM, C-SVM and RF for both word2vec and LSA embeddings. 
Results of the best granulation level k are compared with the plain solu-

tion given by a sequence formed by the word vectors related to words 
in the given text for LSTM, and the TF-IDF weighting scheme for the 
other classifiers

Abstracts data set

LSTM C-SVM RF

word2vec sequence word2vec Term Frequency word2vec Term Frequency

best plain best plain best plain

k 222 x 282 x 322 x
Acc. 0.9031(0.0000) 0.7093(0.0151) 0.9565(0.0002) 0.9681(0.0000) 0.9623(0.0001) 0.9536(0.0003)
P 0.9042(0.0000) 0.7203(0.0156) 0.9566(0.0002) 0.9710(0.0000) 0.9658(0.0001) 0.9557(0.0003)
R 0.9037(0.0000) 0.7094(0.0152) 0.9565(0.0002) 0.9681(0.0000) 0.9623(0.0001) 0.9536(0.0003)
Inf. 0.8795(0.0001) 0.6367(0.0238) 0.9457(0.0004) 0.9601(0.0000) 0.9529(0.0002) 0.9420(0.0005)
Kappa 0.6972(0.0004) 0.2482(0.0618) 0.8641(0.0022) 0.9004(0.0002) 0.8822(0.0010) 0.8551(0.0032)
Fmicro 0.9031(0.0000) 0.7093(0.0000) 0.9565(0.0000) 0.9681(0.0000) 0.9623(0.0000) 0.9536(0.0000)
Fmacro 0.9033(0.0000) 0.7106(0.0000) 0.9565(0.0000) 0.9664(0.0000) 0.9640(0.0000) 0.9538(0.0000)

LSA LSA LSA
k 162 x 382 x 342 x
Acc. 0.9225(0.0009) / 0.9826(0.0001) 0.9681(0.0000) 0.9710(0.0001) 0.9594(0.0000)
P 0.9316(0.0004) / 0.9833(0.0001) 0.9715(0.0000) 0.9730(0.0001) 0.9617(0.0000)
R 0.9222(0.0009) / 0.9826(0.0001) 0.9681(0.0000) 0.9710(0.0001) 0.9594(0.0000)
Inf. 0.9028(0.0014) / 0.9783(0.0001) 0.9601(0.0000) 0.9638(0.0002) 0.9493(0.0000)
Kappa 0.7578(0.0084) / 0.9457(0.0007) 0.9004(0.0002) 0.9094(0.0010) 0.8732(0.0002)
Fmicro 0.9225(0.0000) / 0.9826(0.0000) 0.9681(0.0000) 0.9710(0.0000) 0.9594(0.0000)
Fmacro 0.9230(0.0000) / 0.9828(0.0000) 0.9695(0.0000) 0.9719(0.0000) 0.9605(0.0000)
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Towards the Explainable AI paradigm

The choice of the three particular classification algorithms 
depends on their specific characteristics. In fact, if from one 
hand SVM is known to be performing even with high dimen-
sional feature spaces embedded in ℝn , LSTM is suitable with 

sequences and needs a further dense layer to be appropriate 
for classification tasks. RF, for its part, is suited for classifi-
cation tasks where it is important also estimating the impor-
tance of features. In fact, RF offers the possibility to obtain 
a set of weights, as many as the number of features, that, in 
turn, in this study are a kind of superordinate word, we call 

Fig. 9  Concept importance 
for the “Reuters-21578” (a) 
and “Abstracts” (b) data sets. 
The threshold value filters low 
importance concepts. The value 
is set as the half of the max value 
computed on concept importance

(a)

(b)



 Cognitive Computation

1 3

concepts. Fixing an arbitrary threshold over these weights 
leads to estimate the strongest concepts related to the spe-
cific classification task. From a different point of view, this 
procedure can be seen as a concept filtering task, where 
only the strongest ones survive. This methodology can help 
to infer knowledge on the corpus, eliciting the Explainable 
AI paradigm.

In Fig. 9(a), (b), as a bar chart, the weights related to the 
concepts and the thresholds (fixed to the 20% of the largest 
weight value), for the “Reuters-21578” and “Abstracts” data 
set, respectively, are depicted. For these specific experi-
ments, for brevity purposes, the granularity of the concept 
space is fixed to k = 50 and it is constructed through the 
word2vec neural embedding. It is worth to note that the CSS 
is obtained through the k-means clustering algorithm, thus 
the prototype, being the average word vector for a given 
concept region, is a surrogate word vector. So forth, in order 
to find the existing word related to the prototype, the �2 
norm distance is computed selecting the nearest word vector 
and the corresponding token. In Tables 7 and 8 the survived 
concepts together with the nearest five words obtained com-
puting a �2 norm between the prototype and the respective 
word vectors are reported, normalizing for the highest simi-
larity value that hold for the closest existing word vector 
to the prototype. In case of clusters with cardinality lower 
than five, all words within the cluster are shown. For the 
“Abstracts” data set, the best closest prototypes, for a given 
threshold value, are holographic, concurrently, explicitly, 
explanation, succesfully, achieve, intrusiveness, leasts-
quares, pregnancy, furthermore, nonabelian, effectiveness, 
percutaneous, approximation, nanolasers, robustness, insu-
lator, chalcogenide, rolling, infrared. From Table 7, select-
ing, for example, a populated region, such as the fourth and 
considering the closest word (concurrently) to its prototype, 
we have electrification, resistant, diameter, platform, indus-
trial. In general, we can find high semantic words that elicit 
roughly which term the algorithm estimates as important 
for the classification task; in fact, besides words with high 
semantic content, we can find verbs (for example, achieve) 
or other lexemes that are mostly used in papers’ abstracts. 
The same rationale can be found behind the results for the 
“Reuters-21578” data set illustrated in Table 7. Here, we 
can find less singleton or low-populated clusters, due to the 
dimension of the corpus. Even in this case it can be found a 
set of prototype words that span uniformly the conceptual 
space. Nevertheless, the richness of the semantic contents 
of prototypes and the underlying word cloud is attributable 
to the dimension and the heterogeneity of the corpus, since 
it is likely to lead to better representations for words, that 
in turn, leads to a performing CSS.

Table 7  Most important concepts obtained by filtering the Concept Regions 
through the feature importance estimation provided by the RF algorithm 
(“Reuters-21578” data set). There are reported the first five words for each 
region that exceed a threshold value — see Fig. 9(a)

“Reuters-21578” data set

Word Norm. similarity Concept 
Reg. 
Index

“overdraft*” 1 2
“gilt” 0.97116 2
“kwacha” 0.95985 2
“ours” 0.95916 2
“afterwards” 0.95914 2
“peseta” 0.95878 2
“tvx*” 1 17
“matthey” 0.9753 17
“behalf” 0.97311 17
“rmj” 0.96955 17
“cvn” 0.96909 17
“labelling” 0.96849 17
“mdc*” 1 18
“cbs” 0.97853 18
“mpb” 0.97837 18
“lpl” 0.9771 18
“uac” 0.97703 18
“magna” 0.97675 18
“fintech*” 1 20
“interactive” 0.9439 20
“intercompany” 0.94195 20
“integral” 0.93706 20
“intense” 0.93507 20
“intend” 0.93033 20
“veto*” 1 27
“sense” 0.94648 27
“accuse” 0.94509 27
“herrington” 0.94407 27
“gephardt” 0.94021 27
“imported” 0.93945 27
“ln*” 1 34
“nov” 0.92031 34
“ln” 0.90159 34
“ust” 0.89955 34
“eight” 0.8988 34
“sept” 0.89351 34
“libya*” 1 38
“indonesian” 0.93859 38
“libya” 0.93804 38
“iea” 0.93717 38
“quotas” 0.93639 38
“egypt” 0.93517 38
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Conclusions

The current study is an effort in providing a clear relationship 
between findings in the Conceptual Spaces theory and the 
problem of text representation in Pattern Recognition, spe-
cifically in NLP tasks involved in text mining. Text mining, 
as a particular application of Machine Learning techniques 
related to textual data, benefits from better representations 
of text as hierarchically organized set of features, where 
Granular Computing techniques can offer a wide range of 
tools for designing performing classification algorithms. 
Within this framework, where Granular Computing is bound 
to the Conceptual Spaces theory and Machine Learning, it 
is offered a comparison of some classification algorithms 
working on features constructed over the prototypes of a con-
ceptual space obtained, in turn, over a suitable neural word 

Table 8  Most important concepts obtained by filtering the Concept 
Regions through the feature importance estimation provided by the 
RF algorithm (“Abstracts” data set). There are reported the first five 
words for each region that exceed a threshold value — see Fig. 9(b)

“Abstracts” data set

Word Norm. similarity Concept 
Reg. 
Index

“holographic*” 1 1
“holographic” 0.9737 1
“algorithm” 0.96451 1
“forward” 0.96052 1
“emphasis” 0.96039 1
“falling” 0.95878 1
“concurrently*” 1 4
“electrification” 0.9233 4
“resistant” 0.922 4
“diameter” 0.92197 4
“platform” 0.92186 4
“industrial” 0.92002 4
“explicitly*” 1 6
“respectively” 0.90374 6
“instantaneous” 0.9037 6
“role” 0.90366 6
“equilibrium” 0.90349 6
“vortex” 0.90345 6
“explanation*” 1 10
“investigation” 0.89886 10
“production” 0.89886 10
“congestion” 0.89669 10
“information” 0.89624 10
“decision” 0.89601 10
“successfully*” 1 18
“parathyroid” 0.86238 18
“careful” 0.86218 18
“marginal” 0.86211 18
“finding” 0.86207 18
“achieve*” 1 19
“embed” 0.92432 19
“access” 0.92391 19
“outage” 0.92324 19
“lighting” 0.92317 19
“sufficiently*” 1 20
“purely” 0.90645 20
“perform” 0.90638 20
“community” 0.90625 20
“alloy” 0.90597 20
“intrusiveness*” 1 22
“undergraduate” 0.92668 22
“disturbance” 0.91918 22
“correlate” 0.91901 22
“continuity” 0.9183 22

Table 8  (continued)

“Abstracts” data set

Word Norm. similarity Concept 
Reg. 
Index

“leastsquares*” 1 25
“behavior” 0.89503 25
“importantly*” 1 26
“transmission” 0.95505 26
“pregnancy*” 1 30
“dispatch” 0.89991 30
“furthermore*” 1 31
“chain” 0.9178 31
“nonabelian*” 1 36
“matter” 0.90482 36
“effectiveness*” 1 37
“limit” 0.91467 37
“percutaneous*” 1 38
“randomness” 0.92696 38
“approximation*” 1 41
“circulation” 0.91257 41
“nanolasers*” 1 42
“contrast” 0.91577 42
“robustness*” 1 43
“evidencebased” 0.97102 43
“insulator*” 1 44
“series” 0.91583 44
“chalcogenide*” 1 46
“hash” 0.90352 46
“rolling*” 1 48
“explores” 0.92888 48
“infrared*” 1 50
“higher” 0.84745 50
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embedding. Results show primarily that the conceptual layer 
placed in the middle between the associative layer and the 
symbolic layer (the symbolic histograms layer in this study) 
can be used for working with more abstract entities compared 
to words. These entities are a byproduct of the granulation of 
the conceptual space, that can be obtained with any algorithm 
in charge of embedding the text in a vector space. The three 
algorithms compared, two of them (SVM and RF) able to 
receive in input n-tuple of Real-valued numbers and the other 
(LSTM) working with input sequences, perform well for a 
large range of granulation levels of the conceptual space. 
Interestingly, depending on the nature of the textual data set, 
a low granulation level allows achieving good classification 
results, that at the stage of the current study depends only 
weakly from the specific algorithm. Moreover, the concep-
tual level together with the symbolic histograms technique 
can aid in Knowledge Discovery tasks, providing a frame-
work for transforming black-box classifiers in gray ones, 
mining the strongest concepts that lead to a particular clas-
sification task, making a tiny step towards how a machine can 
represent meaning. Future works foresee the training of the 
conceptual space on exogenous corpora and, furthermore, the 
extension to n-gram prototypes where a suitable dissimilarity 
measure between sequences of vectors needs to be carefully 
designed in order to build up the symbolic histograms for the 
concepts embedding.
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