
European Journal of Operational Research 299 (2022) 448–467 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Discrete Optimization 

A new branch-and-filter exact algorithm for binary constraint 

satisfaction problems 

Pablo San Segundo 

a , ∗, Fabio Furini b , Rafael León 

c 

a Universidad Politécnica de Madrid (UPM), Centre for Automation and Robotics (CAR), Madrid, Spain 
b Department of Computer, Control and Management Engineering Antonio Ruberti, Sapienza University of Rome, Rome, Italy 
c Researcher, Madrid, Spain 

a r t i c l e i n f o 

Article history: 

Received 29 December 2020 

Accepted 9 September 2021 

Available online 16 September 2021 

Keywords: 

Combinatorial optimization 

Binary constraint satisfaction problems 

Constraint programming 

Exact algorithm 

Computational experiments 

a b s t r a c t 

A binary constraint satisfaction problem (BCSP) consists in determining an assignment of values to vari- 

ables that is compatible with a set of constraints. The problem is called binary because the constraints 

involve only pairs of variables. The BCSP is a cornerstone problem in Constraint Programming (CP), ap- 

pearing in a very wide range of real-world applications. In this work, we develop a new exact algorithm 

which effectively solves the BCSP by reformulating it as a k -clique problem on the underlying microstruc- 

ture graph representation. Our new algorithm exploits the cutting-edge branching scheme of the state- 

of-the-art maximum clique algorithms combined with two filtering phases in which the domains of the 

variables are reduced. Our filtering phases are based on colouring techniques and on heuristically solving 

an associated boolean satisfiability (SAT) problem. In addition, the algorithm initialization phase performs 

a reordering of the microstructure graph vertices that produces an often easier reformulation to solve. We 

carry out an extensive computational campaign on a benchmark of almost 20 0 0 instances, encompass- 

ing numerous real and synthetic problems from the literature. The performance of the new algorithm is 

compared against four SAT-based solvers and three general purpose CP solvers. Our tests reveal that the 

new algorithm significantly outperforms all the others in several classes of BCSP instances. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

f

s

g

r

q

P

(

 

e  

t

a  

q  

(  

u

i

c  

c  

a

w

u

t

t

w

a

t

e

o

v

v

h

0

(

. Introduction 

A constraint satisfaction problem (CSP), in its general form, asks 

or an assignment of values to the variables of the problem re- 

pecting a set of constraints. It is a central topic in Constraint Pro- 

ramming (CP) with many practical applications due to its broad 

epresentational scope: location of facilities, scheduling, car se- 

uencing, vehicle routing and many others, see, e.g., Brailsford, 

otts, Smith, & Oper (1999) and part II of Rossi, Beek, & Walsh 

2006) for a survey. 

Formally, we are given a set X = { x 1 , x 2 , . . . , x k } of k variables,

ach of which is associated to a finite set of values D (x i ) , called

he domain of the variable . Without loss of generality (w.l.o.g.), we 

ssume D (x i ) is a subset of Z . In addition, we are given a set of

 constraints C = { c 1 , c 2 , . . . , c q } , and each constraint c j is a pair

X(c j ) , R (c j )) where X(c j ) ⊆ X is the subset of variables involved
∗ Corresponding author. 

E-mail addresses: pablo.sansegundo@upm.es (P. San Segundo), fabio.furini@ 

niroma1.it (F. Furini), rleon@ucjc.edu , rafael.leon@coit.es (R. León). 

 

t

o

(

ttps://doi.org/10.1016/j.ejor.2021.09.014 

377-2217/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
n the constraint. This set of variables is called the scope of the 

onstraint and R (c j ) is the set of tuples, called the relation of the

onstraint. Each tuple R (c j ) ∈ Z 

| X(c j ) | is composed of | X(c j ) | values

llowed by the constraint for the variables in its scope. In other 

ords, each tuple represents a feasible combination of variable val- 

es. The CSP calls for finding a feasible assignment of values to 

he variables that satisfies all the constraints. If no solution exists, 

he problem is said to be inconsistent or unsatisfiable . Determining 

hether a CSP has a solution is N P -complete, since the problem 

dmits the boolean satisfiability (SAT) problem as a special case, 

he archetypal N P -complete decision problem. The state-of-the-art 

xact algorithms to solve CSPs are general purpose solvers based 

n CP and SAT techniques. A review of these algorithms is pro- 

ided in Section 1.2 . 

An important feature of the CSP is the number of variables in- 

olved in its constraints. Specifically, the arity of a constraint c j , 

j = 1 , 2 , . . . , q , is the number of variables in its scope ( | X(c j ) | ), and

he arity of a CSP is the maximum arity over its constraints. A CSP 

f arity two is known as a binary constraint satisfaction problem 

BCSP). W.l.o.g., in the remainder of the paper, we assume that the 
 under the CC BY-NC-ND license 

https://doi.org/10.1016/j.ejor.2021.09.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.09.014&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pablo.sansegundo@upm.es
mailto:fabio.furini@uniroma1.it
mailto:rleon@ucjc.edu
mailto:rafael.leon@coit.es
https://doi.org/10.1016/j.ejor.2021.09.014
http://creativecommons.org/licenses/by-nc-nd/4.0/


P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

B

p  

c

t

a

p

R

&

n

s

a

p

C

s

f

v

e

s

&

i  

b

d

t

s

o

p

t

p

c

t

a

p

v

c

w

s

b

t  

k

t

r  

s

K

c  

k

c

2  

g  

s  

t  

{  

i

f

r

a

r

s

i

v

m

a

e

M

o

e

i

v

l

(

g

l

N

1

a

(

f

V

I  

t

o

a

a

l

i  

c

e

s

E

 

s

a

A

o

t

B

c

a

o

k  

a  

a  

v

s  

a

r

i  

D  

B  

w  

X  

t  

R  

{  

t

V

r

t

v

CSP is normalized , i.e., there is at most one constraint for each 

air of variables. It is worth noticing that, if a relation R (c) of a

onstraint c ∈ C is the empty set, the CSP instance is unsatisfiable; 

herefore we assume that R (c) � = ∅ , for every constraint c ∈ C. 

It is worth mentioning that any CSP can be transformed into 

 BCSP via a reduction called binarization . This reduction can be 

erformed in different ways, and we refer the interested reader to 

ossi, Petrie, & Dhar (1990) ; Samaras & Stergiou (2005) ; Stergiou 

 Walsh (1999) . All the binarization techniques have typically the 

egative effects of increasing the number of variables and/or the 

ize of the variable domains. Naturally, the size of the problem is 

lso reflected in the computational effort to solve the instances in 

ractice. Accordingly, even though the BCSP is equivalent to the 

SP, in practice there can be large differences in algorithms de- 

igned specifically for one or the other. In this article we mainly 

ocus on the BCSP and on exact algorithms to solve it. 

Many combinatorial problems can be recast as BCSPs. We pro- 

ide some examples from different contexts in what follows. One 

xample of a real-world application of the BCSP is the decision ver- 

ion of the Train Platforming Problem (TPP), see e.g., Caprara, Galli, 

 Toth (2011) . Considering a railway station, the TPP input consists 

n a set of trains, each of which is associated to a set of possi-

le patterns , describing a stopping platform, along with arrival and 

eparture times. The railway station operational constraints forbid 

he assignment of patterns to trains if this implies occupying the 

ame platform at the same time interval. A TPP solution consists 

f assigning a pattern to each train that is compatible with the 

atterns assigned to the other trains (if such a solution exists). In 

his context, the trains correspond to the BCSP variables and the 

atterns determine the variable domains. The set of operational 

onstraints defines the set of BCSP constraints and the tuples are 

he pairs of feasible patterns for each pair of trains. Other BCSP 

pplications can be found, for example, in frequency assignment 

roblems (see e.g., Murphey, Pardalos, & Resende, 1999 ), where the 

ariables are the communication links and the variable domains 

orrespond to the frequencies. Geographically close links interfere 

ith each other, and therefore the BCSP constraints reflect the fea- 

ible assignment of the frequencies to the communication links. 

In this paper, we design a new exact algorithm for the BCSP 

ased on the graph transformation that reduces the problem to 

he k - clique problem ( k -CLP) on a k partite graph. This graph is

nown as the microstructure of the BCSP, see Jégou (1993) , where 

his transformation was initially proposed. Given a simple undi- 

ected graph G = (V, E) with n = | V | vertices and m = | E| edges, a

ubset K ⊆ V of vertices is called a clique if any two vertices of 

are connected by an edge. The k -CLP calls for determining if a 

lique of size k exists in G . It is worth mentioning that finding a

 -clique for a k -partite graph, such as the microstructure graph, is 

learly N P -complete. The reduction from the k -CLP (one of Karp’s 

1 N P -complete problems Karp, 1972 ) to the k -CLP in a k -partite

raph works as follows. From a graph G = (V, E) and a value k con-

truct the graph G 

′ with vertex set V × { 1 , 2 , . . . , k } and edges be-

ween vertices (v , i ) and (w, j) if and only if i � = j and v � = w and

 v , w } ∈ E. By construction G 

′ is k -partite and it contains a k -clique

f and only if G contains a k -clique. The polynomial time trans- 

ormation based on the microstructure graph can also be used to 

educe the k -CLP to the BCSP, showing that the latter problem is 

lso N P -complete. 

To the best of our knowledge, the state-of-the-art exact algo- 

ithms for the BCSP are the general purpose solvers for CSPs de- 

cribed in Section 1.2 . These solvers are used as terms of compar- 

son to evaluate the computational performance of our newly de- 

eloped exact algorithm (see Section 4 ). For the k -CLP instead, we 

ention that in the literature there are algorithms to enumerate 

ll k -cliques in k -partite graphs. We refer the interested reader to 

.g., Grünert, Irnich, Zimmermann, Schneider, & Wulfhorst (2002) ; 
449 
irghorbani & Krokhmal (2013) and the references therein. Since 

ur problem consists only in determining if a k -clique exists, such 

numeration algorithms are not designed for our purpose. Finally, 

t is worth pointing out that efficient algorithms for the decision 

ersion of the maximum clique problem ( k -CLQ) are based on tai- 

oring maximum clique algorithms, such as Li, Fang, Jiang, & Xu 

2018a) ; San Segundo, Coniglio, Furini, & Ljubi ́c (2019a) ; San Se- 

undo, Furini, & Artieda (2019b) ; San Segundo, Lopez, & Parda- 

os (2016b) ; San Segundo, Nikolaev, & Batsyn (2015) ; San Segundo, 

ikolaev, Batsyn, & Pardalos (2016) . 

.1. Reduction of the BCSP to the k -CLP: the microstructure graph 

The reduction of the BCSP to the k -CLP works as follows. Given 

n instance I of the BCSP, we construct a k -partite graph G (I) = 

V, E) , called the microstructure graph , in which the vertices are the 

ollowing variable-value pairs: 

 = 

⋃ 

i =1 , 2 , ... ,k 

V i where V i = 

{ 

(x i , a ) : a ∈ D (x i ) 
} 

. 

n other words, the vertex set V = { V 1 , V 2 , . . . , V k } of G (I) is parti-

ioned into k subsets which we denote the layers of the graph, each 

ne corresponding to a variable of the original BCSP (in the liter- 

ture, the layers are also called the parts of a k -partite graph). In 

ddition, we assume that the vertices are sorted according to the 

ayers of the graph. 

We denote c(i, j) the constraint having x i , x j as its scope ( 1 ≤
 < j ≤ k ). The edge set E of G (I) is defined according to the BCSP

onstraints, i.e., there is an edge between two vertices if the two 

ndpoints map to a pair of variable-values allowed by the con- 

traints. Formally: 

 = 

{ (
(x i , a ) , (x j , b) 

)
: 1 ≤ i < j ≤ k, (a, b) ∈ R 

(
c(i, j) 

)} 

. 

It is easy to see that, by construction, G (I) is a k -partite graph,

ince the vertices of a layer corresponding to a BCSP variable form 

n independent set (a subset of pairwise non-adjacent vertices). 

ccordingly, any k -clique in the microstructure graph is composed 

f exactly one vertex per layer and, consequently, it corresponds 

o a feasible BCSP solution (a feasible assignment of values to the 

CSP variables from their domain). Precisely, there is a one-to-one 

orrespondence between the set of feasible solutions to the k -CLP 

nd the set of BCSP feasible solutions. Accordingly, unsatisfiability 

f the BCSP implies the non-existence of a feasible solution to the 

 -CLP, and vice versa. We denote x ∗
i 

the value assigned to the vari-

ble x i ( i = 1 , 2 , . . . , k ) associated to a k -clique K 

∗ ⊆ V . For K 

∗ we

lso use the notation { v (1) , v (2) , . . . , v (k ) } , where v (i ) ∈ V i is the

ertex of K 

∗ in layer i . Accordingly, the feasible BCSP solution as- 

ociated to K 

∗ is: x ∗
i 

= f 
(
v (i ) 

)
(i = 1 , 2 , . . . , k ) , where the function

f 
(
v (i ) 

)
returns the value from the domain D (x i ) of the variable x i 

ssociated to the vertex v (i ) . 

Example 1 In Fig. 1 , we depict the microstructure graph G (I) 

esulting from the reduction of a BCSP instance I with k = 4 , 

.e., X = { x 1 , x 2 , x 3 , x 4 } and variable domains D (x 1 ) = { 1 , 3 , 5 } ,
 (x 2 ) = { 1 , 2 , 3 } , D (x 3 ) = { 5 , 6 } and D (x 4 ) = { 1 , 2 , 3 } . This

CSP instance has q = 6 constraints C = { c 1 , c 2 , c 3 , c 4 , c 5 , c 6 } ,
ith scopes X(c 1 ) = { x 1 , x 2 } , X(c 2 ) = { x 1 , x 3 } , X(c 3 ) = { x 1 , x 4 } ,
(c 4 ) = { x 2 , x 3 } , X(c 5 ) = { x 2 , x 4 } , X(c 6 ) = { x 3 , x 4 } and rela-

ions R (c 1 ) = { (1 , 1) , (1 , 2) , (3 , 3) , (5 , 3) } , R (c 2 ) = { (1 , 5) , (3 , 6) } ,
 (c 3 ) = { (1 , 1) } , R (c 4 ) = { (1 , 5) , (2 , 5) , (2 , 6) , (3 , 6) } , R (c 5 ) =
 (1 , 1) } and R (c 6 ) = { (5 , 1) , (6 , 2) , (6 , 3) } . Fig. 1 shows the par-

itioned microstructure graph composed of 4 layers, i.e., V 1 , V 2 , 

 3 and V 4 . These layers are represented in the picture by dashed 

ectangles. We report the corresponding variable-value pairs above 

he vertices. The edges represent compatible pairs of variable- 

alues according to the constraints. The vertices depicted in red 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Fig. 1. A BCSP instance I with k = 4 variables, X = { x 1 , x 2 , x 3 , x 4 } and q = 6 constraints. The picture shows the microstucture graph G (I) obtained by the reduction from the 

BCSP to the k -CLP. In red we report a clique K ∗ of size 4 given by the vertices { v 1 , v 4 , v 7 , v 9 } , which corresponds to the feasible solution x ∗1 = 1 , x ∗2 = 1 , x ∗3 = 5 and x ∗4 = 1 . 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

c

k  

t

1

v

B

e  

T

l

g

t

t

u

c

h

a

w

b

e

t

t

s

c

o

s

a

e

a

c

B

c

e

(

b

t

a

1

r  

d

b

t

S

e

c

m

e

a

e

c

o

p

B

e

a

n

c

b

(

B

c

t

T

o

a

t

D

(

i

e

orrespond to a clique of size 4, i.e., a feasible solution to the 

 -CLP. This solution, given by the clique K 

∗ = { v 1 , v 4 , v 7 , v 9 } , maps

o the feasible BCSP solution: x ∗
1 

= 1 , x ∗
2 

= 1 , x ∗
3 

= 5 and x ∗
4 

= 1 . 

.2. Literature review on CSP exact algorithms and solvers 

Literature on CP exact algorithms used to solve CSPs has been 

ery prolific since its inception in the 60s. It includes surveys, e.g., 

railsford et al. (1999) ; Buscemi & Montanari (2008) , and books, 

.g., Dechter (2003) ; Marriott & Stuckey (1998) ; Rossi et al. (2006) ;

sang (1993) . The main engine of CP-based exact algorithms re- 

ies on backtracking (branching) interleaved with constraint propa- 

ation techniques. In a basic backtracking algorithm, each node of 

he branching tree corresponds to a partial assignment of values 

o variables, and the children nodes are created by assigning val- 

es to one additional variable in a compatible manner with the 

onstraints. When all possible feasible variable-value combinations 

ave been examined, the algorithm backtracks to the previously 

ssigned variable. This simple scheme has been enhanced overtime 

ith many techniques, such as nogood recording , conflict-driven 

ackjumping , variable and value ordering heuristics and restarts (see, 

.g., Rossi et al., 2006 ). 

A fundamental technique to improve the performance of back- 

racking algorithms is to prevent local inconsistency , which is a par- 

ial variable-value assignment, satisfying the constraints, but not 

upporting any global feasible solution. Naturally, these situations 

an lead to unproductive search and deteriorates the performance 

f the exact algorithms. 

Constraint propagation procedures try to prevent local incon- 

istency. To this end, CP-based algorithms execute constraint prop- 

gation techniques in the nodes of the branching tree, thereby 

nforcing a certain consistency level . The seminal constraint prop- 

gation procedures were designed for the BCSP, i.e., for binary 

onstraints. In practice, efficient CP-based algorithms for the 

CSP typically enforce up to the consistency level denoted arc- 

onsistency (AC) ( Montanari, 1974 ), but higher consistency levels 

xist, such as path-consistency ( Mackworth, 1977 ) and k -consistency 

 Freuder, 1982 ). Depending on the specific problem constraints, CP- 

ased algorithms can also achieve weaker forms of consistency 
450 
han AC, such as forward checking ( Golomb & Baumert, 1965; Har- 

lick & Elliott, 1980 ), directional arc-consistency ( Dechter & Pearl, 

988 ) and unit propagation ( Davis & Putnam, 1960 ). We refer the 

eader to the chapters 3 and 4 in Rossi et al. (2006) for a detailed

escription on this subject. 

In the last two decades, much of the research in this area has 

een devoted to the study of global constraints (non-binary CSPs) 

ogether with the development of efficient specialized propagators. 

ome examples of different types of global constraints in the lit- 

rature are all-different ( Régin, 1994 ), channeling , at-most , at-least , 

ounting , lexicographic , sorting , table , the enumeration being by no 

eans conclusive. We refer the reader to the Chapter 7 of Rossi 

t al. (2006) for an interesting overview on the topic. Addition- 

lly, the MiniZinc catalogue ( https://www.minizinc.org/doc-2.5.3/ 

n/lib-globals.html ) contains an extensive list of available global 

onstraints for modelling in the MiniZinc format. A detailed review 

n n -ary constraints and propagators goes beyond the scope of this 

aper. 

Classical constraint propagators originally conceived for the 

CSP have also been extended for constraints of any arity. For 

xample, arc-consistency is typically referred to as generalized 

rc-consistency for the n -ary case. Moreover, binary encodings of 

on-binary CSPs have also been studied and some specialized arc- 

onsistency propagators and algorithms for such encodings have 

een proposed in the literature, see, e.g., Samaras & Stergiou 

2005) . 

Concerning the microstructure graph representation of the 

CSP, another recent ongoing stream of (theoretical) work has been 

oncerned with the generalization of the microstructure graph 

o non-binary CSPs, see, e.g., Cohen (2003) ; Mouelhi, Jégou, & 

errioux (2014) . Of interest to this stream has been the study 

f tractable classes of CSPs, i.e., those that can be recognized 

nd solved in polynomial time exploiting the specific topology of 

he microstructure graph, see Cooper, Jeavons, & Salamon (2010) ; 

echter & Pearl (1989) ; Jégou & Terrioux (2015) ; Mouelhi et al. 

2014) ; Naanaa (2020) . 

We end this literature review with two comments on exist- 

ng solvers for the CSP. Firstly, today’s modern solvers implement 

fficient propagators for many global constraints and can solve 

https://www.minizinc.org/doc-2.5.3/en/lib-globals.html


P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

b

t

B

c

s

b

t

t

c

f

a

2

C

s

n

r

n

t

r

d

n

v

d

o

t

f

o

t

1

t

t

n

t

r

a

t

c

a

c

s

t

p

m

p

t

c

o

t

a

b

d

s

p

t

t

b

t

m

t

m

s

s

b

b

i

fi

b

a

s

d

w

i

S

s

r

t

a

S

l

2

g

p

g

s  

L  

2

S

J

(

o

l

n

s

t

a

n

n

t

B

t

I

e

d

t

s

e

B

t

v

m

S  

V

s  

T

t

s

o  

t

oth binary and non-binary CSPs. To the best of our knowledge, 

here are no state-of-the-art solvers tailored specifically for the 

CSP. Secondly, boolean satisfiability (SAT) modules are now be- 

oming increasingly popular. The SAT modules can either be called 

electively inside the CP-based solvers for specific constraints, or 

e the engine driving the algorithm (given an adequate compila- 

ion to SAT). Examples of today’s successful SAT-based solvers are 

he OR-Tools solver – CP-SAT (henceforth OR-tools ), the lazy 

lause solver Chuffed as well as the solvers PicatSAT (hence- 

orth Picat ) and sCOP . Examples of purely CP-based solvers 

re Gecode ( GECODE, 2016 ), Minion ( Gent, Jefferson, & Miguel, 

006 ), ILOG – CP Optimizer ( IBM, 2017 ), choco , Mistral and 

oncrete . The list is by no means exhaustive. 

A recent improvement employed by efficient state-of-the-art 

olvers such as, e.g., Chuffed , is the lazy clause generation , a tech- 

ique first described in Ohrimenko, Stuckey, & Codish (2009) . It 

elies on a hybrid approach to CP that combines features of fi- 

ite constraint propagation and Boolean satisfiability. In the de- 

ails, constraint propagators are replaced by clause generators that 

ecord the reason for the propagator step as new clauses (typically 

enoted nogoods ). Generating these clauses eagerly at the begin- 

ing of the search is typically impractical, specially in the case of 

ariables with large domains. For this reason they are generated 

ynamically, and then exploited with efficient SAT techniques. 

To the best of our knowledge, the state-of-the-art exact meth- 

ds to solve BSCPs are CP-based solvers and SAT-based solvers. For 

hese reasons, in the computational section we compare the per- 

ormance of our new exact algorithm for the BCSP against some 

f the best general purpose solvers for the CSP (see the computa- 

ional results in Section 4 ). 

.3. Main contributions and outline of the paper 

In this paper, we design and test a new exact algorithm for 

he BCSP, based on a reduction of the problem to the k -CLP on 

he underlying microstructure graph described in Section 1.1 . The 

ewly developed exact algorithm effectively relies on the state-of- 

he-art branching scheme of the maximum-clique problem algo- 

ithms. In order to improve the computational performance, the 

lgorithm makes use of two different filtering phases. The first fil- 

ering phase, called colour-filtering, is based on colouring the mi- 

rostructure graph with the aim of pruning the branching nodes 

nd/or filtering vertices of the layers. The second filtering phase, 

alled SAT-filtering, is based on an associated SAT-problem that is 

olved heuristically via unit propagation and failed literal inference 

echniques. In the initialization phase, the algorithm performs a 

reprocessing stage, called pre-filtering, in which the size of the 

icrostructure graph is effectively reduced before the branching 

hase of the algorithm is performed. Finally, also in the initializa- 

ion phase, the algorithm performs a second preprocessing stage, 

alled re-partitioning, in which the BCSP is reformulated by re- 

rdering the vertices of the microstructure graph. This reformula- 

ion is surprisingly capable of improving the performance of the 

lgorithm in several classes of instances. 

A central contribution of this paper is to empirically show that, 

y reducing the BCSP to the k -CLP, an effective algorithm can be 

esigned. Such an algorithm, which is based on techniques in- 

pired by the cutting edge algorithms for the maximum clique 

roblem, is shown to be more effective than several solvers for 

he CSP for a number of families of BCSP instances. In details, 

he algorithm significantly outperforms three general purpose CP- 

ased solvers and four general purpose SAT-based solvers. We 

ested 1895 instances from the literature originated from bench- 

ark problems of different nature. These instances can be found in 

he libraries of CSP instances and they have been used for bench- 

arking general purpose solvers. Our extensive computational re- 
451 
ults show that many classes of BCSP instances can be effectively 

olved by the new exact algorithm. 

An additional contribution of this work is to establish a link 

etween classical constraint propagator algorithms and the clique- 

ased filtering phases employed by Bfilt+ . Specifically, we show 

n Section 2.2 that the level of consistency reached by the colour- 

ltering phase is directional arc consistency, a consistency level 

elow arc consistency. We also relate the level of consistency 

chieved by the SAT-filtering phase of Bfilt+ with singleton con- 

istency, see Section 2.3 . 

The remainder of the paper is structured as follows. Section 2 is 

evoted to the new exact algorithm for the BCSP. In Section 2.1 , 

e describe the branching operations of the algorithm, and 

n Sections 2.2 and 2.3 , we describe its filtering procedures. 

ection 3 describes the re-partionining procedure and it presents 

ome additional algorithmic improvements, the overall algo- 

ithm as well as some implementation details. Section 4 reports 

he results of the extensive computational campaign comparing 

gainst SAT-based and CP-based general purpose solvers. Finally, in 

ection 5 we draw some conclusions and we comment on future 

ines of work. 

. The new exact branch-and-filter algorithm 

In this section, we present the new branch-and-filter (B&F) al- 

orithm for the k -CLP on the microstructure graph G (I) . The pro- 

osed B&F algorithm is inspired by the recent state-of-the-art al- 

orithms for the maximum-clique problem (MCLP) and its variants, 

ee, e.g., Coniglio, Furini, & San Segundo (2020) ; Li et al. (2018a) ;

i, Liu, Jiang, Manyá, & Li (2018b) ; San Segundo et al. (2019b ,

016b) ; San Segundo, Matia, Rodriguez-Losada, & Hernando (2013) ; 

an Segundo et al. (2015) ; San Segundo, Rodríguez-Losada, & 

iménez (2011) ; San Segundo et al. (2016) ; San Segundo & Tapia 

2014) . This family of combinatorial exact algorithms are based 

n the n -ary branching scheme proposed in Carraghan & Parda- 

os (1990) , where at each node of the branching tree the children 

odes are created by adding one vertex at a time to a partial clique 

olution. This branching scheme is particularly effective since, each 

ime a vertex is added, its non-adjacent vertices are discarded 

nd the graph is reduced. The subproblem graph associated to a 

ode corresponds to the graph induced by the intersection of the 

eighborhoods of the vertices in the partial clique associated to 

he node (see §2.1 for a formal definition). The term “filter” in 

&F refers to removing vertices from the subproblem graphs with 

he aim of pruning the nodes and/or make children nodes easier. 

t is worth noting that filtering vertices in our B&F algorithm is 

quivalent to deleting the corresponding values from their variable 

omains. 

We denote Bfilt our new exact B&F algorithm. The initial let- 

er ‘B’ in the name refers to the fact that Bfilt makes exten- 

ive use of bitstrings and efficient bitmasking operations during the 

xecution of the algorithm. In the following sections we describe 

filt and its main components. 

Before launching Bfilt , a pre-filtering procedure is carried out 

o reduce the microstructure graph G (I) = (V, E) by filtering those 

ertices that cannot be part of any k -clique. This procedure re- 

oves the vertices that are inconsistent with a particular layer. 

pecifically, for each layer i = { 1 , . . . , k } , it removes any vertex v / ∈
 i such that V i ∪ { v } is an independent set. Such vertices corre- 

pond to values of the BCSP that have no support in the variable x i .

he pre-filtering procedure is effective in reducing the microstruc- 

ure graph before the branching phase of Bfilt is executed. Con- 

ider for example the microstructure graph of Fig. 1 . The vertex v 11 

f layer V 4 = { v 9 , v 10 , v 11 } can be removed since it is not adjacent

o any of the vertices of the first layer V = { v , v , v } . 
1 1 2 3 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

2

g

o

b

b

B

 

o  

w

E

b

G

t

t

o

V

g

V

V

w

g

s  

n

o

t  

t

α
t

I

b  

i

p

T  

p

e

O

n

t

c

v

s

f

t

c

r

i

e  

I

t  

c  

i  

e  

t

l  

S

t

2

b  

p

c

a

p

 

i

t  

c  

p

i

i

O  

∅  

m

s

a

o

m

t  

t

s

a

(

F
w

B

o

e

s  

c

I

c  

f

i  

v  

v
t

i

p

b  

d

E

c

a

u

t

s

O

b

b

t

.1. The branching scheme of Bfilt 

In this section we describe the way the B&F tree of Bfilt is 

enerated. A branching node is created by selecting a layer, and 

ne of its vertices, and by adding it to the clique ˆ K constructed 

y the branching operations. By selecting a vertex in the layer, the 

ranching operation, de facto , assigns a value to the corresponding 

CSP variable. 

We denote N(v ) the neighbourhood of a vertex v ∈ V , i.e., the set

f its adjacent vertices. For a subset of vertices U ⊆ V of a graph G ,

e denote G [ U] = (U, E[ U]) the graph induced by U , where E[ U] ⊆
contains those edges with both endpoints in U . The effect of the 

ranching on a vertex of a layer is to create a suproblem graph 

ˆ 
 = ( ̂  V , ̂  E ) induced by the intersection of the neighbourhoods of 

he vertices v ∈ 

ˆ K . As a by-product, all the remaining vertices of 

he branching layer are removed. Formally, the vertices and edges 

f ˆ G are: 

ˆ 
 = 

⋂ 

v ∈ ̂ K 

N(v ) , and 

ˆ E = E[ ̂  V ] . 

At each node of the B&F tree the corresponding subproblem 

raph 

ˆ G has the vertex set partitioned into α = k − | ̂  K | layers, i.e., 
ˆ 
 = { ̂  V 1 , ̂  V 2 , . . . , ̂  V α} . Formally: 

ˆ 
 j = 

{ 

v ∈ V i ( j) : (v , u ) ∈ E, ∀ u ∈ 

ˆ K 

} 

, j ∈ { 1 , 2 , . . . , α} , 
here i ( j) is the index of the original layer in the microstructure 

raph of the layer j in the subproblem graph. Precisely, the vertex 

et ˆ V j is composed of the vertices of the original layer i ( j) that are

eighbors to every vertex in 

ˆ K . As a consequence of the branching 

perations described above, each node of the tree is associated to 

he pair ( ̂  K , ˆ G ), where ˆ K is the clique of size | ̂  K | ≤ k constructed by

he branching operations and 

ˆ G is the corresponding subproblem 

-partite graph. At the root node of the B&F tree, ˆ G corresponds to 

he original microstructure graph G (I) and 

ˆ K = ∅ . 
The branching scheme of Bfilt is an n -ary branching scheme. 

t selects one layer j of ˆ V for branching, and then creates | ̂  V j | 
ranching nodes by adding to ˆ K each vertex v ∈ 

ˆ V j , one per node. It

s worth noticing that it is sufficient, for the algorithm to be com- 

lete, to branch on the vertices corresponding to one layer only. 

his is due to the fact that, in order to build a k clique, a vertex

er layer is necessary. 

A first fathoming condition for backtracking, which allows to 

nd the branching recursion, is given by the following observation: 

bservation 1. Given a pair ( ̂  K , ˆ G ) , the corresponding branching 

ode can be fathomed if ˆ V j = ∅ , for any j ∈ { 1 , 2 , . . . , α} . 
This fathoming condition represents the fact that if one layer of 

he subproblem graph becomes empty, a clique of size k cannot be 

onstructed. By the nature of the subproblem graph, indeed one 

ertex per layer has to be selected in order to construct a clique of 

ize k . This condition is equivalent to reaching an empty domain 

or the variable of the corresponding layer. 

Finally, if | ̂  K | = k , the B&F algorithm stops and we reconstruct 

he solution to the original BCSP instance associated to ˆ K . In this 

ase the original BCSP instance is satisfiable. Alternatively, if the 

ecursion ends without reaching this condition, the original BCSP 

nstance is unsatisfiable. 

In this paragraph, we show an example of one branching op- 

ration at the root node for the BCSP instance depicted in Fig. 1 .

n this example, we describe the effect of branching by selecting 

he layer 1 and its first vertex v 1 ∈ V 1 . The incumbent clique ˆ K be-

omes { v 1 } and α = 3 . The resulting subproblem 3-partite graph 

ˆ G

s composed of 3 layers: ˆ V 1 = { v 4 , v 5 } , ̂  V 2 = { v 7 } , ̂  V 3 = { v 9 } . In this

xample, j = 1 , 2 , 3 and the function i ( j) provides the mapping be-

ween the indexes of the layers of the subproblem graph to the 
452 
ayers of the original graph, i.e., i (1) = 2 , i (2) = 3 and i (3) = 4 .

ince none of the layers are empty, the branching node associated 

o this subproblem cannot be fathomed. 

.2. The colour-filtering phase of Bfilt 

In this section we describe the colour-filtering phase carried out 

y the algorithm Bfilt . Given a node ( ̂  K , ˆ G ) associated to the sub-

roblem graph 

ˆ G and the clique ˆ K , the colour-filtering phase is exe- 

uted first, before the SAT-filtering phase (described in Section 2.3 ) 

nd the branching. It aims at fathoming the node or, if this is not 

ossible, filtering some of its vertices. 

We observe that if a vertex v in a layer ˆ V j ( j ∈ { 1 , 2 , . . . , α}) ex-

sts such that its neighbourhood does not contain any of the ver- 

ices of a different layer l � = j, then the vertex can be filtered, i.e., it

an be removed from 

ˆ G . This is due to the fact that if this vertex is

art of a clique, then this clique cannot contain any vertex from 

ˆ V l , 

.e., it cannot be a clique of size α. This reasoning is summarized 

n the following observation. 

bservation 2. If a vertex v ∈ 

ˆ V j of ˆ G exists such that N(v ) ∩ 

ˆ V l =
 , for any layer l ∈ { 1 , 2 , . . . , α} , l � = j, then the vertex v can be re-

oved from 

ˆ G . 

From the perspective of the BCSP problem, such a vertex corre- 

ponds to a variable value that is not supported by another vari- 

ble, i.e., it is not compatible with any of the (non-filtered) values 

f another variable domain. 

In order to efficiently find such vertices, Bfilt executes a 

odified version of the greedy independent set sequential heuris- 

ic ( ISEQ ). We recall that ISEQ computes a partition of the ver-

ex set of a graph into independent sets (colours). It does so by 

equentially examining the vertices following a predefined order 

nd builds one independent set at a time, see San Segundo et al. 

2011) , where it is used inside an MCLP algorithm. We denote 

ILT-ISEQ the modified version of ISEQ employed by Bfilt , 
hich is explained in the following paragraph. 

In its initialization phase, FILT-ISEQ creates a duplicated set 

 of the vertices of ˆ V and then iteratively constructs a collection 

f independent sets P( ̂  V ) , one at a time. Additionally, and during 

xecution, FILT-ISEQ stores a label l(I) for every independent 

et I ∈ P( ̂  V ) . This label corresponds to the layer index in the mi-

rostructure graph of the first vertex added to I. In order to build 

(starting from the empty set), it examines every vertex v ∈ B and 

hecks whether I ∪ { v } is an independent set. If this is the case, it

urther tests whether the layer i of v in the microstructure graph, 

s the same as the label of I, i.e., i = l(I) . If both conditions hold,

 is removed from B and added to I. If, on the other hand, i � = l(I) ,

 is removed from B and according to Observation 2 , filtered from 

he graph 

ˆ G . In other words, the vertex v can be filtered since it 

s not connected to any of the vertices in I and thus cannot make 

art of any α-clique, i.e., the value associated to v is not supported 

y any value of the original layer l(I) . If I ∪ { v } is not an indepen-

ent set, vertex v remains in B and the next vertex is examined. 

ach time an independent set I is constructed, it is added to the 

ollection P( ̂  V ) . The procedure halts when B is the empty set. 

Since at most one vertex in each independent set can be part of 

ny clique in 

ˆ G , if FILT-ISEQ manages to partition the remaining 

nfiltered vertices of ˆ G in less than α independent sets (colours), 

he corresponding branching node can be fathomed. This fact is 

ummarized in the following observation. 

bservation 3. After the execution of FILT-ISEQ , if the num- 

er of independent sets of P( ̂  V ) is less than α, the corresponding 

ranching node can be fathomed. 

If the node of the B&F tree is not fathomed after the execu- 

ion of FILT-ISEQ , we keep track of the reduced 

ˆ G and denote it 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Fig. 2. The subproblem graph ˆ G used in Example 2. The colorued vertices reflect the colouring obtained by FILT-ISEQ on the reduced subproblem graph ˜ G = 

ˆ G [ ̂ V \ { v 4 , v 6 } ] . 

G  

i

b

I

c

s

s

i  

s

α  

c

s

fi

t

F
P

p  

a  

V

v  

l  

F
b  

t  

v  

i  

e  

t  

a

I  

O

a

t  

v  

i

d

a

(  

h  

l

s

B

t

d

v

m

p  

i  

P

p  

a

a

d

t

t

o  

d

t

p

t

g

a

(

p

O

g

w

 

e  

v

w

c

o

B  

(

v

fi

f

i

t  

F
c

t

i

i

fi

s

F
v

e

i

s

s

i

b

t

˜ 
 = ( ̃  V , E[ ̃  V ] ) . Furthermore, we set its layers ˜ V to each one of the

ndependent sets (colours) in the collection P( ̂  V ) . Subsequently, ˜ G 

ecomes the input graph of the ensuing SAT-based filtering phase. 

t is worth noting that, at the end of its execution, FILT-ISEQ 
omputes a colouring of the reduced graph 

˜ G . A colouring corre- 

ponds to an assignment of colours to the vertices of a graph in 

uch a way that two adjacent vertices receive different colours and 

t can also be seen as a partition of the vertex set into independent

ets. 

Example 2 In Fig. 2 , we depict the subproblem graph 

ˆ G with 

= 3 and layers: ˆ V 1 = { v 1 , v 2 } , ˆ V 2 = { v 3 , v 4 } and 

ˆ V 3 = { v 5 , v 6 } . The

orresponding layers of the microstructure graph G (I) have the 

ame indexes. The edges of the graph 

ˆ G are also depicted in the 

gure. Using this demonstration graph, we illustrate the opera- 

ion of the colour-filtering phase. At the start of the procedure, 

ILT-ISEQ sets B to ˆ V and the collection of independent sets 

( ̂  V ) is the empty set. In the first iteration, FILT-ISEQ com- 

utes the independent set I 1 . The first vertex added to I 1 is v 1 ,
fter which the label l(I 1 ) is set to 1, since v 1 belongs to the layer

 1 of the microstructure graph. The procedure continues by adding 

 2 to I 1 , since it also belongs to the layer V 1 , but the next se-

ected vertex v 3 is skipped as it is a neighbour of both v 1 and v 2 .
ILT-ISEQ further continues by selecting and filtering vertex v 4 , 
ecause, while the vertex can be added to I 1 , it does not belong to

he layer V 1 . Vertex v 5 is further skipped because it is adjacent to

 1 and, finally, vertex v 6 is filtered for the same reason as v 4 , i.e.,

t does not belong to layer V 1 . The resulting independent set at the

nd of this iteration is I 1 = { v 1 , v 2 } , which is added to P( ̂  V ) , and

he filtered vertices of ˆ G are { v 4 } and { v 6 } . In the last two iter-

tions, FILT-ISEQ computes the independent sets I 2 = { v 3 } and 

 3 = { v 5 } . The node of the B&F tree is not fathomed according to

bservation 3 , since the number of independent sets is 3, the same 

s the number of layers in 

ˆ G . The resulting reduced graph 

˜ G has 

he set of vertices ˜ V = { v 1 , v 2 , v 3 , v 5 } corresponding to the coloured

ertices in the figure. Finally, we note that P( ̂  V ) = { I 1 , I 2 , I 3 } is an

ndependent set partition of ˜ V (also a colouring of ˜ G ), and its in- 

ependent sets are each one of the layers of ˜ G . 

The subproblem graph 

ˆ G is, de facto , a microstructure graph 

nd its associated BCSP has α variables and β = 

α (α−1) 
2 constraints 

one for each pair of variables). Each variable i , with i ∈ { 1 , . . . , α} ,
as a domain size equal to | ̂  V i | , i.e., the number of vertices in the

ayer associated to the variable i . The colour-filering phase can be 

een as a constraint propagator procedure for the aforementioned 

CSP and, therefore, it is relevant to analyse the domain consis- 

ency level it achieves. For this purpose we introduce the following 

efinitions related to arc consistency ( Mackworth, 1977 ). 

Two variables are said to be arc consistent , if each value of both 

ariable domains is compatible with at least one value of the do- 

ain of the other variable. A BCSP is called arc consistent if each 

air of variables is arc consistent. A pair of variables (i, j) , with

, j ∈ { 1 , . . . , α} , is said to be directional arc consistent ( Dechter &

earl, 1988 ), if each value of the domain of the variable j is com- 
453 
atible with at least one value of the domain of the variable i . For

 given ordering of the variables, a BCSP is said to be directional 

rc consistent if every pair of variables respecting the ordering is 

irectional arc consistent. The same notions can also be applied to 

he layers of a microstructure graph: i ) two layers are arc consis- 

ent if each vertex of both layers is connected to at least one vertex 

f the other layer; ii ) a pair (i, j) of layers, with i, j ∈ { 1 , . . . , α} , is
irectional arc consistent if every vertex of the layer j is connected 

o at least one vertex of the layer i . 

Starting from the microstructure graph 

ˆ G , the colour-filtering 

hase generates a new microstructure graph 

˜ G that is associated 

o a directional arc consistent BCSP with respect to the lexico- 

raphical order of the variables. Therefore, the level of consistency 

chieved by the colour-filtering phase is directional arc consistency 

DAC). This fact is summarized in the following observation, ex- 

ressed in terms of the microstructure graph 

˜ G : 

bservation 4. The BCSP problem associated to the microstructure 

raph 

˜ G is directional arc consistent, i.e., every pair (i, j) of layers, 

ith i, j ∈ { 1 , . . . , α} and i < j, is directional arc consistent. 

This is due to the fact that, after colouring a layer i ∈ { 1 , . . . , α} ,
ach vertex in the layer j > i that is not connected to at least one

ertex in the layer i is filtered. From a theoretical perspective, it is 

orth noting that DAC is a lower level of consistency compared to 

lassical (full) arc consistency (AC). The worst-case time complexity 

f the best procedure from the literature that imposes DAC in the 

CSP associated to ˆ G is O (β · �2 ) , see, e.g, chapter 3 of Rossi et al.

2006) , where � is max i =1 , ... ,α{| ̂  V i |} , i.e., the maximum size of the 

ariable domains. The worst-case time complexity of the colour- 

ltering phase is O (| ̂  V | 2 ) , since the colouring heuristic examines, 

or each vertex, all those preceding it in lexicographical order. This 

s the same complexity as enforcing DAC, since | ̂  V | ≤ α · �. 

For the example of Fig. 2 , the BCSP problem associated to 

he new microstructure graph 

˜ G = 

ˆ G [ ̂  V \ { v 4 , v 6 } ] determined by

ILT-ISEQ , is directional arc consistent with respect to the lexi- 

ographical order of the layers. However, it is not (fully) arc consis- 

ent since the pair of variables associated to the layers ˆ V 1 and 

ˆ V 3 , 

.e., variables 1 and 3, are not arc consistent as the vertex v 2 ∈ 

ˆ V 1 
s not connected to any vertex in 

ˆ V 3 . 

We conclude this section by briefly mentioning that the colour- 

ltering phase can be extended to enforce AC on the BCSP as- 

ociated to ˜ G . This can be done by repeating the execution of 

ILT-ISEQ according to increasing and decreasing order of the 

ertices until the graph 

˜ G remains unchanged. At the end of each 

xecution, the graph 

˜ G becomes the new input graph 

ˆ G for the next 

teration, if some of the vertices are filtered. When this procedure 

tops, the BCSP associated to ˜ G is arc consistent. Preliminary exten- 

ive tests showed that the computational overhead of achieving AC 

n this manner is not compensated by the increased filtering capa- 

ilities. This is due to the fact that, in the tested instances, most of 

he vertices are filtered during the first execution of FILT-ISEQ . 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

2

i

t

fi

t  

i

b

e  

E  

l

1  

t

i  

o

i

e

C

a

a

fi

G  

c

a

h

T

t

s  

w

m  

W

α  

b

l

a

fi

o

f

s

i

a

O

p

c

t

s

e

o

(  

D

p

m

l

s

o  

T

s

s

l

a

a

u

t

i

f

m

t  

G

O

t

f

c  

l  

T

p

n

h

h

h

a

s

I

a  

c  

v  

l

n

t

s  

fi  

t

c

0

n

t  

a

e

i  

C

c

t

F
e

O

t

f

t  

u

s  

p

m  

t

c

.3. The SAT-filtering phase of Bfilt 

After the colour-filtering phase is over and before the branch- 

ng, Bfilt executes the SAT-filtering phase . This phase works on 

he reduced graph 

˜ G and it has the same two goals of the colour- 

ltering phase: i ) fathoming a node in case the procedure manages 

o prove that a clique of size α does not exist in 

˜ G , and ii ) filtering

ndividual vertices that cannot be part of any clique of size α. 

The SAT-filtering phase exploits a reduction of the α-CLP to the 

oolean satisfiability (SAT) problem, where α is the number of lay- 

rs of the graph 

˜ G = ( ̃  V , E[ ̃  V ]) . This reduction operates as follows.

ach vertex v ∈ 

˜ V is associated to a boolean variable y v ∈ { 0 , 1 } . A

iteral of a boolean variable y refers to its value, i.e., either value 

 (denoted y , the positive literal) or value 0 (denoted ȳ , the nega-

ive literal). A clause is a finite collection of literals linked by log- 

cal operators (e.g., ∨ , ∧ , ¬ ). A unit clause refers to a clause with

nly one literal. A conjunctive normal form (CNF) boolean formula 

s a conjunction of clauses, each of which is a disjunction of lit- 

rals. The SAT problem associated to the α-CLP is defined by a 

NF boolean formula with two types of clauses: non-edge clauses 

nd layer clauses . It calls for an interpretation of the variables, 

n assignment of values to each one of the variables, that satis- 

es all its clauses. The complement graph of a graph G is denoted 

 = (V, E ) and E = { (u, v ) : (u, v ) / ∈ E} . The non-edge clauses, asso-

iated to the non-adjacent pairs of vertices in 

˜ G , contain only neg- 

tive literals and they read as follows: 

 u v ≡
(

ȳ u ∨ ȳ v 
)

(u, v ) ∈ E [ ̃  V ] . (1) 

he layer clauses, associated to the layers of ˜ G , contain only posi- 

ive literals and they read as follows: 

 j ≡
(

y v (1) ∨ y v (2) ∨ . . . ∨ y v (g) 

)
j = 1 , 2 , . . . , α, (2)

here, for each layer j, the function v (l) returns the vertex in the 

icrostructure graph of the lth vertex in the layer j, and g = | ̃  V j | .
e denote S( ̃  G ) the SAT problem obtained by the reduction of the 

-CLP in 

˜ G . Solving to optimality S( ̃  G ) by using a SAT solver may

e very time consuming, due to the N P -completeness of the prob- 

em. For this reason, we design the following procedure with the 

im of either heuristically detecting the unsatisfiability of S( ̃  G ) or 

ltering some of the vertices of ˜ G . 

The subproblem graph 

˜ G contains a clique of size α if and 

nly if the associated SAT problem S( ̃  G ) is satisfiable. It is there- 

ore sufficient to check that S( ̃  G ) is unsatisfiable to prove that the 

ubproblem graph 

˜ G does not contain a clique of size α. Accord- 

ngly, the following observation provides a fathoming condition of 

 branching node: 

bservation 5. Given a subproblem graph 

˜ G , if the associated SAT 

roblem S( ̃  G ) is unsatisfiable, the corresponding branching node 

an be fathomed. 

Solving S( ̃  G ) in every node of the B&F tree can be computa- 

ionally challenging. In an attempt to efficiently prove only un- 

atisfiability, Bfilt employs unit propagation ( UP ) and failed lit- 

ral detection ( FL ). These procedures are typically used by state- 

f-the-art SAT algorithms and, recently, also by MCLP algorithms 

see e.g., Li & Quan, 2010 ). We refer the interested reader to e.g.,

avis & Putnam (1960) , where these techniques have been pro- 

osed. We adapt these two procedures for the specific require- 

ents of S( ̃  G ) . Specifically, the UP procedure exploits the fact that 

ayer unit clauses can only be satisfied by setting to 1 the corre- 

ponding variables. Our UP procedure starts by determining the set 

f unit clauses in S( ̃  G ) ; if no unit clauses are found it terminates.

he UP procedure then selects a unit clause, fixes to 1 the corre- 

ponding boolean variable and fixes to 0 the variables in the corre- 

ponding non-edge clauses (1) . As a result of this operation, every 

ayer clause with all except one variable remaining unassigned is 
454 
dded to the initial set of unit clauses. In the next step, UP selects 

 remaining unit clause and the procedure is repeated until every 

nit clause has been selected or until a layer clause is found such 

hat all its variables are set to 0. In the latter case, the correspond- 

ng SAT problem S( ̃  G ) is unsatisfiable, and the node of the tree is 

athomed according to Observation 5 . Once the UP procedure ter- 

inates, all variables set to 0 during the execution are filtered from 

he graph 

˜ G , since they cannot make part of any clique of size α in
˜ 
 . This filtering condition is summarized as follows. 

bservation 6. After the execution of the UP procedure, the ver- 

ices associated to the boolean variables set to 0 can be deleted 

rom the graph 

˜ G . 

Example 3 We report in this paragraph the operations of UP ac- 

ording to the example graph 

˜ G of Fig. 3 . This graph has the fol-

owing α = 3 layers: ˜ V 1 = { v 1 , v 2 } , ˜ V 2 = { v 3 , v 4 , v 5 } and 

˜ V 3 = { v 6 } .
he edges of the graph are also reported in the figure. The SAT 

roblem S( ̃  G ) encoding ˜ G is composed of the following clauses. Its 

on-edge clauses (1) are: 

 v 1 v 2 ≡ ( ̄y v 1 ∨ ȳ v 2 ) , h v 1 v 4 ≡ ( ̄y v 1 ∨ ȳ v 4 ) , h v 1 v 5 ≡ ( ̄y v 1 ∨ ȳ v 5 ) , 

 v 2 v 6 ≡ ( ̄y v 2 ∨ ȳ v 6 ) , h v 3 v 4 ≡ ( ̄y v 3 ∨ ȳ v 4 ) , h v 3 v 5 ≡ ( ̄y v 3 ∨ ȳ v 5 ) , 

 v 3 v 6 ≡ ( ̄y v 3 ∨ ȳ v 6 ) , h v 4 v 5 ≡ ( ̄y v 4 ∨ ȳ v 5 ) , h v 5 v 6 ≡ ( ̄y v 5 ∨ ȳ v 6 ) . 

nd its layer clauses (2) are: 

 1 ≡ ( y v 1 ∨ y v 2 ) , s 2 ≡ ( y v 3 ∨ y v 4 ∨ y v 5 ) , s 3 ≡ ( y v 6 ) . 

n the example, the layer clause ˜ V 3 corresponding to layer 3 is 

 unit clause, so UP sets y v 6 to 1. It follows from the non-edge

lauses containing y v 6 , i.e., h v 2 v 6 , h v 3 v 6 and h v 5 v 6 , that the boolean

ariables y v 2 , y v 3 , y v 5 have to be set to 0. As a consequence, the

ayer clause corresponding to layer 1 becomes a unit clause. In the 

ext iteration, UP sets the boolean variable y v 1 to 1 and according 

o its non-edge clauses, sets y v 4 to 0. At this point, the layer clause 

 2 has all its variables set to 0 so the SAT problem S( ̃  G ) is unsatis-

able. According to Observation 5 , the node is fathomed. In Fig. 3 ,

he vertices that correspond to boolean variables set to 1 by UP are 

oloured in red. The vertices associated to boolean variables set to 

 are coloured in grey. 

We describe in this paragraph our FL procedure. Consider a 

on-unit layer clause and one of its variables. We say the (posi- 

ive) literal y v is failed if, when the variable is set to 1 and the

ssignment is propagated according to UP , a layer clause with ev- 

ry variable set to 0 is attained. If this is the case, the variable y v 
s fixed to 0, and its corresponding vertex v can be filtered from 

˜ G .

hecking this condition for all the variables in layer clauses can be 

omputationally challenging. A good compromise between compu- 

ational overhead and filtering power is achieved by Bfilt when 

L is restricted to layer clauses with two literals. The filtering op- 

rations of FL are summarized by the following observation. 

bservation 7. After the execution of the FL procedure, the ver- 

ices that generate an empty layer clause via UP can be deleted 

rom the graph 

˜ G . 

The SAT-filtering phase of Bfilt interleaves FL with UP . Ini- 

ially, procedure UP is called upon S( ̃  G ) and, as a result, all layer

nit clauses, as well as those that have become unit clauses when 

ome of its variables are set to 0 during the execution of UP , are

rocessed. If the node of the B&F tree is not fathomed after the ter- 

ination of UP , Bfilt then calls procedure FL . If, as a result of

he latter, a failed literal is detected, its layer clause becomes unit 

lauses when the variable is set to 0, so UP is then called upon 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Fig. 3. The subproblem graph ˜ G of Example 3. Red vertices are associated to boolean variables set to 1 by UP . Vertices in grey are filtered from 

˜ G since they are associated 

to boolean variables set to 0 by UP . 

Fig. 4. The subproblem graph ˜ G of Example 4. The vertex coloured in red corresponds to a failed literal. In grey the vertices of the boolean variables that participated in the 

reasoning of the SAT-filtering phase of Bfilt . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

t

c

p

i

r  

3  

t

n

t

p  

y

t  

w  

f

s

u

i  

j

i  

t

v

s

t

o

p

t

t

t

i

p

t

U

f

s

a

G

fi

w

t  

u

3

a

m

p

g

i

m

t

f

S  

v

m

a

h

a

t

a

t

i  

l

g

i

he latter. The procedure continues until either S( ̃  G ) remains un- 

hanged after the execution of FL or unsatisfiabiliy of S( ̃  G ) can be 

roved. 

Example 4 We show the operations carried out by Bfilt dur- 

ng the SAT-filtering phase, explaining in detail the operations car- 

ied out by FL . In Fig. 4 we depict a subproblem graph 

˜ G with α =
 layers: ˜ V 1 = { v 1 , v 2 } , ˜ V 2 = { v 3 , v 4 } and 

˜ V 3 = { v 5 , v 6 } . The edges of

he graph are also reported in the figure. In this example there are 

o unit clauses, so procedure UP terminates immediately. However, 

he layer clause s 3 contains two literals so FL attempts to fail both 

ositive literals of s 3 . We consider first the variable y v 5 ∈ s 3 . Setting

 v 5 to 1 and propagating this assignment according to UP leads 

o the layer clause s 2 having all its variables set to 0, in a similar

ay as in Example 3. This proves that the positive literal of y v 5 is

ailed. Consequently, the variable is set to 0 and the layer clause 

 3 becomes unit, since y v 6 is now the only variable that remains 

nassigned. UP is then called for this unit clause, and, as a result, 

t sets each variable of the layer clause s 1 to 0, since v 6 is not ad-

acent to any variable in s 1 . According to Observation 5 the node 

s fathomed. In Fig. 4 , the vertex coloured in red is associated to

he boolean variable of the failed literal and we depict in grey the 

ertices that took part in the reasoning. 

The SAT-filtering phase, as the colour-filtering phase, can be 

een as a constraint propagator procedure for the BCSP associated 

o the microstructure graph 

˜ G , and so it can be analysed in terms 

f the domain consistency level it achieves. Specifically, the level 

ropagated by UP is below AC. This can be seen by the fact that 

he encoding of the subproblem α-CLP to SAT in this phase uses 

he direct encoding , i.e., one literal per vertex (also variable value in 

he associated BCSP); and classical unit propagation in this setting 

s known to be weaker than AC, see, e.g. [68]. We recall that the 

rocedure FL attempts to heuristically filter vertices by first set- 

ing their corresponding boolean variable to 1 and then executing 

P on the resulting subproblem to detect unsatisfiability. There- 

e

455 
ore, the consistency level FL achieves corresponds to (a subset of) 

ingleton UP consistency (SUP), which is above AC. FL does not 

chieve full SUP because it is applied selectively to those layers in 

˜ 
 which have two vertices. The consistency level of the (full) SAT- 

ltering phase is determined by FL . 
With respect to complexity, UP runs in worst-case time O (| ̃  V | 2 ) , 

hich is comparable to the complexity of classical unit propaga- 

ion in SAT solvers, while FL runs in O (| ̃  V | 3 ) , since it fixes individ-

al vertices and then executes UP in the remaining subproblem. 

. The additional algorithmic improvements of Bfilt : the 

lgorithm Bfilt+ 

In this section, we present the additional algorithmic improve- 

ents of Bfilt designed to further enhance its computational 

erformance. We recall that Bfilt works on the microstructure 

raph which is, by nature, a k -partite graph. It is worth mention- 

ng, however, that Bfilt can also work with any k partition of the 

icrostructure graph. By analysing preliminary extensive computa- 

ional results, we noticed that working on the original partition is, 

or some classes of instances, not the most effective choice (see 

ection 4.3 ). This is due to the fact that the original order of the

ertices in the microstructure graph does not correspond to the 

ost effective order used by the state-of-the-art maximum clique 

lgorithms. To face this problem, we propose two algorithmic en- 

ancements that enrich the algorithm Bfilt , de facto producing 

n improved version denoted Bfilt+ . In a nutshell, we attempt 

o reorder the vertices of the microstructure graph according to 

 new partition of size k and execute Bfilt on this reformula- 

ion of the original BCSP instance. This new re-partition procedure 

s described in Section 3.1 . If the size of the new partition is too

arge, Bfilt+ resorts to the initial partition of the microstructure 

raph and executes Bfilt . Finally, if the size of the new partition 

s larger than k , but within a given gap (see next section), Bfilt+ 
xecutes the maximum clique procedure described in Section 3.3 . 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

3

s

m

r

m

a

o

t

p

&

c

t

t

f  

S

a

t

c

t

(

d

p

e

e  

t

(  

s

s

q

u

c

f

a

t

n

n

b

t

t

t

t

fi

i

i

w

(

a

t

f

r

B
(

s

d

S
e

v

S
W  

p  

t

s

s

 

i  

f

c

k

t

g

m

e

d

t  

F

t

t  

e  

o

n  

s

p

{  

t

s

i

v  

{  

e

c

n

t

o

s

H

B

t

d

t

t

3

t

F
s

t

d

a

p  

{  

a

V

i

I

p

p

v

t  

F
j

s

.1. The re-partition procedure of Bfilt+ 

The re-partition procedure attempts to find a new partition of 

ize k (and accordingly a new ordering) of the vertices of the 

icrostructure graph that is more effective for clique-based algo- 

ithms such as Bfilt+ . In addition, the procedure de facto refor- 

ulates the original BCSP instance by computing new layers, i.e., 

 new (independent set) partition of the microstructure graph. The 

rdering of the vertices is a very significant factor for the compu- 

ational performance of exact algorithms for the maximum clique 

roblem (MCLP), see, e.g., San Segundo, Lopez, Batsyn, Nikolaev, 

 Pardalos (2016a) or Section 3 of Li, Jiang, & Manyà (2017) . Ac- 

ording to San Segundo et al. (2016a) , the colour-sort ordering is 

o be preferred when the graph admits an independent set par- 

ition of size close to its clique number. Consequently, we design 

or Bfilt+ a SORT procedure, inspired in Li, Fang, & Xu (2013) ;

an Segundo et al. (2016a) , which computes a colour-sort ordering 

s follows. 

The procedure SORT reorders the vertices of the microstruc- 

ure graph according to the (independent set) partition obtained by 

omputing maximum/maximal independent sets in the microstruc- 

ure graph. Since the instances of our benchmark are quite dense 

see Section 4 ), the maximum independent set problems solved 

uring the SORT procedure are expected to be easy. From a com- 

utational perspective, maximum independent sets are typically 

asy on dense graphs, as observed in several papers, see e.g., Li 

t al. (2017) ; San Segundo et al. (2016) , also in the context of in-

erdiction problems, see, e.g., Furini, Ljubi ́c, Martin, & San Segundo 

2019) ; Furini, Ljubi ́c, San Segundo, & Zhao (2021) . This is due to

everal factors, the two main ones are: i ) dense graphs contain 

mall independent sets and, for this reason, it is easy to find good- 

uality heuristics solutions; ii ) in dense graphs, the upper bounds 

sed to reduce the branching tree are expected to be tight. 

The computed independent sets by the SORT procedure be- 

ome the new layers of the microstructure graph. In order to ef- 

ectively reduce the size of the branching tree of Bfilt+ , vertices 

re ordered by SORT according to the following two criteria: i ) 

he layers (independent sets) of the new partition are sorted by 

on-decreasing size and ii ) inside each layer, vertices are sorted by 

on-increasing vertex degree. The first criteria aims at selecting a 

ranching layer with a small number of vertices. The second cri- 

eria aims at examining first those vertices in the branching layer 

hat are more likely to be part of a k -clique. 

To compute each maximum independent set, Bfilt+ executes 

he state-of-the-art MCLP algorithm ( San Segundo et al., 2016 ) on 

he complement of the microstructure graph. In the case when 

nding maximum independent sets is computationally challeng- 

ng, the SORT procedure computes maximal independent sets (us- 

ng the same algorithm) within a time limit of 0.1 seconds. It is 

orth mentioning that Bfilt+ solves an optimisation problem 

maximum or maximal independent set) in the preprocessing of 

 satisfaction problem. This operation is not performed very of- 

en since optimisation problems are in general harder than satis- 

action problems. Surprisingly, in our case the optimization-based 

epartitioning improves the overall computational performance of 

filt+ . As explained above, this is possible since the maximum 

maximal) independent set problem is typically easy on dense in- 

tances, whereas the maximum clique problem is expected to be 

ifficult. 

Thanks to extensive preliminary tests, we noticed that the 

ORT procedure is not always able to find a new partition of size 

qual to k . Accordingly, we change the partition and reorder the 

ertices of the original microstructure graph if and only if the 

ORT procedure is able to find a new partition of size exactly k . 

e denote the new k -partition {V 1 , . . . , V k } and denote the new k

artite graph G(I) = (V, E ) . It is worth mentioning that if a par-
456 
ition of size strictly smaller than k is found, then the BCSP in- 

tance is unsatisfiable. The vertices and the edges of G(I) are the 

ame as G (I) , only the layers differ. By construction, each layer 

j = 1 , 2 , . . . , k of G(I) is a maximum (or maximal) independent set

n the subgraph G(I)[ ∪ 

j 
i =1 

V i ] . In case a new partition of size k is

ound, Bfilt+ executes Bfilt on G(I) . If, instead, the SORT pro- 

edure fails and the new partition is of size strictly greater than 

 + 10 then Bfilt+ executes Bfilt on the original microstruc- 

ure graph G (I) . Finally, if the new partition is of size strictly 

reater than k and smaller than k + 10 , then Bfilt+ executes the 

aximum clique procedure described in Section 3.3 . 

Example 5 We describe in this paragraph the operations ex- 

cuted by the SORT procedure to compute the colour-sort or- 

ering for the microstructure graph of Fig. 1 . For this graph, 

he procedure is able to find a new partition of size k = 4 .

ig. 5 illustrates the new ordering of the vertices, as well as 

he new layers. In the example, the degrees of the vertices of 

he microstructure graph are: deg (V ) = { 4 , 2 , 1 , 3 , 3 , 3 , 4 , 5 , 3 , 1 , 1 } ,
.g., deg (v 1 ) = 4 , deg (v 2 ) = 2 . The maximum independent set

f the microstructure graph, and first independent set of the 

ew partition, is { v 9 , v 5 , v 2 , v 11 , v 10 , v 3 } , where the vertices are

orted according to the ordering. The second maximum inde- 

endent set in the graph induced by the remaining vertices is 

 v 8 , v 7 } , the next one is { v 1 , v 6 } and the last one is the single-

on { v 4 } . Finally, layers are sorted according to non-decreasing 

ize, i.e., in reverse order as they are computed. The result- 

ng colour-sort ordering is: v 4 ≺ v 1 ≺ v 6 ≺ v 8 ≺ v 7 ≺ v 9 ≺ v 5 ≺ v 2 ≺
 11 ≺ v 10 ≺ v 3 , and the new layers, V 1 = { v 4 } , V 2 = { v 1 , v 6 } , V 3 =
 v 8 , v 7 } , V 4 = { v 9 , v 5 , v 2 , v 11 , v 10 , v 3 } , are depicted in Fig. 5 in differ-

nt colours. For each layer in the figure, the vertices at the bottom 

ome first in the ordering. 

It is worth mentioning that the repartitioning procedure does 

ot exploit specific a priori knowledge about the structure of 

he constraints. Consequently, we design the repartitioning relying 

nly on maximum (maximal) independent sets. This repartitioning 

trategy is shown to be computationally effective, see Section 3.1 . 

owever, different repartitions, i.e., different reformulations of the 

CSP problems, can be obtained by exploiting the specific nature of 

he constraints, such as, e.g., the all-different constraint. Bfilt+ 
oes not attempt to exploit this information to build the reparti- 

ion. However, we believe that it could be a promising line of fu- 

ure research. 

.2. Color-filtering additional enhancements 

In this paragraph, we consider a further enhancement of 

he colour-filtering phase. The key idea is that the procedure 

ILT-ISEQ can be applied to any (layer) partition of size k of the 

ubproblem graph 

ˆ G , as long as its vertices are processed according 

o the layers (see Section 2.2 , where the FILT-ISEQ procedure is 

escribed). We illustrate this enhancement via the following ex- 

mple. Consider the new partition of the subproblem graph de- 

icted in Fig. 2 into the following three layers: ˆ V 1 = { v 1 , v 6 } , ˆ V 2 =
 v 3 , v 4 } and 

ˆ V 3 = { v 2 , v 5 } . The graph 

˜ G computed by FILT-ISEQ
ccording to the new layers ˆ V , has the (reduced) set of vertices 

˜ 
 = { v 1 , v 3 , v 5 , v 6 } , since v 6 would be selected before v 2 and, v 2 
s not adjacent to any of the vertices in the independent set ˆ V 1 . 
t is worth noting that the FILT-ISEQ procedure can be ap- 

lied more than once with the goal of further reducing the sub- 

roblem graph. In the example, by executing FILT-ISEQ in re- 

erse order (selecting vertices from last to first index number) on 

he graph 

˜ G , ˜ V = { v 1 , v 2 , v 3 , v 5 } (filtered by the first execution of

ILT-ISEQ ), the vertex v 2 is removed from 

˜ G , since it is not ad- 

acent to the independent set determined by the singleton v 5 . It 

hould be pointed that the new graph, which is determined by the 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Fig. 5. The reordered microstructure graph G(I) of the example depicted in Fig. 1 after the execution of the SORT procedure. The graph G(I) is isomorphic to the graph 

G (I) but it exhibits a new partition of size k = 4 . 

v  

f

i  

d

G

t

t

a

fi

p

3

w

w  

v

g  

t  

o

t  

s

o  

w

2

o

i  

n  

g

o  

i

u

r

i

f

p

p

3

G  

i

m

c

c

t

i  

n

i  

d

p

s

P

b

P

w

a

s

a  

a  

i

d  

t  

p

|
w

b

b  

l  

t

o

c

P

ertices { v 1 , v 3 , v 5 } , cannot be reduced further, since these vertices

orm a clique of size three. 

Specifically, Bfilt+ employs the colour-filtering enhancement 

n case a new partition of size k is found by the re-partition proce-

ure. With the aim of reducing and filtering the subproblem graph 

ˆ 
 , Bfilt+ executes the FILT-ISEQ procedure using both parti- 

ions and processing the vertices also in reverse order. If two calls 

o FILT-ISEQ are executed consecutively, the second call oper- 

tes on the filtered subproblem graph of the first call. The final 

ltered graph becomes then the final ˜ G graph for the SAT-filtering 

hase (see Section 2.3 ). 

.3. The maximum clique procedure of Bfilt+ 

In this section, we describe the extension of Bfilt executed 

hen the re-partition procedure determines a partition of size � 

ith k < � ≤ k + 10 . In this case, the SORT procedure reorders the

ertices of the microstructure graph determining a new � -partite 

raph denoted G � = (V � , E � ) . The vertices and the edges of G � are

he same as G (I) , only the partition, the number of layers and the

rdering of the vertices is different. Following the standard nota- 

ion, we denote ω(G � ) the clique number of the graph G � , i.e., the

ize of the largest clique in G � . 
We recall that Bfilt cannot be executed since it works only 

n k -partite graphs. Therefore, in order to solve the k -CLP on G � ,
e adapt the state-of-the-art maximum clique algorithms ( Li et al., 

018a; San Segundo et al., 2016 ) to exploit the knowledge of the 

riginal k -partition. In outline, the tailoring is based on the follow- 

ng two points: i ) the initial lower and upper bounds on the clique

umber of the graph are set to k − 1 and k respectively, i.e., the al-

orithm assumes a k − 1 clique exists and stops whenever a clique 

f size k is found; ii ) in every node of the branching tree, the max-

mum clique procedure executes the colour filtering enhancement 

sing the original k -partition with the original vertex order and in 

everse direction (as described in the previous section). The aim 

s to reduce the subproblem graph and/or prune the node. In the 

ollowing, we outline the main operations of the maximum clique 

rocedure of Bfilt+ , i.e., the branching scheme and the bounding 

rocedure. 
457 
.3.1. Branching scheme 

For a given node of the branching tree, the subproblem graph 

˜ 
 � = ( ̃  V � , ˜ E � ) is obtained in the same way as the one described

n Sections 2.1 and 2.2 . Precisely, this graph contains the com- 

on neighborhood of the vertices of the partial clique ˆ K after the 

olour-filtering phase is executed. The branching is in line with the 

lassical scheme of MCLP algorithms and it relies on partitioning 

he branching candidate set ˜ V � into two sets, denoted the Branch- 

ng Set B and, its complement, the Pruned Set P := 

˜ V � \ B . At each

ode of the branch-and-bound tree, we carry out a | B | -ary branch- 

ng operation, thereby creating a tree node per vertex v ∈ B , by in-

ividually adding each vertex v ∈ B to ˆ K . A branching tree node is 

runed if the Branching set B is empty. The vertices in P are never 

elected as branching vertices at the current tree node. The largest 

runed Set P (and the corresponding smallest Branching Set B ) can 

e obtained by solving the following problem: 

 := arg max 
P̄ ⊆ ˜ V 

{ 

| ̄P | : (k − 1) − | ̂  K | ≥ ω( ̃  G � [ ̄P ]) 
} 

and B := 

˜ V � \ P, 

(3) 

here (k − 1) is the size of the largest clique (assumed) known 

t the start of the procedure. The key idea is to construct P in 

uch a way that any subset of its vertices would not suffice, when 

dded to ˆ K , to produce a clique of size k . This implies that to find

 clique of size k , one has to add to ˆ K at least one of the vertices

n B . This is precisely what our branch-and-bound algorithm will 

o as it generates, for each v ∈ B , a child node containing the par-

ial clique ˆ K ∪ { v } . For constructing the pruned set P , we look, in

rinciple, for the largest set P such that: 

 ̂

 K | + ω( ̃  G � [ P ]) ≤ k − 1 , 

here ω( ̃  G � [ P ]) denotes the clique number of the graph induced 

y P . In other words, the condition states that the graph induced 

y the vertices in 

ˆ K ∪ P does not contain a clique of size k . The

arger the set P , the smaller the number of vertices in B and, thus,

he smaller the number of child nodes created by the branching 

peration at the current node. Since determining the largest set P 

an be computationally difficult, the branching scheme determines 

 heuristically using two different bounds on ω( ̃  G � [ P ]) . 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

3

w

i

p  

d

i

B

e

c

c

c

v

b

c

b

e

3

d

d

b

c

p

b

(

t

t

g

t

t

F

l

b

v

t

u

d

t

B
a

p

d

v

i

4

n

T

t

o  

B
S  

v

4

X

m

c

I

r

a

(

o

o

a

b

o

a

o

d

e

(

o

s

(

s

B

e

p

t

d

c

t

p

t

r

s

(

t

h

s

a

s

c

h

c

t

s

i

v

d

c

c

i

l

i

i

i

t

s  

s

(  

w

w

3

m

d

f

c  
.3.2. Bounding procedure 

A first upper bound on ω( ̃  G � [ P ]) is obtained by colouring ˜ G � 
ith ISEQ , the greedy sequential independent-set heuristic that 

nspires FILT-ISEQ , see Section 2.2 . Precisely, the set P is com- 

osed of the set of vertices belonging to the first (k − 1) − | ̂  K | in-

ependent sets computed by the ( ISEQ ) procedure. If the Branch- 

ng Set B is not empty, the procedure attempts to further reduce 

 by employing an infrachromatic bounding procedure (a term first 

mployed in San Segundo et al., 2015 ), which operates on the 

olouring of ˜ G � . The outline of such procedure is to determine a 

ollection U of independent sets in the colouring such that no 

lique of size |U| exists in the subgraph of ˜ G � induced by the 

ertices in U . Every time one such subset U is found, the upper 

ound provided by the colouring is reduced by one unit. The infra- 

hromatic bounding function used by Bfilt+ is the MaxSAT- 

ased bounding procedure of Li et al. (2018a) , enhanced with the 

fficient bitstring data structures employed by Bfilt+ . 

.4. Implementation details 

We end this section commenting on relevant implementation 

etails. Bfilt+ uses bitstrings to encode the problem and the 

ata structures employed by our algorithm also in the nodes of the 

ranch-and-filter tree. The encoding allows for a number of criti- 

al operations of the colour-filtering, SAT-filtering and branching 

hases to be efficiently computed with bitmasks, and is inspired 

y recent bitstring clique algorithms, see, e.g., San Segundo et al. 

2019b) ; San Segundo et al. (2016) . Specifically, bitmasking opera- 

ions allow to manipulate bits in chunks of 64. Bfilt+ employs 

his encoding to represent the sets of vertices of the microstructure 

raph, where each bit refers to a specific vertex. Bitmasking allows 

o reduce the computing time of the operations on subsets of ver- 

ices by a factor of 64, such as the union or intersection operations. 

or example, the operations necessary to determine the subprob- 

em graph (see Section 2.1 ) require computing the common neigh- 

orhood of a set of vertices. The latter computation can be done 

ery efficiently using bitmasking. Another example can be found in 

he colour-filtering phase, see Section 2.2 . Precisely, FILT-ISEQ 
ses bitmasking to test whether a vertex can be added to an in- 

ependent set efficiently, reducing by a factor of 64 the computa- 

ion time of a standard procedure. It is also worth mentioning that 

filt+ does not use dynamic variable/value branching heuristics, 

 typical feature of efficient constraint programming solvers. As ex- 

lained in previous sections, the ordering of vertices is static and 

etermined during the initialization phase. Vertices, i.e., variable- 

alue pairs, are selected for branching lexicographically by layers 

n all the nodes. 

. Computational experiments 

In this section, we assess the computational performance of the 

ew branch-and-filter algorithm Bfilt+ presented in this work. 

he purpose of this computational study is threefold: i ) to evaluate 

he computational performance of Bfilt+ , as well as the impact 

f its main components (see Sections 4.2 and 4.3 ); ii ) to compare

filt+ against state-of-art algorithms available for the BCSP (see 

ection 4.4 ) and iii ) to assess the impact of the number of BCSP

ariables on the computing performance (see Section 4.5 ). 

.1. Experimental setting and dataset of instances 

All the experiments have been performed on a 20-core Intel(R) 

eon(R) CPU E5-2690 v2@3.00GHz, equipped with 128 GB of main 

emory and running a 64 bit Linux operating system. The source 

ode was compiled with gcc 5.4.0 and the −o3 optimization flag. 
458 
n all the tests, a time limit of 600 seconds was set for each 

un. 

In this work we consider BCSP instances in the XCSP3 format, 

 recent XML-based format designed to represent (binary) CSPs 

 Boussemart, Lecoutre, Audemard, & Piette, 2016 ). Several state- 

f-the-art CSP solvers are able to directly read this format. More- 

ver, a library of (binary) CSP instances in XCSP3 format is avail- 

ble online in a dedicated server ( http://xcsp.org/series ). This li- 

rary contains many different BCSPs in both extensional (the set 

f allowed/disallowed tuples is explicit) and intensional (the set of 

llowed/disallowed tuples is represented by a function) forms. In 

rder to run Bfilt+ on the XCSP3 instances, we developed a 

edicated parser to obtain the associated microstructure graph. We 

ncode the latter using two files: i ) a first file in DIMACS format 

 http://dimacs.rutgers.edu/programs/challenge/ ) containing the list 

f edges of the microstructure graph and ii ) a second file repre- 

enting the layers. Our parser is available in a GitHub repository 

 https://github.com/psanse/Bfilt ), and it is able to convert a large 

ubset of the binary instances in the XCSP3 library. 

Starting from the XCSP3 dataset, we obtained a testbed of 1895 

CSP instances of real and synthetic problems, grouped in 17 cat- 

gories . We converted all the instances which can be read by our 

arser and which generate a microstructure graph with no more 

han 80 0 0 vertices. Table 1 reports information concerning the 

ataset, i.e., for each category, the average number of variables, 

ompatible tuples and domain sizes. For each feature, we provide 

he minimum, the maximum and the average values. Table 2 re- 

orts the information of the associated microstructure graph, i.e, 

he number of vertices and edge density (in percentage). It also 

eports, for each category, the percentage of instances that are 

atisfiable (column sat ), unsatisfiable (column unsat ) or unknown 

column fail ), i.e., unsolved by all the tested solvers within the 

ime limit. All these instances are available in XCSP3 format at 

ttp://xcsp.org/series . 

The first 15 categories reported in the Tables 1 and 2 , corre- 

pond each to a different class of problems described in the liter- 

ture, i.e., a collection of families of instances originating from the 

ame problem or from the same parametrized generator. The terms 

ategory and class are used interchangeably for these 15 categories 

ereafter. The last two categories, supersolutions ( ssol ) and mis- 

ellaneous ( misc ), group different problem instances. Specifically, 

he ssol category contains extensions of different problem in- 

tances with the property that, if a variable-value pair in a solution 

s disallowed, the solution can be repaired by re-assigning a new 

ariable-value pair, see Hebrard, Hnich, & Walsh (2004) for a more 

etailed analysis. The misc category groups problem classes that 

ontain less than 10 instances. 

The imposed threshold of 80 0 0 vertices on the size of the mi- 

rostructure graphs filters a small subset of the BCSP instances 

n the XCSP3 server compatible with our XCSP3 parser. The fol- 

owing 10 classes: B (50 instances), Bla (37 instances), comp (90 

nstances), D (700 instances), dflat (100 instances), ehi (200 

nstances), frb (80 instances), geom (100 instances), lat (100 

nstances) and RB2 (300 instances), are considered in full. On 

he other hand, the XCSP3 server provides 51 Haystack ( hay ) in- 

tances, of which we consider a subset of 16, 19 Knights ( kni ) in-

tances, of which we consider 10, 18 instances of Queens-Knights 

 qk ), of which we consider 12, 69 Rlfap ( rlfap ) instances, of

hich we consider 17 and 34 RoomMate ( rm ) instances, of which 

e consider 12. With respect to the ssol category, it contains 

8 instances out of a possible 330. Finally, the individual families 

arc , lard and QueenAttacking , each containing 10 instances, are re- 

uced to 6, 6 and 7 instances respectively and, as a consequence, 

all under the misc category. 

The dataset includes synthetic random models of varying diffi- 

ulty ( B , D , RB2 and frb ) as well as quasi-random models ( comp

http://xcsp.org/series
http://dimacs.rutgers.edu/programs/challenge/
https://github.com/psanse/Bfilt
http://xcsp.org/series


P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Table 1 

Features of the 17 categories of the BCSP instances tested in this work. 

Number of variables Number of tuples Domain size 

Categories # min max avg. min max avg. min max avg. 

B 50 23 27 25 .0 100,694 198,666 146,539 .4 23 .0 27 .0 25 .0 

Bla 37 64 208 117 .2 211,379 26,291,636 6,176,596 .8 10 .5 35 .3 19 .7 

comp 90 33 105 63 .2 47,970 531,000 226,943 .3 10 .0 10 .0 10 .0 

D 700 40 40 40 .0 44,944 22,823,756 4,161,833 .6 8 .0 180 .0 51 .4 

dflat 100 2237 2237 2237 .0 28,100,632 28,102,060 28,101,380 .1 3 .4 3 .4 3 .4 

ehi 200 297 315 306 .0 2,051,275 2,314,937 2,183,080 .6 7 .0 7 .0 7 .0 

frb 80 30 59 46 .0 83,083 1,049,583 509,821 .2 15 .0 26 .0 21 .3 

geom 100 50 50 50 .0 434,373 456,163 447,848 .9 20 .0 20 .0 20 .0 

hay 16 16 361 153 .5 1,770 23,389,245 4,727,964 .3 4 .0 19 .0 11 .5 

kni 10 5 9 6 .6 21,840 10,569,744 2,006,599 .6 64 .0 625 .0 295 .2 

lat 100 100 625 337 .5 181,827 24,074,218 7,812,842 .7 6 .1 11 .1 8 .7 

qk 12 13 30 20 .0 43,288 4,095,405 1,111,847 .2 29 .5 125 .0 68 .1 

RB2 300 30 50 40 .0 83,230 581,244 303,739 .8 15 .0 23 .0 19 .0 

rlfap 17 28 400 136 .0 455,586 29,776,814 10,703,797 .8 17 .4 44 .0 35 .8 

rm 12 4 100 23 .4 24 19,120,341 1,844,187 .9 3 .0 69 .1 18 .3 

ssol 38 8 100 33 .1 276 26,159,948 12,121,350 .9 4 .0 246 .0 148 .6 

misc 33 10 650 147 .8 1225 20,593,125 6,185,383 .7 1 .0 89 .0 43 .4 

Grand total 1895 4 2237 205 .9 24 29,776,814 4,407,482 .7 1 .0 625 .0 33 .1 

Table 2 

Features of the microstructure graphs G (I) for the BSCP tested instances in this work, and satisfiability information of the corre- 

sponding BCSP instances. 

Number of vertices Edge density (%) Satisfiability (%) 

Categories # min max avg min max avg. sat unsat fail 

B 50 529 729 627 .0 72 .1 74 .9 73 .5 46 .0 54 .0 0 .0 

Bla 37 674 7334 2705 .9 93 .2 97 .8 95 .6 0 .0 100 .0 0 .0 

comp 90 330 1050 632 .2 88 .4 96 .4 92 .8 11 .1 88 .9 0 .0 

D 700 320 7200 2057 .1 86 .2 88 .6 87 .2 49 .7 50 .3 0 .0 

dflat 100 7511 7511 7511 .0 99 .6 99 .6 99 .6 100 .0 0 .0 0 .0 

ehi 200 2079 2205 2142 .0 95 .0 95 .3 95 .1 0 .0 100 .0 0 .0 

frb 80 450 1534 1013 .3 82 .2 89 .3 86 .6 66 .3 0 .0 33 .7 

geom 100 1000 1000 1000 .0 87 .0 91 .3 89 .7 92 .0 8 .0 0 .0 

hay 16 64 6859 2254 .0 87 .8 99 .4 97 .1 0 .0 100 .0 0 .0 

kni 10 320 5625 2033 .6 40 .4 67 .2 51 .6 0 .0 100 .0 0 .0 

lat 100 613 6961 3242 .4 96 .9 99 .4 98 .5 80 .0 20 .0 0 .0 

qk 12 384 3750 1558 .0 58 .2 59 .3 58 .6 0 .0 100 .0 0 .0 

RB2 300 450 1150 786 .7 82 .4 88 .0 85 .4 76 .3 17 .0 6 .7 

rlfap 17 1232 7820 3844 .0 60 .1 99 .1 82 .2 23 .5 76 .5 0 .0 

rm 12 12 6910 974 .7 36 .4 81 .4 59 .5 58 .3 41 .7 0 .0 

ssol 38 32 7872 4858 .4 55 .6 95 .6 84 .1 26 .3 73 .7 0 .0 

misc 33 50 7832 3690 .1 48 .2 100 .0 76 .9 66 .7 30 .3 3 .0 

Grand total 1895 12 7872 2114 .9 36 .4 100 .0 88 .4 51 .6 45 .9 2 .5 

a

t

a

a

p

(

i

e

g

i

t

t

t

&

s

t

a

c

a

p

w

o

t

t

m

p

c

p

a

r

a

a

h

b

t

d

t

a

a

nd geom ). Other examples of synthetic instances are the finding- 

he-needle-in-a-haystack class hay , the board games classes qk 
nd kni , the lattice classes lat and the SAT-based classes ehi 
nd dflat . The dataset also contains instances derived from real 

roblems, such as the radio link frequency assignment problem 

 rlfap ). For the interested reader, a detailed description of the 

nstances is provided in the Appendix A.1 . 

The language in which the BCSP instances are written and mod- 

lled is a critical issue. In the literature there are two main lan- 

uages: i ) the MiniZinc format ( https://www.minizinc.org ) and 

i ) the more recent XCSP3 format, described at the beginning of 

his section. To the best of our knowledge, an automatic transla- 

or between the two languages is unavailable, although it has been 

he subject of discussion in the literature, see, e.g., Morara, Mauro, 

 Gabbrielli (2011) . Developing such a tool clearly goes beyond the 

cope of this paper, due to the intrinsic difficulties of this opera- 

ion. 

The presence of the two formats ( MiniZinc and XCSP3 ) has 

n impact on the usage of the CSP solvers, since they are typi- 

ally only able to read one of them. Since all our BCSP instances 

re in XCSP3 format, we can directly use those solvers which can 
459 
arse this format (see Section 4.4 ). In order to run those solvers 

hich are only able to read the MiniZinc format, we devel- 

ped a converter from our microstructure-graph encoding to (ex- 

ensional) MiniZinc format as follows: i ) binary constraints in 

he XCSP3 format represented extensionally, i.e., by explicit enu- 

eration of compatible or incompatible tuples of values, are com- 

iled similarly in MiniZinc using the “table constraint”, ii ) binary 

onstraints in the XCSP3 format represented intensionally, i.e., by 

redicates or functions, are compiled in two steps. In a first step, 

n extensional representation of each intensional constraint is de- 

ived based on the graph transformation required by Bfilt+ . In 

 second step, the latter representation is compiled to MiniZinc 
ccording to i ) . The converter can be downloaded from the URL 

ttps://github.com/psanse/Bfilt . 

It is worth mentioning that some problem classes may have 

een binarized before the inclusion in the XCSP3 database, e.g., 

he lat family (which can be more naturally modelled by the all- 

ifferent constraint) or the Blackhole family. It is possible that 

he computational performance of the solvers may degrade by such 

 binarization, and a systematic analysis of this effect would be 

n interesting future line of research. Unfortunately, since n -ary 

https://www.minizinc.org
https://github.com/psanse/Bfilt


P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Table 3 

Effect of the colour-filtering and SAT-filtering phases of Bfilt+ for a selected subset of instances. 

Bfilt + Bfilt + no COL filt. Bfilt + no SAT filt. Bfilt + no SAT/no COL filt. 

Categories # #opt time [s] #opt time [s] #opt time [s] #opt time [s] 

B 25 25 38.1 25 37.7 25 71.6 22 108.0 

Bla 25 25 7.9 25 7.9 25 8.0 25 7.5 

comp 25 25 0.2 25 0.2 25 0.2 25 0.2 

D 25 25 23.4 24 31.5 25 29.7 24 37.8 

ehi 25 25 5.5 25 5.5 25 5.5 23 3.7 

frb 25 19 29.3 19 43.3 19 75.6 14 63.2 

geom 25 25 0.5 25 0.5 25 1.2 25 2.7 

lat 25 18 34.6 18 35.0 15 95.1 10 10.3 

RB2 25 22 39.2 21 21.9 21 54.5 16 23.5 

Grand total 225 209 18.8 207 19.1 205 33.7 184 27.1 

e

d

t

y

a

B
b

s

t  

b

l

c

4

B

c

fi

c

T

l  

A  

o

v

p

S

S

r

t

t

o

i

f

t

p

2

t

t

a

t

4

i

m

i

s

c

p

c

t

c

p

r

s

t

c

p  

r

k

t

f

c

e

t

o  

S

s

B  

9

t

t

→
a

B
i

i

fi

c

4

p

s

l

t

v

quivalent models for the vast majority of the instances in our 

ataset are unavailable, and a translation would require an addi- 

ional heavy manipulation of the instances, this analysis goes be- 

ond the scope of this work, which focuses, instead, on the evalu- 

tion of the performance of the newly developed exact algorithm 

filt+ . Notwithstanding the fact that some of the instances have 

een binarized, our dataset of 1895 problems is a large and repre- 

entative set of BCSPs. Considering the diversity of the 17 families 

ested, see Tables 1 and 2 , and the fact that these instances have

een proposed in the literature for benchmarking purposes, we be- 

ieve that our dataset is adequate to establish a fair computational 

omparison between Bfilt+ and the state-of-the-art solvers. 

.2. Evaluation of the colour-filtering and SAT-filtering phases of 

filt+ 

In this section, we evaluate the computing impact of the main 

omponents of the Bfilt+ algorithm, i.e., the (enhanced) colour- 

ltering and SAT-filtering phases. To establish the comparison, we 

onsider a subset of 225 instances from our 1895 instance dataset. 

he subset is composed of 25 instances from each one of the fol- 

owing 9 classes: B , Bla , comp , D , ehi , frb , geom , lat and RB2 .
 first set of results is reported in Table 3 , considering four variants

f Bfilt+ . The first variant is our reference Bfilt+ . The second 

ariant, called Bfilt+ no COL filt. , is without the colour-filtering 

hase. The third variant, called Bfilt+ no SAT filt. , is without the 

AT-based filtering phase. Finally, the last variant, called Bfilt+ no 

AT/no COL filt. , executes neither of the two filtering phases. Each 

ow of the table shows, for each one of four algorithmic variants, 

he number of instances solved to optimality (columns #opt) and 

he average CPU time spent by each algorithm (measured in sec- 

nds) on the corresponding class. In the averages we only consider 

nstances solved within the time limit of 600 seconds. 

According to Table 3 , the proposed Bfilt+ algorithm outper- 

orms the other variants, solving 209 out of the 225 instances 

ested. The impact of the colour-filtering and SAT-based filtering 

hases by themselves is as follows: the no COL filt. variant solves 

07 instances and the no SAT filt. variant solves 205. In contrast, 

he impact of removing both components is very significant, i.e., 

he last variant solves 184 instances, 25 less than Bfilt+ . As far 

s the computing time is concerned, Bfilt+ is also on average 

he fastest one. 

.3. Evaluation of the re-partitioning and maximum clique 

mprovements of Bfilt+ 

In this section, we evaluate two additional algorithmic improve- 

ents of Bfilt , i.e., the re-partition procedure computed during 

nitialization, see Section 3.1 , and the maximum clique procedure, 

ee Section 3.3 . 
460 
Table 4 reports, for the 17 categories of our dataset, the per- 

entage of instances in which the aforementioned features are em- 

loyed. Specifically, the column Bfilt → G (I) refers to the exe- 

ution of the procedure Bfilt on the microstructure graph G (I) , 

he column Bfilt → G(I) refers to the execution of Bfilt 
onsidering the new partition of k layers provided by the re- 

artitioning procedure, and the column max clique proc. → G � cor- 

esponds to the execution of the maximum clique procedure con- 

idering a partition of � > k layers. According to the table, in more 

han 91% of the instances the re-partition procedure is able to 

ompute a useful new partition, and in ≈ 66% of the cases the new 

artition is of size k . We recall that the latter case corresponds to a

eformulation of the original BCSP instance that, to the best of our 

nowledge, has not been reported in the literature. The fact that 

his reformulation is used by Bfilt+ in the majority of cases is a 

urther contribution of this work. 

To measure the computing impact of the re-partitioning pro- 

edure, we test the Bfilt → G (I) algorithmic variant, which is 

xecuted on the original layer partition. To measure the impact of 

he maximum clique procedure, we also compare with the state- 

f-the-art MCLP solvers: MoMC ( Li et al., 2017 ), and BBMCX ( San

egundo et al., 2016 ). Table 5 reports the number of instances 

olved and the average CPU time spent by the four algorithms, i.e., 

filt+ , Bfilt → G (I) , MoMC and BBMCX , for each one of the

 instance classes of our 225 instance subset testbed. According 

o the table, Bfilt+ clearly outperforms both MCLP solvers, de- 

ermining the satisfiability of 209 of the instances, while Bfilt 
 G (I) and MoMC are only able to solve 163 and 161 respectively, 

nd BBMCX can only solve 128. It is worth mentioning that only 

filt+ is able to solve all the instances from the Blackhole fam- 

ly ( bla ), while the other 3 algorithms were unable to solve any 

nstance. The reported results provide empirical evidence of the ef- 

ciency of the combined repartitioning and maximum clique pro- 

edures employed by Bfilt+ . 

.4. Comparison of Bfilt+ against state-of-the-art BCSP solvers 

In this section, we compare the new algorithm Bfilt+ with 7 

ublicly available state-of-the-art solvers for BCSPs. Four of the 7 

olvers are based on the reduction of the BCSP to a CNF-SAT prob- 

em which is solved by a state-of-the-art SAT algorithm. We denote 

hem SAT-based solvers in the remainder of the paper and we pro- 

ide a brief description in what follows. 

1. PicatSAT 2.8 ( Picat ) ( Zhou, Kjellerstrand, & Fruhman, 2015 ) 

( http://picat-lang.org/ ): A SAT-based solver that uses the Picat 

Prolog-like rule-based language. In the tests, we employ the 

version that performed best in the main track—CSP, sequential—

of the (last held) XCSP3 2019 competition ( http://xcsp.org/ 

competition ). 

http://picat-lang.org/
http://xcsp.org/competition


P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Table 4 

Percentage of instances from the entire dataset of 1895 instances in which the additional features of 

Bfilt+ are used. 

Bfilt + 

Categories # Bfilt → G (I) Bfilt → G(I) max clique proc. → G � 

B 50 0.0 100.0 0.0 

Bla 37 0.0 0.0 100.0 

comp 90 0.0 1.1 98.9 

D 700 0.1 87.6 12.3 

dflat 100 100.0 0.0 0.0 

ehi 200 23.5 0.0 76.5 

frb 80 0.0 95.0 5.0 

geom 100 0.0 100 0.0 

hay 16 0.0 100.0 0.0 

kni 10 0.0 100.0 0.0 

lat 100 0.0 59.0 41.0 

qk 12 0.0 100 0.0 

RB2 300 0.0 97.0 3.0 

rlfap 17 0.0 35.3 64.7 

rm 12 25.0 8.3 66.7 

ssol 38 7.9 0.0 92.1 

misc 33 21.2 33.3 45.5 

Grand total 1895 8.5 65.8 25.7 

Table 5 

Evaluation of the additional algorithmic improvements of Bfilt+ over a selected subset of instances. The algorithmic variant Bfilt → G (I) 

does not repartition the layers of the microstructure graph G (I) . The last two columns report the computing performance of the state-of-the-art 

MCLP solvers MoMC ( Li et al., 2017 ) and BBMCX ( San Segundo et al., 2016 ). 

Bfilt + Bfilt → G (I) MoMC ( Li et al., 2017 ) BBMCX ( San Segundo et al., 2016 ) 

Categories # #opt time (s) #opt time (s) #opt time (s) #opt time (s) 

B 25 25 38.1 25 32.4 23 104.7 23 109.4 

Bla 25 25 7.9 0 – 0 – 0 –

comp 25 25 0.2 25 0.1 22 1.0 22 16.8 

D 25 25 23.4 18 19.9 22 36.0 22 31.6 

ehi 25 25 5.5 25 0.8 24 350.6 0 - 

frb 25 19 29.3 12 99.1 16 74.6 12 99.3 

geom 25 25 0.5 24 17.0 25 4.9 25 21.1 

lat 25 18 34.6 18 14.8 8 104.8 8 5.9 

RB2 25 22 39.2 16 52.1 21 65.8 16 62.7 

Grand total 225 209 18.8 163 23.8 161 94.2 128 49.6 

s

p

a

a

o

a

f

s

c

i

a

g

t

s

b

2. sCOP[order + MapleCOMSPS] ( sCOP ) ( https://tsoh.org/sCOP/ ): A 

SAT-based constraint programming solver written in the Scala 

language. In the tests we use the latest publicly available 

version https://tsoh.org/sCOP/ , that came first in the standard 

track—CSP, sequential— of the XCSP3 2018 competition. The 

term order in the name refers to the type of encoding to 

SAT, while the term MapleCOMSPS refers to the state-of-the- 

art award-winning SAT solver from the SAT 2016 competition 

( http://www.satcompetition.org/ ). 

3. Chuffed 0.10.14 ( Chuffed ) ( https://github.com/chuffed/ 

chuffed ): It is a lazy clause solver written in C++ 
which has taken part in recent MiniZinc Challenges 

( https://www.minizinc.org/challenge.html ). The solver dy- 

namically transforms a CSP problem into a SAT problem in a 

“lazy” fashion, i.e., without translating a priori the full model. 

4. OR-Tools 8.2.8710/CP-SAT ( OR-tools ) ( https://developers. 

google.com/optimization ): it is the open source software suite 

developed by Google, which includes a SAT-based module for 

constraint programming problems. It has won the gold medal 

consistently in the most recent MinZinc Challenges. 

The other 3 solvers are classical constraint programming 

olvers, denoted CP-based in the remainder of the paper and we 

rovide a brief description in what follows. 

1. Choco-solver 4.10.4 ( choco ) ( https://choco-solver.org/ ): Choco- 

solver is a CP-based solver written in Java. To the best of our 
461 
knowledge, we are using in the tests an improved version than 

the one which took part in the XCSP3 2019 competition. 

2. Concrete 3.12.3 ( Concrete ) ( https://github.com/concrete-cp/ 

concrete ): Concrete is a CP-based solver written in Scala. In the 

tests, we use the version that took part in the XCSP3 2019 com- 

petition. 

3. Mistral 2.0 ( Mistral ) ( https://github.com/ehebrard/Mistral-2. 

0 ): Mistral is a CP-based solver written in C++ . In the tests 

we use the release that came fourth in the main track—CSP, 

sequential— of the XCSP3 2018 competition. 

It is worth noting that choco , Concrete , Mistral , Picat 
nd sCOP are directly able to parse the XCSP3 format and they 

re run on the instances downloaded from the XCSP3 server with- 

ut requiring any pre-processing. However, the solvers Chuffed 
nd OR-tools are only able to read instances in the MiniZinc 
ormat. Consequently, to test these solvers, we compiled all the in- 

tances to the MiniZinc format as described in Section 4.1 . 

Table 6 reports the computing performance of the 5 solvers that 

an parse the XCSP3 format, together with Bfilt+ , over our 1895 

nstance dataset. The first column of the table reports the name 

nd number of instances in parenthesis. For each one of the al- 

orithms and the 17 categories in the dataset, the table provides 

he number of instances solved (#opt), the average CPU time ( avg. ) 

pent on the instances solved and the standard deviation ( std. dev. ). 

According to the table, Bfilt+ is the algorithm that performs 

est, determining satisfiability in 1783 instances out of the possi- 

https://tsoh.org/sCOP/
https://tsoh.org/sCOP/
http://www.satcompetition.org/
https://github.com/chuffed/chuffed
https://www.minizinc.org/challenge.html
https://developers.google.com/optimization
https://choco-solver.org/
https://github.com/concrete-cp/concrete
https://github.com/ehebrard/Mistral-2.0


P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Table 6 

Computational comparison of Bfilt+ against two SAT-based and three CP-based solvers over the entire dataset of 1895 in- 

stances. 

Bfilt + Picat choco 

CPU time (s) CPU time (s) CPU time (s) 

Categories #opt avg. std. dev. #opt avg. std. dev. #opt avg. std. dev. 

B (50) 50 40.6 54.9 8 312.4 187.0 21 201.9 142.6 

Bla (37) 37 9.3 18.8 30 234.0 169.4 10 1.0 0.0 

comp (90) 90 0.2 0.2 90 0.1 0.0 90 0.5 0.0 

D (700) 695 24.4 64.7 691 57.5 74.9 700 15.9 28.0 

dflat (100) 94 160.1 114.7 100 10.0 5.8 100 3.8 2.7 

ehi (200) 200 4.4 2.5 200 0.4 0.0 200 0.7 0.1 

frb (80) 52 23.2 44.7 37 82.3 149.8 36 81.9 148.7 

geom (100) 100 0.6 1.2 100 19.1 41.9 100 13.1 36.2 

hay (16) 4 58.8 116.3 11 65.4 166.4 16 0.7 0.2 

kni (10) 10 2.4 2.1 10 7.1 9.4 10 1.3 1.2 

lat (100) 70 32.8 98.6 100 2.8 4.6 71 51.9 136.1 

qk (12) 8 3.0 2.7 12 6.0 7.6 12 12.6 27.8 

RB2 (300) 278 46.3 109.6 211 80.7 122.5 203 76.2 122.7 

rlfap (17) 15 20.0 50.6 17 8.6 7.0 17 0.8 0.2 

rm (12) 12 1.6 5.1 12 0.1 0.1 12 2.8 6.6 

ssol (38) 36 55.7 58.9 34 3.1 4.9 33 18.4 52.0 

misc (33) 32 22.2 86.7 31 41.6 49.2 31 9.4 13.3 

Grand total (1895) 1783 30.9 78.1 1694 44.3 86.3 1662 24.4 69.4 

Mistral Concrete sCOP 

CPU time (s) CPU time (s) CPU time (s) 

Categories #opt avg. std. dev. #opt avg. std. dev. #opt avg. std. dev. 

B (50) 16 265.7 174.1 3 111.0 130.3 12 288.9 162.1 

Bla (37) 10 0.4 0.0 10 14.9 0.7 30 63.6 43.9 

comp (90) 90 0.1 0.0 90 3.0 0.2 90 3.0 0.4 

D (700) 700 35.8 45.4 531 119.4 144.8 686 64.7 91.5 

dflat (100) 100 10.2 12.5 99 74.8 83.3 100 11.3 0.5 

ehi (200) 200 0.3 0.0 200 4.8 1.0 200 6.3 0.2 

frb (80) 34 73.7 153.2 25 101.9 139.7 40 75.1 127.6 

geom (100) 100 27.8 82.7 89 13.8 50.2 100 12.0 20.9 

hay (16) 2 0.9 1.2 2 15.0 17.8 16 1.0 0.2 

kni (10) 6 70.9 93.5 10 3.2 0.9 10 20.4 37.6 

lat (100) 71 26.5 91.8 69 40.1 83.5 100 6.8 6.1 

qk (12) 11 106.2 151.6 12 3.6 1.1 12 2.2 0.3 

RB2 (300) 184 88.3 141.8 121 71.0 124.6 208 67.9 107.2 

rlfap (17) 17 0.4 0.3 17 6.0 2.9 17 2.7 0.6 

rm (12) 12 0.7 1.5 12 4.5 5.3 12 1.9 1.1 

ssol (38) 34 1.7 5.1 34 26.1 47.7 34 2.2 0.8 

misc (33) 29 35.2 83.7 29 51.3 115.8 30 30.5 36.2 

Grand total (1895) 1616 35.0 79.1 1353 66.7 117.1 1697 42.9 81.7 

b

i

F

s

l

o

c

C

f  

i

a

s

i

(

S

w

e

o

m

i

B

r

a

P
e

m

d
o

l

c

v

w

b

s

d

t

o

B
6

u

le 1895. The SAT-based solvers perform second best, sCOP } solv- 

ng 1697 instances, and Picat three instances less in similar time. 

rom the group of CP-based solvers, choco is the algorithm that 

olves the largest number of instances (precisely 1662) and spends 

ess CPU time. Mistral and Concrete are outperformed by the 

ther four algorithms, the latter determining satisfiability in 430 

ases less than Bfilt+ , and spending around double the time. 

oncerning individual classes, Bfilt+ is very effective in B , Bla , 
rb , RB2 , as well as in the two categories ssol and misc , where

t solves more instances than any other algorithm. To take one ex- 

mple, Bfilt+ manages to determine satisfiability for the 50 in- 

tances of B , while choco , the second best solver for the class, 

s only able to solve 21. Also worth noting is the case of the 

hard) frb series, generated from the model RB (see the Appendix 

ection A.1 ), in which Bfilt+ shows speed-ups of around 3 ×
ith respect to the rest of competitors. Bfilt+ also performs very 

ffectively in geom , where it is orders of magnitude faster than the 

ther algorithms. A possible explanation for the successful perfor- 

ance of Bfilt+ lies in its re-partitioning phase, since, as shown 

n Table 4 , Bfilt+ always uses the new partition over the families 

 , Bla , frb , RB2 and geom . 

a

462 
In contrast, Bfilt+ performs poorly in the class dflat with 

espect to all the other algorithms, solving 94 instances out of 

 possible 100 and spending around 20 times more time than 

icat and around 40 times more time than choco . A possible 

xplanation might be the specific topology of the corresponding 

icrostructure graphs. According to Table 2 , all the instances of 

flat are of the satisfiable type, and dispose of a huge number 

f variables (precisely 2237) with small average domain sizes of 

ess than 4 values in most cases. It would seem that the Bfilt+ 
ompetitors are able to find a feasible assignment of values to the 

ariables quickly by means of good variable selection heuristics, 

hereas Bfilt+ uses a static variable selection heuristic and is 

etter oriented towards filtering than towards finding “good” as- 

ignments. Interestingly, the dflat series is the only class in the 

ataset where Bfilt+ always operates with the original parti- 

ion. With respect to the other categories, both SAT-based solvers 

utperform Bfilt+ in the lat and hay classes. In the former, 

filt+ is unable to solve the largest family of the lat class with 

25 variables. Concerning the class hay , Bfilt+ appears to be 

nable to crack its carefully crafted structure, and scales poorly. 

Table 7 reports the performance of the solvers Chuffed 
nd OR-tools , together with Bfilt+ , over the entire instance 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Table 7 

Computational comparison of Bfilt+ against the SAT-based solvers Chuffed and OR-tools over the entire 1895 dataset of instances. 

Bfilt + Chuffed OR-tools 

CPU time (s) CPU time (s) CPU time (s) 

categories #opt avg. std. dev. #opt avg. std. dev. #opt avg. std. dev. 

B (50) 50 40 .6 54 .9 4 152 .0 251 .6 0 - - 

Bla (37) 37 9 .3 18 .8 10 0 .3 0 .0 37 5 .5 8 .5 

comp (90) 90 0 .2 0 .2 90 0 .3 0 .1 90 0 .2 0 .1 

D (700) 695 24 .4 64 .7 698 42 .6 57 .4 162 202 .2 173 .9 

dflat (100) 94 160 .1 2 .5 100 2 .2 0 .5 94 130 .2 132 .7 

ehi (200) 200 4 .4 44 .7 200 0 .6 0 .0 200 0 .8 0 .1 

frb (80) 52 23 .2 1 .2 32 67 .5 122 .8 10 76 .1 54 .4 

geom (100) 100 0 .6 2 .1 94 29 .4 85 .6 43 37 .9 71 .1 

hay (16) 4 58 .8 98 .6 8 3 .2 7 .7 16 1 .0 1 .1 

kni (10) 10 2 .4 2 .7 10 2 .6 4 .0 10 4 .6 7 .4 

lat (100) 70 32 .8 109 .6 100 9 .0 26 .0 84 35 .6 104 .8 

qk (12) 8 3 .0 58 .9 12 1 .4 1 .9 12 2 .2 3 .0 

RB2 (300) 278 46 .3 50 .6 177 90 .0 138 .1 81 185 .3 156 .9 

rlfap (17) 15 20 .0 5 .1 17 0 .8 0 .4 17 3 .8 6 .4 

rm (12) 12 1 .6 114 .7 12 2 .5 6 .6 12 2 .3 6 .1 

ssol (38) 36 55 .7 116 .3 34 5 .3 2 .8 32 46 .4 93 .8 

misc (33) 32 22 .2 86 .7 30 11 .4 11 .8 30 15 .2 16 .7 

Grand total (1895) 1783 30 .9 78 .1 1628 32 .6 71 .7 930 73 .0 132 .3 

d

s

f

s  

c

p

C
o

f

c

l

e

o

p

e

s

p

f

i  

s  

i  

s

s

t

s

i  

i

s

i  

r

c

c

c

i

m

i

fi

m

b

m

g

m

F

p

g

a

z  

t

r

τ
t

m

i

f

(

s

b

i

M
i

8

d

o

P
t

a

M
t

a

7

P
t

o

o

t

i

b

a

t

i

ataset. This comparison is reported in a separate table since the 

olvers are run on the instances compilated to the MiniZinc 
ormat produced by our parser, as described in Section 4.1 . The 

tructure of this table is the same as the one of Table 6 . Ac-

ording to the reported results, both algorithms are clearly out- 

erformed by Bfilt+ . Specifically, out of the 1895 instances, 

huffed solves 1628 within the time limit, while OR-tools is 

nly able to solve 930. A possible explanation for the poor per- 

ormance of both Chuffed and OR-tools on BCSP instances 

an be related to the fact that these solvers are specifically tai- 

ored for n -ary CSPs. Moreover, since these solvers are run on 

xtensional models generated by our parser, see Section 4.1 , an- 

ther explanation might be connected to the fact that their so- 

histicated SAT-compilation/solving routines are probably not fully 

xploited. 

As far as the aggregate performance according to families of in- 

tances is concerned, the reported results show that Bfilt+ com- 

ares favourably against the other solvers. Specifically, for the 17 

amilies in our dataset, Bfilt+ solves to optimality strictly more 

nstances than all the other solvers in 5 families, i.e., B , frb , RB2 ,
sol and misc , and it ties with the best solvers in 6 families,

.e., Bla , comp , ehi , geom , kni and rm . In other words, Bfilt+
olves to optimality at least the same number of instances as those 

olved by the best solver for each specific family in 11 out of 

he 17 families. On the other hand, and regarding the SAT-based 

olvers, Picat outperforms Bfilt+ in 5 problem classes and it 

s beaten in 7, sCOP in 5 (beaten in 7), chuffed in 6 (beaten

n 7) and or-tools in 4 (beaten in 8). Regarding the CP-based 

olvers, choco outperforms Bfilt+ in 6 families and it is beaten 

n 6, mist in 5 (beaten in 8) and conc in 3 (beaten in 10). These

esults show that, even though Bfilt+ has an overall excellent 

omputational performance, it is outperformed in some problem 

lasses by the state-of-the-art solvers. It is worth noting that by 

omparing Bfilt+ and choco in terms of the number of classes 

n which one beats the other, the results show a tie. However, as 

entioned previously, Bfilt+ solves more instances in total and 

t shows a superior performance according to the performance pro- 

le, see, Fig. 6 . 

A graphical representation of the relative computing perfor- 

ance of Bfilt+ with respect to the other 7 solvers is provided 

y the performance profile shown in Fig. 6 . We compute the nor- 

alized time τ as the ratio of the computing time of each al- 
463 
orithm ( ∞ if the instance is not solved to optimality) over the 

inimum computing time taken for all the algorithms we tested. 

or each value of τ on the horizontal axis, the vertical axis re- 

orts the percentage of instances for which the corresponding al- 

orithm spent at most τ times the computing time of the fastest 

lgorithm. The interpretation of the chart at both ends of the hori- 

ontal axis is in this way. At τ = 1 , the value of the curves is equal

o the percentage of instances in which the corresponding algo- 

ithm is the fastest one. At the right-end, i.e., the largest value of 

, each curve corresponds to the percentage of instances solved by 

he specific algorithm. In the performance profile, the best perfor- 

ance is achieved by the algorithms whose curves appear higher 

n the chart. 

According to Fig. 6 , the solver Bfilt+ is the one which per- 

orms best, being the fastest in more than 50% of the instances 

left-end of the figure) and also solving the largest number of in- 

tances, i.e., slightly over 94% (right-end of the figure). The SAT- 

ased solvers that are directly able to parse the XCSP3 format 
nitially solve less instances than the CP-based solvers choco and 

istral , but they gradually overtake them in the more difficult 

nstances. Specifically, Picat and sCOP are solving more than 

0% of the instances, slightly less than choco , within two or- 

ers of magnitude of the best algorithm ( τ = 100 ), while Mistral 
nly solves slightly above 70%. Within the time limit, however, 

icat and sCOP prove the satisfiability of slightly over 89% of 

he instances, while choco solves slightly over 87% and Mistral 
round 85%. With respect to the two solvers that only parse the 

iniZinc format, Chuffed solves initially more instances than 

he two best SAT-based solvers Picat and sCOP , but it is gradu- 

lly outperformed by the other two, e.g. Chuffed solves around 

5% of the instances for τ = 100 , while, as mentioned previously, 

icat and sCOP solve more than 80%. Finally, OR-tools is 

he worst performing algorithm, solving slightly less than 50% 

f the instances within the time limit, and far below the rest 

f competitors. Concerning the CP-based algorithms, choco is 

he best performing one, being the fastest in around 5% of the 

nstances. 

We end the section by showing in Fig. 7 the computing time 

oxplots of the 8 algorithms. The figure depicts the time (in log- 

rithmic scale) spent by each algorithm through their quartiles; 

he lines extending vertically from the boxes indicate the variabil- 

ty outside the upper and lower quartiles. Above the upper quar- 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Fig. 6. Performance profile of Bfilt+ , together with another 7 solvers, over the entire dataset of 1895 instances. 

Fig. 7. Computing time boxplots of Bfilt+ and the seven solvers over the entire dataset of 1895 instances. The y -axis shows in logarithmic scale the CPU times in seconds. 

On the top part of the figure, we report the total number of instances ( # OPT) solved by each of the algorithms. 

t

d

w

4

p

b

g

s

c

s

a

B
i

(

t

p

a

a

B
e

5

s
I

S

w

5

B

u

n

s

m

t

i

d

g

a

m

ile, the outliers are plotted as individual points. Fig. 7 further evi- 

ences the superior computing times of Bfilt+ , and is consistent 

ith the other results reported in the section. 

.5. Impact of the number of variables on the computing 

erformance 

We end the section with an analysis of the impact of the num- 

er of variables per instance on the computing performance. As a 

eneral rule, the larger the number of variables, the harder the in- 

tances become. However, some algorithms are well-suited to spe- 

ific classes and thus scale much better in those cases. These con- 

iderations can be observed in Fig. 8 , which compares Bfilt+ 
gainst the best performing solver over the instance classes frb , 
 and lat . Specifically, the figure shows boxplots of the comput- 

ng times of Bfilt+ and sCOP over the frb class (figures (a) and 

b)), boxplots of the computing times of Bfilt+ and choco over 

he B class (figures (c) and (d)) and, finally, boxplots of the com- 

uting times of Bfilt+ and Picat over the lat class (figures (e) 

nd (f)). 

In all cases, the boxplots show that the families become harder 

s the number of variables increase. With respect to the frb and 
464 
 classes, Bfilt+ scales better than the other tested solvers. For 

xample, Bfilt+ solves to optimality all the frb instances with 

0 or less variables (except 2 instances with 50 variables), while 

COP can solve very few large instances (only 2 with 50 variables). 

n contrast, Bfilt+ scales worse than Picat in the lat class. 

pecifically, it cannot solve any of the instances with 625 variables, 

hereas Picat determines satisfiability in all of them. 

. Conclusions and future work 

In this work, we present a new efficient algorithm for the 

CSP based on a reduction of the problem to the k -CLP on the 

nderlying microstructure graph. The new exact algorithm, de- 

oted Bfilt+ , is inspired by the recent efficient techniques of 

tate-of-the-art clique solvers. Its excellent computational perfor- 

ance is achieved thanks to several unique features that exploit 

he specific topology of the k -partite microstructure graph. Specif- 

cally, we propose two filtering phases: the first filtering phase, 

enoted colour-filtering, is based on colouring the microstructure 

raph, while the second one, denoted SAT-filtering, is based on 

n associated SAT-problem, which is solved heuristically. Comple- 

entary to these phases, we have also proposed several algorith- 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

Fig. 8. A comparison of the computing performance of Bfilt+ with the best solver for three classes of BSCP instances: in parts (a) and (b) we compare Bfilt+ against 

sCOP for the frb class; in parts (c) and (d) we compare Bfilt+ against choco for the B class; in parts (e) and (f) we compare Bfilt+ against Picat for the lat 
class. Results are grouped according to the number of variables of the families of instances that make up each class ( x -axis). The y -axis shows CPU times measured in 

seconds.. 

m

c

o

B
P

c

t

s

B
f

S

e

s

t

l

ic enhancements, the major one based on repartitioning the mi- 

rostructure graph. Extensive tests, carried out over a benchmark 

f almost two thousands instances, computationally show that 

filt+ significantly outperforms 7 general purpose Constraint 

rogramming solvers, all of which have participated in recent 

hallenges. 

An interesting future line of research is to extend Bfilt+ for 

he case when the microstructure graph is very large or mas- 
465 
ive but sparse. Precisely, it would be interesting to enhance 

filt+ with the recent techniques employed by clique solvers 

or massive sparse graphs, such as, e.g., Hespe, Lamm, Schulz, & 

trash (2020) ; San Segundo et al. (2016b) . Finally, another inter- 

sting and very challenging line of research concerns the exten- 

ion of Bfilt+ for general CSPs. As mentioned in the introduc- 

ion, different binarization strategies have been proposed in the 

iterature to solve CSPs of greater arity than two as a BCSP, see 



P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

D

(

b

b

f

A

u

t

b

t

i

t

t

c

A

m

 

 

 

 

 

 

 

 

 

echter & Pearl (1989) ; Rossi et al. (1990) ; Stergiou & Walsh 

1999) . A future line of work is the characterization of those non- 

inary constraints and binarization methods for which a clique 

ased algorithm would be efficient, and the extension of Bfilt+ 
or these non-binary problems. 

cknowledgements 

The authors are grateful to three anonymous referees for their 

seful comments that helped us to improve both the quality and 

he contribution of this paper. The work has been partially funded 

y the Spanish Ministry of Science, Innovation and Universities 

hrough the projects COGDRIVE ( DPI2017-86915-C3-3-R ). This work 

s also partially funded by the Spanish Agencia Estatal de Inves- 

igación (PID2020-113096RB-I00 / AEI / 10.13039/50110 0 011033) 

hrough the project ACOGES (COGnitive personal Assistance for So- 

ial Environments). 

1. Detailed description of the classes of BCSP instances 

In what follows, we briefly describe the different categories that 

ake up our dataset. 

• Random models ( B , D , RB2 , frb ), see, e.g., Gent, Macintyre,

Prosser, Smith, & Walsh (2001) : A constraint graph G can be 

associated to a BCSP problem, in which the vertices represent 

variables and the edges represent constraints between the vari- 

ables. Basic standard random CSP models described in the liter- 

ature for benchmarking are labelled from letter A to D. They are 

parametrized by the tuple 〈 k, d, p 1 , p 2 〉 , where k is the num-

ber of variables, d the uniform domain size, p 1 is a measure of 

the density of G and p 2 is a measure of the tightness of the

constraints. The generator for model B selects exactly p 2 × d 2 

inconsistent tuples for each edge, while the model D gener- 

ator selects each one of the possible d 2 incompatible tuples 

with probability p 2 . Besides the families B and D , our dataset 

contains the families frb and RB2 that derive from a revised 

model of B, denoted RB ( Xu & Li, 20 0 0 ), that produces harder

instances than the ones obtained from the original model; see 

Achlioptas et al. (1997) for the motivation behind the revision 

of the model. Incidentally, the frb family is also typically em- 

ployed for benchmarking MCLP solvers. 
• Black Hole ( Bla ) ( Gent et al., 2007 ): This instance class derives

from the Black Hole solitaire played with 52 cards. The goal of 

the game is to place all cards from three different piles into 

the Black Hole pile (BH), which initially holds a single card. The 

rules of the game allow cards to move from the three piles, and 

into the BH, if they are adjacent to the card in the BH according 

to their numbering. 
• Quasi-random problems ( comp , geom ): The dataset contains 

two crafted classes of quasi-random instances. These are typi- 

cally built using a pure random kernel to which a number of 

auxiliary fragments are added. The family comp is made up of 

90 instances of this type, see Lecoutre, Boussemart, & Hemery 

(2004) . The geom class of 100 instances was created by Rick 

Wallace and derives from a geometric problem. The edges of 

the constraint graph are prefixed as follows: i ) a geometric dis- 

tance value dist (less than 

√ 

2 ) is chosen randomly and ii ) for 

each BCSP variable, a point inside a unit cube is mapped ran- 

domly and an edge is added to the constraint graph if the two 

points of the corresponding variables lie at a distance less or 

equal than dist . Once the constraint graph is computed, the 

constraint relations are determined using a random kernel. 
• SAT-based problems ( ehi , dflat ): The ehi class derives from 

an encoding to CSP of two 100 problem series of 3-SAT unsat- 
466 
isfiable instances, i.e., ehi-85 and ehi-90 , see Lecoutre et al. 

(2004) . The SAT-flat-dual ( dflat ) class derives from an encod- 

ing to CSP of the 3-colouring problem over a set of 3-colourable 

graphs (specifically, the flat200-479 series), see Culberson & Luo 

(1996) for a description of this class of graphs. It is worth not- 

ing that the instances are compiled from a prior encoding of 

the problem to SAT. All the instances are satisfiable. 
• Quasigroup problems ( lat ) ( Achlioptas, Gomes, Kautz, & Sel- 

man, 20 0 0; Pesant, Quimper, & Zanarini, 2012 ): The name of 

the class refers to the fact that a quasigroup of order m is also 

a latin square of size m , i.e., an m by m square matrix in which

each element occurs exactly once in every row and column. 

Quasigroup problems are representative of structured random 

problems that are closer to real-life problems. The lat class 

contains 60 instances that derive from the quasigroup comple- 

tion problem and another 40 instances from the quasigroup with 

holes problem , for a total of 100 instances. 
• Queens-Knights ( qk ): The Queens-Knights problem asks for 

placing on a chessboard of size n × n , q queens and k knights 

such that no two queens attack each other and all knights form 

a cycle (when considering knight moves) ( Boussemart, Hemery, 

Lecoutre, & Sais, 2004 ). The class contain two types, denoted 

add and mul . In the type add , a square of the chessboard can

be shared by both a queen and a knight. In the type mul , this

is not allowed. 
• Knights ( kni ) ( Boussemart et al., 2004 ): A variant of the n-

queens problem that considers knight constraints instead of 

queen constraints. 
• Haystack ( hay ): This class of unsatisfiable instances was cre- 

ated by Marc van Dongen http://research.ucc.ie/profiles/D005/ 

dongen , and has been included in several CSP challenges, see, 

e.g., Lecoutre & Roussel (2018) . The instances are parameterized 

by their size n , with n × n variables each with n domains. The 

constraint graph consists of n clusters, a central one and n − 1 

satellites, and each cluster is an n -clique. The outer clusters are 

connected to the central cluster by a single edge (constraint). 

The problems are designed in such a way that any value assign- 

ment to the variables in the center cluster has a correspond- 

ing associated outer cluster that is inconsistent. This cluster is 

called the haystack. 
• Roommates ( rm ) ( Prosser, 2014 ): This set of instances derives 

from the stable roommates problem (SRP). In the SRP, a set of 

participants initially rank each other. The problem calls to find 

a stable matching , i.e., a matching such that no two participants 

prefer each other to their matched partners. 
• Radio link frequency assignment ( rlfap ) ( Cabon, De Givry, 

Lobjois, Schiex, & Warners, 1999 ): The problem of radio fre- 

quency assignment is to provide communication radio channels 

from a limited set, while minimizing the interferences suffered 

by those wishing to communicate. The rlfap class was ini- 

tially derived from data from real networks and is composed of 

different series. 
• Supersolution problems ( ssol ): As mentioned at the beginning 

of the section, this category encompasses instances that have 

been built by converting an original BCSP problem into a more 

constrained one with a reduced, and more robust , solution set. 

The original problems considered include some scheduling and 

N -queens instances. 
• Miscellaneous ( misc ): As mentioned at the beginning of the 

section, this category includes series that have less than 10 in- 

stances. The category holds, amongst others, the marc and lard 

synthetic families designed by Marc van Dongen, the queenAt- 

tacking suite derived from the Queen Attacking problem and the 

real-world suite driverlogw from the logistics domain, see, e.g., 

Boussemart, Hemery, & Lecoutre (2005) , for a more detailed de- 

scription. 

https://doi.org/10.13039/100014440
http://research.ucc.ie/profiles/D005/dongen


P. San Segundo, F. Furini and R. León European Journal of Operational Research 299 (2022) 448–467 

R

A  

A  

B  

B  

B

B  

B

C  

C  

C  

C  

C

C  

C  

D

D
D

D

F

F  

F  

G

G  

G  

G  

G  

G  

H  

H  

H  

 

I

J

J

K

L

L

L  

L  

L  

L  

L

M

M

M  

M

M

M  

M  

N

O  

P

P

R  

R  

R  

S

S  

S  

S  

S  

S  

S  

S

S  

S  

S

T

X  

Z

eferences 

chlioptas, D. , Gomes, C. , Kautz, H. , & Selman, B. (20 0 0). Generating satisfiable prob-

lem instances. In AAAI/IAAI, 20 0 0 (pp. 256–261) . 

chlioptas, D. , Kirousis, L. M. , Kranakis, E. , Krizanc, D. , Molloy, M. S. , & Stama-
tiou, Y. C. (1997). Random constraint satisfaction: A more accurate picture. 

In International conference on principles and practice of constraint programming 
(pp. 107–120) . 

oussemart, F. , Hemery, F. , & Lecoutre, C. (2005). Description and representation of
the problems selected for the first international constraint satisfaction solver 

competition. In Proceedings of the second international workshop on constraint 

propagation and implementation: 2 (pp. 7–26) . 
oussemart, F. , Hemery, F. , Lecoutre, C. , & Sais, L. (2004). Boosting systematic search

by weighting constraints. In ECAI: 16 (p. 146) . 
oussemart, F., Lecoutre, C., Audemard, G., & Piette, C. (2016). XCSP3: An integrated 

format for benchmarking combinatorial constrained problems. arXiv:1611.03398 
railsford, S. C. , Potts, C. N. , Smith, B. M. , & Oper, J. (1999). Constraint satisfaction

problems: Algorithms and applications. European Journal of Operational Research, 
119 (3), 557–581 . 

uscemi, M. G. , & Montanari, U. (2008). A survey of constraint-based programming 

paradigms. Computer Science Review, 2 (3), 137–141 . 
abon, B. , De Givry, S. , Lobjois, L. , Schiex, T. , & Warners, J. P. (1999). Radio link fre-

quency assignment. Constraints, 4 (1), 79–89 . 
aprara, A. , Galli, L. , & Toth, P. (2011). Solution of the train platforming problem.

Transportation Science, 45 (2), 246–257 . 
arraghan, R. , & Pardalos, P. M. (1990). An exact algorithm for the maximum clique

problem. Operations Research Letters, 9 (6), 375–382 . 

ohen, D. A. (2003). A new class of binary CSPs for which arc-consistency is a deci-
sion procedure. In International conference on principles and practice of constraint 

programming (pp. 807–811) . 
oniglio, S., Furini, F., & San Segundo, P. (2020). A new combinatorial branch-and- 

bound algorithm for the Knapsack problem with conflicts. European Journal of 
Operational Research . https://doi.org/10.1016/j.ejor.2020.07.023 . 

ooper, M. C. , Jeavons, P. G. , & Salamon, A. Z. (2010). Generalizing constraint sat-

isfaction on trees: Hybrid tractability and variable elimination. Artificial Intelli- 
gence, 174 (9–10), 570–584 . 

ulberson, J. C. , & Luo, F. (1996). Exploring the k -colorable landscape with iterated
greedy. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Chal- 

lenge, 26 , 245–284 . 
avis, M. , & Putnam, H. (1960). A computing procedure for quantification theory. 

Journal of the ACM (JACM), 7 (3), 201–215 . 

echter, R. , et al. (2003). Constraint processing . Morgan Kaufmann . 
echter, R. , & Pearl, J. (1988). Network-based heuristics for constraint-satisfaction 

problems. In Search in artificial intelligence (pp. 370–425). Springer . 
echter, R. , & Pearl, J. (1989). Tree clustering for constraint networks. Artificial Intel- 

ligence, 38 (3), 353–366 . 
reuder, E. C. (1982). A sufficient condition for backtrack-free search. Journal of the 

ACM (JACM), 29 (1), 24–32 . 

urini, F. , Ljubi ́c, I. , Martin, S. , & San Segundo, P. (2019). The maximum clique inter-
diction problem. European Journal of Operational Research, 277 (1), 112–127 . 

urini, F. , Ljubi ́c, I. , San Segundo, P. , & Zhao, Y. (2021). A branch-and-cut algorithm
for the edge interdiction clique problem. European Journal of Operational Re- 

search, 294 (1), 54–69 . 
ECODE (2016). Gecode toolkit. https://www.gecode.org . 

ent, I. P. , Jefferson, C. , Kelsey, T. , Lynce, I. , Miguel, I. , Nightingale, P. , et al. (2007).

Search in the patience game ‘black hole’. AI Communications, 20 (3), 211–226 . 
ent, I. P. , Jefferson, C. , & Miguel, I. (2006). Minion: A fast scalable constraint solver.

In ECAI: 141 (pp. 98–102) . 
ent, I. P. , Macintyre, E. , Prosser, P. , Smith, B. M. , & Walsh, T. (2001). Random con-

straint satisfaction: Flaws and structure. Constraints, 6 (4), 345–372 . 
olomb, S. W. , & Baumert, L. D. (1965). Backtrack programming. Journal of the ACM

(JACM), 12 (4), 516–524 . 
rünert, T. , Irnich, S. , Zimmermann, H.-J. , Schneider, M. , & Wulfhorst, B. (2002).

Finding all k -cliques in k -partite graphs, an application in textile engineering. 

Computers and Operations Research, 29 (1), 13–31 . 
aralick, R. M. , & Elliott, G. L. (1980). Increasing tree search efficiency for constraint

satisfaction problems. Artificial Intelligence, 14 (3), 263–313 . 
ebrard, E. , Hnich, B. , & Walsh, T. (2004). Super solutions in constraint program-

ming. In International conference on integration of artificial intelligence (AI) and 
operations research (OR) techniques in constraint programming (pp. 157–172) . 

espe, D. , Lamm, S. , Schulz, C. , & Strash, D. (2020). WeGotYouCovered: The winning

solver from the PACE 2019 challenge, vertex cover track. In H. M. Bücker, X. S. Li,
& S. Rajamanickam (Eds.), Proceedings of the SIAM workshop on combinatorial 

scientific computing, CSC 2020, Seattle, USA, February 11–13, 2020 (pp. 1–11). 
SIAM . 

BM (2017). ILOG CPLEX optimization studio 12.7.1: CP optimizer online documen- 
tation. http://ibm.biz/COS1271Documentation . 

égou, P. (1993). Decomposition of domains based on the micro-structure of finite 

constraint-satisfaction problems. In R. Fikes, & W. G. Lehnert (Eds.), Proceedings 
of the 11th national conference on artificial intelligence, Washington, DC, USA, July 

11–15, 1993 (pp. 731–736) . 
égou, P. , & Terrioux, C. (2015). The extendable-triple property: A new CSP tractable 

class beyond BTP. In AAAI (pp. 3746–3754) . 
arp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of 

computer computations (pp. 85–103). Springer . 

ecoutre, C. , Boussemart, F. , & Hemery, F. (2004). Backjump-based techniques versus 
467 
conflict-directed heuristics. In 16th IEEE international conference on tools with 
artificial intelligence (pp. 549–557). IEEE . 

ecoutre, C., & Roussel, O. (2018). Proceedings of the 2018 XCSP3 Competition. arXiv: 
1901.01830 

i, C. , Fang, Z. , Jiang, H. , & Xu, K. (2018a). Incremental upper bound for the maxi-
mum clique problem. INFORMS Journal on Computing, 30 (1), 137–153 . 

i, C. , Fang, Z. , & Xu, K. (2013). Combining MaxSAT reasoning and incremental upper
bound for the maximum clique problem. In 2013 IEEE 25th international confer- 

ence on tools with artificial intelligence (pp. 939–946) . 

i, C. , Jiang, H. , & Manyà, F. (2017). On minimization of the number of branches in
branch-and-bound algorithms for the maximum clique problem. Computers and 

Operations Research, 84 , 1–15 . 
i, C. , Liu, Y. , Jiang, H. , Manyá, F. , & Li, Y. (2018b). A new upper bound for the max-

imum weight clique problem. European Journal of Operational Research, 270 (1), 
66–77 . 

i, C. M. , & Quan, Z. (2010). An efficient branch-and-bound algorithm based on 

maxsat for the maximum clique problem. In AAAI: 10 (pp. 128–133) . 
ackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 

8 (1), 99–118 . 
arriott, K. , & Stuckey, P. J. (1998). Programming with constraints: An introduction . 

MIT Press . 
irghorbani, M. , & Krokhmal, P. A. (2013). On finding k -cliques in k -partite graphs.

Optimization Letters, 7 (6), 1155–1165 . 

ontanari, U. (1974). Networks of constraints: Fundamental properties and applica- 
tions to picture processing. Information Sciences, 7 , 95–132 . 

orara, M., Mauro, J., & Gabbrielli, M. (2011). Solving xcsp problems by using 
gecode. 

ouelhi, A. E. , Jégou, P. , & Terrioux, C. (2014). Different classes of graphs to repre-
sent microstructures for CSPs. In Graph structures for knowledge representation 

and reasoning (pp. 21–38). Springer . 

urphey, R. A. , Pardalos, P. M. , & Resende, M. G. C. (1999). Frequency assignment
problems (pp. 295–377). Boston, MA: Springer US . 

aanaa, W. (2020). New schemes for simplifying binary constraint satisfaction 
problems. Discrete Mathematics and Theoretical Computer Science, DMTCS, 22 (1) 

〈 hal-01731250v4 〉 . 
hrimenko, O. , Stuckey, P. J. , & Codish, M. (2009). Propagation via lazy clause gen-

eration. Constraints, 14 (3), 357–391 . 

esant, G. , Quimper, C.-G. , & Zanarini, A. (2012). Counting-based search: Branching 
heuristics for constraint satisfaction problems. Journal of Artificial Intelligence Re- 

search, 43 , 173–210 . 
rosser, P. (2014). Stable roommates and constraint programming. In International 

conference on AI and OR techniques in constriant programming for combinatorial 
optimization problems (pp. 15–28). Springer . 

égin, J. C. (1994). A filtering algorithm for constraints of difference in CSPs. In AAAI:

94 (pp. 362–367) . 
ossi, F. , Beek, P. V. , & Walsh, T. (2006). Handbook of constraint programming . Else-

vier . 
ossi, F. , Petrie, C. J. , & Dhar, V. (1990). On the equivalence of constraint satisfaction

problems. In ECAI: 90 (pp. 550–556) . 
amaras, N. , & Stergiou, K. (2005). Binary encodings of non-binary constraint satis- 

faction problems: Algorithms and experimental results. Journal of Artificial Intel- 
ligence Research, 24 , 641–684 . 

an Segundo, P. , Coniglio, S. , Furini, F. , & Ljubi ́c, I. (2019a). A new branch-and-bound

algorithm for the maximum edge-weighted clique problem. European Journal of 
Operational Research, 278 (1), 76–90 . 

an Segundo, P. , Furini, F. , & Artieda, J. (2019b). A new branch-and-bound algorithm
for the maximum weighted clique problem. Computers and Operations Research, 

110 , 18–33 . 
an Segundo, P. , Lopez, A. , Batsyn, M. , Nikolaev, A. , & Pardalos, P. M. (2016a). Im-

proved initial vertex ordering for exact maximum clique search. Applied Intelli- 

gence, 45 (3), 868–880 . 
an Segundo, P. , Lopez, A. , & Pardalos, P. M. (2016b). A new exact maximum clique

algorithm for large and massive sparse graphs. Computers and Operations Re- 
search, 66 , 81–94 . 

an Segundo, P. , Matia, F. , Rodriguez-Losada, D. , & Hernando, M. (2013). An im-
proved bit parallel exact maximum clique algorithm. Optimization Letters, 7 (3), 

467–479 . 

an Segundo, P. , Nikolaev, A. , & Batsyn, M. (2015). Infra-chromatic bound for exact
maximum clique search. Computers and Operations Research, 64 , 293–303 . 

an Segundo, P. , Rodríguez-Losada, D. , & Jiménez, A. (2011). An exact bit-parallel 
algorithm for the maximum clique problem. Computers and Operations Research, 

38 (2), 571–581 . 
an Segundo, S. , Nikolaev, A. , Batsyn, M. , & Pardalos, P. M. (2016). Improved

infra-chromatic bound for exact maximum clique search. Informatica, 27 (2), 

463–487 . 
an Segundo, P. , & Tapia, C. (2014). Relaxed approximate coloring in exact maximum

clique search. Computers and Operations Research, 44 , 185–192 . 
tergiou, K. , & Walsh, T. (1999). Encodings of non-binary constraint satisfaction 

problems. In AAAI/IAAI (pp. 163–168) . 
sang, E. (1993). Foundations of constraint satisfaction . Citeseer . 

u, K. , & Li, W. (20 0 0). Exact phase transitions in random constraint satisfaction

problems. Journal of Artificial Intelligence Research, 12 , 93–103 . 
hou, N.-F. , Kjellerstrand, H. , & Fruhman, J. (2015). Constraint solving and planning 

with Picat . Springer . 

http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0004
http://arxiv.org/abs/1611.03398
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0011
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0011
https://doi.org/10.1016/j.ejor.2020.07.023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0014
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0015
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0016
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0021
https://www.gecode.org
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0026
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0030
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0030
http://ibm.biz/COS1271Documentation
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0035
http://arxiv.org/abs/1901.01830
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0038
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0041
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0045
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0047
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0060
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0060
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0060
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0060
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0060
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0061
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0061
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0061
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0061
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0061
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0061
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0062
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0062
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0062
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0062
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0062
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0063
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0063
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0063
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0063
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0063
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0064
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0064
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0064
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0064
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0064
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0064
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0065
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0065
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0065
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0065
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0066
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0066
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0066
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0066
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0067
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0067
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0068
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0068
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0068
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0068
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0069
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0069
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0069
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0069
http://refhub.elsevier.com/S0377-2217(21)00773-6/sbref0069

	A new branch-and-filter exact algorithm for binary constraint satisfaction problems
	1 Introduction
	1.1 Reduction of the BCSP to the -CLP: the microstructure graph
	1.2 Literature review on CSP exact algorithms and solvers
	1.3 Main contributions and outline of the paper

	2 The new exact branch-and-filter algorithm
	2.1 The branching scheme of Bfilt
	2.2 The colour-filtering phase of Bfilt
	2.3 The SAT-filtering phase of Bfilt

	3 The additional algorithmic improvements of Bfilt: the algorithm Bfilt+
	3.1 The re-partition procedure of Bfilt+
	3.2 Color-filtering additional enhancements
	3.3 The maximum clique procedure of Bfilt+
	3.3.1 Branching scheme
	3.3.2 Bounding procedure

	3.4 Implementation details

	4 Computational experiments
	4.1 Experimental setting and dataset of instances
	4.2 Evaluation of the colour-filtering and SAT-filtering phases of Bfilt+
	4.3 Evaluation of the re-partitioning and maximum clique improvements of Bfilt+
	4.4 Comparison of Bfilt+ against state-of-the-art BCSP solvers
	4.5 Impact of the number of variables on the computing performance

	5 Conclusions and future work
	Acknowledgements
	A1 Detailed description of the classes of BCSP instances

	References


