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Abstract: Primary Sjögren’s Syndrome (pSS) is a systemic autoimmune disease that primarily attacks
the lacrimal and salivary glands, resulting in impaired secretory function characterized by xerostomia
and xerophthalmia. Patients with pSS have been shown to have impaired salivary gland innervation
and altered circulating levels of neuropeptides thought to be a cause of decreased salivation, including
substance P (SP). Using Western blot analysis and immunofluorescence studies, we examined the
expression levels of SP and its preferred G protein-coupled TK Receptor 1 (NK1R) and apoptosis
markers in biopsies of the minor salivary gland (MSG) from pSS patients compared with patients
with idiopathic sicca syndrome. We confirmed a quantitative decrease in the amount of SP in the MSG
of pSS patients and demonstrated a significant increase in NK1R levels compared with sicca subjects,
indicating the involvement of SP fibers and NK1R in the impaired salivary secretion observed in
pSS patients. Moreover, the increase in apoptosis (PARP-1 cleavage) in pSS patients was shown
to be related to JNK phosphorylation. Since there is no satisfactory therapy for the treatment of
secretory hypofunction in pSS patients, the SP pathway may be a new potential diagnostic tool or
therapeutic target.

Keywords: substance P (SP); neurokinin receptor 1 (NK1R); minor salivary gland (MSG); primary
Sjögren’s syndrome (pSS); sicca syndrome

1. Introduction

Primary Sjögren’s Syndrome (pSS) is a systemic autoimmune disease that primarily af-
fects the lacrimal and salivary glands, resulting in impaired secretory function characterized
by xerostomia and xerophthalmia [1].

The characteristic autoimmune feature of pSS etiopathogenesis is based on the devel-
opment of autoimmune epithelitis characterized by focal lymphocytic infiltration of the
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exocrine glands, often in association with acinar epithelial cell atrophy and progressive
fibrosis diagnosed mainly through biopsy of the minor labial salivary glands [2].

The pathology is characterized by a broad spectrum of circulating autoantibodies, of
which antinuclear antibodies (ANAs) are the most frequently detected (in approximately
70% of pSS patients) and anti-Ro/SSA and La/SSB antibodies are the most specifically
detected [3]. There is convincing evidence that the innate immune response in the early
phase of pathology is activated mainly by the involvement of CD4+ T cells infiltrating the
salivary and lacrimal glands, whereas T cell activation and B cell accumulation occur at
later stages [4]. Furthermore, activated T cells contribute to pathogenesis by releasing pro-
inflammatory cytokines (e.g., TNFα, IFNs, IL-1, IL-2, and IL-6), chemokines, and increased
expression of adhesion molecules, apoptosis-related factors, co-stimulatory molecules,
autoantigens, and functional innate immune receptors, leading to chronic inflammatory
damage to exocrine glands and progressive loss of their physiological function [5].

The prevalence of pSS is 0.15–3.3% depending on the diagnostic criteria used. Ninety-
five percent of pSS patients are women, typically peri- and post-menopausal, but young
post-menarche patients may also be affected [6]. Diagnostic criteria of the disease include
the presence of a detectable focal lymphocytic sialadenitis (aggregates of at least 50 cells
per 4 mm2) with a focus score ≥1, the presence of autoantibodies (i.e., anti-Ro/SSA and
anti-La/SSA), and impaired salivary and ocular secretions, as defined by the American–
European Consensus Group (AECG) criteria [7] and the American College of Rheumatology
(ACR)/European League Against Rheumatism (EULAR) criteria [8].

Patients with pSS have been shown to have impaired innervation of the salivary glands
along with changes in circulating levels of neuropeptides, which are thought to be a cause
of the decreased salivation [9,10]. One possible explanation is that this autoimmune disease
and/or local inflammation may cause vasoneural dysregulation and peripheral nerve
injury, resulting in decreased fluid flow and acinar cell atrophy, followed by destruction
of the salivary and lacrimal glands [11]. Moreover, apoptosis has emerged as a possible
mechanism for damage to the salivary and lacrimal glands in pSS, leading to impairment
of their secretory function [12].

Salivary secretion is controlled by the autonomic nervous system and influenced by
the sensory nervous system. Activation of the parasympathetic nervous system leads
to a sharp increase in salivary flow with a low protein concentration, and its function is
influenced by neurons containing neuropeptides with strong sialagogue action, including
substance P (SP), which is released by the nerve fibers innervating the salivary glands [13].

SP, a neuropeptide of 11 amino acids, was the first to be identified and is the best char-
acterized member of the tachykinin peptide family, and its biological activity is mediated by
its preferred G-protein-coupled TK receptor 1 (neurokinin receptor 1; NK1R) through the
activation of phospholipase Cβ (PLCβ). Since SP and NK1R are widely distributed in the
brain and sensory/autonomic nervous system, their involvement in many physiological
functions can be explained [14].

In the central nervous system (CNS), SP is mainly found in neuronal cells, where it
frequently co-localizes with classical transmitters and other neuropeptides and is endowed
with neurotrophic and neuroprotective properties, as has been extensively demonstrated
by our group and others [15–19].

In the peripheral nervous system (PNS), SP is found in high concentration in primary
small-diameter sensory neurons (C-fibers) [20,21] and in the dorsal horns of the spinal
cord, justifying its role as a sensory neurotransmitter important for pain perception [22]. In
addition, SP influences smooth muscle contraction, epithelial permeability, and mediates
inflammatory processes by increasing neutrophil and macrophage traffic and activating
mast cells, monocytes, or lymphocytes, which release their mediators such as histamine,
interleukins (IL-1, IL-2), and immunoglobulins, respectively [23].

The presence of SP nerve fibers has been demonstrated around the excretory ducts
of human salivary glands, which contributes to changes in fluid and electrolyte secretion
followed by a gradual increase in saliva production [24]. In salivary glands, immunoreactive
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SP nerve fibers have been shown to be found mainly around blood vessels and in direct
contact with the acini, and their number is significantly reduced in pSS tissues [10]; however,
no data are available on the presence and distribution of the associated receptor NKR1. The
aim of this study was to characterize the expression of both SP and NKR1 in biopsies of
the minor salivary gland (MSG) and to analyze their levels in pSS patients compared to
patients with idiopathic sicca syndrome. Exploring their contribution to the pathogenesis of
the disease could be useful to identify new potential diagnostic tools or therapeutic targets.

2. Materials and Methods
2.1. pSS and Sicca Patients’ Selection and Enrollment

Minor salivary gland (MSG) biopsies were obtained from patients with suspected pSS
and followed up at our dedicated Sjögren Clinic at Sapienza University (Department of
Clinical Internal, Anaesthesiologic, and Cardiovascular Sciences—Rheumatology Unit).
The total number of patients enrolled was 30. Following the biopsy procedure, the patient
was classified as pSS if they met the AECG criteria [7], while those who did not fulfill
these criteria were classified as an idiopathic sicca syndrome patient. Inclusion criteria
included the presence of a detectable focal lymphocytic sialadenitis (aggregates of at least
50 cells per 4 mm2) with a focus score≥1, and presence of autoantibodies (i.e., anti-Ro/SSA
and anti-La/SSA). Exclusion criteria included ongoing treatment with corticosteroids,
hydroxychloroquine, immunosuppressants, or pilocarpine (within 3 months). Informed
and written consent was obtained from patients enrolled in the study. Permission for
the use of MSG samples for research purposes was obtained by our ethical committee of
Sapienza University of Rome, under protocol number 4688.

2.2. MSG Biopsy Collection

Surgical procedures and tissue sample collection of MSG biopsies were performed
by otolaryngology specialists of the Department of Sense Organs, Division of Otolaryn-
gology, Sapienza University of Rome. A local anesthetic was injected into the lower
lip, followed by a small incision in the lip mucosa. Two MSG biopsies per patient were
obtained. One of the two biopsy samples was embedded in paraffin for immunohisto-
chemistry/immunofluorescence (IHC/IF) analysis and the remaining one was immediately
frozen after the surgical procedure and stored at −80 ◦C until it was used for Western Blot
(WB) analysis.

2.3. Protein Extraction and WB Analysis

For protein characterization, extracts from the MSG biopsies were obtained using a
lysis buffer (RIPA buffer), and the total protein concentration was measured using the
BioRad protein assay (DC Protein Assay, Biorad Laboratories, CA, USA, #500-0116). WB
analysis was performed using selective antibodies against substance P (SP, Santa Cruz
Biotechnology, Dallas, TX, USA, sc-517213, 1:1000) and its cognate receptor Neurokinin
1 (NK1R, Santa Cruz Biotechnology, Dallas, TX, USA, sc-365091, 1:1000), cleaved PARP-1
(Santa Cruz Biotechnology, Dallas, TX, USA, sc-56196, 1:1000), and phosphorylated JNK
(pJNK, cell signaling technology, Danvers, MA, USA, #9251, 1:1000). The images obtained
from the WBs were analyzed using ImageJ software for Windows. All samples were
normalized for protein loading using β-actin (Santa Cruz Biotechnology, Dallas, TX, USA,
sc-47778, 1:10,000) as the protein loading control. The values were determined from the
ratio between the arbitrary units (a.u.) derived from the protein band and the respective
β-actin band and expressed as mean ± Standard Deviation (SD).

2.4. Immunohistochemistry and Immunofluorescence

Immunohistochemistry (IHC) was used to characterize the infiltrates and to detect
the presence of Germinal Centers (GCs). GC+ samples were defined by the presence of at
least one GC (nodular aggregate segregated in T and B cells areas with positive staining for
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CD21L and Bcl6 on sequential sections [25]); the methods for the staining procedure were
reported in our previous work [26].

After collection, MSGs were immediately fixed in 10% formalin and embedded in
paraffin. Paraffin-embedded sections were dewaxed using 2 changes of xylol, 15 min
each. After hydration in graded ethanol solutions (100%, 95%), the slides were hydrated
in distilled water. The slides were then immersed in antigen retrieval solution (10 mM
sodium citrate, 0.05% Tween 20, pH 6.0), using a microwave oven operated at 640 W for
15 min. After cooling, the slides were transferred to PBS 1X and incubated for 24 h at 4 ◦C
with primary antibodies: substance P (Santa Cruz Biotechnology, sc-517213, 1:100) and
e-cadherin (ECAD, ThermoFisher Scientific, Waltham, MA, USA, #53-3249-82, 1:100) in
PBS 1X to perform immunofluorescence (IF). The slides were then washed in PBS 1X and
incubated for 1 h at R.T. with the appropriate secondary antibody: Donkey anti-Mouse
Alexa Fluor 546 (ThermoFisher Scientific, Waltham, MA, USA, A-Catalog #A10036, 1:300).
The nuclei were stained with 4′,6-diamidino-2- phenylindole (DAPI, 1:10,000, SeraCare,
Milford, CT, USA, KPL Dapi 1 mg 71-03-01). The slides were mounted using aqueous
mounting medium. Negative controls were performed by omitting the primary antibodies
(ctl neg).

All immune-reacted sections were analyzed in detail and representative images were
captured using the Zeiss LSM 780 laser-scanning confocal head with a Zeiss Axio Imager
Z1 microscope; LSM510 Image Examiner Software was used to process the images, which
were then composed into figures using Adobe illustrator 27.4 and Photoshop CS6.

To quantify SP immunoreactivity, 5 (40× magnification) images were captured for
each group. During the image acquisitions, the exposure parameters, such as gain and
time, were kept constant, to avoid observing differences among experimental groups
due to artifacts. The analysis of SP IF staining (%Area SP+) was performed using the
ImageJ software (version 1.53, National Institutes of Health, Bethesda, MD, USA, https:
//imagej.nih.gov/ij/download.html) and the statistical significance was calculated using
the t-Student test, p < 0.001 (***).

2.5. Data Analysis

Statistical analyses were performed using GraphPad InStat3 for Windows. The data
from WBs were analyzed using one-way analysis of variance (ANOVA) followed by a
Tukey’s post hoc test. All results are expressed as mean ± SD, with n being the number of
independent experiments. The significance level was set at p < 0.05 (*), p < 0.01 (**), and
p < 0.001 (***).

3. Results
3.1. Lower Expression of SP and Higher Expression of NK1R in MSGs of pSS Patients Compared
with Sicca Patients

As previously reported, immunohistochemical experiments indicated a reduction in
SP in pSS [10], but no data are available on quantitative protein expression of SP and its
associated receptor (NK1R).

Here, we demonstrated by Western blot analysis of MSG extracts that the levels of SP
and NK1R significantly differed between the two groups. The level of SP was significantly
decreased in the pSS patients compared with the sicca group (** p < 0.01) as shown in
Figure 1A. In contrast, NK1R showed the opposite trend (Figure 1B) with a significant
increase in pSS patients compared to sicca patients (*** p < 0.001).

https://imagej.nih.gov/ij/download.html
https://imagej.nih.gov/ij/download.html
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Figure 1. (A,B) Representative Western blot of SP (A) and NK1R (B) levels in MSGs from sicca and 
pSS patients. Data are expressed as mean optical density in arbitrary units (a.u.) and are given as 
mean ± SD of n = 9 independent experiments. Statistical significance calculated using one-way 
analysis of variance (ANOVA) for repeated measures followed by Tukey's post hoc test, indicated 
with ** p < 0.01; *** p < 0.001. β-actin expression was used to normalize sample variability. Molecular 
weight markers (kDa) are shown on the left. 

3.2. SP and ECAD Localization in MSG Sections from pSS and Sicca Patients’  
Immunofluorescence 

Using Immunofluorescence (IF) technique, we investigated the expression of 
substance P in MSG sections from pSS and sicca patients. We detected that SP expression 
(red) in pSS MSGs was reduced when compared to sicca MSGs, particularly in ductal 
epithelial cells (Figure 2A). When quantitatively analyzed, SP immunoreactivity levels 
appeared significantly lower in pSS patients compared to sicca individuals (*** p < 0.001, 
t = 6.302; Figure 2B). To assess the primary antibody specificity, a negative control (ctl neg) 
was also performed (first row, Figure 2A). 

 

Figure 1. (A,B) Representative Western blot of SP (A) and NK1R (B) levels in MSGs from sicca and
pSS patients. Data are expressed as mean optical density in arbitrary units (a.u.) and are given as
mean ± SD of n = 9 independent experiments. Statistical significance calculated using one-way
analysis of variance (ANOVA) for repeated measures followed by Tukey’s post hoc test, indicated
with ** p < 0.01; *** p < 0.001. β-actin expression was used to normalize sample variability. Molecular
weight markers (kDa) are shown on the left.

3.2. SP and ECAD Localization in MSG Sections from pSS and Sicca Patients’
Immunofluorescence

Using Immunofluorescence (IF) technique, we investigated the expression of substance
P in MSG sections from pSS and sicca patients. We detected that SP expression (red) in
pSS MSGs was reduced when compared to sicca MSGs, particularly in ductal epithelial
cells (Figure 2A). When quantitatively analyzed, SP immunoreactivity levels appeared
significantly lower in pSS patients compared to sicca individuals (*** p < 0.001, t = 6.302;
Figure 2B). To assess the primary antibody specificity, a negative control (ctl neg) was also
performed (first row, Figure 2A).
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Figure 2. (A,B) SP expression and localization was severely affected in MSG sections from pSS and
sicca patients. (A) Representative images of immunofluorescence staining (red) of SP in pSS and sicca
patient MSG sections. (B) Quantitative analysis showing lower expression of SP in pSS compared to
sicca patients. n = 5 independent experiments and statistical significance calculated using t-Student
test. *** p < 0.001; t = 6.302. Scale bar 25 µm; 40×magnification. First row: negative control (ctl neg).
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To further investigate the localization of SP in the MSGs of sicca and pSS patients, a
double IF analysis for SP and E-Cadherin (ECAD), a membranous glycoprotein expressed
in epithelial cells, was performed. SP localization was detected in both sicca and pSS
patients, in ductal and acinar cells, and mainly in the epithelial compartment as shown by
the merge images of both groups (Figure 3).
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Figure 3. SP and ECAD expression and localization was severely affected in MSG sections from pSS
and sicca patients. Representative images of double immunofluorescence staining of substance P
(SP, red) and e-cadherin (ECAD, green) in pSS and sicca patients MSG sections. Scale bar 25 µm;
40×magnification.

3.3. Western Blot Analysis Reveals Increase in PARP-1 Cleavage and JNK Phosphorylation in
MSGs of pSS Patients

Since apoptosis is involved in the pathogenesis of pSS [27], we investigated proteolysis
of poly (ADP-ribose) polymerase-1 (PARP-1), an enzyme involved in DNA repair [28], and
the activation of c-Jun N-terminal kinases (JNK) known to trigger the caspase pathway.
To this end, we performed Western blotting analysis with an antibody that recognizes the
89 kDa fragment released by caspase-3-mediated cleavage of PARP-1 and an antibody
against the phosphorylated form of JNK (pJNK).

The representative bands of cleaved PARP-1 (c-PARP-1) and pJNK WBs are shown in
Figure 4A,B, respectively. They show a significant increase in both proteins in the MSGs of
pSS compared with those of sicca patients (* p < 0.05).
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mean ± SD of n = 9 independent experiments. Statistical significance was calculated using one-way
analysis of variance (ANOVA) for repeated measures followed by Tukey’s post hoc test, indicated
with * p < 0.05. β-actin expression was used to normalize sample variability. Molecular weight
markers (kDa) are shown on the left.

4. Discussion

Over the past few years, the role of SP has been intensely investigated in different sys-
tems such as inflammatory bowel disease (IBD) [23], in motor and non-motor Parkinson’s
disease (PD) [29], and amyloid precursor protein (APP) metabolism in an Alzheimer’s
disease (AD) model [17].

SP could be also involved in the impairment of salivary secretion observed in pSS pa-
tients. Treatments for pSS-related xerostomia have been classified as symptomatic, topical,
or systemic stimulants, and regenerative treatments, but there is no satisfactory therapy to
treat salivary hypofunction. The result of various clinical trials is that parasympathomimet-
ics, including pilocarpine, able to stimulate exocrine gland secretion, are the most beneficial
treatments for the management of salivary dysfunction in pSS [30].

Although a subjective, transient improvement in salivary function has been consis-
tently observed with pilocarpine therapy, the exact mechanism is unclear. It has been
hypothesized that pilocarpine could improve salivary secretion through local stimulation
of neuropeptidergic fibers. The results of Sato et al. [31] in healthy humans showed that
oral treatment with pilocarpine triggered an increased release of neuropeptides, including
SP, in both saliva and blood, suggesting that this sialagogue neuropeptide should be an
important factor contributing to the stimulatory pilocarpine treatment.

To confirm this hypothesis, preclinical experiments were performed in rats that showed
a comparable effect on salivary secretion when treated with SP or with parasympathomimet-
ics. Interestingly, the use of a selective SP antagonist has been shown to reduce the increased
salivary secretion elicited by pilocarpine treatment [32]. These data confirm that the stimu-
latory effect of pilocarpine on rat submandibular glands is not only due to activation of
muscarinic receptors, but probably also to the direct stimulation of SP nerve fibers.

The contribution of the SP pathway to the pathogenesis of the disease could be useful
to identify new therapeutic targets, as already suggested in studies on pSS and other forms
of keratoconjunctivitis sicca [14].

Indeed, clinical trials with the administration of SP analogs (eledoisin and physalaemin)
in the form of eye drops have shown significant improvement in tear secretion in these
patients [33–35].

Additional evidence is provided by the NOD (non-obese diabetic) mouse model of SS,
which is genetically predisposed to the development of autoimmune exocrinopathy and
mimics the sialoadenitis of Sjögren’s syndrome [36].

According to these previous studies, our results also point toward SP’s involvement
in pSS, showing that SP levels strongly decreased in pSS MSGs compared to sicca MSGs,
when analyzed by WB. This result was confirmed by the low level of SP detected using IF
in pSS ductal epithelial cells, as reported in Figure 2, as well as in both acinar and ductal
cells, detected in combination with ECAD IF, in Figure 3. The role of SP in the epithelium
has been also studied in other tissues like the eye, where it has been found to be protective
towards diabetes-related wounds in the corneal epithelium, when interacting with its
related receptor NK1R [37].

Consistent with our results, the salivary glands of these mice, together with the pres-
ence of autoantibodies, were characterized by decreased levels of β-adrenergic, muscarinic,
and neuropeptide signal transduction responses and by increased levels of apoptosis. The
authors proposed that apoptosis is a key factor in the development of the disease and
triggers autoimmunity [38].

In agreement with this finding and other clinical evidence [27], we demonstrated
an increase in cleaved PARP-1 (c-PARP-1) in the MSGs of pSS patients, confirming that
excessive apoptosis may contribute to pSS salivary gland dysfunction.
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As previously reported, c-Jun N-terminal kinase (JNK) signaling was shown to mediate
apoptosis in human salivary gland cells in vitro [39]. We confirmed the key role of this
signaling pathway in pSS patients’ MSGs, showing a significant increase in JNK activation
(pJNK) associated with enhanced apoptotic processes.

The therapeutic possibility of intervening and attempting to restore or stimulate sali-
vary gland functions associated with pSS is essential from a clinical perspective, especially
to prevent the complications of decreased or absent salivation [40].

Since pilocarpine treatment is the most effective treatment for improving salivary
secretion by locally stimulating neuropeptidergic fibers and, in particular, by increasing the
production and release of SP, this underscores the importance of our experimental results
with regard to possible drug therapy, as previously suggested [33–35].

Furthermore, because there is no satisfactory therapy for the treatment of secretory
hypofunction in pSS patients, the new data on the upregulation of the NK1 receptor
represent a nodal point in the possibility of using low doses of SP or synthetic selective
NK1 agonists to treat pSS symptoms.
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