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Abstract
An active disturbance rejection control (ADRC) has been developed for stabilizing electric vehicle (EV) systems without 
the need for model identification. The proximal policy optimization (PPO) algorithm, along with actor and critic neural 
networks, has been used to fine-tune the adjustable parameters of the ADRC controller to achieve optimal performance in a 
specific case study. The architecture of PPO implements separate neural networks and ameliorates the PPO adaptability to 
handle continuous action spaces. By maximizing a reward function based on system output, the PPO agent optimally tunes 
the gains to reduce undesired speed fluctuations of EVs and improve system stability. Performance evaluation under the new 
European driving cycle and federal test procedure has been conducted to examine the feasibility of the suggested controller. 
The disturbance rejection capability of the ADRC controller designed by the PPO algorithm has been tested and compared 
with prevalent control methodologies. Moreover, real-time examinations of the dynamic behavior of EV systems have been 
made to identify the capability of the suggested controller in real-world hardware. The results show that the suggested 
controller outperforms other designed controllers in terms of transient behavior and numerical performance metrics.

Keywords Electric vehicles (EVs) · Active disturbance rejection control (ADRC) · Proximal policy optimization (PPO) · 
New European driving cycle (NEDC) · Federal test procedure (FTP-75)

1 Introduction

Electric vehicles (EVs) have recently emerged as a promi-
nent solution to face environmental problems and the short-
age of conventional fossil fuel sources (Pazouki & Olamaei, 

2019; Mamo, Gopal, and Yoseph 2024; Hasan et al., 2024). 
The EVs have the potential to tackle these problems and 
many more benefits over the traditional internal combustion 
engine (ICE) vehicle like quiet operation, low fueling costs, 
and high efficiency. Their popularity in the transformation 
industry has been further fueled by advances in battery tech-
nologies, making EVs more practical for a wide reasonable 
range of consumers. With increased research and develop-
ment in the EV sector, it is anticipated that these technolo-
gies will soon experience a greater transition toward sus-
tainability (Alrubaie et al., 2023; Bozhi et al., 2023; Bristi 
et al., 2023).

The battery pack, electric motor, power electronic com-
ponents, charging ports, power train, and control mechanism 
are the main elements of an electric vehicle system. Among 
the various components, the controller in EV plays a criti-
cal role in managing and optimizing various aspects of the 
vehicle's performance (Djouahi et al., 2023; Hwang et al., 
2024). However, the regulation of EV output is a challenging 
task, because these technologies have a time-variant nature 
(e.g., parametric variation of system dynamic, change in the 

 * Ebrahim Ghaderpour 
 ebrahim.ghaderpour@uniroma1.it

1 Geely Automotive Institute, Hangzhou Vocational 
& Technical College, No.68 Xueyuanjie, 
Xiasha, Hangzhou 310000, Zhejiang, China

2 Seres Automotive Co., Ltd, Chongqing 404100, China
3 Multidisciplinary Center for Infrastructure Engineering, 

Shenyang University of Technology, No.111, Shenliao West 
Road, Shenyang 110870, China

4 Department of Earth Sciences, Sapienza University of Rome, 
Piazzale Aldo-Moro, 5, 00185 Rome, Italy

5 Department of Electrical Engineering, University of Bonab, 
Bonab, Iran

6 College of Architecture and Civil Engineering, Shenyang 
University of Technology, Shenyang, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s12239-024-00134-3&domain=pdf


 J. Zhuang et al.

road condition, etc.) (George et al., 2021; Liu et al., 2022). 
One of the challenges of current EVs is the limited driving 
distance per battery charge, which restricts their applica-
bility. Therefore, apart from regulating the performance of 
EVs, the energy stored in the battery system is also managed 
during its operation. The ability to optimally utilize and store 
the power during driving is essential to tackle the limitations 
and improve the practicality of EVs (Khooban, Niknam, and 
Sha‐Sadeghi 2016b; Xiao et al., 2023; Zhang et al., 2023).

Numerous control algorithms have been developed to 
regulate the output power of EVs in various industry and 
transportation applications, ranging from linear controllers 
such as linear matrix inequality (LMI) (Cheng et  al., 
2020), linear quadratic integral (LQI) (Ristiana et  al., 
2019), H-infinity control (Cheng et al., 2020) to non-linear 
controller like sliding mode control (SMC) (Deng et al., 
2022; Subroto et al., 2020), fractional order (Ahmed et al., 
2021), fuzzy logic (Khooban, Niknam, and Sha‐Sadeghi 
2016b), and backstepping (Pang et al., 2021). For instance, 
(George et al., 2021) developed a fractional-order version 
of fuzzy logic for the stabilization of EV systems under 
the European driving cycle (NEDC) test. However, the 
suggested controller by (George et al., 2021) suffers a lack 
of learning and adaptation capability which degrades its 
performance against external disturbance. A general type-2 
fuzzy logic based on SMC was proposed by (Khooban 
et al., 2016a, 2016b) to solve the problem of EV systems 
under un-modeled dynamics and external disturbances. 
The proposed controller by (Khooban et al., 2016a, 2016b) 
needs to mathematical modelling of EV system which 
necessitates high complexity during control design stage. 
(Haddoun et al., 2008) utilized the recurrent neural network 
(RNN) estimator to improve the performance of the EV 
system under the urban ECE-15 cycle. Despite a robust 
speed estimation performance obtained by the proposed 
scheme, the need to a large dataset for training the neural 
network imposes sever challenges associated with that the 
application. (Zhu et al., 2016) developed a new slip control 
mechanism equipped with nonlinear model predictive 
control for safety objective of EV system subjected to 
system constraints. The performance of the controller may 
be sensitive to the selection of dynamic parameters and cost 
function weights, making it challenging to find an optimal 
configuration.

Since the model-based controllers are often developed 
based on mathematical modeling, any uncertainties and 
un-modeled dynamics in the EV system degrade their 
performance. Active disturbance rejection control (ADRC) 
(Meng, Liu, and Wang 2019; Yang et al., 2022) has emerged 
as an advanced control strategy that can estimate and 
compensate the disturbances in a real-time framework. In the 
structure of the ADRC controller, an extended state observer 
(ESO) is adopted to estimate the unpredictable disturbances 

and unknown dynamics of a controlled plant and compensate 
for their effect in the feedback path. This data-driven control 
scheme is well known due to its straightforward structure, 
high accuracy, and quick response, besides its capability to 
tackle uncertainties regardless of the system dynamics. The 
potential of the ADRC controller has been proved in many 
applications, such as wind turbines (Wu et al., 2020; Xia 
et al., 2013), unmanned aerial vehicles (UAVs) (Niu, Xiong, 
and Zhao 2016), humanoid robots (Li, Luo, and Dou 2022), 
power interface systems (Tao et al., 2021), and magnet 
synchronous motors (Zhao & Dong, 2019).

The ADRC controller has many control parameters 
that should be appropriately regulated to achieve the 
desired performance from the control engineering point 
of view. Adjusting these coefficients is a challenging task, 
especially in dealing with sophisticated and partly known 
systems. To address this issue, many efforts have been made 
by contemporary researchers to tune the gains of ADRC 
controllers such as fuzzy logic (Li et al., 2019; Tao et al., 
2018), meta-heuristic algorithms (Yang et al., 2022; Li, Shi, 
and Zhang 2021), gain scheduling (Wu et al., 2019), etc. (Li 
et al., 2019) used fuzzy logic to tune the gains embedded 
in the structure of the ADRC controller to enhance the 
adaptability of unmanned aerial vehicles to the marine 
environment. However, the need to set the rule base of fuzzy 
sets is a difficult task that necessitates expert knowledge 
or employing tools for rule optimization. (Kang et  al., 
2019) introduced a hybrid scheme based on the principle 
of artificial fish swarm and particle swarm algorithms to 
tune the decisive parameters of the ADRC controller. 
The proposed scheme by (Kang et al., 2019) suffers the 
complexity of a combined intelligent algorithm which 
demands accurate parameter tuning and high computational 
time. (Wu et al., 2019), designed a gain scheduling technique 
based on ADRC to tackle the challenges of safe operation 
and regulation of integrated renewable energy systems. 
However, the primary limitation of the gain scheduling 
scheme lies in the complexity associated with adjusting 
the scheduling parameters to achieve optimal response 
in the face of changing operating conditions. Generally, 
the aforesaid optimization methodologies suffer the lack 
of training, limited exploration and sensitivity to initial 
conditions which limit their application scope in complex 
problems.

Reinforcement Learning (RL) is known as one of 
the most important branches of artificial intelligence 
(AI) (Bhatti et al., 2021, 2023) which can optimize the 
control techniques through interacting the agent with the 
unknown environment (Hu et al., 2019; Qiu et al., 2023; 
Wang et al. 2023; Chen et al., 2023). The RL agent updates 
the parameters of the controller by maximizing a reward 
function where the terms of states and value function are 
updated during the execution of action signals. Among 
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various types of RL algorithms, the application of SARSA 
(State-Action-Reward-State-Action) and Q-learning has 
drawn significant attention in various fields of control 
engineering (Dabbaghjamanesh et  al., 2020; Ozcelik 
et al., 2022). Despite the successful performance of these 
algorithms in many applications, the need for Q-Table to 
store the learned Q-values leads to large computational 
requirements. The necessity to create and update the 
Q-Table becomes impractical in high-dimensional 
continuous problems. Apart from this, the sensitivity to 
hyperparameters and convergence to suboptimal policies 
limit their applications. More recently, an advanced 
version of the deep RL algorithm, called proximal policy 
optimization (PPO) (Zhang et al., 2021), was introduced 
that addresses the challenges of Q-Table-based algorithms. 
This algorithm has the benefit of being an on-policy scheme 
using a clipped surrogate objective, which makes it more 
suitable for exploring the optimal solutions for both discrete 
and continuous action environments.

Despite the rich body of literature in the context of 
EVs, there are some challenges that limit the feasibility 
of deterministic robust controllers. Inherent uncertainties 
and complexities of EVs make it difficult to obtain a 
mathematical model to capture all the aspects accurate 
model of system dynamics. Under this circumstance, 
deploying robust controllers for the speed regulation of 
EVs is not reasonable due to practical considerations. To 
address this, the current paper aims to develop an intelligent 
data-driven controller to address the stabilization problem 
of EV speed in the presence of un-modeled dynamics and 
external disturbances. For this purpose, the ADRC controller 
has been adaptively adjusted by the PPO algorithm to 
improve the performance of EV systems. The proposed tuner 
mechanism can obtain the control requirements and has the 
potential to tackle the uncertainties. The main contributions 
are given as follows.

(1) The problem of EV is formulated to study the 
challenges of speed control to compensate for the non-
linear dynamics and uncertainties.

(2) A data-driven controller based on the ADRC scheme 
has been designed to stabilize the speed output of 
electric vehicle systems. In this context, ADRC is 
developed without the need for accurate knowledge of 
the model identification, which simplifies the control 
strategy.

(3) The coefficients embedded in the structure of the 
established ADRC controller have been adjusted by 
the PPO algorithm. This involves defining a reward 
function according to the EV output which provides the 
capability to tune the control gains through interacting 
the PPO agent with the environment.

(4) The training ability of the PPO agent allows the ADRC 
to adapt according to the characteristics of the EV sys-
tem and optimize the performance without relying on 
system dynamics.

Many typical scenarios, especially under the NEDC test 
and FTP-75, are considered to assess and demonstrate the 
usefulness of the suggested data-driven controller (realized 
by the PPO algorithm) in stabilizing EV speed. Since the 
proposed control framework is designed in a data-driven 
manner, it can be adopted for wide reasonable electric 
vehicle systems. The current work is organized as follows: 
The dynamic modeling of the EV system is formulated in 
Sect. 2. In Sect. 3, the principle of ADRC control for the 
stabilization of the case study is elaborated, and the PPO 
algorithm for the optimal design of the control gains is 
presented. In Sect. 4, simulation examinations of typical 
scenarios of EV systems are carried out, followed by the 
justification of using the proposed framework, as presented 
in Sect. 5. The main outcomes of this research work are 
concluded in Sect. 6.

2  Dynamic Modelling of EV System

The electric vehicle (EV) is a complex system with various 
components that work in a union to offer efficient and sus-
tainable transportation. The main elements of an EV com-
prise of control unit, battery system, and electric motors, 
all the components are connected to the vehicle by a trans-
mission system. Various generation units, such as fuel cells 
(FC), photovoltaic (PV), and battery units can be responsi-
ble for supplying the EV systems (Khooban, Niknam, and 
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Fig. 1  The illustration of applying various forces to EV on a road
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Sha‐Sadeghi 2016b; Das et al., 2022). The dynamics of the 
EV system can be elaborated into two separate parts: vehi-
cle dynamics and motor dynamics. Figure 1 illustrates the 
schematic of various forces which are applied to the EV 
system on the road.

The road loads encompass several key elements, namely, 
the resistance posed by tire rolling, the gravitational force 
due to the Earth’s pull, the aerodynamic drag force (ADF) 
caused by air resistance, and the force incurred when 
ascending hills (hill-climbing force or HCF). The total 
traction force ( FTot ) of vehicle dynamic can be elaborated 
by considering all the forces including rolling friction ( Frr ), 
gravity of earth ( Fge ), aerodynamic drag ( Fad ), vehicle 
acceleration ( Fa ), given as (Khooban, Niknam, and Sha‐
Sadeghi 2016b; George et al., 2021):

where v and A denote the driving velocity and the frontal 
area, respectively; m is the vehicle’s mass; the rolling 
resistance is denoted by �rr ; the air density is denoted by � ; 
g is the gravity acceleration; Θ is the hill-climbing angle; Cd 
is the drag factor. Likewise, in Eq. (2), the term of ‘ �rrmg ’ 
simplifies the force of Frr ; ‘ 0.5�ACdv

2 ’ is related to the force 
of ADF; ‘ mg���Θ ’ represents the force of HCF; ‘ dv∕dt ’ 
denotes the acceleration force. In the EV system, a torque 
TL will be produced by FTot to drive the motor, given by:

where r denotes the tire radius; G denotes the gearing ratio. 
According to (George et al., 2021), the model of the electric 
motor is defined by non-linear relations, which are defined 
by:

In Eqs. (4) and (5), the armature current is denoted by i ; 
the angular speed is represented by w; the winding resistance 
is denoted by Rf  ; the armature resistance is denoted by Ra ; 
La is the armature inductance; Lfield is the winding 
inductance; B is the viscous factor; J is the inertia; v is the 
input voltage; Laf  is mutual inductance (George et al., 2021; 

(1)FTot = Frr + Fge + Fad + Fa

(2)FTot = �rrmg + 0.5�ACdv
2 + mg sinΘ + m(dv∕dt)

(3)TL = FTot ×

(
r

G

)

(4)
di

dt
=

1(
La + Lfield

){V −
(
Ra + Rf

)
i − Laf i.w

}

(5)
dw

dt
=

1

J

{
Laf i

2 − TL − Bw
}

Veysi et al., 2020). Therefore, the driving velocity of the EV 
system given as v = w ×

(
r

G

)
 . By integrating the electrical 

and motor models, the overall model of EV is defined as 
follows (Veysi et al., 2020).

Based on the above relations, the block diagram sche-
matic of the EV system is drawn as shown in Fig. 2.

The state space form of Eqs. (6) and (7) is given as:

The fucntions of f (X) and g(X) are defined as eqs. (10) 
and (11).

The main goal of the EV problem is to the speed 
output (w) track its reference ( wref  ). Unlike many other 
practical system applications, electric vehicle units 
are characterized to operate at a wide range of speeds, 

(6)
di

dt
=

1(
La + Lfield

)(V −
(
Ra + Rf

)
i − Laf i.w

)

(7)
dw
dt

= 1
(

J + m(�∕)2
)

{

af i2 − Bw − �


(

�rrmg +
1
2
�ACdv2 + mg sinΘ

)

}

(8)Ẋ = f (X) + g(X)u

(9)X =

[
x1
x2

]
=

[
i

�

]

Fig. 2  The overall structure of the EV system
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ranging from zero to maximum speed. Consequently, the 
deployment of controllers for optimal stabilization of EVs 
necessitates non-linear control methodologies.

3  Design of Adrc Controller Based on Ppo 
Tuner Mechanism

3.1  Active Disturbance Rejection Controller

Generally, a system with the output O and input u(t) can be 
defined by the first order representation, given as:

where b is the input factor; g denotes the synthesis function; 
..

O denotes the high order of O ; d the external disturbances; 
� is uncertainties. By defining f (t) = g(t) +

(
b − b̂

)
u(t) , 

where b̂ denotes estimation of b , Eq. (12) can be written as:

where n denotes the order of O ; f (∙) denotes the total 
disturbance. The tracking differentiator (TD) is the first part 
of ADRC, employed for tracking the system behavior. The 
main role of TD is to differentiate the tracking error, i.e., 
the difference between the actual output with the reference 
signal,

given as:

where the outputs of the TD are expressed by z11(t) and z12(t); 
h denotes the sampling period; T  is the tracking variable; 
O∗(t) denotes the reference signal. Likewise, fhan(∙) is an 
integrated function with the following definitions:

where

(10)O(n)(t) = bu(t) + g
(
t,O,

..

O,… d,�
)}

(11)O(n)(t) = b̂u(t) + f (∙)

(12)
fh = fhan

(
z11(t) −O∗(t), z12(t), T , h

)
z11(t + 1) = z11(t) + h ∗ z12(t)

z12(t + 1) = z12(t) + h ∗ fh

(13)fhan(∙) =

{
−Tsign(𝜎), |𝜎| > 𝜉

−T
𝜎

𝜉
, |𝜎| ≤ 𝜉

(14)

f (X) =
⎡

⎢

⎢

⎣

− Ra+Rf
a+field

x1 −
af

a+field
x1.x2

(

1
J+m(�∕)2

)

af x21
−Bx2 − �∕

(

�rrmg +
1
2
�ACd(�∕)

2x22 + mg���Θ
)

⎤

⎥

⎥

⎦

(15)g(x) =

[ (
1

La+Lfield

)

0

]

In the ADRC framework, both the un-modeled dynamics 
and parameter perturbations in the system are regarded as the 
total disturbance which should be estimated by an observer. 
To do this, an extended state observer (ESO) is embedded 
in the feedback path of the control loop to estimate all the 
uncertainties. A three-order form of ESO is elaborated by:

where e(t) is the error signal of the ESO; z21, z22, z23 are 
the estimated values of the observer; �01 , �02 and �03 are the 
tunable parameters of the observer; � is a filtering variable. 
Moreover, the term fal(∙) is a nonlinear function, which is 
defined by:

In addition, a nonlinear state error feedback (NLSEF) is 
also incorporated in the ADRC controller to mitigate and 
reduce the effect of disturbances using the differential signal 
produced by TD (z11, z12) and the estimated values (z21, z22) 
obtained by ESO. The mathematical expression of NLSEF is 
given in the following form.

where the control gains of NLSEF are denoted by �1 and �2 . 
Using the estimated states obtained by ESO, the control law 
for compensating the disturbances is defined by:

The schematic of the structured ADRC scheme for speed 
stabilization of the EV system is illustrated in Fig. 3.

Remark 1: The ADRC controller is designed as a data-
driven scheme that can regulate the speed of the EV system 
without the need to model identification. While the model-
based schemes should be designed according to the system 

(16)

𝜉 = T .h, 𝜉0 = 𝜉.h

O = z11 + hz12

𝜎0 =
√
𝜉2 + 8.T�y�

𝜎 =

�
z12 +

𝜎0−𝜉

2
sign(y), �y� > 𝜉0

z12 +
O

h
, �y� ≤ 𝜉0

(17)

e(t) = z21(t) −O(t)

z21(t + 1) = z21(t) + h
(
Z22(t) − �01e(t)

)
z22(t + 1) = z22(t)+

h
(
z23(t) − �02fal

(
e(t),

1

2
, �
)
+ b0u

)

z23(t + 1) = z23(t) − h�03fal
(
�(t),

1

4
, �
)

(18)fal(e, 𝛼, 𝛿) =

{ |e|𝛼sign(e), |e| > 𝛿

e∕𝛿1−𝛼 , |e| ≤ 𝛿

(19)

⎧⎪⎨⎪⎩

e1 = z11 − z21
e2 = z12 − z22

u0 = �1fal
�
e1, �1, �

�
+ �2fal

�
e2, �2, �

�

(20)u(t) = u0 − z23∕b0
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model, ADRC can stabilize the system output by the input/
output data.

3.2  Proximal Policy Optimization Algorithm

Reinforcement Learning (RL) refers to the way that an agent 
learns from experiences by taking return (or reward) signals 
from the environment (system). The mathematical frame-
work to model the RL algorithm is recognized as Markov 
Decision Process (MDP). An overall representation of RL-
based algorithms for the stabilization of EV systems is illus-
trated in Fig. 4. According to Fig. 4, the agent or controller 
applies the control actions to the EV system to obtain the 
desired goal. As a result, the new state and reward signal is 
received by the agent.

Fig. 3  Schematic of ADRC con-
troller with the components of 
TD, ESO, and NLSEF

Fig. 4  Illustration of RL algorithm applied to EV system
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The PPO is a policy-gradient (PG) scheme based on the 
RL algorithm that is designed to maximize the policy of an 
agent. The main goal of the PG scheme is to address the 
problem of policy optimization in such a way that balances 
exploration and exploitation. In the native algorithm, the 
policy net � with the weight of � takes the state ∫ as the 
input signal (observation) and produces an action ⊣ . In 
the context of continuous action space, the policy net’s 
responsibility is to generate key statistical parameters of a 
probability distribution, especially the means and variances 
of a Gaussian distribution, which are adopted to generate 
control actions. To ameliorate the exploration, the PPO agent 
generates actions using a random sample of this distribution 
during the training process. Once the training procedure is 
completed, the mean of the distribution is chosen as the 
action.

A typical architecture of PPO integrates the actor and 
critic nets using the PG scheme. The role of the actor net is 
to select actions by adjusting the weight parameters of policy 
while the critic net is responsible for improving the actor net 
by calculating the desirability of taken actions in specific 
states. In the PG, the objective function with the weight of 
� is updated by:

where �̂t denotes the expected value with respect to step time 
t , At

(
at|st

)
 denotes the superiority function which is defined 

by the following expression.

(21)L(𝜃) = Êt

[
log𝜋𝜃

(
at|st

)
At

(
at|st

)]

The updating of � is by the PG algorithm is given as:

Since the PG algorithm faces the challenges of choosing 
the proper step size, the PPO addresses this issue by utilizing 
a modified objective function:

The Kullback–Leibler (KL) divergence is often adopted 
to stabilize the training process. In the PPO algorithm, a 
limitation is introduced on the KL between new policies (
��
(
at|st

))
 and old policy 

(
��old

(
at|st

))
 . The actor and 

critic nets are aimed to maximize the surrogate function, 
expressed by:

where Â is advantage function A ;  � denotes a truncation 
constant. The ratio of old and new schemes is defined by:

The procedure steps and architecture of PPO with actor 
and critic framework are demonstrated in Algorithm 1 and 
Fig. 5.

(22)At(s, a) = Qt

(
st, at

)
− Vt

(
st
)

(23)�t+1 = �t + a∇�L
(
�t
)

(24)LCPI(𝜃) = Êt

[
𝜋𝜃
(
at|st

)

𝜋𝜃old

(
at|st

)At

]
= Êt

[
rt(𝜃)At

]

(25)Lclip(𝜃) = Êt

[
min

(
rt(𝜃)Ât.clip

(
rt(𝜃), 1 − 𝜀, 1 + 𝜀

))
Ât

]

(26)rt(�) =
��
(
at, st

)

��old

(
at, st

)

Algorithm 1 
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The computational resources required to deploy the PPO 
algorithm depend on many factors which vary according to 
the complexity of the problem and the desired level of real-
time operation. The size of neural nets, real-time constraints, 
tuning of hyper-parameters, and optimization methodologies 
are the main factors that play a crucial role in determining 
the computational demand of PPO in real-time applications.

Remark 2: Note that control actions of the PPO algorithm 
are bounded where the PPO mechanism updates its control 
policy within a pre-defined range. This boundedness ensures 
that the control actions generated by the PPO agent remain 
within safe operating limits, and thus maintain the stability 
of the EV system throughout operation.

3.3  Design of PPO‑Based ADRC for Electric Vehicle 
Control

The PPO agent is defined to determine the optimal gains of 
the ADRC controller by making a scenario that provides this 

possibility the agent maximizes the reward (reinforcement) 
signals through interacting with the EV system. The optimal 
gains designed by the PPO agent are adopted to produce 
the ADRC command that regulates the speed-tracking 
problem of the test system. Among the various parameters 
of the ADRC controller, the gains of NLSEF ( �1 and �2 ) 
play a critical role in regulating the closed-loop problem. 
Therefore, the actor net produces two separate regulatory 
signals including agent-1 and agent-2 to adjust the gains 
of the ADRC controller. To obtain optimal performance 
of the ADRC controller, the actor and critic nets of the 
PPO algorithm are trained to adjust the gains of NLSEF as 
�1 = �0,1 + Δ�1 and �2 = �0,2 + Δ�2 . Here, �0,1 and �0,2 are 
initial gains of �1 and �2 , respectively. Terms of Δ�1 and Δ�2 
denote ouputs of actions of agent-1 and agent-2, respectively.

The values of speed error 
(
ew(t) = wref (t) − w(t)

)
 and 

integral of error are selected as the state vector, i.e.,

(27)s =
(
ew(t), ∫ ew(t)dt

)

Fig. 5  The architecture of the 
PPO Algorithm applied to the 
EV system
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The agent utilizes the return signals of eq. (28) to evalu-
ate the desirability of control actions to track the reference 
speed signal. Thus, the reward signal for the EV problem 
is defined by:

By maximizing the reward signal, the agent reduces the 
error between the actual values of the speed signal and its 
reference value.

In this work, the initial gains of NLSEF are set as β0,1 
= 22 and β0,2 = 38. In the architecture of PPO, three fully 
hidden layers (HLs) are considered for both the actor and 
critic nets while the activation function of these nets is 
realized by rectified linear unit (ReLU). The mini-batch 
size of PPO is set to 64 and the value of the discount factor 
is given as 0.99. The clipping ratio is given as 0.25.

Remark 3: Since the PPO algorithm utilizes a mini-
batch scheme, only a limited number of transitions are 
sampled to train neural networks.

(28)rt =
1

|||wref (t) − w(t)
|||

4  Simulation and Real‑Time Verifications

The EV test system shown in Fig. 2 is developed using 
MATLAB/Simulink to examine the feasibility of the 
ADRC controller-based PPO tuner mechanism. The code 
for the training of the actor and critic neural network is in 
m.file. The corresponding parameters of the EV system 
are tabulated in Table 1. Three typical scenarios of the 
EV system are considered to assess the performance of 
the suggested data drive controller to regulate the speed 
output. In the first scenario, generic linear changes of 
speed under the NEDC with a simulation time of 1200 [s] 
are applied to the EV system. In the next step, the speed 
is rapidly varied during the simulation time of 1800 [s] 
to test the feasibility of the suggested scheme in a more 
severe condition using the FTP-75 test. To analyze the 
robustness of the suggested ADRC controller-based PPO, 
an external disturbance is applied to the system at a spe-
cific time of the simulation. Moreover, the superiority of 
the suggested ADRC controller over SMC, pure ADRC, 
fuzzy PI controller, and PI controller [40] is demonstrated 
by assessing the transient performance of the EV system’s 
speed output. In the final step, real-time tests were also 
conducted on the EV system using the Arduino control 
board to verify the feasibility of the suggested EV control 
framework in practice. In this setup, the suggested control-
ler was developed in Simulink/MATLAB. The schematic 
of the real-time platform is depicted in Fig. 6.

4.1  Scenario 1: Set‑Point Tracking Under New 
European Driving Cycle (NEDC)

In the first scenario, the New European Driving Cycle 
(NEDC) test is applied to the EV system to validate the 
performance of the suggested ADRC-based PPO algo-
rithm. The NEDC is used as a standardized test process for 

Table 1  Parameters of EV system

Parameters value Parameters value

Ra + Rf 0.2 mH wnom 2800 r/min
La + Lf 6.008 Ω m 800 kg
r 0.25 m A 1.8
J 0.05 kg  m2 � 1.25 (kg/m3)
La 1.776 Cd 0.3
V 0–48 V Θ 0

◦

i 78 A (250 max) r 0.25
G 11 B 0.0002 N.M.s
μrr 0.015 – –

Fig. 6  System configuration for 
real-time test

Serial 
Communication

Arduino 

EV 
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lightweight electric vehicles in Europe to measure the EV 
system performance under controlled conditions. Accord-
ing to the profile of Fig. 7, the highest speed of NEDC is 
120 km per hour.

The curves of changes of agent-1 and agent-2 to regulate 
the ADRC controller are depicted in Fig. 8a, b, respectively. 
As depicted in Fig. 8a, b, the values of agent-1 ( Δ�1 ) and 
agent-2 ( Δ�2 ) are changed during the simulation test. The 
speed regulation performance of the suggested ADRC con-
troller-based PPO tuner mechanism to track the standardized 
speed test procedure is depicted in Fig. 9a. For comparative 
analysis, the outcomes of the SMC, pure ADRC, fuzzy PI 
controller, and PI controller for the speed tracking problem 
are also provided in Fig. 9a. As depicted in Fig. 9a, with the 
application of the suggested ADRC controller (realized by 

PPO), superior transient performance in terms of settling 
time and overshoot is achieved in comparison with SMC, 
pure ADRC, fuzzy PI controller, and PI controller. Moreo-
ver, the error signals and armature current produced during 
the simulation are demonstrated in Fig. 9b, c, respectively. 
According to these figures, fewer error signals with a lower 
level of armature current waveforms are generated by uti-
lizing the proposed controller than the two other schemes.

4.2  Scenario 2: Set‑Point Tracking under Federal 
Test Procedure (FTP‑75)

In the next step, the FTP-75 test is performed as a refer-
ence signal in the simulation to examine the speed regulation 
capability of the proposed controller under a high level of 

Fig. 7  Graph of New European 
Driving Cycle (NEDC) test
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Fig. 9  Performance of ADRC 
controller (realized by PPO), 
SMC, pure ADRC, fuzzy PI 
controller, and PI controller to 
track NEDC speed examination, 
a speed outcome, b error signal, 
and c armature current
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speed changes. The profile of FTP-75 is demonstrated in 
Fig. 10.

The system responses of the EV test system in terms of 
speed, error signal, and armature current under FTP-75 for 
various controllers are depicted in Fig. 11. The waveforms 
in Fig. 11a, b clearly indicate that, when compared to both 
SMC, pure ADRC, fuzzy PI controller and PI controller, 
the proposed controller exhibits reduced speed deviation 
from the reference signal during FTP-75. Additionally, 
Fig. 11c reveals that the proposed controller generates a 
lower amount of armature current when the EV system is 
subjected to the FTP-75 test.

4.3  Scenario 3: Operating Case Under External 
Disturbance

The disturbance rejection capability of the suggested 
controller is evaluated in realistic working conditions by 
imposing a step change to the considered speed tests. An 
effective and resilient controller should mitigate the effect 
of disturbance in a short time, ensuring that speed devia-
tion from the reference signal is kept to a minimum. To 
do this test, a step change with the speed of 1 km/h was 
applied to NEDC at the 850th second and FTP-75 at the 
461th second. The speed outcomes of various controllers 
under this disturbance are depicted in Fig. 12a, b, respec-
tively. From the sub-figures of Fig. 12, it is demonstrated 
that the proposed ADRC controller-based PPO tuner can 
respond to this disturbance more quickly than other control 
schemes.

To conduct a numerical analysis, the values of the 
mean square error (MSE), mean absolute error (MAE), 
and root mean square error (RMSE) for both scenario 1 
and scenario 2 are calculated. These performance indices 

are recognized as crucial metrics for evaluating the accu-
racy and effectiveness of the system under study. Achiev-
ing a minimal speed error is desired, as it reflects the 
system’s capability to optimal outcomes. According to the 
bar charts of Fig. 13, lower values of error measures in 
terms of MSE, MAE, and RMSE are obtained by the pro-
posed ADRC-based PPO tuner than other schemes. Spe-
cifically, in Scenario 1, the RMSE is 39.83% lower than 
SMC, 41.22% lower than pure ADRC, 49.02% lower than 
that of the Fuzzy PI controller, and 66.96% lower than 
that of the PI controller. In Scenario 2, the improvement 
percentage over SMC, pure ADRC, Fuzzy PI control-
ler, and PI controller is notably high at 31.03%, 37.18%, 
51.09%, and 69.28%, respectively.

4.4  Scenario 4: Robustness Analysis Under 
Parametric Variations (Real‑Time Variation)

In the final step, the dynamic real-time outcomes of EV 
system under parametric variations are studied. For this 
purpose, some critical parameters embedded in the EV’s 
model vary depending on their operational condition. In 
this scenario, the values of 

(
La + Lf

)
 , J  , �rr , � are var-

ied by 88%, 75%, 85%, and 68%, respectively. Therefore, 
their values under applied parametric variations are given 
as 11.30384 Ω for La + Lf  , 0.0875 kg  m2 for J , 0.02775 
for �rr , and 2.1 kg/m3 for � . The speed outcomes under 
the high level of uncertainties for the NEDC test and FTP-
75 test are depicted in Fig. 14a, b. From the real-time 
responses of Fig. 14, it is confirmed that the suggested 
EV control provides a lower level of speed fluctuations 
than other designed controllers.

Fig. 10  Graph of Federal Test 
Procedure (FTP-75) test
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Fig. 11  Performance of ADRC 
controller (realized by PPO), 
SMC, pure ADRC, fuzzy PI 
controller, and PI controller to 
track FTP-75 speed examina-
tion, a) speed outcome, b) error 
signal, and c) armature current
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5  Justification of Using the Proposed 
Framework

While the moded-based controllers rely on the accurate 
values of system parameters, their sensitivity to 
uncertainties and un-modeled dynamics degrades the 
system's performance. To address this issue, a data-driven 
ADRC controller based on the RL technique has been 
introduced to regulate the speed of the EV system. By 
training the PPO during the interaction with the system, 
the agent aims to learn and optimize the control gains of 
ADRC, enabling the adaptive ability of the controller to 
the system uncertainties. Some benefits of the suggested 
scheme are as follows.

(1) Compared with the model-based schemes, the ADRC 
controller is applied to the EV system which removes 
the need to exploit knowledge of the system.

(2) Unlike conventional controllers (e.g., Proportional-Inte-
gral (PI) controller, Linear Quadratic Regulator (LQR), 
etc.) which have limitations to tackle the uncertainties 
and un-model dynamics, an ESO observer is adopted 
in the structure of established controller which can esti-
mate all the uncertainties in a straightforward manner.

(3) The training capability of the PPO algorithm is 
incorporated into the control structure which provides 
this possibility for the gains of ADRC to adaptively 
change under both NEDC and FTP-75 driving cycles.

Fig. 12  Performance of 
designed controllers under 
external disturbance ADRC 
controller (realized by PPO), 
SMC, pure ADRC, fuzzy PI 
controller, and PI controller, a 
speed outcome of NEDC, and b 
speed outcome of FTP-75
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(4) The metrics of MSE, MAE, and RMSE validated the 
superior robustness of the suggested ADRC-based 
PPO to tackle the NEDC and FTP-75 than SMC, pure 
ADRC, fuzzy PI controller, and PI controller.

(5) An outstanding feature of the suggested ADRC-based 
PPO controller in the practical implementation is its 
adaptability to diverse EV models and real-world 
driving conditions. This adaptability is validated 
through comprehensive simulation and real-time test 
analysis where the suggested controller provided high-
level robustness to tackle the EV challenges.

6  Conclusions

In this study, the speed-tracking problem of EV systems has 
been addressed by designing an adaptive ADRC controller in 
a data-driven manner. The gains of the NLSEF component in 

the ADRC controller have been set by the regulatory signals 
of proximal policy optimization. The two-standardization 
test profiles including NEDC and FTP-75 tests are applied 
to the EV system to evaluate the feasibility and usefulness 
of the suggested controller. The superior transient perfor-
mance of the ADRC controller (designed by the PPO tuner 
mechanism) for the speed tracking problem has been com-
pared with SMC, pure ADRC, fuzzy PI controller, and PI 
controller. The transient outcomes of the EV revealed that 
the smaller settling time and lesser overshoot are obtained 
by the suggested controller than the two other control meth-
odologies. The speed stabilization of the test-system is also 
verified when the EV system is subjected to disturbances. 
The dynamic responses of speed outcome demonstrated that 
superior performance of disturbance rejection is achieved by 
the suggested controller. Furthermore, real-time examina-
tions under parametric variations were conducted to assess 
the robustness of designed EV’s controllers.

Fig. 13  Comparison of 
various performance criteria for 
designed control strategies
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The future work can be directed toward developing the 
suggested control framework for various vehicular types 
such as hybrid electric vehicles (HEVs), plug-in HEVs 
(PHEVs), and autonomous EVs (AEVs). Examining the 
scalability of the suggested scheme for various vehicular 
systems not only is a good option to test its adaptability but 
also proves its capability for a wide range of transportation 
systems. The suggested method can be improved using tech-
niques, such as disturbance observers (Zhang et al., 2022), 
new neural networks (Zhang et al., 2022), and robust con-
troller, such as super-twisting sliding mode control (Lu et al. 
2022).
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