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ABSTRACT This paper presents an efficient solution to reduce the power consumption of the popular 

linear feedback shift register by exploiting the gated clock approach. The power reduction with respect to 

other gated clock schemes is obtained by an efficient implementation of the logic gates and properly 

reducing the number of XOR gates in the feedback network. Transistor level simulations are performed by 

using standard cells in a 28-nm FD-SOI CMOS technology and a 300-MHz clock. Simulation results show 

a power reduction with respect to traditional implementations, which reaches values higher than 30%.  

INDEX TERMS Complementary pass-transistor logic (CPL), gated clock, linear feedback shift register 

(LFSR), low-power design, transmission gate (TG) 

I. INTRODUCTION 

Today, linear feedback shift registers (LFSRs) are widely 

used in many electronics equipment that require very fast 

generation of a pseudo-random sequence, such as built-in 

test of digital circuits [1]-[5], where the minimization of 

area, power and delay are the most important figures of 

merit. LFSRs are also fundamental building blocks in 

stream ciphers for secure communications used in GSM 

and LTE applications [6], and in lightweight stream ciphers 

for embedded systems [7]. Word-based LFSRs were 

introduced to efficiently use the structure of modern word-

based processors. Such LFSRs are used in a variety of 

stream ciphers, most notably in the SNOW series of stream 

ciphers [8] and in image encryption applications [9]. LFSRs 

are also used to generate an approximation of white noise 

for parameters estimation and system identification 

purposes [10], and in the Global Positioning System where 

an LFSR is used to rapidly transmit a sequence that 

indicates high-precision relative time offsets [11]. LFSRs 

are also widely used in direct sequence spread spectrum 

(DSSS) systems [12], and error detection and correction by 

implementing BCH (Bose, Chaudhuri, Hocquenghem) and 

CRC (cyclic redundancy codes) encoder and decoder 

circuits [13]-[15]. Recently LFSR have been also exploited 

to build strong physical unclonable functions (PUFs) for 

cryptographic applications [16,17]. 

Hardware implementation of linear feedback shift registers 

can be obtained by adopting two alternative configurations,  

 
(a) 

 

 
(b) 

FIGURE 1. Generic n-bit LFSR: Fibonacci or standard configuration (a) 
and Galois or modular configuration (b). 

 

both depicted in Fig. 1, each generating the same output 

bit stream. The configurations are named Fibonacci 

configuration (Fig. 1a) also known as standard, many-to-one 

or external XOR gates, and the Galois configuration (Fig. 1b) 

also known as modular, one-to-many or internal XOR 

gates [18]. 
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These topologies are very simple to build, but since the 

clock-path of all flip-flops toggles at every clock cycle, 

they waste a non-negligible amount of power. 

Although the LFSR power consumption has been 

extensively addressed in literature [19]-[21], the proposed 

solutions reduced power consumption at the cost of an 

increased circuit complexity, thus obscuring the major 

advantage of the LFSRs. A gated clock solution to reduce 

power consumption of the LFSRs has been also proposed 

by one of the authors in [22], where the analysis 

demonstrated that the power reduction strongly depends on 

the technological characteristics of the employed gates.  

Moreover, in the same paper it has been found that a 

relationship involving technology parameters has to be 

satisfied in order to achieve a power reduction with respect 

to a traditional (non-gated clock) LFSR. In particular, even 

if the above relationship involving technology parameters 

gets satisfied, the maximum power reduction allowed by 

the approach in [22] with respect to a traditional (non-gated 

clock) LFSR is below 10%. 

In this paper we propose a more efficient gated clock 

design approach for LFSRs, which greatly reduce power 

consumption without unduly complicating the traditional 

simple topology. With respect to other gated clock schemes, 

the proposed approach allows more power saving, thanks to a 

power efficient implementation of the logic gates that 

implement the clock gating network, and by properly 

reducing the number of XOR gates in the feedback path. 

Indeed, the proposed approach has resulted in a power 

reduction that can reach values higher than 30%. 

II. BACKGROUND 

A. LINEAR FEEDBACK SHIFT REGISTER  

A linear feedback shift register (LFSR) is a shift register 

whose input bit is a linear function of its previous state.  

By referring to the standard implementation in Fig. 1, 

LFSR is realized with an array of flip-flops (FFs) with a 

linear feedback performed by several XOR gates. 

The initial value of the LFSR is called the seed, and since 

the operation of the register is deterministic, the stream of 

values produced by the register is completely determined 

by its current state. Although LFSRs are very simple to 

implement, they are based on a rather complex 

mathematical theory [23]. However, they can be efficiently 

described through the nth-order polynomial 

𝑝𝑐 = 𝑥𝑛 + 𝑐𝑛−1𝑥
𝑛−1 +⋯+ 𝑐1𝑥 + 1   (1) 

where the binary coefficients 𝑐𝑖 (𝑖 = 1,2, …𝑛 − 1), define 

the well-known characteristic polynomial (𝑝𝑐), which set 

the length of the pseudo-random sequence and the other 

statistical properties of the bit generator.  

By defining 𝑃𝐹𝐹 and 𝑃𝑋𝑂𝑅 the power consumption of the 

FFs and the XOR gates, respectively, the power 

consumption of the conventional LFSR in Fig. 1 can be 

modeled as 

 

FIGURE 2. Traditional gated clock circuit for FFs without enable signal. 

 

FIGURE 3. Gated clock LFSR implementation. 

𝑃𝐶𝑜𝑛𝑣 = 𝑛𝑃𝐹𝐹 + 𝑛𝑡𝛼𝑃𝑋𝑂𝑅    (2) 

where 𝑛 is the register length (i.e., the order of the 

generator), 𝑛𝑡 is the number of the inner taps (i.e., the 

number of the terms of the polynomial characteristic except 

𝑥𝑛 and 1), 𝛼 is the switching activity at the inner nodes, 

which, in a LFSR with 𝑛 ≥ 6 and assuming maximum 

period, is approximately equal to 0.5 [22]. 

From (2), it appears that for the topologies in Fig. 1 the 

clock path toggles at every clock cycle, thus dissipating a 

significant amount of power especially at high clock rates.  

Vice versa, power consumption of FF D-path and XOR 

gates depend on the switching activity and hence its value 

is reduced by 50% with respect to the maximum value. 

B. DYNAMIC POWER MANAGEMENT  

Dynamic Power Management (DPM) is a commonly adopted 

strategy to reduce power consumption in a digital system. It 

consists in disabling the logic circuits that are not performing 

functional operations during a particular time frame.  

At circuit level, this strategy is known as “gated clock 

approach” [24, 25] and, for flip-flops with no enable signal, it 

consists in their activation only when the input signal is 

different from the actual output value, according to the 

scheme depicted in Fig. 2.  

A modified LFSR that takes advantage of the gated clock 

strategy is shown in Fig. 3. The topology reduces the flip-

flop power consumption, PFF, at the price of additional 

power consumption due to the extra gates required to 

implement the gated clock approach. 

Therefore, for the gated clock LFSR in Fig. 3, the power 

consumption in (2) turns into  

𝑃𝐺𝐶 ≈ 𝑛𝛼𝑃𝐹𝐹
′ + (𝑛 + 𝑛𝑡)𝛼𝑃𝑋𝑂𝑅 + 𝑛𝛼𝑃𝑁𝐴𝑁𝐷  (3) 
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where the term 𝑛 ⋅ 𝛼 ⋅ 𝑃𝐹𝐹
′  represents the dissipation of the 

FFs with the new load conditions (i.e., the extra XOR gates). 

In [22], to further reduce the power consumption of the 

extra gates, the authors proposed a single CMOS 

XORNAND gate to drive the clock terminals of the FFs. The 

power dissipation was estimated in 

𝑃𝐺𝐶[22] ≈ 𝑛𝛼𝑃𝐹𝐹
′ + 𝑛𝑡𝛼𝑃𝑋𝑂𝑅 + 𝑛𝛼𝑃𝑋𝑂𝑅𝑁𝐴𝑁𝐷  (4) 

but, the reduction in the overall power dissipation with 

respect to a traditional (non-gated clock) LFSR was no 

better than 10%, thus limiting the benefit of the proposed 

topology. 

III. IMPROVED GATED CLOCK IMPLEMENTATION 

A. EFFICIENT LOGIC GATE IMPLEMENTATION  

Reducing the overall power dissipation can be accomplished 

by reducing the power consumption of the term PXORNAND in 

(4). This can be done by means of the power-aware solution 

depicted in Fig. 4, which combines the benefits of the 

complementary pass transistor logic (CPL-XOR/XNOR) 

with the transmission gate approach (TG-MUX) [26]. It is 

worth noting that the complementary signals required by the 

CPL-XOR/XNOR section are easily available as output 

signals of many FF standard cells. Moreover, the 

complementary outputs of the CPL-XOR/XNOR section are 

perfectly tailored to drive the TG-MUX section since they 

guarantee a full voltage swing at the output node of the 

XORAND gate without any additional level restoring 

transistors. 

The power consumption of a gated clock LFSR 

implemented using the XORAND circuit in fig. 4 can be 

modeled as  

𝑃𝐶𝑃𝑇_𝑇𝐺 ≈ 𝑛𝛼𝑃𝐹𝐹
′′ + 𝑛𝑡𝛼𝑃𝑋𝑂𝑅    (5) 

where the power consumption of the gated circuit, 

𝑃𝑋𝑂𝑅𝑁𝐴𝑁𝐷, is virtually eliminated and the FFs power 

consumption, 𝑃𝐹𝐹
′′ , accounts for the smaller capacitive effects 

due to both CPL and TG circuits. 

B. REDUCED XOR NUMBER  

To further cut down the LFSR power consumption, we 

propose an additional strategy to reduce the number of XOR 

gates in the feedback path, 𝑛𝑡, by taking advantage of the 

CPL-XOR/XNOR section in Fig. 4. Indeed, at the output of 

this CPL gate we have a binomial 𝑥𝑖+1𝑥𝑖, with index 𝑖 
from 0 to 𝑛 − 2, which can be used to save XORs in the 

feedback path. For example, considering the polynomial 

𝑥7 + 𝑥3 + 𝑥2 + 𝑥 + 1, instead of using three XORs in the 

feedback path to implement 𝑥3(𝑥2(𝑥1)), we can 

simply do the XOR of the binomials 𝑥3𝑥2 and 𝑥1 

available at the outputs of the CPL gates. Moreover, in case 

of non-adjacent taps, we can exploit the property 𝑥𝑖𝑥𝑖 = 0.  

 

 

FIGURE 4. Power-aware XORAND for gated clock implementation. 

 

For example, the polynomial x5+x2+1, which needs only one 

XOR in the traditional topology, can be implemented again 

with only one XOR whose inputs are the binomials (𝑥2 + 𝑥) 
and (𝑥 + 1) available at the outputs of the CPL-

XOR/XNOR.   

To derive the number of XOR gates required in the 

feedback network by using the proposed strategy, let us 

consider the ordered 𝑚-elements array, 𝑎𝑖, of the taps 

exponent (for example, for the polynomial 𝑥10 + 𝑥4 + 𝑥3 +
𝑥 + 1 the array elements are 𝑎1 = 1, 𝑎2 = 3, 𝑎3 = 4 and 

𝑎4 = 10). Then, the number of the XOR required in the 

feedback network is given by 

𝑛𝑡
′ = 𝑎1 − 1 + ∑ (𝑎2𝑖+1 − 𝑎2𝑖)

𝑚

2
−1

𝑖=1
   (6) 

Note that in (6) 𝑎1 is the lowest exponent of the 

polynomial characteristic, and terms in the sum are couple of 

close taps exponents, without the highest one. 

By inspection of relationship (6), it is apparent that the 

minimum number of XOR is required when the characteristic 

polynomial contains the term 𝑥, and all the couple of taps are 

also adjacent. 

Table I summarizes the number of XOR gates necessary to 

implement the feedback circuit of some characteristic 

polynomials both in the traditional topology, 𝑛𝑡 (i.e., number 

of the inner taps), and by adopting the proposed strategy, 𝑛𝑡
′  

evaluated through relationship (6).  

If we now focus on Table I, it is apparent that the proposed 

strategy does not always need a lower number of XOR gates. 

Thus, to achieve a further reduction on the number of XOR 

gates, we can efficiently use together the outputs of the CPL-

XOR/XNOR sections (i.e., the terms 𝑥𝑖+1𝑥𝑖), and the 

terms 𝑥𝑖 at the outputs of the FFs.  

Thus, a further reduction on the number of XOR gates in 

the feedback path is achieved, since it results equal to  

𝑛𝑡
′′ = 𝑛𝑡 −𝑚𝑐      (7) 

where 𝑚𝑐 is the number of adjacent taps couples, but 

considering each tap in only one couple. For example, in the 

polynomial 𝑥10 + 𝑥4 + 𝑥3 + 𝑥 + 1 the couples of adjacent 

taps, 𝑚𝑐, are 2, that is, the couples (𝑥4 + 𝑥3) and (𝑥 + 1).  
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TABLE I 

NUMBER OF XORS IN THE LINEAR FEEDBACK PATH OF SOME LFSRS  

Polynomial characteristic 𝒏𝒕 𝒏𝒕
′  𝒏𝒕

′′ 𝒏𝒕
′′ − 𝒏𝒕 

𝑥5 + 𝑥2 + 1 (1) 1 1 1 0 

𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1  3 1 1 –2 

𝑥7 + 𝑥3 + 1 (2) 1 2 1 0 

𝑥7 + 𝑥3 + 𝑥2 + 𝑥 + 1  3 1 1 –2 

𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1  5 2 2 –3 

𝑥10 + 𝑥3 + 1  1 2 1 0 

𝑥10 + 𝑥4 + 𝑥3 + 𝑥 + 1  3 1 1 –2 

𝑥10 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1  5 2 2 –3 

𝑥10 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 +
𝑥2 + 𝑥 + 1  

7 3 3 –4 

𝑥16 + 𝑥5 + 𝑥3 + 𝑥2 + 1  3 3 2 –1 

𝑥16 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1  5 2 2 –1 

𝑥16 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 +
𝑥2 + 𝑥 + 1  

7 3 3 –4 

𝑥16 + 𝑥15 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 +
𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1 (3) 

9 9 6 –3 

(1) Used in CRC-5-USB token packets 
(2) Used in CRC-7 Telecom systems, ITU-T G.707, ITU-T G.832, SD/MMC 
(3) Used in CRC-16-T10-DIF SCSI DIF 

 

Note that now, unlike for relationship (6), the term 𝑥0 is also 

included to find the adjacent couples. 

By inspection of Table I, where also the number of XOR 

gates required by adopting this strategy, 𝑛𝑡
′′, is reported, it is 

apparent that now the number of XOR gates in the feedback 

path is always lower (or equal) than 𝑛𝑡 thus providing an 

overall power reduction on the feedback network 

contribution. 

Finally, it has to be remarked that, in the feedback 

network, where XOR gates have to drive FFs instead of TGs, 

it is not convenient to implement XOR gates with the CPL 

topology. Indeed, the highest output voltage value of CPL is 

equal to 𝑉𝐷𝐷 − 𝑉𝑡𝑛 (i.e., a weak logical ‘1’).  

This value may not be sufficiently high to switch off the 

PMOS transistors at the input of the FFs, and a static power 

consumption contribution may arise. 

Thus, unless additional transistors to provide level 

restoring are included, CPL-XOR/XNOR gates in feedback 

network result inefficient with respect to the traditional 

CMOS implementation [27]. 

IV. DESIGN EXAMPLES AND SIMULATION RESULTS 

We have compared the power consumption among the 

LFSRs designed with the proposed gated clock approach, 

with the traditional implementation and with the solution 

given in [22]. We remark that the proposed approach allows 

to reduce power consumption without severely affecting the 

critical path of the circuit and thus without limiting the speed 

of the serial LFSR, which exhibits the lowest critical path 

delay among all the LFSR architectures. Recently parallel 

approaches [13]-[15], have been proposed, specifically 

targeted for BCH and CRC encoders, but due to the very 

different architecture, a comparison between the LFSR 

presented in this paper and these parallel approaches is not 

fair, therefore we do not include parallel approaches in the 

comparison. 

 

 

FIGURE 5. Simplified schematic of the used D-type Flip-Flop. 

 

 

FIGURE 6. Simplified schematic of the speed-optimized XOR gate 
included in the STM standard-cell library. 

 

Specifically, using a commercial 28-nm CMOS FD-SOI 

technology process in the Cadence simulation environment, 

we have run several transistor level simulations on the 

topologies having the characteristic polynomials in Table I. 

For the digital blocks, we used the master-slave positive edge 

triggered D-type Flip-Flop depicted in Fig. 5 and the two-

input speed-optimized XOR gate in Fig. 6, both included in a 

standard threshold voltage, low-power option standard cells 

library. In addition, for the circuits reported in [26] and in 

Fig. 4, we used the thin oxide N-type and P-type MOSFETs 

with low threshold voltage and minimum channel length of 

28-nm, included in the same design kit. All circuits have 

been clocked at 300 MHz and powered at 1 V. 

The simulation results of the LFSRs designed with the 

different approaches are summarized in Table II. By 

comparing the approach proposed in [22] with respect to the 

traditional implementation, we note that the power 

consumption of the FFs is reduced by nearly 25% after 

applying the clock gated design, but the overall power 

reduction is only lower than 8% since extra gates are 
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introduced to implement the gated circuit. In other words, the 

XORNAND gates contribute with 12-18% of the overall 

power consumption with an inverse dependence on the 

number of the taps. 

On the other hand, as expected, the proposed solution, as 

reported in Table II and plotted in Fig. 7, allows a significant 

power saving, which is typically higher than 20% and often 

(especially for higher order polynomials) reaching values 

around 30%. 

Finally, it is worth noting that, unlike the strategy in [22], 

the overall power saving of the proposed gating approach is 

proportional to the number of taps. Indeed, by increasing the 

number of taps, although the capacitive effects of the 

feedback network also increase, there is, according to (7), an 

increased probability to find couples of adjacent taps that 

reduce the number of the XOR gates. 

For area and delay estimation purposes, we have coded in 

VHDL and synthesized by using the Cadence GenusTM tool 

the 16 bits LFSRs reported in Table II, considering both the 

conventional and the gated clock implementation in [22]. To 

estimate area and delay of the LFSRs exploiting the approach 

proposed in this paper, we have implemented also the full 

custom layout of the power-aware XORAND circuit in Fig. 

4. The area of the LFSRs has then been estimated by 

summing the area of the standard cells and the area of the 

power-aware XORAND exploited in the different 16 bits 

LFSRs implementations. 

Table III summarizes the area and critical path delays of 

the 16 bits LFSRs reported in Table II, confirming how the 

proposed approach does not affect the critical path delay, 

which is, in all cases, set by the feedback path. The area 

estimations suggest also that the proposed approach results 

not only in a significant power consumption saving, but also 

in a slight area reduction with respect to the approach in [22]. 
 

 

TABLE II.  

POWER CONSUMPTION (EXPRESSED IN W) OF THE SIMULATED LFSRS 

 Conventional 

Eq. (2) 

Gated Clock [22] 

Eq. (4) 

Proposed approach 

Eq. (5) 

𝑛𝑃𝐹𝐹 𝑛𝑡𝛼𝑃𝑋𝑂𝑅 𝑛𝛼𝑃𝐹𝐹
′  𝑛𝑡𝛼𝑃𝑋𝑂𝑅 𝑛𝛼𝑃𝑋𝑂𝑅𝑁𝐴𝑁𝐷 𝑛𝛼𝑃𝐹𝐹

′′  𝑛𝑡
′′𝛼𝑃𝑋𝑂𝑅 

𝑥5 + 𝑥 + 1  7.93 0.21 5.98 0.24 0.93 6.39 0.27 

PConv=8.14 PGC[22]=7.15 (-12.2%) PCPL_TG_imp=6.65 (-18.3%) 

𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1  8.11 0.798 6.17 0.84 0.95 6.34 0.36 

PConv=8.91 PGC[22]=7.97 (-10.7%) PCPL_TG_imp=6.70 (-24.9%) 

𝑥7 + 𝑥3 + 1  11.08 0.78 8.22 0.23 1.28 8.73 0.26 

PConv=11.99 PGC[22]=10.48 (-12.6%) PCPL_TG_imp=9.10 (-24.2%) 

𝑥7 + 𝑥3 + 𝑥2 + 𝑥 + 1  11.20 0.361 8.38 0.82 1.28 8.74 0.35 

PConv=11.56 PGC[22]=10.48 (-9.4%) PCPL_TG_imp=9.10 (-20.5%) 

𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1  
 

11.51 1.64 8.56 1.68 1.28 8.80 0.70 

PConv=13.14 PGC[22]=11.53 (-12.3%) PCPL_TG_imp=9.50 (-27.8%) 

𝑥10 + 𝑥3 + 1  15.78 0.201 11.69 0.23 1.84 12.51 0.26 

PConv=15.98 PGC[22]=13.77 (-13.9%) PCPL_TG_imp=12.77 (-20.2%) 

𝑥10 + 𝑥4 + 𝑥3 + 𝑥 + 1  15.94 0.77 11.86 0.81 1.81 12.39 0.35 

PConv=16.71 PGC[22]=14.49 (-13.4%) PCPL_TG_imp=12.75 (-23.8%) 

𝑥10 + 𝑥6 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + 1  
 

16.10 1.63 12.02 1.66 1.84 12.47 0.70 

PConv=17.73 PGC[22]=15.53 (-12.5%) PCPL_TG_imp=13.18 (-25.8%) 

𝑥10 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 +
𝑥2 + 𝑥 + 1  

16.59 2.84 12.92 2.90 1.79 13.29 0.99 

PConv=19.43 PGC[22]=17.62 (-9.4%) PCPL_TG_imp=14.28 (-26.5%) 

𝑥16 + 𝑥5 + 𝑥3 + 𝑥2 + 1  
 

25.55 0.78 18.58 0.81 2.96 19.64 0.70 

PConv=26.33 PGC[22]=22.35 (-15.2%) PCPL_TG_imp=20.35 (-22.8%) 

𝑥16 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1  
 

25.76 1.65 18.79 1.60 2.97 19.68 0.69 

PConv=27.41 PGC[22]=23.36 (-14.8%) PCPL_TG_imp=20.38 (-25.7%) 

𝑥16 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 +
𝑥2 + 𝑥 + 1  

26.61 2.82 20.48 2.84 2.97 19.66 1.02 

PConv=29.43 PGC[22]=26.29 (-10.7%) PCPL_TG_imp=20.69 (-29.7%) 

𝑥16 + 𝑥15 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 +
𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1 

27.03 4.39 20.69 4.78 2.97 19.73 2.0916 

PConv=31.42 PGC[22]=28.45 (-9.5%) PCPL_TG_imp=21.83 (-30.6%) 

 
TABLE III.  

AREA AND CRITICAL PATH DELAY OF THE 16 BIT SIMULATED LFSRS 

 Conventional LFSR Gated Clock [22] Proposed approach 

 Area (𝜇𝑚2) Delay (𝑛𝑠) Area (𝜇𝑚2) Delay (𝑛𝑠) Area (𝜇𝑚2) Delay (𝑛𝑠) 

𝑥16 + 𝑥5 + 𝑥3 + 𝑥2 + 1  47.64 0.133 66.77 0.133 56.68 0.133 

𝑥16 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 49.28 0.154 68.41 0.154 55.93 0.154 

𝑥16 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1 50.91 0.154 70.04 0.154 56.36 0.154 

𝑥16 + 𝑥15 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 +

𝑥2 + 𝑥 + 1 

52.55 0.182 71.68 0.182 59.20 0.182 
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FIGURE 7. Power reduction of the proposed LFSR () and solution 
given in [22] (+) with respect to the traditional implementation. 

V. CONCLUSION 
 

An efficient solution to reduce the power consumption of the 

popular linear feedback shift register has been presented and 

discussed in detail. The approach uses in some parts CPL 

design style and benefits from using the gated clock also to 

implement the feedback network, thus allowing to reduce the 

number of XOR gates. The proposed design approach has 

been validated by simulations in a 28 nm CMOS technology 

and, compared to traditional implementation, has been shown 

to lead to a power reduction up to 30%, without increasing 

area and critical path delay. 
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