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Abstract
In Bayesian decision theory, the performance of an action is measured by its pos-

terior expected loss. In some cases it may be convenient/necessary to use a non-

optimal decision instead of the optimal one. In these cases it is important to quantify

the additional loss we incur and evaluate whether to use the non-optimal decision or

not. In this article we study the predictive probability distribution of a relative

measure of the additional loss and its use to define sample size determination

criteria in a general testing set-up.

Keywords Bayesian inference � Experimental design � Predictive analysis � Sample

size determination � Statistical decision theory

1 Introduction

A decision making process typically involves more than one actor who play

different roles—expert, stakeholder, analyst,...—with different responsibilities and

authority. Suppose that, for a statistical decision problem on the unknown parameter

h of a model, two main actors are involved, Ee and Eo, who have in common the

same data and loss function but that do not share the same prior information and/or

opinions on the parameter. Let pe and po denote the prior distributions of the

parameter chosen by Ee and Eo and let ae and ao be the actions that minimize the

two respective posterior expected losses, (i.e. the two optimal Bayesian actions of

the two actors). Let us also suppose that the relative authority of the two actors is not

equivalent: Ee is forced to take the action ao, which is not optimal from her/his point

of view. The use of this inappropriate po implies an extra loss for Ee. In fact, under

pe, the posterior expected loss of ao is larger than the posterior expected loss of ae.
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The additional loss incurred by Ee in taking the action ao rather than ae can be

evaluated for any observed sample, but, before collecting the data, it is a random

quantity. The present article studies the predictive distribution of this additional loss

and its use for sample size determination (SSD). Preposterior analysis requires

specification of a data generating mechanism. This is formalized by a probability

distribution that describes a prefixed design scenario. This can be done in two

alternative ways: (a) using the sampling distribution for a fixed value of the

parameter hd; (b) assigning a prior distribution pd to the parameter and then using

the marginal distribution of the data. In general, the value of hd or the choice of pd
represent the goal of the experiment and they do not necessarily match with the

information expressed by po or pe. We refer to the actor who plans the experiment

and chooses the design scenario as to Pd . To motivate our decisional framework, we

provide two examples.

Example 1 (Efficacy clinical trial) Consider a clinical trial whose goal is to show

whether the effect of a drug (the location parameter h of a model) developed by a

pharmaceutical company, is larger than a given threshold ht. Two actors take part in

the testing experiment: the company, represented by an optimistic decision maker

Ee, who, based on historical data, is in favour of the null hypothesis, H1 : h� ht; the
regulatory agency, represented by the actor Eo, who a priori is neutral towards the

effectiveness of the drug. Therefore

• Ee specifies a (moderately) optimistic prior, possibly downweighting the

available historical information,

• Eo adopts a non informative prior distribution to avoid inclusion of external

information into the analysis.

When the regulatory agency Eo prescribes to use ao, the company Ee is interested in

evaluating the additional expected posterior loss based on its own prior pe. Note that
the goal of the trial implies that the data generating mechanism, i.e. the choice of hd
and pd made by Pd, reflects clear efficacy of the drug, regardless of pe and po. h

Example 2 (Subjective vs default testing) As a second example, consider the one-

sided testing problem for a one-dimensional parameter h of a model, that is: H1 :
h� ht vs. H2 : h[ ht and assume that prior information is represented by a

subjective proper density pe. It is well known that, under standard generalized 0–1

loss functions (see, for instance, Bernardo (1997) and also Sect. 3), optimal

decisions are based on the Bayes factor Be
21, i.e. the ratio between posterior and prior

odds of the two hypotheses. We might be interested in evaluating the additional loss

we incurr by using the Bayes factor, Bo
21 say, computed with a noninformative prior

po instead of the subjective Bayes factor. In this case, Ee and Eo represent the same

decision maker who wants to quantify the loss (under pe) of neglecting information

from her/his subjective prior in favor of a more objective testing method and to

know the number of observations needed to have high chances of making the same

choice between H1 and H2 regardless of the prior used. Also in this case, the

distribution used for pre-posterior calculations has to formalize a given scenario (for

123

F. De Santis, S. Gubbiotti



instance: true null or true alternative) and does not have to be necessarily in

accordance with pe. h

In both the situations sketched above we expect that, at least for relatively small

sample sizes, the initial attitudes of the two actors matter a lot and that the

discrepancy in the posterior expected losses (both evaluated by Ee) associated to the

use of the two priors and test statistics is relevant. However, we also expect that, for

larger sample sizes, this difference tends to reduce more and more. We are

interested in determining how large the sample size must be so that the (predictive

expected) loss incurred by Ee in using the test statistics of Eo—i.e. in taking the non-

optimal choice ao—is sufficiently close to its minimum.

The problem of using a non optimal action ao, which means implicitly adopting

the inappropriate prior po, has been previously considered by DeGroot (1970), who

did not discuss preposterior analysis. Statistical decision problems and predictive

analysis under several actors have been dealt with, for instance, by Kadane and

Seidenfeld (1989), and Lindley and Singpurwalla (1991). Similar scenarios are

explored in Etzioni and Kadane (1993), Spiegelhalter and Freedman (1988) and

Kadane (1990) where, however, the roles of the planner Pd and of the decision

maker Ee coincide. The distinction between Pd, Ee and Eo—i.e. between the three

priors pd, pe and po—has been considered by Brutti et al. (2014a) in a context not

formalized as a decision problem. More recently, De Santis and Gubbiotti (2017)

have approached the problem from a formal decision theoretic perspective for point

estimation.

The article provides essentially two contributions. First, it extends the result of

the point estimation setting in De Santis and Gubbiotti (2017) to the testing

problem. Furthermore, it introduces a relative predictive measure of the additional

loss of a non-optimal action, which makes it easier to fix thresholds for the sample

size criteria, i.e. to say if a given sample size is appropriate or not.

The article relies widely on the literature on Bayesian sample size determination

(SSD). From a decision-theoretic point of view, see, for instance: Raiffa and

Schlaifer (1961), Berger (1985), Bernardo (1997), Pham-Gia (1997), Lindley (1997)

and Parmigiani and Inoue (2009). For non-decision theoretic methods (i.e.

performance-based approaches) see, among others: Spiegelhalter and Freedman

(1986), Adcock (1997), Joseph and Belisle (1997), Joseph et al. (1997), Joseph and

Wolfson (1997), Spiegelhalter et al. (2004) and Weiss (1997). The distinction

between pe and pd is the so-called two-priors approach to Bayesian SSD, that we

discuss in Sect. 2. See Tsutakawa (1972), O’Hagan and Stevens (2001), Wang and

Gelfand (2002), De Santis (2006), Sahu and Smith (2006), M’Lan et al. (2006),

Sambucini (2010), Brutti et al. (2014b) and Cellamare and Sambucini (2015). The

topic of the article is also related to the wider area of agreement/consensus in

Bayesian decision theory and to adversarial risk analysis. See, among others, Burt

(1990), Jackson and Novick (1980), Weerahandi and Zidek (1981).

The outline of the article is as follows. In Sect. 2 we formalize the proposed

methodology for a generic statistical decision problem: we introduce a relative

measure of additional loss due to a non optimal action and the related predictive

criterion for the selection of the sample size. In Sect. 3 the methodology is
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developed for a generic testing problem for a real-valued parameter, and then it is

specialized to one-sided testing (Sect. 3.1) and two-sided testing (Sect. 3.2). Results

are provided for testing the normal mean (Sect. 4) and illustrated through numerical

examples (Sect. 4.3). Finally, Sect. 5 contains discussion and comments.

2 Methodology

Assume that X1;X2; . . .;Xn is a sample from fnð�jhÞ, where h is an unknown

parameter and H is the parameter space. For simplicity let us assume that h is a

continuous r.v. Let a denote a generic action for a decision problem regarding h, A
the action space and Lða; hÞ the loss of a when the true parameter value is h.
Following the Bayesian inferential approach, we assume that h is a random variable

and that two competing priors are available, po and pe. Given an observed sample

xn ¼ ðx1; x2; . . .; xnÞ, let

pjðhjxnÞ ¼
fnðxnjhÞpjðhÞR

H fnðxnjhÞpjðhÞdh

be the posterior distribution of h from prior pj, and

qjðxn; aÞ ¼ Epj
�
Lða; hÞjxn

�
¼

Z

H

Lða; hÞpjðhjxnÞdh

be the posterior expected loss of an action a, for j ¼ o; e. Let

aj ¼ ajðxnÞ ¼ argmin
a2A

qjðxn; aÞ

denote the optimal action with respect to pjðhjxnÞ. The performance of the action ao
(optimal under po) when the expected loss is evaluated with respect to peðhjxnÞ is
then

qeðxn; aoÞ ¼ Epe
�
Lðao; hÞjxn

�
:

If Ee uses ao instead of the pe-optimal action ae, the additional expected loss is

Ao;eðxnÞ ¼ qeðxn; aoÞ � qeðxn; aeÞ:

It is straightforward to see that: (i) Ao;eðxnÞ� 0 for any choice of po and pe; (ii) if
po ¼ pe then Ao;eðxnÞ ¼ 0. Note also that, in general, Ao;eðxnÞ 6¼ Ae;oðxnÞ. This
reflects the asymmetry of the decision problem in which the (priviledged) actor Ee

evaluates the additional posterior expected loss due to the (forced) use of the non

optimal action ao.

A relative measure of additional loss is given by

�Ao;eðxnÞ ¼
qeðxn; aoÞ � qeðxn; aeÞ

qeðxn; aoÞ
:

Small values of �Ao;e show that the non-optimal action ao performs well even under
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the prior assumptions represented by pe. Before observing the data, �Ao;eðXnÞ is a

random variable. We assume that, as n increases, �Ao;eðXnÞ converges (in probability)
to zero. We are interested in selecting the smallest sample size such that its expected

value is smaller than a selected threshold c, that is:

nH ¼ minfn 2 N : en � cg; ð1Þ

where

en ¼ Emd

�
�Ao;eðXnÞ

�
ð2Þ

and where Emd
½�� denotes the expected value with respect to the sample data dis-

tribution, md. Following the predictive Bayesian approach, we consider

mdðxnÞ ¼
Z

H
f ðxnjhÞpdðhÞdh;

where pd is the design prior. Therefore the optimal sample size nH depends on three

priors ðpd; pe;poÞ. If pd coincides with pe, we retrieve the approach of Etzioni and

Kadane (1993). However, in the most general case, pd is different from both pe and
po. The design prior pd describes a scenario in which the planner Pd wants to select

the sample size. As mentioned in Example 1 and 2 of Sect. 1, the design scenario is

not necessarily in agreement with the prior information expressed by pe (or po). pd
is typically introduced to avoid local optimality of the resulting sample size as it

happens in classical SSD methods. In fact, if pd is a point-mass prior on a design

value hd, then md reduces to the sampling distribution f ð�jhdÞ, yielding optimal

sample sizes that depend on hd (conditional Bayes approach). The design prior is

hence used in a what-if spirit [see Wang and Gelfand (2002)], i.e. as an instrumental

tool to incorporate uncertainty on hd, to avoid local optimality. See also Brutti et al.

(2014b) for discussion on the use of multiple priors in SSD.

Explicit expressions of �Ao;eðxnÞ and en depend on the decision problem (point

estimation, set estimation, test) and on the choice of the loss function. In the next

sections we focus on the testing. Even though the framework described above holds

in more general contexts, in the following we assume that h 2 H � R.

3 Testing

Consider H1 : h 2 H1 vs. H2 : h 2 H2, where H ¼ fH1;H2g is a partition of H.

Using the prior distribution pj, j ¼ o; e, and assuming that PpjðH1Þ[ 0 and

PpjðH2Þ[ 0, the Bayes factor for testing H2 vs. H1 is

B
j
21ðxnÞ ¼

xj
21ðxnÞ
xj

21

; ð3Þ

where
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xj
21ðxnÞ ¼

PpjðH2jxnÞ
PpjðH1jxnÞ

and xj
21 ¼

PpjðH2Þ
PpjðH1Þ

are the posterior and the prior odds. Let A ¼ fað1Þ; að2Þg be the two terminal

decisions, where aðiÞ denotes the choice of Hi, i ¼ 1; 2 and

Lðað1Þ; hÞ ¼ b2 � 1H2
ðhÞ and Lðað2Þ; hÞ ¼ b1 � 1H1

ðhÞ

their loss functions (bi [ 0; i ¼ 1; 2). The posterior expected losses of að1Þ and að2Þ

w.r.t. pjðhjxnÞ are

qjðxn; að1ÞÞ ¼ b2Ppj ½H2jxn�; and qjðxn; að2ÞÞ ¼ b1Ppj ½H1jxn�:

In this case it is easy to check that the optimal decision function ajðxnÞ is

ajðxnÞ ¼ argmin
a2A

qjðxn; aÞ ¼
að1Þ if xn 2 Zð1Þ

j

að2Þ if xn 2 Zð2Þ
j

8
<

:
j ¼ o; e;

where

Zð1Þ
j ¼ fxn : qjðxn; að1ÞÞ\qjðxn; að2ÞÞg ¼ fxn : b2Ppj ½H2jxn�\b1Ppj ½H1jxn�g

and

Zð2Þ
j ¼ fxn : qjðxn; að1ÞÞ[ qjðxn; að2ÞÞg ¼ fxn : b2Ppj ½H2jxn�[ b1Ppj ½H1jxn�g:

The posterior expected loss of the optimal decision function ajðxnÞ w.r.t. pe is

qeðxn; ajÞ ¼
b2Ppe ½H2jxn� if xn 2 Zð1Þ

j

b1Ppe ½H1jxn� if xn 2 Zð2Þ
j

8
<

:
j ¼ o; e:

Therefore, noting that

qeðxn; aeÞ ¼ minfb1Ppe ½H1jxn�; b2Ppe ½H2jxn�g;

it follows that

�Ao;eðxnÞ ¼
0 if aoðxnÞ ¼ aeðxnÞ

neðxnÞ if aoðxnÞ 6¼ aeðxnÞ

�

¼ neðxnÞ1Zo;eðxnÞ ð4Þ

where 1A is the indicator function of the set A,
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neðxnÞ ¼
qeðxn; aoÞ � qeðxn; aeÞ

qeðxn; aoÞ

¼ 1� minfb1Ppe ½H1jxn�; b2Ppe ½H2jxn�g
maxfb1Ppe ½H1jxn�; b2Ppe ½H2jxn�g

¼ 1�min
ke

Be
21ðxnÞ

;
Be
21ðxnÞ
ke

� �

; kj ¼
b1

b2
xj

12;

ð5Þ

and

Zo;e ¼ fxn 2 X n : aoðxnÞ 6¼ aeðxnÞg

is the set of xn leading to conflicting terminal decisions under pe and po respec-

tively. Therefore

Zo;e ¼ Zð1Þ
o \ Zð2Þ

e

� �
[ Zð2Þ

o \ Zð1Þ
e

� �
; ð6Þ

where

Zð1Þ
j ¼ xn 2 Z : xj

21ðxnÞ\
b1

b2

� �

¼ fxn 2 Z : Bj
21ðxnÞ\kjg ð7Þ

and

Zð2Þ
j ¼ xn 2 Z : xj

21ðxnÞ[
b1

b2

� �

¼ fxn 2 Z : Bj
21ðxnÞ[ kjg: ð8Þ

Finally, from (2) and (4) we obtain

en ¼
Z

Z
�Ao;eðxnÞmdðxnÞdxn ¼

Z

Zo;e

neðxnÞmdðxnÞdxn:

Remarks

i) From the above expression we can note that en is a monotone function of the

Lebesgue measure of Zo;e. One could argue that, in our contexts, an

alternative—and structurally simpler - sample size criterion could be based on

pn ¼ Pmd
½Zo;e�, the predictive probability of the set of samples yielding

conflict. It is easy to check that pn ¼ Emd
½IZo;e

ðXnÞ�, whereas

en ¼ Emd
½neðXnÞIZo;e

ðXnÞ�. Recalling that, 8xn 2 Z, neðxnÞ� 1, then en is

always smaller than or equal to pn. Therefore, given a threshold c, the sample

size needed to have en � c is always smaller than or equal to the sample size

needed to make pn � c. The idea is that, in the expectation that defines en, the

contribution of each sample xn that would determine a conflicting decision

depends on the strength of the discrepancy in evidence it gives to the two

hypotheses. Conversely, in pn, the contribution of each sample xn such that

aoðxnÞ 6¼ aeðxnÞ is inflexibly equal to one, regardless of the evidence it gives

to the competing hypotheses.
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ii) In general the explicit expression of en is not available, but it is

straightforward to obtain its Monte Carlo approximation

en 	
1

M

XM

r¼1

neðxnðrÞÞ1Zo;e
ðxnðrÞÞ;

where xn
ðrÞ; r ¼ 1; . . .;M, are drawn from the predictive distribution mdð�Þ.

3.1 One-sided testing

The above results can be specialized to the one-sided testing set-up, where H1 :

h� ht vs. H2 : h[ ht, with ht 2 R. We show that �Ao;e can be expressed in terms of

the posterior c.d.f.’s of h, Fjð�jxnÞ, and of their quantiles, qj�ðxnÞ, for j ¼ o; e. First,
from Eq. (5) we have

neðxnÞ ¼ 1�min
b1

b2

FeðhtjxnÞ
1� FeðhtjxnÞ

;
b2

b1

1� FeðhtjxnÞ
FeðhtjxnÞ

� �

: ð9Þ

Then, to obtain Zo;e, note that

Zð1Þ
j ¼ xn 2 Z :

1� Fj htjxnð Þ
Fj htjxnð Þ \

b1

b2

� �

¼ xn 2 Z : ht [ qj�ðxnÞ
� 	

ð10Þ

and

Zð2Þ
j ¼ xn 2 Z :

1� Fj htjxnð Þ
Fj htjxnð Þ [

b1

b2

� �

¼ xn 2 Z : ht\qj�ðxnÞ
� 	

; ð11Þ

where � ¼ b2
b1þb2

and qj�ðxnÞ is the �-quantile of the posterior density of h. Therefore,

Zð1Þ
o \ Zð1Þ

e ¼ xn 2 Z : qM� ðxnÞ\ht
� 	

and Zð2Þ
o \ Zð2Þ

e ¼ xn 2 Z : qm� ðxnÞ[ ht
� 	

where

qm� ðxnÞ ¼ min qe�ðxnÞ; qo� ðxnÞ
� 	

and qM� ðxnÞ ¼ min qe�ðxnÞ; qo� ðxnÞ
� 	

ð12Þ

and, recalling Eq. (6),

Zo;e ¼ xn 2 Z : qm� ðxnÞ\ht\qM� ðxnÞ
� 	

: ð13Þ

Let Fjð�Þ, j ¼ o; e be the c.d.f.’s of a location-scale model. Let Fð�Þ be the c.d.f. of

the standardized r.v. ðh� ljðxnÞÞ=rjðxnÞ, �q� its �-quantile and

WjðxnÞ ¼
ljðxnÞ � ht
rjðxnÞ

; j ¼ o; e

the two test statistics, where ljðxnÞ and rjðxnÞ are the location and scale parameters
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of the posterior densities of h. In this case �Ao;e can be expressed in terms of Fð�Þ, �q�
and WjðxnÞ. First, from Eq. (5) we have

neðxnÞ ¼ 1�min
b1

b2

Fð�WeðxnÞÞ
1� Fð�WeðxnÞÞ

;
b2

b1

1� Fð�WeðxnÞÞ
Fð�WeðxnÞÞ

� �

; ð14Þ

which, in case of symmetry, is

neðxnÞ ¼ 1�min
b1

b2

1� FðWeðxnÞÞ
FðWeðxnÞÞ

;
b2

b1

FðWeðxnÞÞ
1� FðWeðxnÞÞ

� �

: ð15Þ

Then, from (10), it follows that

Zð1Þ
j ¼ xn 2 Z : F

ht � ljðxnÞ
rjðxnÞ


 �

[
b2

b1 þ b2

� �

¼ xn 2 Z : WjðxnÞ ¼
ljðxnÞ � ht
rjðxnÞ

\�q1��

� �

;

and, similarly,

Zð2Þ
j ¼ xn 2 Z : WjðxnÞ ¼

ljðxnÞ � ht
rjðxnÞ

[ �q1��

� �

:

Therefore,

Zð1Þ
o \ Zð1Þ

e ¼ xn 2 Z : WMðxnÞ\�q1��f g
and Zð2Þ

o \ Zð2Þ
e ¼ xn 2 Z : WmðxnÞ[ �q1��f g:

Noting that Zo;e ¼ Zð1Þ
o \ Zð1Þ

e

� 
c\ Zð2Þ
o \ Zð2Þ

e

� 
c
we obtain

Zo;e ¼ xn 2 Z : WmðxnÞ\�q1��\WMðxnÞf g; ð16Þ

where

WmðxnÞ ¼ min WoðxnÞ;WeðxnÞf g and WMðxnÞ ¼ max WoðxnÞ;WeðxnÞf g:

3.2 Two-sided testing

The general results of Sect. 3 are now adapted to the specific set-up of two-sided

testing, i.e. H1 : h 2 ½hL; hU � vs. H2 : h 62 ½hL; hU �. In this case H1 ¼ ½hL; hU � and
H2 ¼ ð�1; hLÞ [ ðhU ;þ1Þ. Hence the Bayes factor is given by Eq. (3), where the

prior and the posterior odds are

xj
21 ¼

1� FeðhUÞ � FeðhLÞð Þ
FeðhUÞ � FeðhLÞ

; ð17Þ

and
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xj
21ðxnÞ ¼

1� FeðhU jxnÞ � FeðhLjxnÞð Þ
FeðhU jxnÞ � FeðhLjxnÞ

; ð18Þ

respectively. Then, to obtain �Ao;e it is convenient to use directly the general

expressions of neðxnÞ, Zð1Þ
j and Zð2Þ

j , given by Eqs. (5), (7) and (8) respectively.

4 Results for the normal mean

Let us now assume that X1;X2; . . .;Xn is a random sample, Xijh
 N ðh; r2Þ, i ¼
1; 2; . . .; n and that pjð�Þ are conjugate priors, i.e. hjr2 
 N ðlj; r2=njÞ, j ¼ o; e.

4.1 One-sided tests

Known variance. First, assume that r2 is known. Then the posterior distribution of h
is Normal with location and scale

ljðxnÞ ¼
njlj þ n�xn

nj þ n
and rjðxnÞ ¼

r
ffiffiffiffiffiffiffiffiffiffiffiffi
nj þ n

p : ð19Þ

From Eq. (15), setting Fð�Þ ¼ Uð�Þ, we obtain

neðxnÞ ¼ 1�min
b1

b2

1� UðWeðxnÞÞ
UðWeðxnÞÞ

;
b2

b1

UðWeðxnÞÞ
1� UðWeðxnÞÞ

� �

;

where Uð�Þ is the standard normal c.d.f.. From Eq. (16) we have

Zo;e ¼ xn 2 Z : WmðxnÞ\z1��\WMðxnÞf g

where z1�� is the 1� � quantile of the standard normal. In this setting, we can

express Zo;e also in terms of a condition on the sample mean �xn. In fact, it can be

shown that

Zo;e ¼ xn 2 Z : hm\�xn\hMf g;

where

hj ¼ ht þ
nj

n
ðht � ljÞ � z� r

ffiffiffiffiffiffiffiffiffiffiffiffi
nj þ n

p

n
; j ¼ o; e

and

hm ¼ min ho; hef g and hM ¼ max ho; hef g:

Note that, as n increases, the contributions of the priors pjðhÞ in the corresponding

posteriors tend to zero and the conflict between ao and ae vanishes: hj ! ht and Zo;e

tends to the empty set.

Unknown variance. The extension to the unknown variance case is straightfor-

ward. Under the standard conjugacy assumptions (see for instance Bernardo and

Smith (1994)),
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hjr2 
 N lj;
r2

nj


 �

and r2 
 IGaðaj; bjÞ;

the marginal prior of h is a Student t distribution with parameters

lj; njajb
�1
j ; 2aj

� �
; ð20Þ

whereas the marginal posterior of h is a Student t distribution with parameters

ljðxnÞ ¼ ðnjlj þ n�xnÞðnj þ nÞ�1;

rjðxnÞ ¼ bj þ
1

2
nS2n þ

1

2
ðnj þ nÞ�1

njnðlj � �xnÞ2
� �

ðnj þ nÞ�1ðaj þ
n

2
Þ�1

mj ¼ 2aj þ n

8
>>><

>>>:

; ð21Þ

where S2n is the sample variance. In this case we cannot use the location-scale

formulas and we must refer to the general one-sided testing set-up. The expressions

of neðxnÞ and Zo;e are obtained from Eqs. (9), (12) and (13) by setting Fjð�Þ equal to
the c.d.f. of a Student t of parameters ðljðxnÞ; rjðxnÞ; mjÞ and qj� equal to its ð1� �Þ-
quantile, j ¼ o; e.

4.2 Two-sided tests

Under the same assumptions of Sect. 4.1, the prior and the posterior odds are given

by Eqs. (17) and (18), where Feð�Þ and Feð�jxnÞ are

• Normal c.d.f.’s of parameters ðlj; r2=njÞ and ðljðxnÞ; r2j ðxnÞÞ respectively, when
r2 is assumed to be known;

• Student t c.d.f.’s of parameters given by Eqs. (20) and (21), respectively, in the

unknown variance case.

4.3 Numerical examples

In this section we illustrate some numerical examples related to the Normal case for

both one-sided and two-sided testing. Without loss of generality we set b1 ¼ b2 ¼ 1.

One-sided testing. Let us consider ht ¼ 1 and let the design prior be a Normal

density of parameters ld ¼ 1:5, nd ¼ 10. Thus, pd assigns H1 a prior probability as

small as 0.056. First of all in Fig. 1 we show through numerical examples the

relationship that holds in general between en and pn, that is en � pn for each value of

n (see final remark of Sect. 3).

In the following we show the behavior of en as n increases, under two alternative

choices of le for different values of the prior sample sizes ne and no. Moreover, we

consider both the known variance case, taking r2 ¼ 1, and the unknown variance

case, where the hyperprior parameters for r2 are chosen to satisfy Eðr2Þ ¼ 1, i.e.

aj ¼ bj þ 1, for j ¼ o; e; d. In this way we obtain results comparable to those of the

known variance case and we show the mild impact of the prior assumptions on r2
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on en and consequently on the optimal sample size nH. For a general discussion on

the relationships between optimal designs for the normal model with known and

unknown variance see Verdinelli (2000).

First, let us assume that there is a certain contrast between the two priors, namely

pe, centred on the threshold ht (e.g. le ¼ 1), expresses a neutral attitude towards the

two hypotheses, whereas po favors the null hypothesis (e.g. lo ¼ 0). In Fig. 2, for

small values of the sample size n, due to the predominant role of the prior weights ne
and no, en increases up to a maximum value and then it definitively decreases,

tending to zero more and more rapidly for smaller values of the prior sample sizes ne
and no. Under the unknown variance assumption (see panel (b) of Fig. 2) we notice

a similar behavior of en with a slight inflation of each curve, uniformly with respect

to n.

In the second set-up the conflict between pe and po is even emphasized, pe
supports the alternative hypothesis H2 and we take le larger than ld (i.e. lo ¼ 0 and

le ¼ 2). In Fig. 3, en monotonically decreases as a function of n from 1 to 0. As

before, when the two conflicting priors are more and more concentrated, the

expected value of �Ao;e is uniformly larger and, consequently, a larger number of

observations is required for the conflict to be resolved. By comparing panel (a) and

panel (b) we notice that, for each choice of no ¼ ne, en is substantially unchanged.

To sum up, Table 1 displays the optimal sample sizes, obtained using criterion

(1) for a threshold c as small as 0.01. Negligible differences are observed between

the two cases, known and unknown variance.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sample size n

e n

en
pn

Fig. 1 Behavior of en and pn for increasing values of n, given ht ¼ 1, r ¼ 1, lo ¼ 0, le ¼ 1,
no ¼ ne ¼ 10, ld ¼ 1:5, nd ¼ 10.
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Fig. 2 One-sided testing: Expected value of the relative additional loss as a function of the sample size n,
with le ¼ 1 for different values of ne and no, given ht ¼ 1, ld ¼ 1:5, nd ¼ 10, lo ¼ 0. a Known variance

case: r2 ¼ 1; b Unknown variance case: ae ¼ ao ¼ 2, be ¼ bo ¼ 1 and ad ¼ 3, bd ¼ 2
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Fig. 3 One-sided testing: Expected value of the relative additional loss as a function of the sample size n,
with le ¼ 2 for different values of ne and no, given ht ¼ 1, ld ¼ 1:5, nd ¼ 10, lo ¼ 0 a Known variance

case: r2 ¼ 1; b Unknown variance case: ae ¼ ao ¼ 2, be ¼ bo ¼ 1 and ad ¼ 3, bd ¼ 2
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Two-sided testing Consider the interval null hypothesis H1 : h 2 ½hL; hU � ¼
½�0:5; 0:5� vs H2 : h 62 ½hL; hU �. Let us assume that po is centred on the interval

½hL; hU �, i.e. lo ¼ 0, whereas pe and pd both support the alternative hypothesis.

More specifically we take into account two different scenarios:

(i) in Fig. 4 le ¼ 1\ld ¼ 1:5 and the predictive distribution produces data

strongly favoring large (positive) values of h; thus, the conflict between the

two competing priors rapidly reduces and en flattens to 0 even for small

sample sizes;

(ii) conversely, in Fig. 5 ld ¼ 1\le ¼ 1:5, i.e. the prior opinion expressed by

pe is even more extreme than the design scenario depicted by pd, and

therefore the decreasing behavior of en appears slower than in the previous

case.

For the sake of completeness, we finally report in Table 2 the optimal sample sizes

obtained for a threshold c ¼ 0:01 in the above mentioned settings (i) and (ii). As in

the one-sided testing set-up similar considerations arise from the comparison

between the known variance case and the unknown variance case: again, the values

of nH are almost unaffected by the prior assumption on r2.

5 Conclusions

Statistical decision theory offers the ideal formal set-up to define sample size

criteria, that can be based on the risks of decision functions. In this paper we adopt

the Bayesian perspective and we evaluate the performance of statistical decisions in

terms of their posterior expected losses. The article extends and generalizes

previous contributions (focused on point estimation) whose central feature is the

presence of multiple actors (decision makers and planner) and the need of choosing

a number of sample units such that the unavoidable additional loss one incurs by

using a non-optimal action does not exceed too much the minimal loss of the best

action (see De Santis and Gubbiotti (2017)). Attention is here specifically devoted to

the testing problem. We propose a sample size criterion built up on the predictive

Table 1 One-sided testing: Optimal sample sizes nH based on criterion (1) with c ¼ 0:01, for different

values of le, ne and no, given ht ¼ 1, ld ¼ 1:5, nd ¼ 10, lo ¼ 0. (a) Known variance case: r2 ¼ 1; (b)

Unknown variance case: ae ¼ ao ¼ 2, be ¼ bo ¼ 1 and ad ¼ 3, bd ¼ 2

(a) Known variance

ne ¼ no ¼ 5 ne ¼ no ¼ 10 ne ¼ no ¼ 15

le ¼ 1 36 53 71

le ¼ 2 40 56 71

(b) Unknown variance

ne ¼ no ¼ 5 ne ¼ no ¼ 10 ne ¼ no ¼ 15

le ¼ 1 41 56 71

le ¼ 2 40 57 71
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Fig. 4 Two-sided testing Expected value of the relative additional loss as a function of the sample size n,
with lo ¼ 0, le ¼ 1 for different values of ne and no, given ½hL; hU � ¼ ½�0:5; 0:5�, ld ¼ 1:5, nd ¼ 10, a
Known variance case: r ¼ 1; b Unknown variance case: ae ¼ ao ¼ 2, be ¼ bo ¼ 1 and ad ¼ 3, bd ¼ 2
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Fig. 5 Two-sided testing: Expected value of the relative additional loss as a function of the sample size n,
with lo ¼ 0, le ¼ 1:5 for different values of ne and no, given ½hL; hU � ¼ ½�0:5; 0:5�, ld ¼ 1, nd ¼ 10, a
Known variance case: r ¼ 1; b Unknown variance case: ae ¼ ao ¼ 2, be ¼ bo ¼ 1 and ad ¼ 3, bd ¼ 2
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expected value (en) of the relative difference between the posterior expected losses

of the chosen action and of the optimal action, respectively. A sample size such that

en is close enough to zero guarantees that, on average, the consequence of using a

non-optimal action is substantially equivalent to the consequence of taking the

optimal decision. The expression of en for a general testing problem, given in Sect.

3, shows the role played both by the subset Zo;e of the samples leading to discordant

decision ao and ae and by the quantity neðxnÞ, which takes into account the amount

of evidence (quantified in terms of posterior probabilities or Bayes factors) a

conflicting sample xn gives to the two hypotheses. The criterion is then specialized

to the settings of one-sided and two-sided testing. In Sect. 4.3 we have considered

some numerical examples in the context of testing the normal mean (known and

unknown variance). Even in this basic framework, explicit expression of en are not

available but standard Monte Carlo approximations can be easily obtained.

Here is a non exhaustive list of some points of discussion and possible further

developments.

1. Connection with group decision making Despite the presence of multiple

parties, our framework is characterized by some specific features that make it

distinct from Group decision-making methods (see French and Rios Insua

(2000)). In fact, in Group decision-making many individuals make a collective

choice among several alternatives and the decision is the result of a group

consensus. Conversely, our approach explicitly states the asymmetry between

the roles of the two actors (Ee and Eo) involved in the decision problem and

focuses on the evaluation of a decision made using an inappropriate prior.

2. The use of inappropriate priors The ‘‘consequences of using an inappropriate

distribution of the parameter’’ is a problem that has been addressed for instance

by DeGroot (1970). The Author provided a geometric representation of the

difference between the risk associated to the inappropriate distribution,

qeðxn; aoÞ, and the risk attained using the optimal decision, qeðxn; aeÞ, when
the number of decisions is finite (non-strictly concave Bayes risk) or infinite

(strictly concave Bayes risk). Our article can be regarded as a predictive

analysis of this problem in the testing framework where only two decisions and

Table 2 Two-sided testing: Optimal sample sizes nH based on criterion (1) with c ¼ 0:01, for different
values of le and ld ¼ 1:5, ne and no, given ½hL; hU � ¼ ½�0:5; 0:5�, lo ¼ 0, nd ¼ 10. a Known variance

case: r2 ¼ 1; b Unknown variance case: ae ¼ ao ¼ 2, be ¼ bo ¼ 1 and ad ¼ 3, bd ¼ 2

(a) Known variance

ne ¼ no ¼ 5 ne ¼ no ¼ 10 ne ¼ no ¼ 15

le ¼ 1\ld ¼ 1:5 9 14 17

le ¼ 1:5\ld ¼ 1 30 41 48

(b) Unknown variance

ne ¼ no ¼ 5 ne ¼ no ¼ 10 ne ¼ no ¼ 15

le ¼ 1\ld ¼ 1:5 10 14 17

le ¼ 1:5\ld ¼ 1 33 42 48
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only two prior probability distributions are available. Furthermore, it would be

interesting to follow the suggestion of one of the two reviewers that is to

consider inappropriate priors po that represent extreme cases such as a least

favourable prior associated with minimax decision rules or, conversely, a

degenerate prior.

3. Point-null hypothesis In Sect. 3.2 we have considered a two-sided test with an

imprecise null hypothesis. This (apparently restrictive) choice is motivated by

the well known sensitivity of Bayesian testing procedures on prior distributions

when a point-null hypothesis test is taken into account. However, since this kind

of test can be regarded as a limiting case of the two-sided imprecise null test

[see Berger and Delampady (1987), Delampady (1989) and Verdinelli (1996)],

in principle, it can be addressed as a special case of the method proposed for a

general testing setup in Sect. 3. We hope to elaborate on this aspect in the

future.

4. More complex models Application to non-normal models and to more

challenging (not necessarily one-dimensional) testing set-ups. In these cases

one should consider the possibility that, not only the expression of en is not

available in closed form, but also the posterior probabilities (or the Bayes

factors) that define Zo;e and neðxnÞ may need numerical approximations. This

would make the solution of the problem more intensive from a computational

point of view.

5. Robustness Instead of considering only one prior pe, we could extend our

approach by considering an entire class of prior distributions C. See, among

others, Berger (1984) and Berger (1985). In this case, we would be interested in

looking at the largest relative additional loss of ao as pe varies in C, that is
suppe2C

�Ao;e: The sample size would then be chosen by replacing en in with

eCn ¼ Emd
½suppe2C �Ao;e� in expression (1). In future research we plan to explore

more deeply the properties of en as a measure of dissimilarity between

probability distributions. This suggestion comes from the comments of one of

the two anonymous referees that we would like to thank for her/his careful and

detailed review which strongly contributed to improve the final version of this

paper.
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