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Donatella Mattia2 and Floriana Pichiorri2
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Brain-Computer Interface (BCI) systems for motor rehabilitation after stroke

have proven their efficacy to enhance upper limb motor recovery by

reinforcing motor related brain activity. Hybrid BCIs (h-BCIs) exploit both

central and peripheral activation and are frequently used in assistive BCIs

to improve classification performances. However, in a rehabilitative context,

brain and muscular features should be extracted to promote a favorable

motor outcome, reinforcing not only the volitional control in the central

motor system, but also the effective projection of motor commands to

target muscles, i.e., central-to-peripheral communication. For this reason, we

considered cortico-muscular coupling (CMC) as a feature for a h-BCI devoted

to post-stroke upper limb motor rehabilitation. In this study, we performed

a pseudo-online analysis on 13 healthy participants (CTRL) and 12 stroke

patients (EXP) during executed (CTRL, EXP unaffected arm) and attempted

(EXP affected arm) hand grasping and extension to optimize the translation

of CMC computation and CMC-based movement detection from offline to

online. Results showed that updating the CMC computation every 125 ms

(shift of the sliding window) and accumulating two predictions before a final

classification decision were the best trade-off between accuracy and speed

in movement classification, independently from the movement type. The

pseudo-online analysis on stroke participants revealed that both attempted

and executed grasping/extension can be classified through a CMC-based

movement detection with high performances in terms of classification speed

(mean delay between movement detection and EMG onset around 580 ms)

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.1016862
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.1016862&domain=pdf&date_stamp=2022-11-22
https://doi.org/10.3389/fnhum.2022.1016862
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.1016862/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1016862 November 16, 2022 Time: 14:24 # 2

de Seta et al. 10.3389/fnhum.2022.1016862

and accuracy (hit rate around 85%). The results obtained by means of this

analysis will ground the design of a novel non-invasive h-BCI in which the

control feature is derived from a combined EEG and EMG connectivity pattern

estimated during upper limb movement attempts.

KEYWORDS

EEG, Electromyography (EMG), CMC, BCI—brain computer interface, hybrid BCI,
stroke, neurorehabilitation, online classification

Introduction

Brain-Computer Interface (BCI) systems for motor
rehabilitation can improve functional outcome in stroke
patients directly decoding the brain activity of the users (e.g.,
via electroencephalography, EEG) and providing them an
online feedback on performance (Silvoni et al., 2011; Ramos-
Murguialday et al., 2013; Pichiorri et al., 2015; Chaudhary
et al., 2016; Mrachacz-Kersting et al., 2016; Biasiucci et al.,
2018; Raffin and Hummel, 2018). Most BCIs target upper limb
motor rehabilitation (Pichiorri et al., 2015), being the primary
therapeutic goal in stroke rehabilitation to maximize patients’
functional recovery and reduce long-term disability (Coscia
et al., 2019). Such rehabilitation approach focuses exclusively on
brain activity and induces brain plasticity guiding the functional
motor system reorganization after stroke (Daly and Wolpaw,
2008; Pichiorri and Mattia, 2020).

Along the process of motor recovery after stroke, several
abnormalities in upper limb function have been described
such as muscle weakness and spasticity, abnormal muscle co-
activation, increased activity of the antagonist muscles (Levin
et al., 2000; Miller and Dewald, 2012; Silva et al., 2014;
Chen et al., 2018). Electromyography (EMG) can be used to
monitor the residual or recovered muscular activity along the
rehabilitation processes (Hesam-Shariati et al., 2017; Steele et al.,
2020) and EMG-related features can be exploited to avoid the
reinforcement of such maladaptive changes. Hybrid BCIs (h-
BCIs) include peripheral signals such as EMG, in addition
to brain signals, as control features (Choi et al., 2017) and
they have mostly been developed to improve the classification
performance of the system as in assistive BCIs (Leeb et al.,
2011; Müller-Putz et al., 2015; Riccio et al., 2015; López-Larraz
et al., 2018). Such devices usually combine the EEG and EMG
feature in the classification stage, meaning that each feature
(brain and muscular) is calculated separately and combined
sequentially or simultaneously using a balanced weight or
Bayesian fusion approach to better control the assistive device
(Leeb et al., 2011; Lalitharatne et al., 2013). Only recently,
h-BCIs (EEG-EMG) have been studied specifically for post-
stroke upper limb rehabilitation (Chowdhury et al., 2019;
Guo et al., 2022).

In this framework, Cortico-Muscular Coupling (CMC),
which measures the synchronization between central and
peripheral activation (Mima and Hallett, 1999), could be used
as a hybrid feature to detect in real-time movement attempts
and to train the physiological brain control over muscles activity
(volition). Such a feature merges information from EEG and
EMG signals depicting the functional communication between
brain and muscles. Several studies conducted in stroke have
shown CMC alterations in both the acute and chronic phases
(Mima et al., 2001; von Carlowitz-Ghori et al., 2014; Guo
et al., 2020), mainly represented by a decrease in CMC peak
which has been correlated with functional recovery (Krauth
et al., 2019). In a recent study on healthy subjects, we provided
evidence that CMC features extracted from multiple EEG-EMG
pairs can discriminate offline different simple hand movements,
such as finger extension and grasping, from rest condition
(Colamarino et al., 2021). CMC values have been already used
as inputs of a h-BCI to discriminate online right-vs.-left hand
grasp movement in both healthy subjects and hemiparetic
stroke patients (Chowdhury et al., 2019). To our knowledge,
these studies had neither assessed the ability of CMC to detect
movement attempts from rest condition nor optimized the
online CMC-based movement classification pipeline finding
the parameters that allow the best trade-off between accuracy
and speed.

Here, we evaluated the feasibility of real-time extraction
of CMC features suitable for movements vs. rest classification,
and thus to control a h-BCI system. We analyzed the data of
13 healthy (CTRL) and 12 stroke (EXP) participants during
executed (CTRL and EXP unaffected arm) and attempted (EXP
affected arm) simple hand movements simulating a real-time
approach (i.e., pseudo-online) to optimize the choice of the
parameters in the real-time CMC algorithm that allow the best
trade-off between classification performances and classification
speed. Indeed, together with a high classification accuracy, also
a short time for the BCI to detect a movement should be
pursued, in order to lead to significant plasticity induction and
functionally relevant improvement in agreement with Hebbian
associative learning theory (Hebb, 1949; Mrachacz-Kersting
et al., 2016). For this reason, different updating factors of the
CMC computation (shifts) during the trial, as well as different
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number of consecutive movement predictions to accumulate
for a final classification decision, were tested in terms of
performance and time for detection. Once identified the best
parameters to be used in the real-time CMC approach, we
compared classification accuracy and speed obtained in stroke
participants between different movements accomplished with
affected and unaffected hands, separately.

Materials and methods

Participants

Thirteen right-handed healthy subjects (9 females/4 males,
age 48.5 ± 19.3 yo) and 12 patients (7 females/5 males, age
53.8 ± 18 yo, months from event 5.3 ± 3.5, lesion side: 7
left/5 right) with clinically diagnosed stroke participated in the
study. Healthy subjects did not present any evidence or known
history of neuromuscular disorders, whereas for stroke patients
the following inclusion criteria were applied: (1) a history
of first-ever unilateral, cortical, subcortical, or mixed stroke,
caused by ischemia or hemorrhage (confirmed by magnetic
resonance imaging), that occurred at least 6 weeks prior to
study inclusion; (2) upper limb hemiplegia/hemiparesis that was
caused by the stroke; and (3) age between 18 and 80 years.
The exclusion criteria were the presence of chronic disabling
diseases, such as orthopedic injuries that could impair reaching
or grasping; spasticity of each segment of the upper limb
scored higher than 4 on the Modified Ashworth Scale (MAS)
(Bohannon and Smith, 1987).

Clinical and functional evaluation was performed by expert
physiotherapists before data acquisition (same day). The
upper extremity section of the Fugl-Meyer Assessment scale
(FMA-UE, motor domains only ranging from 0—maximum
impairment to 66—normal function) (Fugl-Meyer et al., 1975)
was performed to describe the residual arm function of stroke
participants. The National Institute of Health Stroke Scale
(NIHSS) was performed to assess general impairment derived
from stroke (Goldstein et al., 1989). Handedness was assessed
in all participants by means of the short form of the Edinburgh
Handedness Inventory (EHI) (Oldfield, 1971). Details about
patients’ demographical and clinical data are reported in
Supplementary Table 1. The study was approved by the local
ethics board at Fondazione Santa Lucia, IRCCS, Rome, Italy
(CE PROG.752/2019), the protocol was written according to
the Helsinki Declaration and all the participants signed an
informed consent.

Experimental design

We simultaneously recorded EEG and EMG data sampled,
respectively, at 1,000 and 2,000 Hz. Sixty-one active electrodes

arranged according to an extension of 10–20 system (reference
on left mastoid and ground on right mastoid) were used to
acquire the EEG data from the scalp by means of BrainAmp
amplifiers (Brain Products GmbH, Germany1), impedances
were kept below 5 k�. Surface EMG data were recorded
through Pico EMG sensors (Cometa S.r.l., Italy2) from 16
muscles collected in bipolar fashion: extensor digitorum (ED),
flexor digitorum superficialis (FD), lateral head of the triceps
muscle (TRI), long head of the biceps brachii muscle (BIC),
pectoralis major (PEC), lateral deltoid (Lat_DELT), anterior
deltoid (Ant_DELT) and upper trapezius (TRAP) of both sides
(L: left, R: right). EMG sensors were placed according to the
guidelines reported in Barbero et al. (2012). A TriggerBox (Brain
Products GmbH, Germany) was adopted to synchronize the
EEG and EMG acquisition. The quality of EEG and EMG signals
was visually checked prior to beginning the recordings and
continuously monitored afterward. The experiment consisted of
4 runs, with a break among them, in which the participants were
asked to perform/attempt finger extension (Ext) and grasping
(Grasp) with the right and the left hand separately (unaffected—
UH and affected—AH hand for stroke participants). The
Maximum Voluntary Contraction (MVC) was recorded for each
muscle at the beginning of the experiment for 5 s and the MVC
values of the target muscles (ED and FD of both sides) were
computed right after. During the experiment, all participants
were seated in a comfortable chair with adjustable seat height
and with their forearms placed on the table. Visual cues were
presented on a screen on the desk in front of them via Matlab’s
Psychtoolbox.3 The paradigm was administered using a block-
design structure where the four runs were randomly ordered
across participants. Each run comprised 40 trials equally divided
in task (8 s duration) and rest (4 s duration) condition, presented
to the participants according to a pseudo-random sequence
which did not allow more than two consecutive task or rest
trials and two consecutive rest trials at the beginning of the
run to avoid fatigue and lapse in attention, respectively. The
inter-trial-interval, during which a fixation cross was displayed
in the middle of the screen, was set to 3 s. During rest trials
participants had to stay relaxed for 4 s, whereas task trials
began with 4 s of preparatory period, after which a go stimulus
occurred, and the participant had to perform the task for
4 s (Figure 1). Participants were instructed to perform the
movement as fast as they could and hold it at approximately
15% of the MVC of the target muscle until the end of the
trial. Before starting the experiment, participants were asked
to perform some repetitions guided by the experimenter, to
understand how to perform the task at the desired activation
level of 15% with respect to MVC of the target muscle. Subjects’
EMG level of activation of the target muscle normalized by

1 https://www.brainproducts.com

2 https://www.cometasystems.com

3 http://psychtoolbox.org
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its MVC was monitored by the experimenter via the EMG
acquisition software (EMG and Motion Tools, Cometa S.r.l.,
Italy) during the entire experiment and indications on the
muscular performance were given to the participants at each
trial, when different from those requested. Stroke participants
attempted the movement with their paretic hand to the best of
their own residual ability.

Pre-processing

EEG data were band-pass filtered 3–60 Hz whereas EMG
signals were downsampled to 1,000 Hz and band-pass filtered
3–500 Hz. A notch filter at 50 Hz was applied to remove power-
line artifacts on both signals, task trials were segmented in 8 s
epochs from the cue onset, while rest trials were segmented in 4
s epochs from the cue onset. A subset of EEG channels over the
sensorimotor area (FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3,
C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P5,
P3, P1, Pz, P2, P4, P6) was considered for the purposes of this
study. Indeed, with the ultimate aim of successful online control,
a low number of electrodes is desirable to improve the usability
of the system, while the localization of the EEG electrodes over
the sensorimotor areas ensures the use of physiologic features
for movement detection. The epochs extracted from the trials
and related to the subset of channels were then checked for
compliance to the instruction and presence of artifacts in the
EEG and EMG signals. We identified as non-compliant all the
trials labeled as “Rest” in which participants moved or trials
labeled as “Task” where subjects missed the instruction and did
not perform the task. Such non-compliant trials were removed
from the analysis. Regarding the artifacts management, we
adopted two different criteria for the identification of artifacts in
EEG and EMG signals. The EEG signals exceeding in absolute
value the threshold of 100 µV were considered as artifactual.
If artifacts were detected in more than one channel the trial
was rejected; otherwise a spherical interpolation was performed
to replace the noisy channel with a weighted average of its
neighbors. A semi-automatic approach was used to detect the
artifacts in the EMG signals: a statistical criterion based on the
comparison between the EMG characteristics (Roland, 2020)
of each trial and the median EMG characteristics of all trials
(reference characteristic) was applied separately for task and
rest condition. Once the EMG artifacts were detected by the
statistical criterion, trials were visually inspected and validated
for rejection.

EEG channels were interpolated due to presence of artifacts
on average in 1% of trials for the movements performed by
healthy participants. No channels were interpolated for the
movements performed with the unaffected hand by stroke
participants, whereas one EEG channel was interpolated on
average in 1% of trials for the movement attempted with
the affected hand. One stroke participant was excluded from

Ext movements analysis due to the rejection of more than
50% of the trials (n = 11 for Ext movements analysis
in stroke participants). After rejection of non-compliant
and artefactual trials, the number of trials for healthy
participants was on average 18.63 and 18.58 in task and rest
condition, respectively. For stroke participants, on average
17.74 task trials and 17.91 rest trials were considered for the
following analyses.

Pre-processing of EEG data was computed by means of
Vision Analyzer 1.05 software (Brain Products GmbH, Gilching,
Germany) while all the other steps described above were
performed using custom codes developed in Matlab R2019a
(The MathWorks, Inc., Natick, Massachusetts, USA).

EMG onset detection

The EMG data of the target muscle (ED for Ext movements
and FD for Grasp movements) have been processed to obtain
the EMG onset for each task trial. The continuous raw EMG
data were band-pass filtered in the range 30–300 Hz and a
Teager–Kaiser energy operator was applied to improve Signal
to Noise Ratio (SNR) and minimize erroneous EMG onset
detection (Solnik et al., 2010). Signals were rectified and low
pass filtered at 50 Hz. Then, EMG data were segmented in
the 8 s-task trials and the EMG onset was identified applying
the Hodges e Bui algorithm (Hodges and Bui, 1996) on EMG
envelope for each task trial. Results were validated by visual
inspection.

CMC offline analysis

After the EEG/EMG preprocessing, we conducted an offline
analysis with the following aims to: (i) identify the characteristic
frequency of EEG-EMG coupling in beta band (13–30 Hz) for
each EEG-EMG pair; (ii) select the most powerful CMC features
in discriminating each movement from rest and (iii) assess
offline the performances of CMC-based approach in movements
detection against rest.

The data used for each participant in the offline analysis
referred to a time interval of 1 s-length equal to the window [5–
6]s in the task trials and [2–3]s in the rest trials. For those two
intervals, the CMC between EEG signal and the rectified EMG
signal (de Seta et al., 2021) was computed in the range 0–60 Hz
as in Colamarino et al. (2021).

CMC characteristic frequency extraction
In this work, we considered as frequency band of interest

the beta band (13–30 Hz), since previous studies identified it as
the typical band for CMC (Liu et al., 2019). The CMC across
trials was computed using 1 s-Hann windows with no overlap
and the characteristic frequency for each EEG-EMG pair was
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FIGURE 1

(A) Schematic of the experimental setup: participants wore an EEG cap over the scalp and EMG sensors over the upper limbs, they watched a
screen placed 1 m in front of them on which a cue provided information on when to perform/attempt the movement. In addition to EEG and
EMG data, the recording included also kinematic data. They were collected at 100 Hz by means of 8 IMUs (MTw Awinda, Xsens Technologies,
The Netherlands). The IMUs were placed by a double-sided medical tape on the following anatomical points: hand, mid forearm, mid arm of
both upper limbs, over the clavicular notch and at the lumbar vertebrae level. The participant signed a written informed consent to the
collection and use of his images. (B) Timeline of the experiment for task trials with the instructions provided to the participants on the screen,
ITI, inter-trial-interval.

extracted, as the frequency showing the highest CMC value
in the beta band range during task trials (Colamarino et al.,
2021). The computation was repeated for each movement and
each participant. The single-trial CMC values obtained for each
EEG-EMG pair at the characteristic frequency were considered
for further analyses as feature space. For the single-trial CMC
computation we used Welch periodogram with segments of 250
ms, 50% of overlap and tapered by means of the Hann window.

Feature selection
Since the number of features used for the classification

impacts on the computational cost and the number of physical
electrodes required to collect the data, the feature selection
approach was used to choose two EEG-EMG pairs to be
considered in the analysis. The original feature space (described
in section “Cortico-muscular coupling characteristic frequency
extraction”) was reduced by considering only the EEG-EMG
pairs characterized by the EMG channel over the target muscle
(ED for Ext movements, FD for Grasp movements) and by
the EEG channels placed over the sensorimotor strip of the
hemisphere contralateral to the hand involved in the task
(ipsilesional hemisphere for the movement attempted with
the paretic hand of stroke participants). Feature selection was
performed by ranking the remained CMC features according to
their discriminant power by Fisher criterion (Lal et al., 2004)
and selecting the two most discriminant ones. This allowed to
reduce the computational cost and achieve real-time movement
detection.

For each movement and participant, the feature
space was reduced to a 2-dimensional feature space,
consisting of 40 observations (20 trials × 2 conditions,
i.e., task and rest).

Binary classifier training
A 10-iteration cross-validation approach was used for offline

detection of each movement vs. rest in both healthy and stroke
participants. In each iteration, we used 80% of the observations
(half labeled as task and half as rest) as training set, whereas
the remaining 20% were used as testing set. A Support Vector
Machine (SVM) classifier with a linear kernel was used as
classification model on the reduced features space (see section
“Features selection”). If the difference between the number
of task and rest trials (after rejection of artefactual or non-
compliant trials) was equal or higher than three, the two
classes were balanced randomly selecting the same number
of observations. The offline performances were assessed using
the following classification metrics: Area Under the receiver
operating characteristic Curve (AUC), accuracy, sensitivity and
specificity (Chu, 1999; Fawcett, 2006).

CMC pseudo-online analysis

The pseudo-online analysis was conducted using a sliding
window approach mimicking the data reading from the
temporary buffer of the amplifier used in the online acquisition
of biological signals. We considered sliding windows of 1 s
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duration updated along the trial of a certain number of samples
(shift parameter) to be varied in the study. The selected shifts
were: 125, 250, and 500 ms. For each participant, movement and
window in a trial, we computed single-trial CMC values in beta
band for the two EEG-EMG pairs selected in the offline analysis.
The CMC trend along the trial duration was then analyzed for
the different shift values in the healthy participants with the aim
to identify the best parameters to be used in the future online
analyses. The pseudo-online analysis for stroke participants was
conducted only for the best shift value identified in the analysis
on healthy participants.

Identification of best shift value in data from
healthy participants

In order to identify the best shift value to be used in the
sliding window approach for CMC computation, we extracted
movement onset from CMC trends along trial (in brief CMC
onset) and compared it with the one extracted from EMG signal
(in brief EMG onset), considered as the temporal reference for
the beginning of the movement execution. The CMC onset was
identified with a double-threshold criterion: we extracted the
statistical threshold (95th percentile) from the distribution built
considering all the CMC values of rest trials and the CMC onset
was identified as the time point in which CMC values during
task trials were above the statistical threshold in a temporal
window equal or longer than 500 ms. The CMC onset was thus
computed for each participant, movement type, shift and trial
considering the CMC values of the EEG-EMG pair with the best
CMC feature according to Fisher’s criterion.

For each trial, on the basis of the comparison between the
EMG onset and the CMC onset we identified the following cases:

– True Detection (TD) if CMC onset was delayed with
respect to the EMG onset

– False Detection (FD) if CMC onset was anticipated with
respect to the EMG onset

– No Detection (ND) if no CMC onset was detected in
presence of an EMG onset

The occurrence of TD, ND and FD across trials normalized
for the total number of trials was computed for each participant,
movement type and shift. These three performance parameters
were flanked by a fourth one, the Mean Delay (MD) obtained
as the temporal difference (in seconds) between the CMC onset
and EMG onset only in TD case.

To identify the best value for shift parameter maximizing
both accuracy and speed in CMC-based movement detection in
the four movements analyzed, we computed two 2-way repeated
measures ANOVA (rmANOVA) considering as within main
factors the MOVEMENT (4 levels: ExtL, ExtR, GraspL, GraspR)
and the SHIFT (3 levels: 125, 250, 500 ms) and as dependent
variables the TD and the MD parameters, separately. ND and
FD were not included in the statistical analysis due to their

low rates obtained in almost all the participants. The statistical
significance level for all tests was set to 0.05 and the Duncan’s
post-hoc test was performed to assess differences among the
levels of the within factors. A shift value of 125 ms resulted
to achieve the highest performances (highest TD and lowest
MD—see Results section “Identification of best shift value in
data from healthy participants”) and was therefore used for
further analyses.

Movement classification in healthy participants
To test the ability of CMC features in discriminating

movements from rest condition in real-time, a single-subject
pseudo-online validation was firstly performed in healthy
participants. The same feature space used in the offline approach
(see section “Features selection”) was adopted for the pseudo-
online analysis. An adaptation of the Leave-One-Out Cross
Validation was used to test the classification model for task
trials in the pseudo-online approach. For each movement and
participant, N different SVM classifiers (where N is the number
of task trials) were trained excluding one task trial at a time from
the training phase (training set observations=Ntot trial − 1) and
tested on the excluded trial divided in 57 consecutive windows
of 1 s with 125 ms of overlap (total number of observations in
testing phase equal to 57 for each leave-one-out iteration).

The pseudo-online classification performances were
evaluated considering as:

– True Positive (TP) when at least M consecutive sliding
windows after the EMG onset of a task trial were predicted
as task condition.

– False Positive (FP) when at least M consecutive sliding
windows before the EMG onset of a task trial were
predicted as task condition.

– False Negative (FN) when no M consecutive windows were
predicted as task condition.

Here, the M parameter is the accumulation factor for which
we tested three different values (1 – no accumulation, 2 and
3 windows) to identify the best trade-off between classification
accuracy and speed. The following metrics were computed
according to the number M of windows to be accumulated
before a final movement detection:

Hit rate =
TP
N

(1)

False Positive Rate (FPR) =
FP
N

(2)

False Negative Rate (FNR) =
FN
N

(3)

Mean Delay (MD) =
TM − EMGonset

TP
(4)

where N is the number of task trials and TM is the time after
which M consecutive task predictions have been accumulated.
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To evaluate the differences in the above metrics among the
number M of consecutive windows, four 1-way rmANOVA were
performed using as within main factor M (3 levels: M = 1,
M = 2, M = 3) and as dependent variable the hit rate, the
FPR, the FNR and the mean delay, separately. The Duncan’s
post-hoc analysis was held to assess differences among the
different levels of the within factor and the significant level was
set to 0.05.

Movement classification in stroke participants
To evaluate whether the results obtained in healthy

participants could be confirmed for movements
performed/attempted by stroke patients, the same pseudo-
online analysis described in section “Movement classification
in healthy participants” was performed on data from stroke
participants for each movement type. In particular, the CMC
computation was performed with a sliding window approach
considering windows of 1 s duration and a shift of 125 ms.
Classification performances expressed in terms of hit rate,
FPR and MD were firstly evaluated in the stroke participants
group and then compared between movements performed
with the affected and the unaffected hand by a paired t-test,
considering only the 11 stroke participants analyzed during
both Ext and Grasp movements. The significance level for all
tests was set to 0.05. FNR was evaluated but not included in the
comparison due to the low values obtained in all participants
and movement types.

Results

CMC offline analysis

Offline classification performances of the movement vs.
rest classifier based on two CMC features are shown in
Supplementary Tables 2, 3 for healthy and stroke participants,
respectively. Average AUC across healthy participants were
ranging from 0.98 to 1.00, whereas slightly lower performances
were achieved in stroke participants with AUC ranging
from 0.93 to 0.98.

CMC pseudo-online analysis

Identification of best shift value in data from
healthy participants

In Figure 2 we show how the shift value to be used in
the sliding window approach for CMC computation affects the
shape of CMC trend along the trial and the timing in CMC-
based movement onset detection, considering a representative
healthy participant during movements performed with the
left hand (similar results were obtained for the right-hand
movements). Independently of the shift value, it is worthy
of note how the CMC trend accurately tracks the muscular
activation as revealed by the EMG signal recorded at the target
muscle (ED for Ext movement, FD for Grasp movement),
superimposed in each graph (Figures 2A,B, left). CMC resulted
as almost null before the EMG onset while it showed an

FIGURE 2

Impact of the shift value used in the sliding-window approach on the detection of the movement onset based on CMC (CMC onset). The
average CMC and EMG trends across trials, considering the first EEG-EMG pair identified by Fisher criterion and the target muscle, respectively,
were reported along trial duration for different shift values separately for extension and grasping of the left hand, (A,B, right panel), respectively,
in one representative healthy participant (similar results were obtained for right-hand movements). Dashed vertical line represents movement
onset detected from EMG (EMG onset), whereas continuous vertical line stays for detected CMC onset. Each graph is flanked by a pie chart
reporting the percentages of No Detection (ND), False Detection (FD) and True Detection (TD) obtained on average across 13 healthy
participants for the different shift values in the two motor tasks shown.
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FIGURE 3

Distribution (boxplots) of (A) true detection (TD) and (B) mean
delay (MD) at the various shift values across 13 healthy
participants, separately for the four motor tasks (ExtL, ExtR,
GraspL, GraspR).

increase and then a plateau around the holding phase of the
movement execution. The higher the shift value (updating factor
of each sliding window), the more discontinuous the CMC
trend appears, as expected since it is obtained for a reduced
number of samples. The qualitative comparison between EMG
onset and CMC onset in the trends reported in Figure 2
shows how in this representative subject the CMC onset was
always delayed with respect to EMG onset and the delay
increased with the increase of shift values in both Ext and
Grasp conditions. A similar behavior was observed in the other
healthy participants. Overall, pie charts (Figures 2A,B, right)
reporting the percentages of TD, FD and ND obtained in
average across all the healthy participants, show how CMC
managed to detect the movement onsets in all movement
tasks. Indeed, the averaged percentage of TD across participants
(∼88%) considerably overcame the percentages of FD (∼12%)

and ND (<1%). FD parameter was the most affected by
changes in the shift values, increasing with the increase of
the latter (from 9 to 17% in ExtL and from 7 to 15% in
GraspL).

The 2-way rmANOVA performed on both TD and MD
parameters revealed the SHIFT factor as the only significant
effect [TD: F(2, 24) = 30.99, p < 0.01; MD: F(2, 24) = 13.13,
p < 0.01]. Duncan’s post-hoc test applied on TD highlighted a
higher value when using the lowest updating factor (125 ms)
compared to the others. A significant difference between 250
and 500 ms was also observed.

Post-hoc tests applied to MD revealed a significantly higher
delay for a shift of 500 ms with respect to other shifts tested. No
differences were found between shift of 125 and 250 ms for MD.

In Figure 3 we reported the trends of TD (Figure 3A) and
MD (Figure 3B) obtained varying the shift values in the sliding
window approach for the four movements separately. The lack
of significance of the effect MOVEMENT∗SHIFT underlines
how the shift affected TD and MD parameters independently
from the movement type.

Given the results obtained from the statistical analysis, a
shift value of 125 ms to update the sliding windows used to
compute the CMC was chosen for the pseudo-online movement
classification analysis. Using 125 ms of shift resulted on average
in TD higher than 82.87% and MD lower than 0.42 s for the four
movements tasks.

Movement classification in healthy participants
In Figure 4 we report the results of the pseudo-online

movement classification performed 1 s window at a time
every 125 ms in each testing trial, for a representative healthy
participant (same as Figure 2) during extension and grasping
of the left hand. It is worth noting how the classifier correctly
classified as rest almost all the windows preceding the EMG
onset and as movement all the windows succeeding the EMG
onset in all the trials. Some misclassifications were found in
the movement phase of very few trials where the movement is
erroneously classified as rest.

Table 1 summarizes the pseudo-online classification
performances across the healthy participants obtained for the
different number M of consecutive sliding windows tested as
accumulation before a final classification decision was taken.
The FNR was null in all four movements, with the exception for
GraspR where a FN occurred for one subject in one trial when
M was equal to 2 or 3. For all the movements, we obtained on
average a hit rate above 88%, with a FPR ranging from 0 to 12%
and a delay in the movement detection from 320 to 680 ms
according to the value selected for the parameter M. Moreover,
the results of the rmANOVA showed how the parameter M
significantly affected the classification performances (hit rate,
FPR and Mean Delay) in both Ext and Grasp conditions,
except for hit rate and FPR in Grasp. As expected, for all the
movements, the increasing M led to improved classification
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FIGURE 4

Results of the pseudo-online classification (task vs. rest) performed for all the 57 windows in which each trial was epoched for a representative
healthy participant (same as Figure 2) during (A) extension and (B) grasping of left hand. Rectangles represent the 1 s windows processed by the
trained classifier one at a time every 125 ms. Windows predicted by the classifier as rest condition present light color, whereas windows
predicted as task condition present dark color. The red dots indicate the first window including the EMG onset (i.e., which ends 125 ms after the
EMG onset).

accuracy (increase of hit rate and decrease of FPR) but also to
an increase of the delay in the detection of movement onset. In
particular, the post-hoc tests of rmANOVA performed on each
classification parameter showed a significant difference between
M = 1 and M = 3 windows and M = 1 and M = 2 windows.
No significant differences were observed in the hit rate and
the FPR achieved with M = 2 and M = 3 windows. Choosing
a number M of windows equal to 2 as accumulation before
a final movement detection allowed to achieve on average a
hit rate higher than 90%, a FPR lower than 10%, and a Mean
Delay in the range 470 and 530 ms. Such accumulation factor
resulted to be the most promising based on healthy participants’
data.

Comparing the classification performances obtained with
M = 2 between the left and the right-hand movements
by means of a paired t-test (α = 0.05), no significant
differences were observed for both Ext (p = 0.56) and Grasp
(p= 0.12) movement.

Movement classification in stroke participants
In Table 2 we reported the metrics obtained on varying

M parameter with the pseudo-online approach in 12 stroke
participants for all the movement types. The four 1-way
rmANOVAs performed on the accumulation factor M
confirmed what obtained in healthy participants. The FPR
increased with increasing M and the post-hoc test revealed
significant differences between M = 1 and M = 2 as well
as between M = 1 and M = 3 when the movement was
attempted with the paretic hand. A significant difference
between the FPR with M = 2 and 3 resulted for ExtUH,
whereas no significant difference was shown in the FPR for

GraspUH. The statistical analysis revealed that in stroke
participants the M parameter affected the hit rate only for
GraspAH with significant differences between M = 1 and
M = 2 and M = 1 and M = 3 (no difference was found
between the hit rate obtained with M = 2 and M = 3).
As with healthy participants, the higher the M parameter,
the greater the Mean Delay. False negatives were more
frequent in stroke with respect to healthy participants, in
particular for higher M. However, FNR did not exceed
4%.

Given the results obtained in both healthy and stroke
participants, to avoid false positives while maintaining a good
timing, the best accumulation factor resulted to be M = 2.

As expected, performances were reduced with respect to
those obtained from healthy participants for both movements
performed with AH and UH. In Ext condition, for both sides,
hit rate was around 84%, the FPR was around 15% while the
delay in movement detection was around 580 ms. Differences
in terms of classification performances between AH and UH
were investigated by means of a statistical analysis whose results
are reported in Figure 5. We found a significant difference
between AH and UH in Grasp condition only for hit rate
and FPR (Figures 5A,B) highlighting how the detection of
the grasping movement performed with the affected hand is
significantly more difficult with respect to the same movement
performed with the unaffected hand but also to the extension
movement with both AH and UH. Indeed, in Grasp condition
the differences between AH and UH were bigger with respect
to Ext movement, with a hit rate significantly lower in Grasp
than in Ext for AH (paired t-test, p = 0.046). Whereas the
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TABLE 1 Pseudo-online classification performances reported as mean ± standard error across 13 healthy participants for each movement task.

Task Hit rate FPR FNR Mean delay (s)

M = 1 M = 2 M = 3 p M = 1 M = 2 M = 3 p M = 1 M = 2 M = 3 p M = 1 M = 2 M = 3 p

ExtL 0.89
(±0.04)

0.92
(±0.03)

0.93
(±0.03)

<0.01* 0.11
(±0.04)

0.08
(±0.03)

0.07
(±0.03)

<0.01* 0.00
(±0.00)

0.00
(±0.00)

0.00
(±0.00)

— 0.37
(±0.05)

0. 53
(±0.06)

0.68
(±0.06)

<0.01*

ExtR 0.88
(±0.03)

0.90
(±0.03)

0.91
(±0.03)

<0.01* 0.12
(±0.03)

0.10
(±0.03)

0.09
(±0.03)

<0.01* 0.00
(±0.00)

0.00
(±0.00)

0.00
(±0.00)

— 0.34
(±0.04)

0.50
(±0.04)

0.65
(±0.05)

<0.01*

GraspL 0.99
(±0.01)

1.00
(±0.00)

1.00
(±0.00)

— 0.01
(±0.01)

0.00
(±0.00)

0.00
(±0.00)

— 0.00
(±0.00)

0.00
(±0.00)

0.00
(±0.00)

— 0.32
(±0.03)

0.47
(±0.03)

0.61
(±0.03)

<0.01*

GraspR 0.96
(±0.02)

0.97
(±0.02)

0.97
(±0.02)

0.75 0.04
(±0.02)

0.03
(±0.02)

0.03
(±0.02)

0.14 0.00
(±0.00)

0.004
(±0.004)

0.004
(±0.004)

— 0.36
(±0.03)

0.50
(±0.03)

0.67
(±0.04)

<0.01*

Performances are shown for the different number M of consecutive sliding windows tested as accumulation before the final movement detection. The fourth column of each parameter reports the p-value of the rmANOVA considering M as within factor.
Bold values flanked by asterisks (*) indicate significant differences p< 0.01, —ANOVA test not applicable.

TABLE 2 Pseudo-online classification performances reported as mean ± standard error across 11 stroke participants for Ext movements and 12 stroke participants for Grasp movements.

Task Hit rate FPR FNR Mean delay (s)

M = 1 M = 2 M = 3 p M = 1 M = 2 M = 3 p M = 1 M = 2 M = 3 p M = 1 M = 2 M = 3 p

ExtUH 0.81
(±0.05)

0.82
(±0.05)

0.83
(±0.05)

0.75 0.19
(±0.05)

0.16
(±0.05)

0.13
(±0.04)

0.015* 0.00
(±0.00)

0.02
(±0.02)

0.04
(±0.02)

— 0.52
(±0.10)

0. 66
(±0.10)

0.88
(±0.13)

<0.01*

ExtAH 0.84
(±0.04)

0.86
(±0.04)

0.87
(±0.04)

0.09 0.15
(±0.04)

0.13
(±0.03)

0.11
(±0.03)

0.05* 0.01
(±0.01)

0.01
(±0.01)

0.02
(±0.01)

— 0.44
(±0.05)

0.62
(±0.07)

0.77
(±0.07)

<0.01*

GraspUH 0.92
(±0.04)

0.93
(±0.03)

0.94
(±0.03)

0.25 0.06
(±0.03)

0.05
(±0.02)

0.04
(±0.02)

0.23 0.01
(±0.01)

0.01
(±0.01)

0.02
(±0.01)

— 0.39
(±0.04)

0.54
(±0.04)

0.70
(±0.05)

<0.01*

GraspAH 0.68
(±0.07)

0.74
(±0.05)

0.79
(±0.05)

<0.01* 0.32
(±0.07)

0.26
(±0.05)

0.21
(±0.05)

<0.01* 0.00
(±0.00)

0.00
(±0.00)

0.004
(±0.004)

— 0.34
(±0.03)

0.50
(±0.03)

0.68
(±0.05)

<0.01*

Performances are obtained considering different number M of consecutive sliding windows tested as accumulation before a final classification decision. The fourth column of each parameter reports the p-value of the rmANOVA considering M as within
factor. Bold values flanked by asterisks (*) indicate significant differences p< 0.01, —ANOVA test not applicable.
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Mean Delay was approximately the same for AH and UH
(Figure 5C).

Discussion

In this study, we provided evidence that the CMC between
brain and muscle activity could discriminate in real-time
different hand movements from rest condition in both healthy
and stroke participants. The pseudo-online analysis performed
on healthy and stroke participants provided information on the
parameters representing the best trade-off between classification
accuracy and speed when translating CMC computation and
its task vs. rest classification from offline to online domain.
The testing of such parameters on a stroke participants dataset
assessed the feasibility of a CMC-based movement detection in
a population of stroke subjects with residual arm activity.

The offline classification performances (Supplementary
Tables 2, 3) confirmed the validity of our features extraction and
classification approach, previously tested on healthy subjects
(Colamarino et al., 2021), also in stroke patients. The high
performances obtained from Colamarino and colleagues using
the entire set of features (CMC values from all possible EEG-
EMG pairs), have been confirmed in this work using as features
for movement detection CMC values from only few EEG-EMG
electrodes, showing its potential applicability in a clinical setting.

The pseudo-online analysis performed on the shift value
showed how the updating factor of CMC computation affects
the ability of the CMC to detect the movement. Indeed,
it affected both the ability to detect the movement onset
(True Detection, TD) and the time to detect it (Mean Delay,
MD). Moreover, the pseudo-online classification approach
showed how the number of predictions to be accumulated
before a given final classification decision affected the pseudo-
online classification performance. Classification performance
increased according to the number of windows accumulated,
and the time to detect the movement with respect to the EMG
onset also increased according to it.

One of the main challenges faced by BCI technology is to
improve speed and accuracy (Wolpaw et al., 2002; Krauledat
et al., 2004; Chai et al., 2014; Thompson et al., 2014; Dagdevir
and Tokmakci, 2021) and achieve the reliability necessary for
real-word applications (Mcfarland and Wolpaw, 2010). For this
reason, identifying the parameters that allow the best trade-
off between classification performances and speed is crucial.
Over the past decades, many studies have explored feature
extraction and classification approaches to improve the accuracy
(Bianchi et al., 2022), raise the number of commands (Xu et al.,
2020), increase the information transfer rate and reduce the
calibration time (Wong et al., 2020; Yao et al., 2022). P300-
based speller and steady-state visual evoked potential-based
BCIs have mainly taken advantages from those methodological
improvements (Nakanishi et al., 2018; Xu et al., 2020) in order to

avoid patient frustration caused by false and delayed detections
(Eliseyev et al., 2021). However, also in the context of BCIs for
rehabilitation, it is crucial to provide an immediate feedback,
contingent with the user’s movement intention, in order to re-
establish the contingency between cortical activity related to the
attempted or imagined movement and the feedback. Indeed,
this stimulates the neuroplasticity that leads to motor recovery
(Mane et al., 2020; Remsik et al., 2022). In this application,
performance improvements were pursued in several ways, e.g.,
by combining different features such as lateralized readiness
potential and event-related desynchronization (Krauledat et al.,
2004), refining well-established algorithms of feature extraction
and classification and combining them in an innovative way (Lee
et al., 2017) or investigating which parameters returned the best
performance in terms of both accuracy and timing cost in the
ERD/ERS classification (Dagdevir and Tokmakci, 2021).

Although great efforts have been devoted to the
optimization of EEG-based BCI, the optimization for the
real-time CMC computation and classification has not been
investigated yet.

Thanks to the results of our study, we assessed that
computing the single-trial CMC every 125 ms and accumulating
2 predictions before a final classification decision allows to
achieve good performance (hit rate on average equal to 95
and 84%, FPR on average equal to 5 and 15% for healthy
and stroke participants, respectively) and timing (mean delay
on average equal to 0.5 s and 0.58 s for healthy and stroke
participants, respectively) during two different motor tasks.
Meanwhile almost no false negative detections were obtained.
The classification accuracy achieved in the present work is
higher than that reported in the two available studies using
CMC for online control of robotic orthosis in a rehabilitation
context (Chowdhury et al., 2019; Guo et al., 2022). Comparable
performances were obtained in Chowdhury et al. (2019) when
an approach based on statistical correlation is used instead of
the classical CMC algorithm. The higher performances obtained
in this work could be due to the application of two processing
steps helping us to manage the variability in CMC spectral
and topographical properties among patients: (i) computation
of CMC characteristic frequency in the two EEG-EMG pairs
selected for each patient and movement which takes into
account inter-patients differences in CMC frequency peak; (ii)
application of a feature selection algorithm allowing to select
the best EEG-EMG pairs to detect movement, specifically for
each patient. No direct comparison can be made between our
work and the above-mentioned studies on timing, since they
used a different experimental paradigm where the CMC was
computed online in a predetermined time interval with respect
to the cue and thus the feedback was sent to the patient several
seconds after the movement attempt. Hence, this study is the
first among those published that analyzed the ability of the CMC
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FIGURE 5

Boxplot diagrams reporting the distributions of (A) the Hit rate, (B) the FPR and (C) the Mean delay in 11 stroke participants as results of the
pseudo-online classification using M = 2 sliding windows as accumulation before a final classification decision. Performances are reported
separately for Ext and Grasp and compared between AH and UH by means of a paired t-test (α = 0.05), significant p-values are highlighted in
bold at the top of each subfigure.

in detecting the movement and showed that potentially a CMC-
based BCI could send a contingent feedback to the patient right
after the attempt.

Moreover, using CMC values as features to discriminate
movements from rest condition allows to obtain higher pseudo-
online classification performance in stroke patients with respect
to previous studies on rehabilitative BCIs based on EEG features
only, such as movement related cortical potentials (Mrachacz-
Kersting et al., 2016) and sensorimotor rhythms in alpha
and beta bands (Lóopez-Larraz et al., 2018), detected during
movement attempts.

Beside the main purpose of the presented hBCI (i.e.,
promoting upper limb motor recovery and avoiding the
reinforcement of abnormal muscular activity) its superiority
in terms of classification performance can guarantee feedback
consistency to patients during training sessions, presumably
increasing patients’ satisfaction and motivation toward the
ultimate aim, that is a favorable recovery. It is worthy of
note that such classification performances are obtained using
only fewer features (EEG and EMG channels) compared to
those used in previous EEG-based BCI systems during the
attempt of motor tasks (Biasiucci et al., 2018; Mrachacz-Kersting
and Aliakbaryhosseinabadi, 2018). Thus, our approach appears
promising in terms of system usability (computational time,
comfort) and set up time, meeting the needs of BCI usage in a
clinical context.

Regarding the timing achieved in the classification decision
with the parameters selected by this analysis, CMC features
were able to provide a fast classification in stroke patients
which ensures not only to exploit and train central-to-peripheral
communication (Guo et al., 2022), but also to send ecological
feedback to the patient right after the onset of the movement
attempt (a feedback that is congruent in timing and content
with the exercise setting), favoring an effective motor re-
learning. Comparing classification speed with previous works

on rehabilitative BCIs during movement attempts, we obtained
comparable (Mrachacz-Kersting and Aliakbaryhosseinabadi,
2018) or better (Biasiucci et al., 2018, 3.5–5 s to deliver feedback)
results with respect to EEG-based approaches.

Furthermore, comparing the performances of the affected
and unaffected hand in stroke participants confirmed how the
CMC is affected by stroke (Krauth et al., 2019) in particular
during the grasping task, the only case in which significant
differences were obtained between the two sides. Similar to what
reported in our previous work on healthy subjects (Colamarino
et al., 2021), the extension task was easier to detect by means of
CMC features also in stroke patients.

Despite the promising results obtained on both healthy
and stroke participants by applying the CMC-based approach
in movements detection, the performances obtained by means
of a pseudo-online approach should be confirmed by online
experiments. In fact, the exclusion of both non-compliant and
artefactual trials from the analysis before CMC computation
might have mildly overestimated the classification performances
since they were calculated on data with a higher signal-to-
noise ratio. However, we are confident that such overestimation
effect is limited since we rejected around one/two trials out of
the 20 requested per condition. In the online implementation
of our approach, non-compliance will be manually checked
by the therapist/experimenter who will start a new trial
(request of movement attempt) only when the muscle activation
level will be below the desired threshold or terminate
the trial before the established duration if the patient is
not performing the task (i.e., non-compliant trials should
virtually never occur).

To the best of our knowledge, this is the first study
that tested the ability of CMC features to detect in real-time
movement attempts in stroke patients with particular focus on
the best parameters to use in the computation to ensure an
accurate and fast detection. The results obtained here stated
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the feasibility of CMC features as inputs of a h-BCI for upper
limb motor rehabilitation. Such a CMC-based BCI would allow
to exploit the patients’ residual or recovered arm activity,
filling the gap between the early stage of rehabilitation when
severely disabled patients (i.e., plegic) can only imagine the
movements during a BCI-based training intervention (Pichiorri
et al., 2015) and the progressive functional recovery. This would
allow to follow patients along each stage of their rehabilitation
path with a strategy tailored to their level of impairment
and hence maximizing the time and amount of functional
recovery.

Our results should be confirmed enlarging the number of
stroke participants involved in the study and including patients
with different degrees of impairment. Moreover, assessment
of BCI performances in stroke patients during online BCI
training sessions is needed to confirm the feasibility of our
approach, including an evaluation of usability, satisfaction and
workload of patients and professionals in a real-world setting.
Further studies should focus on which CMC features should
be reinforced during the h-BCI training, and which ones
should be discouraged to avoid the maladaptive movement
abnormalities typical of post-stroke recovery such as spasticity,
co-contractions and motor overflow (Levin et al., 2000; Miller
and Dewald, 2012; Silva et al., 2014; Chen et al., 2018). Lastly,
the clinical efficacy of such a BCI must be validated in a
Randomized Control Trial in stroke patients, with particular
focus on motor function recovery and muscular control
abnormalities.

Conclusion

This study introduces an optimized approach to employ
CMC features for the real-time detection of different hand
movements in a h-BCI. Such a CMC-based h-BCI would
be able to re-establish impaired CMC, achieving a good
timing and accuracy crucial for patients’ motor re-learning
and motivation during the rehabilitation training. The results
achieved in this analysis will ground the design of a novel
non-invasive h-BCI in which the control feature is derived
from a combined EEG and EMG connectivity pattern estimated
during upper limb movement attempts. Such device would have
a potential high impact on the future design of novel stroke
rehabilitation strategies.
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