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Abstract. Engineering single-photon states endowed with orbital angular momentum (OAM) is a powerful tool
for quantum information photonic implementations. Indeed, due to its unbounded nature, OAM is suitable for
encoding qudits, allowing a single carrier to transport a large amount of information. Most of the experimental
platforms employ spontaneous parametric down-conversion processes to generate single photons, even
if this approach is intrinsically probabilistic, leading to scalability issues for an increasing number of qudits.
Semiconductor quantum dots (QDs) have been used to get over these limitations by producing on-
demand pure and indistinguishable single-photon states, although only recently they have been exploited
to create OAM modes. Our work employs a bright QD single-photon source to generate a complete set of
quantum states for information processing with OAM-endowed photons. We first study hybrid intraparticle
entanglement between OAM and polarization degrees of freedom of a single photon whose preparation
was certified by means of Hong–Ou–Mandel visibility. Then, we investigate hybrid interparticle OAM-
based entanglement by exploiting a probabilistic entangling gate. The performance of our approach is
assessed by performing quantum state tomography and violating Bell inequalities. Our results pave the
way for the use of deterministic sources for the on-demand generation of photonic high-dimensional
quantum states.
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1 Introduction
In the last few decades, structured light states characterized by
an on-demand distribution for both field amplitude and phase
have gained great interest.1 Among them, twisted beams carry-
ing orbital angular momentum (OAM) have been the focus of
several studies, due to their wide range of applications. As
pointed out by Allen et al.,2 OAM is carried by all the beams
that present a phase term of the form eilϕ, where ϕ is the azi-
muthal angle in cylindrical coordinates and l is an unbounded

integer. This phase term is responsible for the typical helicoidal
wavefront, and each photon shows an OAM equal to lℏ.

In the classical domain, the nontrivial phase structure of
OAM states is used in several protocols covering a wide number
of fields, such as metrology,3 imaging,4–6 particle trapping,7 and
communication.8–14 The unbounded nature of the OAM is instead
the basis of its employment in quantum information. There-
fore, OAM modes are used in quantum communication,15–20

cryptography,21–23 simulation,24–26 computation, and information
processing.27–29 In particular, OAM-based encoding enlarges the
amount of information that a single photon can support, leading
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the helicoidal wavefront is coupled with a nontrivial distribution
of the spin angular momentum (SAM), also known as polariza-
tion, a new class of states called vector vortices (VVs) are
introduced. Given this peculiar coupling, VV beams turn out
to be intrasystem maximally entangled in the OAM and polari-
zation degrees of freedom.32 As for the OAM modes, VV beams
are applied in several areas, both in the classical and quantum
regime, such as optical trapping,33,34 communication,35,36 com-
puting,37–45 sensing, and metrology.46–50 Moreover, knowing
the importance of the Hong–Ou–Mandel (HOM) effect51 and its
applicability in quantum information science,52 the interference
behavior between structured photons has also been studied in
order to perform increasingly complex tasks.53–55

Despite the large number of applications, sources that pro-
duce single photons carrying OAM deterministically and with
high brightness are still under development.56 In fact, most of
the experimental implementations leverage the production of
single photons through spontaneous parametric down-conver-
sion (SPDC) in nonlinear crystals and modulating their states
using bulk systems, such as spatial light modulators57,58 and
q-plates,22,59,60 employing metasurfaces also for generating
entangled states in the OAM and polarization degrees of
freedom.61 However, SPDC is intrinsically probabilistic and
suffers from a trade-off between the brightness and the purity
of the produced single photons. Moreover, since in each pro-
cess, it is always possible to generate more than one photon,
these kinds of sources undermine the security of quantum cryp-
tography schemes.62 Semiconductor quantum dots (QDs) have
emerged as a platform to overcome these limitations. Acting as
artificial atoms when resonantly pumped with pulsed lasers,
QDs are capable of generating indistinguishable single photons
with high brightness in a nearly deterministic fashion.63–66

However, most of the efforts have been concentrated on the gen-
eration of single or entangled states encoding the information in
the photons polarization67–72 or in the temporal domain.73 Only
recently, works exploiting QDs to engineer OAM modes56

within a prepare-and-measure framework have appeared. In
particular, integrated sources based on microring resonators
embedded with QDs56 have been implemented, in which the
OAM states encoded in the generated single photons could not
be easily manipulated.

At variance with Ref. 56, we exploit commercial QD-based
single-photon sources and focus on the development of quantum
information processing protocols with VV beams. Specifically,
well-known OAM manipulation technologies have been exten-
sively used to develop high-dimensional quantum communica-
tion protocols,18,22 to reach a high flexibility in engineering
arbitrary qudit states,74,75 and to develop simulated processes
based on the quantum walk dynamics.24,25 Here, we combine
these technologies with an innovative and nearly deterministic
single-photon source, opening the way for further developments
of quantum information protocols that take advantage of high-
dimensional resources and of the benefits introduced by using
QDs. In particular, besides focusing on interfacing between
these two kinds of technologies, we go a step forward and study
the hybrid entanglement in high-dimensional Hilbert spaces im-
plementing a quantum gate both in the intra- and interparticle
regime (Fig. 1). Previously, states characterized by hybrid intra-
photon entanglement between the OAM and polarization degree
of freedom have been generated via SPDC processes.18,38,76,77

However, since this kind of source is probabilistic, the state
is certified in a heralded configuration that drastically decreases

the generation rate. On the contrary, the employment of a deter-
ministic single-photon source allows us to certify the state di-
rectly on the single counts, increasing the generation rate.
Moving toward the interparticle regime, QD sources have been
proved capable of generating on-demand photons pair entangled
in polarization encoding.78 However, the production of en-
tangled states in different degrees of freedom, such as OAM
and radial structure, easily obtained with SPDC sources,79–81

is still under development. Here, we show a probabilistic ap-
proach implementing a gate for an engineer-entangled state
in the OAM space. The versatility and flexibility in the gener-
ation and manipulation of indistinguishable photons are crucial
features for gate implementation. We then move a step forward
with respect to Ref. 56 by investigating the indistinguishability
of the generated photons and employing a versatile approach. In
our platform, the combination of QD-based single-photon
sources and well-known OAM manipulation devices allows
us to satisfy the aforementioned requirements.

This work is organized as follows. We start by studying the
single-photon intraparticle entanglement generation in VV
states. By means of q-plate devices,59,60 we couple the two com-
ponents of the angular momentum degree of freedom and gen-
erate VV beams [Fig. 1(a)]. Then, we move to the multi-photon
scenario. Preliminarily, we certify the efficiency of encoding

(a)

(b)

(a)

Fig. 1 Entanglement generation. (a) In the intraparticle entangle-
ment, the polarization and OAM subsystems are made to interact
using a q-plate. The two-dimensional state jψi1 is initialized with
the right polarization jRi ¼ j0i, while the qudit jψi2 is prepared
with a null OAM value j0i. The action of the unitary operator
consists of increasing or decreasing the OAM value in a polariza-
tion-dependent way. (b) In the interparticle regime, two photons
characterized by defined states in the hybrid space composed
of polarization and OAM interfere using a beam splitter. Fixing
the elements of the computational basis as j0i ¼ jL;−2i and
j1i ¼ jR ; 2i, both jψi1 and jψi2 are initialized with the qubit
state j0i, and after postselecting on the coincidence counts
a probabilistic entangling quantum gate is implemented. It is
worth noting that considering separately the polarization and
OAM Hilbert spaces of both photons, the proposed apparatus
implements a four-qubit gate.
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OAM states on single photons emitted by the QD in different
pulses of the pump beam through the evaluation of HOM inter-
ference visibility. Thus, we implement a two-photon probabi-
listic quantum gate, first introduced in Ref. 82, that is able to
generate OAM-based entangled photon pairs involving up to
four subsystems [Fig. 1(b)]. We verify both the single-photon
intraparticle and the two-photon entanglement by performing
quantum state tomography and evaluating the Bell inequality
in the Clauser–Horne–Shimony–Holt (CHSH) fashion.

2 Experimental Platform
In this section, we preliminarily describe the employed quasi-
deterministic single-photon source, by evaluating the intensity
autocorrelation and indistinguishability of the generated pho-
tons. Subsequently, we present the implemented scalable plat-
form in which, by interfacing well-known OAM manipulation
devices with the QD source, entangled intra- and interparticle
states are generated in the hybrid Hilbert space composed of
OAM and polarization.

2.1 Single-Photon Source

The single-photon source is a quantum-dot-based emitter em-
bedded in an electrically controlled cavity on a commercially
available Quandela e-Delight-LA photonic chip. A single
self-assembled InGaAs QD is surrounded by a two Bragg reflec-
tors made of GaAs∕Al0.95Ga0.05As λ∕4 layers with 36 (16)
pairs for the bottom (top) and positioned in the center of a
micropillar.63 The micropillar is connected to a larger circular
structure that is electrically contacted, enabling the tuning of
the emission frequency of the QD via the Stark effect. The sam-
ple is kept at 4 K in a low-vibration closed-cycle He cryostat
Attocube - Attodry800. The QD source is pumped with a
79 MHz-pulsed laser shaped with a QShaper (Quandela) 4f
pulse shaper to select a specific wavelength and achieve a band-
width of ∼100 pm. The optical excitation of the QD is achieved
in an LA phonon-assisted configuration with a laser at 927.2 nm
blue-detuned from the transition,83 which enables single-photon
generation by exciton emission at ð927.8� 0.2Þ nm [Fig. 2(a)].
The emitted photons are directly coupled in single-mode fiber
(SMF) and spectrally separated from the residual pumping laser
with bandpass filters. At the output of the e-Delight-LA system,
we measure a single-photon count rate of Rdet ¼ 4 MHz. The
fibered brightness of the single-photon source depends mainly
on the coupling efficiency into the SMF, the spectral separation
transmission of the single-photon stream from the pump
laser—whose effects we estimate in an overall efficiency of
ηsetup ∼ 52%—and the detector efficiency, estimated to be
around ηdet ∼ 38%. Using these figures, we estimate a first lens
brightness of B ¼ Rdet

Rexcηdetηsetup
∼ 26%, where Rexc is the pump

frequency. The overall quality of the single-photon generation
can be characterized by measuring the multi-photon emission
and indistinguishability. Using a standard Hanbury Brown and
Twiss setup, we measured a second-order autocorrelation of
gð2Þð0Þ ¼ ð1.26� 0.05Þ%. Such a figure is computed by nor-
malizing the zero-time delay coincidences to the side peaks co-
incidences between two consecutive near-resonant excitations
[Fig. 2(b)]. We also measured the indistinguishability between
photons successively emitted by the QD, through an HOM in-
terference experiment.51 Two consecutively emitted photons are
split by a beam splitter (BS) and coupled in SMFs, whose length

is chosen to delay one of them by ≈12.5 ns to ensure temporal
overlap on a second BS. At its outputs, photons are collected in
avalanche photodiode detectors (APDs) to record photon coinci-
dence counts. Therefore, we evaluate a two-photon interference

(a)

(b)

(c)

Fig. 2 Source HOM interference and second-order correlation
function. (a) (Left) The single-photon source is a commercial
device (Quandela): InGaAs quantum-dot based bright emitters
are embedded in (right) electrically contacted micropillars. The
source is pumped with a near-resonant (Δλ ¼ −0.6 nm) FWHM
10 ps 79 MHz-pulsed laser (red arrow). The single photons (red
dots) are emitted at a wavelength of 927.8 nm and are directly
coupled to an SMF. (b) Through a standard Hanbury Brown
and Twiss setup, we measure the second-order autocorrelation
histogram of our QD-based source as a function of the delay.
We obtain a single-photon purity of gð2Þð0Þ ¼ ð1.26� 0.05Þ%.
(c) Normalized correlation histogram, obtained via an HOM inter-
ference experiment, through which we measure a two-photon
interference fringe visibility between subsequent single photons
emitted by the QD source of VHOM ¼ ð93.05� 0.06Þ%. Moreover,
following Ref. 84, we obtain an indistinguishability value of
Ms ¼ ð95.5� 0.1Þ%.
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visibility derived from the correlation histogram [Fig. 2(c)] as
VHOM ¼ 1 − 2 C0

hCit→∞
, where C0 is the counts when the two pho-

tons are synchronized and hCit→∞ is the average peak counts for
relative temporal delays larger than one repetition rate of the
laser. We measure an interference visibility VHOM ¼ ð93.05�
0.06Þ%, which can be corrected to account for unwanted
multi-photon components,84 resulting in a photon indistinguish-
ability equal to Ms ¼ ð95.5� 0.1Þ%.

2.2 Experimental Implementation of OAM-Based
Platform

We experimentally implemented a flexible platform for the
study of single and multi-photon properties capable of imple-
menting a probabilistic entangling quantum gate. A visual
scheme of the setup is shown in Fig. 3.

For this purpose, the stream of single photons generated by
the QD is preliminarily split through a fiber BS, and OAM en-
coding is performed separately on the two outputs. In particular,
the input state, jH; 0i, having horizontal polarization and null
OAM value, is selected through single mode fibers and polar-
izing beam splitters (PBSs). In the engineering stage, by placing
a set of wave plates together with a q-plate on each arm, we are
able to independently generate two distinct OAM-encoded
single-photon states. In particular, a q-plate is a thin film of bi-
refringent material (in our case, nematic liquid crystals) charac-
terized by a nonuniform distribution of the optic axis across the
plane transverse to the light propagation direction. The angle
between the optic axis and the horizontal axis x of the device

follows the relation αðϕÞ ¼ α0 þ qϕ, where ϕ is the azimuthal
angle in the transverse plane, α0 is the optic axis orientation for
ϕ ¼ 0, and q is the topological charge, i.e., the winding number
of the optic axis for ϕ ∈ ½0,2π�. Owing to the inhomogeneity of
its optic axis distribution and to the resulting Pancharatnam–

Berry geometric phases, the q-plate develops on the OAM de-
gree of freedom of single photons an action that depends on
their polarization, according to the following expression:59,60

Q̂ ¼
X

m

e−i2α0 jm − 2qihmj ⊗ jLihRj þ ei2α0 jmþ 2qihmj

⊗ jRihLj; (1)

where jRi and jLi indicate right and left circular polarization
states, respectively, and jmi represents the OAM value. The
q-plates employed in the experiment are electrically tunable,
i.e., they implement the operation Q̂expðδÞ ¼ sin δ

2
Q̂þ cos δ

2
Î,

where Î is the identity operator and δ is the plate retardance that
is controlled by applying an external voltage to the device. In the
experiment, all the q-plates have δ ¼ π in order to maximize the
OAM-SAM conversion.

Therefore, an optical setup consisting of a quarter-wave plate
(QWP), a half-wave plate (HWP), and a q-plate with q ¼ 1,
acting on the input state jH; 0i, is able to engineer arbitrary
superpositions of jL;−2i and jR; 2i as given by

jΦi ¼ cosðθ∕2ÞjL;−2i þ eiψ sinðθ∕2ÞjR; 2i; (2)

Fig. 3 Experimental setup. Single-photon states at a wavelength of 927.8� 0.2 nm are generated
using a QD source pumped with a shaped 79 MHz-pulsed laser at 927.2 nm. Then, a fiber BS
splits the photons between the two arms of the setup, and after passing through a PBS, the input
states have horizontal polarization and OAM eigenvalue m ¼ 0. In both paths, a series of QWP,
HWP, and q-plate are used to produce OAM modes of the form reported in Eq. (2), while in one of
the arms, a delay line (τ) is inserted in order to synchronize on the BS the photons emitted in
different pulses of the pump beam. The intraparticle regime is investigated removing the fiber
BS and performing all the experiment on a single line, involving the first input and output of
the BS, as shown in the below panel. On the other hand, in the interparticle experiment, the pho-
tons are sent to the fiber BS, and the gate is implemented interfering on the second BS. After
passing through the BS, the state of the photons is analyzed, coupled to SMFs and detected
by APDs. The measurement setup consists in two different stages, a series of q-plate, QWP,
HWP, and PBS are used to study the OAM states of the photons coupled with the polarization,
while a QWP, an HWP, and a PBS compose the polarization analysis setup. In the interparticle
regime, only OAM analysis is performed on the photon pairs, while in the intraparticle regime both
analysis setups are used to separately investigate the polarization and OAM content of single
photons, as shown in the lower panel.
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where θ ∈ ½0; π� and ψ ∈ ½0, 2π� can be set by properly orienting
the optic axes of QWP and HWP. In this way, intrasystem
entanglement between OAM and SAM degrees of freedom
of single photons can be easily achieved. In particular, for
θ ¼ π∕2, the superpositions given in Eq. (2) correspond to
the above mentioned VV states.

Subsequently, the two arms are synchronized by introducing
a fixed delay in fiber and a tunable delay in air and then sent to
a bulk BS used to probabilistically generate an entangled state
between the two photons in the hybrid space of OAM and SAM
by a postselection on the measured events.

Finally, in both single- and two-photon experiment, the state
reconstruction is performed by using q-plates and polarization
tomography setups comprising a QWP and an HWP followed
by a PBS. In fact, the OAM tomography setup is implemented
by adding a q-plate in front of the polarization tomography setup
to convert the correlations present in the OAM degree of free-
dom on the polarization space [Eq. (1)]. The efficacy of this ap-
proach was demonstrated in Ref. 85 by exploiting pure-phase
holograms displayed on photographic plates. In particular, in
the intraparticle regime, the fiber BS is removed, and the en-
tangled state is generated along the lower arm of the interferom-
eter. Both the polarization and OAM analysis of such states is
performed along one BS output by inserting the polarization
tomography setups followed by the OAM tomography one.
Instead, the analysis of the interparticle entangled state is per-
formed by placing only the OAM tomography setups on each
BS output. After the projection, the photons are collected in
SMFs and detected using APDs. This scheme is used both to
study the entanglement content of the states through Bell in-
equalities violation and to perform quantum state tomographies.

3 Entanglement Certification
In this section, we provide the theoretical description and report
the results obtained studying the intraparticle and interparticle
hybrid entanglement generated with the experimentally imple-
mented platform. In all cases of interest, entanglement is

certified through a violation of a CHSH Bell inequality and
complete state tomography.

3.1 Vector Vortex Beam: Intrasystem Entanglement

The first investigation regards the generation of VV beams en-
coded into the single-photon states generated by the QD source.
The VV beams are superpositions of two different OAM beams
associated with orthogonal circular polarizations [see, for exam-
ple, Eq. (2)]. Here, the two systems individuated by the OAM
eigenstates fj − 2i; j2ig and the polarization states fjRi; jLig
can be exploited for encoding two qubits. In this way, it is pos-
sible to define a complete basis of maximally entangled states
between these two degrees of freedom. The set of Bell-like
states is reported in Fig. 4, in which the nonuniform polarization
distribution in the transverse plane is highlighted.

In our setup, to increase the generation rate, the signal is sent
only in one of the two arms of the interferometer by removing
the first fiber BS (see Fig. 3). The VV beams are prepared by
making horizontally polarized photons passing subsequently
through a QWP, an HWP, and a q-plate with q ¼ 1. In this
way, the state produced by the device is described by θ ¼ π∕2
in Eq. (2) and a value of ψ which depends on the α0 of the
q-plate optic axis. This additional phase term is compensated
by a further HWP (not shown in Fig. 3) in order to have
ψ ¼ 0. The final entangled state between OAM and polarization
will be

jΦþi ¼ 1ffiffiffi
2

p ðjL;−2i þ jR; 2iÞ: (3)

Although such an entanglement structure is not associated
with nonlocal properties (since it is encoded in a single carrier),
these correlations can be detected using Bell-like inequalities.
We refer to such type of quantum correlations as intraparticle
entanglement.

The adoption of a nearly deterministic single-photon source
allows us to perform the intraparticle analysis without the need
of heralding measurements or postselection. The latter are

(a) (b) (c)

Fig. 4 Intraparticle entangled state: (a) intensity and polarization patterns of the Bell states basis
in the combined OAM and polarization space. As highlighted by the red box, we focused our
attention on the jΦþi state. (b) Real and (c) imaginary parts of the measured density matrix
for the jΦþi state reconstructed via quantum state tomography. The fidelity between the recon-
structed state and the theoretical one is equal to F ¼ 0.9714� 0.0007, where the standard
deviations are estimated through a Monte Carlo approach assuming a Poissonian statistics.
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unavoidable procedures for generating single-photon states with
high purity via probabilistic sources. This reduces drastically the
losses allowing to reach a rate of ≃99 kHz of VV states gen-
eration (see the Supplementary Material for further details).
The quality of the state and of its entanglement structure has
been certified by the measurement stage setup shown and de-
scribed in Sec. 2. In particular, we performed a quantum state
tomography by analyzing the OAM and the polarization inde-
pendently via cascaded measurement stages as in the lower
panel of Fig. 3. The resulting density matrix is reported in Fig. 4,
and the relative fidelity, computed by subtracting for dark
counts, is F ¼ 0.9714� 0.0007. Moreover, we also certified
the intraparticle entanglement by evaluating a CHSH-like in-
equality. Collecting data for 20 s, we obtained a raw violation
of SðrawÞ ¼ 2.736� 0.008, which exceeds the separable bound
by 92 standard deviations, while the value obtained by sub-
tracting the background signal is S ¼ 2.792� 0.008, which
exceeds the classical bound by 99 standard deviations. The
results are summarized in Table 1.

3.2 Certification of Photon States Generation

In quantum information processes, an important computational
resource relies on the capability of manipulating multiple pho-
tons and making them interact. Therefore, in this section, we
assess the capacity of codifying specific OAM states on photons
generated by subsequent pulsed pumping of the QD. This is per-
formed by evaluating the visibility of HOM interference in a BS,
which is equivalent to a pairwise overlap estimation in a SWAP
test.86 There are some previous examples of HOM experiments
with single-photon states carrying OAM,39,87 but our tests are
among the first to be applied to vector beams generated by a
deterministic single-photon source.

Let us first briefly review the effect of an unbiased BS on
the field annihilation and creation operators, â; â† and b̂; b̂†.
The relation between input modes fa; bg and output modes
fc; dg can be expressed as (Fig. 2)

â†↦
1ffiffiffi
2

p ðĉ† − d̂†Þ; b̂†↦ 1ffiffiffi
2

p ðĉ† þ d̂†Þ: (4)

By considering two photons at the two inputs of the BS, the
signature of the interference is a change in the probability to
detect photons in different outputs (see the Supplementary
Material). In particular, two photons are indistinguishable if
their states, associated with each degree of freedom, are the

same from the point of view of the observer. To approach this
condition in our setup, a delay line is used to synchronize the
photons in the temporal domain. This is mandatory because the
two single photons are emitted by the QD at different times.
However, when the photons are characterized by an OAM value
different from zero and superposed polarizations, it is necessary
to take into account the effect of reflections. Indeed, in a physi-
cal BS, the semireflective mirror flips the elicity of both OAM
and polarization. In other words, after one reflection, we have
fjRi; jLig → fjLi; jRig and j � 2i → j � 2i, while horizontal
and vertical polarizations are eigenstates of this operation with
eigenvalues of opposite signs. Then, we have that the creation
operators are changed as follows:

â†R; b̂
†
R↦

1ffiffiffi
2

p ðĉ†R − d̂†LÞ;
1ffiffiffi
2

p ðĉ†L þ d̂†RÞ;

â†L; b̂
†
L↦

1ffiffiffi
2

p ðĉ†L − d̂†RÞ;
1ffiffiffi
2

p ðĉ†R þ d̂†LÞ;

â†m; b̂†m↦
1ffiffiffi
2

p ðĉ†m − d̂†−mÞ;
1ffiffiffi
2

p ðĉ†−m þ d̂†mÞ: (5)

Since the indistinguishability of photons generated by the
source has already been checked in Sec. 2.1, here we are inter-
ested in computing the overlap between VV states encoded in
different photons. As for the previous analysis, the OAM and
polarization degrees of freedom are controlled through a series
of QWP, HWP, and q-plate placed in each arm of the inter-
ferometer. This allows us to prepare the desired state for each
photon.

Considering the BS action in Eq. (5), we expect no interfer-
ence when the two photons are prepared as jR; 2iajR; 2ib, since
the reflected beam and the transmitted one in the outputs c and d
will display orthogonal states. Conversely, the HOM effect oc-
curs when the initial state is jR; 2iajL;−2ib. The correlation his-
tograms, obtained via an HOM interference experiment, for both
input states jR; 2iajR; 2ib and jR; 2iajL;−2ib are reported in
Figs. 5(a) and 5(b). The visibility of such HOM experiments
quantifies the variation, from the maximum to minimum over-
lapping between the wave functions, of the probability of
detecting photons in different outputs. The obtained visibilities
are V jR;2i;jR;2i ¼ −4%� 1% and V jR;2i;jL;−2i ¼ 90.1%� 0.3%,
respectively. We repeat the same interference scheme with VV
states, such as jΦþi and jΦ−i (see Fig. 4). For these classes
of states, we note that they are symmetric with respect to the
BS operation. This means that the reflected photon and the
transmitted one always display the same state if they are indis-
tinguishable at the input faces of the BS (see the Supplementary
Material). The resulting HOM correlations for the input state
jΦþiajΦ−ib are reported in Fig. 5(c) and the achieved visibility
is equal to V jΦþi;jΦ−i ¼ 0.70%� 0.10%, as expected. On the
contrary, when the two photons are prepared in the same VV
states such as jΦþiajΦþib, the theoretical HOM visibility is
1. We measured V jΦþi;jΦþi ¼ 88.2%� 0.3%, as reported
in Fig. 5(d).

A further peculiar configuration is when the interfering input
states are neither equal nor orthogonal, for which we expect
a V ¼ 1

2
. This is the case of two photons prepared in the

input ports as jΦþiajR; 2ib. The measured visibility is
V jΦþi;jR;2i ¼ 44.5%� 0.6% [Fig. 5(e)].

Table 1 Experimental results. The results are obtained both for
the intraparticle and interparticle regimes. The measurement ac-
quisition time T , the generation rate, the values for the Bell
parameter (S), and the fidelity are reported. In particular, the vio-
lation SðrawÞ is computed using raw data, while the parameter S is
obtained by subtracting the background signal or the accidental
coincidence. The fidelity value is computed by comparing the re-
constructed density matrix with the triplet Bell state.

State T (s) Rate (Hz) SðrawÞ S F

Intra 20 99,000 2.736(8) 2.792(8) 0.9714(7)

Inter 400 146 2.516(6) 2.779(6) 0.935(2)
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3.3 Two-Photon Quantum Gate: Intersystem
Entanglement

The configuration described in the previous section can be ex-
ploited to implement a multi-qubit probabilistic quantum gate
able to generate an entangled state in the hybrid space composed
by OAM and polarization. In particular, by postselecting on the
two-photon coincidence events resulting from the preparation
jR; 2iajR; 2ib, and noticing that one of the outputs is affected
by a further reflection that introduces a phase π between hori-
zontal and vertical polarization, and inverts the OAM value, the
following state is generated:

jΦi ¼ jL;−2icjR; 2id þ jR; 2icjL;−2idffiffiffi
2

p

¼ j1,0ij0,1i þ j0,1ij1,0iffiffiffi
2

p ; (6)

where we took off the direction subscript fc; dg and we iden-
tified jL;−2i ¼ j1,0i and jR; 2i ¼ j0,1i. Therefore, the gener-
ated state is entangled in the space spanned by the tensor
product of the four-dimensional (4D) qudits encoded in the
combined OAM and polarization degrees of freedom for each
photon. However, in the hybrid OAM-SAM space, this state

can also be considered equivalent to a two-dimensional (2D)
maximally entangled state. Indeed, relabeling the state jL;−2i
as qubit j0i and the state jR; 2i as qubit j1i, the state in Eq. (6)
turns out to be equivalent to a triplet Bell state,

jΦi ¼ jL;−2icjR; 2id þ jR; 2icjL;−2idffiffiffi
2

p ¼ j0ij1i þ j1ij0iffiffiffi
2

p :

(7)

Therefore, this state exhibits quantum correlations that could
be detected by performing a Bell-like test that is used as an
entanglement witness. In particular, we evaluated a CHSH-like
inequality performing the projective measurements placing the
OAM measurement stage, shown in Fig. 3, on both BS outputs.
Collecting data for 400 s and with a coincidence rate of 146 Hz,
we obtained a raw violation of SðrawÞ ¼ 2.516� 0.006, which
exceeds the classical bound by 86 standard deviations. The
value obtained by subtracting the accidental coincidences,
mainly due to background noise and quantified measuring co-
incidences between signals in the region between two consecu-
tive peaks (with a relative delay of ∼6 ns), is S ¼ 2.779�
0.006, which exceeds the separable bound by 130 standard
deviations.
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Fig. 5 HOM interference for OAM states: measured coincidences at the output of the final BS, see
Fig. 3, for different input states in the hybrid space of OAM and polarization. A perfect HOM in-
terference can be obtained only when the photon states are indistinguishable from the point of
view of the observer. By knowing the BS action on circular polarization and OAM (see the
Supplementary Material), we observe a near-unitary visibility when the photons are prepared
in the same eigenstate of the BS reflection operation jΦþia jΦþib (panel d), or when the initial
states have opposite circular polarization and OAM value [panel (b)]; while near-zero visibility
is reported in panels (a) and (c) for initial states jR ; 2ia jR; 2ib and jΦþia jΦ−ib , respectively.
Moreover, we also analyze the hybrid configuration in which one photon is prepared in the state
jR ; 2i and the other in the VV state jΦþi. In the latter case, the expected number of coincidences is
half of the one obtained for distinguishable photons [panel (e)]. The reported intensity patterns are
associated to constructive and destructive interference for both initial states jR; 2ia jL;−2ib and
jΦþia jΦþib .
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Moreover, we also performed a quantum state tomography
of the state using the same experimental configuration.
The measurement apparatus selects on the 4D subspace
fjR; 2i1; jL;−2i1g ⊗ fjR; 2i2; jL;−2i2g in which the interpar-
ticle entangled state lives. In fact, it contains the significantly
nonzero elements of the whole density matrix of the states.
Other terms outside such a subspace come from the imperfect
conversion of the OAM by the q-plates. The probability of such
components in the state can be kept very low, and thus can be
neglected, by tuning the δ parameters of the q-plates toward the
π value. Subtracting for accidental coincidences, the estimated
fidelity changes from F ðrawÞ ¼ 0.869� 0.002 to F ¼ 0.935�
0.002. The retrieved density matrix is shown in Fig. 6. The re-
sults are summarized in Table 1. It is worth noting that the de-
crease in the coincidence rate is mainly due to the coupling
efficiency into SMFs in the detection stage of about 45%
(see the Supplementary Material for further details). This lower
value depends on both the limited conversion efficiency of the
QPs and on the higher divergence to which beams endowed with
OAM are subjected. Other loss effects that need to be included
are the q-plate transmission of about 75% acting on each pho-
ton. Therefore, looking toward gates with more than two pho-
tons, where the weight of the losses increases exponentially in
the number of photons, the rate could be improved by compen-
sating for losses due to the divergence and adopting experimen-
tal devices with limited losses.

4 Conclusions
In this paper, we experimentally implemented a platform
capable of generating on-demand photonic quantum states in
high-dimensional Hilbert spaces. This was achieved by combin-
ing a bright QD source with q-plates, devices capable of cou-
pling OAM and polarization of single photons, placed in an
interferometric configuration. After assessing the properties
of the source, such as the multi-photon component, and the in-
distinguishability of the emitted photons, we focused on the

generation and analysis of entangled states in the hybrid space
composed of OAM and polarization. The setup allows us to
study both the intra- and interparticle entanglement. For the
former, we generated a VV state using only the engineering
stage placed in one arm of the interferometer, while for the
latter we exploited the interference between modulated single
photons generated by the QD in two consecutive excitations
to implement a probabilistic quantum gate capable of producing
entangled two-photon states. The characterization of the inter-
ferometer scheme was preliminarily performed by evaluating
the overlap between quantum states of single photons encoded
in the hybrid Hilbert space. In particular, we observed high
HOM visibilities for single photons that turn out to be indistin-
guishable in the detection stage, while very low visibility was
observed for orthogonal quantum states. The qualities of both
intra- and interparticle hybrid entangled states were evaluated
by performing quantum state tomography and using Bell tests
to estimate the CHSH inequality. The high values of fidelities
and inequality violations highlight the performance of the pro-
posed setup for the engineering of high-dimensional entangled
states.

In summary, we proposed and implemented experimentally
a flexible platform able to generate both nearly deterministic
single-photon states that exhibit entanglement between OAM
and SAM degrees of freedom and two-photon entangled states.
The employed simple and effective scheme could be extended to
the multi-photon regime, opening the way to high-dimensional
multi-photon experiments, whose scalability is extremely
demanding for platforms based on probabilistic sources. In
conclusion, the results demonstrated in the present paper can
provide advances both for fundamental investigations and
quantum photonic applications.

Code, Data, and Materials Availability
Data underlying the results presented in this paper may be
obtained from the authors upon reasonable request.

(a) (b) 

Fig. 6 Interparticle entangled state. (a) Real and (b) imaginary parts of the measured density ma-
trix for the two-photon state in the hybrid OAM-polarization space reported in Eq. (7), these are
reconstructed via quantum state tomography. The fidelity between the reconstructed state and
the theoretical one is equal to F ¼ 0.935� 0.002, where the standard deviation is estimated
through a Monte Carlo approach assuming a Poissonian statistics.
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