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ABSTRACT
Introduction: Invasive Candida Infections (ICIs) have undergone a series of significant epidemiological, 
pathophysiological, and clinical changes during the last decades, with a shift toward non-albicans 
species, an increase in the rate of exogenous infections and clinical manifestations ranging from 
candidemia to an array of highly invasive and life-threatening clinical syndromes. The long-acting 
echinocandin rezafungin exhibits potent in-vitro activity against most wild-type and azole-resistant 
Candida spp. including C.auris.
Areas covered: The following topics regarding candidemia only and ICIs were reviewed and addressed: 
i) pathogenesis; ii) epidemiology and temporal evolution of Candida species; iii) clinical approach; iv) 
potential role of the novel long-acting rezafungin in the treatment of ICIs.
Expert opinion: Authors’ expert opinion focused on considering the potential role of rezafungin in the 
evolving context of ICIs. Rezafungin, which combines a potent in-vitro activity against Candida species, 
including azole-resistant strains and C.auris, with a low likelihood of drug–drug interactions and a good 
safety profile, may revolutionize the treatment of candidemia/ICI. Indeed, it may shorten the length of 
hospital stays when clinical conditions allow and extend outpatient access to treatment of invasive 
candidiasis, especially when prolonged treatment duration is expected.
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1. Introduction

Like many infectious diseases, Invasive Candida Infections 
(ICIs) have undergone a series of significant epidemiological 
and clinical changes during the last decades [1]. Indeed, while 
ICIs were trivial mucocutaneous infections before the advent 
of cancer chemotherapy, nowadays ICIs range from candide-
mia to an array of highly invasive infections that cause 
a variety of life-threatening clinical syndromes [2–4].

Moreover, in recent decades, ICIs have exhibited an increas-
ing incidence rate (from approximately 2.18 cases per 100,000 
inhabitants per year in the 1990s to 3.22 in the last decade for 
candidemia [5]), primarily attributed to the expanding popula-
tion of high-risk and fragile individuals. This population 
encompasses not only severely immunocompromised hosts 
such as hemato-oncological neutropenic patients and solid 
organ transplant recipients, but also critically ill patients and 
those with multiple comorbidities admitted to Internal 
Medicine (IM) wards [6–11].

Although ICIs other than ‘candidemia only’ are mostly 
abdominal infections, all body sites can be affected by 
Candida and many other deep localizations can be observed 

[2,3]. Moreover, the increasing availability of drug-delivery or 
prosthetic devices (e.g. long-term central venous catheters) 
has resulted in this microorganism being involved in 
a variety of foreign body infections that significantly added 
to the complexity of ICI clinical manifestations [12]. As 
a paradigmatic example, Candida spp represented up to 27% 
of all central-line – associated bloodstream infection (CLABSI) 
in US adult ICUs (from 0.216 to 0.281 density rates per 1,000 
central-line days from 2011 to 2017) [13].

In this scenario, Candida albicans remains the most fre-
quent cause of ICI (ranging from approximately 40% to 60% 
[1,14,15]), but the prevalence of other species, some of which 
exhibiting alarming features of antimicrobial resistance, has 
been increasing over time [1,5,16].

Ultimately, ICIs, particularly when manifesting as candide-
mia, are still associated with unacceptably high crude mortal-
ity rates (approximately 40% overall) [5] and significant 
increases in healthcare costs, underscoring the importance of 
early diagnosis and treatment [17]. On the other hand, in 
recent years the antifungal drug arsenal has been enriched 
with new agents. Among these, rezafungin is a long-acting 
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echinocandin that might have a favorable impact on the 
treatment of new emerging resistant Candida species as well 
as on healthcare costs [18,19].

Herein, we reviewed the recent changes in the epidemiol-
ogy and clinical features of ICIs as well as the improvements 
brought by new tools for the diagnosis of these infections. 
Finally, we also provided some insights on the potential role of 
the long-acting echinocandin rezafungin in this complex 
scenario.

2. Background

This brief paragraph is focused on how Candida spp enter the 
bloodstream and/or cause infections (endogenous vs exogen-
ous route), while a complete review of the pathogenesis of ICIs 
is out of the scope of this review.

ICIs commonly refer to bloodstream infections caused by 
Candida species. These infections typically occur when 
Candida organisms breach the damaged intestinal barrier, 
which can be caused by various factors such as cancer che-
motherapy, surgery, bacterial toxins, and local vascular perfu-
sion disorders (endogenous route) (Figure 1) [4]. When these 
microorganisms enter the bloodstream, the resulting candide-
mia may be cleared by antifungal therapy and intravascular 
catheter removal or may persist long enough to cause 
endophthalmitis, pyelonephritis, peritonitis and intra- 
abdominal infections, meningitis, encephalitis, endocarditis, 
osteoarthritis, pneumonia, empyema, mediastinitis, and peri-
carditis [2,3]. The endogenous route mostly applies for 
C. albicans, Candida tropicalis, Candida glabrata 
(Nakaseomyces glabrata), Candida lusitaniae (Clavispora lusita-
niae), Candida parapsilosis and, to a lesser extent, Candida 
krusei (Pichia kudriavzeveii) (Table 1).

New advancements in the pathophysiology of Candida 
have shown that this microorganism may also cause infections 
via an exogenous route, that is through healthcare workers’ 
hands or central line colonization and subsequent spread into 
the blood (Figure 1). This is especially true for Candida auris, 
C. parapsilosis, Candida lusitaniae (C. lusitaniae) and Candida 
haemulonii, which often cause nosocomial outbreaks, fre-
quently due to species resistant to antifungals and for which 
infection control measures are of paramount importance 
[16,20] (Table 1).

Article highlights

● The advances in healthcare, the evolution of patient risk factors and 
the ability of some Candida species to spread within the hospital 
environment have led to a change in the epidemiology of Invasive 
Candida Infections (ICIs) in the last decades.

● The shift toward non-albicans species may be influenced by the 
different and evolving pathophysiology behind the development of 
candidemia/ICI.

● Rezafungin is a novel long-acting echinocandin with a potent in-vitro 
activity against most Candida spp., including those azole-resistant 
and Candida auris.

● Rezafungin combines the strengths of the echinocandin class with 
a prolonged elimination half-life, a low likelihood of drug–drug 
interactions and a robust safety profile.

● Registrative studies showed non-inferiority of rezafungin to caspo-
fungin, with earlier candidemia clearance in patients on rezafungin 
than those receiving caspofungin.

● Compared to caspofungin, survivors hospitalized in the ICU receiving 
rezafungin showed a reduction in ICU length of stay.

● Rezafungin may allow earlier hospital discharge and management of 
complex fungal infections in an outpatient setting, especially when 
prolonged treatment duration is expected.

● A possible, although not yet quantifiable, reduction in the costs 
associated with ICIs and length of hospital stay may be obtained 
with rezafungin.

Figure 1. Pathogenesis and hematogenous routes of Candida species bloodstream dissemination with possible secondary infections as endocarditis (A), retinitis (B), 
skin fungal vasculitis (C) with macular/papular lesion (D) and multifocal hepatitis (E). CVC: central venous catheter; PICC: peripherally inserted central catheter.
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Considering C. parapsilosis as a possible cause of infec-
tion also through the endogenous route is justified by the 
presence of this species as a causative agent of hepatos-
plenic candidiasis [21], the most common form of chronic 
disseminated candidiasis (CDC), which is often associated 
with negative blood cultures since hematogenous dissemi-
nation is limited to the portal vein system [22].

For the purpose of this article, following recently adopted 
definitions [23], we described the epidemiology, clinical 
aspects and therapy of candidemia without apparent second-
ary localizations (‘candidemia only’) separately from deep- 
seated ICIs, whether or not associated with Candida species 
isolated from the bloodstream.

3. Epidemiology of candidemia only

Candidemia is one of the most common healthcare- 
associated invasive fungal infections, with incidence varying 
according to geographical region, local epidemiology, and 
outbreak occurrence. A recent report indicates an overall 
pooled incidence rate of 3.88 cases per 100,000 inhabitants 
per year (ranging from 1.0 to 10.4). There is an observed 
increasing trend in incidence rates from the 1990s (median 
2.18) compared to subsequent periods (median 4.67 in 
the year 2000–2010 and 3.22 in the last decade) [5]. This 
increased incidence may be due to the increase in high-risk 
populations, such as critically ill and elderly patients and 
those with multiple comorbidities, along with nosocomial 
outbreaks.

Although the majority of the candidemia cases are hospital- 
acquired, with a reported incidence of 0.17–2.7 episodes per 
1,000 discharges [24], community-acquired candidemia is an 
emerging condition driven by the increasing use of long-term 
intravenous devices such as tunneled intravascular and per-
ipherally-inserted central catheters [3].

While C. albicans continues to be the most prevalent 
Candida species in both the adult and pediatric population, 
there has been a notable shift in species distribution over the 
past few decades. Specifically, there have been a decrease in 
the proportion of C. albicans and an increase in C. parapsilosis 
sensu lato and C. glabrata (N. glabrata). This change can be 
attributed to factors such as the use of antifungal medications, 
specific risk factors in patients such as immunosuppression, 
severity of the underlying conditions, chronic respiratory dis-
eases, or nosocomial outbreaks [1,5]. This finding has impor-
tant clinical implications, as C. parapsilosis and C. glabrata 

(N. glabrata) may show decreased susceptibility to echinocan-
dins and azoles, respectively [1].

Mareković and colleagues [1] reported the distribution typi-
cal for Southern Europe, with C. parapsilosis ranking second 
and C. glabrata (N. glabrata) third in frequency. By contrast, in 
Northern Europe, United States, and Australia, C. albicans has 
been gradually replaced by C. glabrata (N. glabrata), 
ranking second in these geographical areas. Likewise, in the 
FUNGINOS survey conducted in Switzerland, Adam and col-
leagues observed a significant decrease from 60% to 53% in 
the proportion of C. albicans. At the same time, C. glabrata 
(N. glabrata) increased from 18% to 27%, particularly in the 
age group of 18–40 years and individuals above 65 years old. 
On the other hand, the frequency of other non-albicans 
Candida (NAC) species remained stable throughout the study 
period [25].

A previous epidemiological study in high-risk patients with 
hematological malignancies by the Epidemiological 
Surveillance of Infections in Hemopathies (SEIFEM) group in 
Italy demonstrated that NACs accounted for 67% of the can-
didemia episodes (133 overall) and C. albicans for 33% only. 
The most frequent non-albicans species were C. parapsilosis, 
C. glabrata (N. glabrata), C. krusei (P. kudriavzeveii) (intrinsically 
resistant to fluconazole) and C. tropicalis. Strains resistant to at 
least one azole were 18%, mostly represented by NAC, with 
only one C. parapsilosis strain resistant to amphotericin 
B (AmB) and none to echinocandins [11].

In IM wards, candidemia is a growing concern, as many 
more patients have risk factors for candidemia than in the 
past. In this setting, the most frequent pathogen was 
C. albicans (62%), followed by C. parapsilosis (17%), 
C. glabrata (N. glabrata) (13%), and C. tropicalis (5%), suggest-
ing that the distribution in these patients is the same as in the 
past, at least in Italy [14].

Furthermore, patients with early-onset candidemia may 
present with a new risk factor, represented by Chronic 
Obstructive Pulmonary Disease (COPD) [26], and with signifi-
cantly higher mortality due to treatment delays.

Clinical infections caused by NAC exceed those caused by 
C. albicans also in the Asia-Pacific region, with a high inci-
dence of C. tropicalis [27]. A nation-wide multicenter surveil-
lance of NAC blood isolates was performed at seven 
university hospitals in Korea between 2010 and 2016: 
authors found that C. tropicalis was the most common NAC 
species (36.4%), followed by C. glabrata (N. glabrata) (28.5%), 
C. parapsilosis (24.7%), and C. krusei (P. kudriavzeveii) (2.6%). 

Table 1. Exogenous versus endogenous route of invasive Candida infection: differences in etiologies, epidemiology, and antifungal resistance.

Feature Endogenous route Exogenous route

Involved Candida 
species

C. albicans, C. glabrata (Nakaseomyces glabrata), Candida lusitaniae (Clavispora 
lusitaniae), C. tropicalis, C. parapsilosis, C krusei

C. auris, C. haemulonii, C. parapsilosis, Candida 
lusitaniae (Clavispora lusitaniae)

Antifungal 
resistance

Uncommon* Common

Habitat Commensal of the gastrointestinal tract Commensal of the skin
Healthcare- 

associated 
infection

Uncommon Common

Environmental 
contamination

Uncommon Common

Note: *C. glabrata is the species more frequently associated to azole and echinocandin resistance. 
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Compared the previous 6 years, the proportion of C. glabrata 
(N. glabrata) increased (from 21.3% to 28.5%) while that of 
C. parapsilosis decreased (from 36.5% to 24.7%). Fluconazole 
non-susceptible isolates accounted for 38.6% of isolates [28]. 
Similar results have been reported in a multi-center prospec-
tive observational study carried out in 13 centers from 
Brunei, Philippines, Singapore, South Korea, Taiwan, 
Thailand, and Vietnam, where authors showed that non- 
albicans species were the most common isolates from blood-
stream infections, with C. tropicalis as the predominant spe-
cies. Overall, the most common species were C. albicans 
(35.9%), C. tropicalis (30.7%), C. parapsilosis (15.7%), and 
C. glabrata (N. glabrata) (13.6%) [29]. Slightly differently, 
distribution of candidemia in a Malaysian tertiary care hos-
pital revealed predominance of C. parapsilosis as the most 
common agent of candidemia (29.2%), followed by 
C. albicans (20.1%), C. tropicalis (18.7%), C. glabrata 
(N. glabrata) (6.0%) [30].

Among agents of candidemia, diverse NAC species present 
some specific features which reflect different pathophysiology 
(Figure 1) and influence the observed differences in 
epidemiology.

Indeed, C. parapsilosis complex is a biofilm-producing and 
environmental contaminant species able to colonize central 
venous catheters (CVCs) and the hands of healthcare workers, 
causing systemic infections not only by the endogenous but 
also by the exogenous route (Figure 1). These features may 
contribute to clonal outbreaks [31] and underline the need of 
implementing measures to avoid the nosocomial spread of 
this species [32].

Moreover, the ability of C. parapsilosis to produce biofilm 
seems to be related to an increase in virulence and to a worse 
outcome when these high-producing biofilm isolates are 
involved in candidemia [33].

Antifungal susceptibility testing commonly shows border-
line susceptibility to echinocandins; importantly, although flu-
conazole resistance was generally considered to be 
uncommon, up to one-third and one-quarter of the isolates 
recently showed resistance to fluconazole or voriconazole, 
respectively [31]. A recent paper investigating candidemia in 
SARS-CoV-2 critically ill patients showed that the incidence of 
candidemia was significantly higher in critically ill COVID-19 
patients on VV-ECMO than in critically ill COVID-19 patients 
who did not meet the criteria for VV-ECMO (16/45, 36% vs 13/ 
93, 14%, respectively), and that C. parapsilosis accounted for 
the majority of the candidemia events [34]. A 6-year retro-
spective study performed in China showed that C. parapsilosis 
was the predominant pathogen in patients with persistent 
candidemia [35].

C. tropicalis is the species with the highest mortality rates in 
patients with candidemia, is increasingly reported in fre-
quency and shows growing resistance to fluconazole [36].

C. glabrata (N. glabrata) shows higher echinocandin resis-
tance than other Candida species (1.7–3.5%), possibly due to 
the preferential use of echinocandins for the treatment of 
these infections, encouraged by increasing azole resistance 
in this species, ranging from 5.6% to 15.7% [27,37,38]. 
Furthermore, C. glabrata (N. glabrata) showed a high propen-
sity to readily mutate in vivo, especially in cases of intra- 

abdominal infections, where source control may be delayed 
or drug underexposure may be present [37,39].

Most commonly, C. tropicalis and C. glabrata (N. glabrata) 
cause candidemia after passing through damaged intestinal 
barrier (Figure 1).

However, the most alarming agent for candidemia nowa-
days is C. auris, firstly reported in 2009 from the external ear 
canal of a patient in Japan and belonging to the critical 
priority group according to the recent WHO fungal priority 
pathogens list [40,41]. C. auris is characterized by several 
distinct features. Firstly, it has high transmissibility, having 
the ability to potentially colonize patients indefinitely and 
exhibiting resistance in the healthcare environment. This is 
due to prolonged survival on surfaces and its ability to resist 
common disinfectants [42] (Figure 1). Secondly, the identifi-
cation of C. auris with conventional biochemical and micro-
biological techniques presents challenges [43]. Thirdly, 
C. auris demonstrates a high rate of antifungal resistance, 
with almost universal resistance to fluconazole (90%), fre-
quent resistance to AmB (30%), and the potential for resis-
tance to echinocandins (5%), particularly in cases of pre- 
exposure. The emergence of pan-drug-resistance in C. auris 
is indeed alarming. Isolates resistant to three major classes of 
antifungal agents have recently been described in the US and 
other countries [44–46]. A healthcare transmission of pan- 
resistant and echinocandin-resistant C. auris has been 
reported [47], while a recent study analyzed the genome 
and drug-resistance profile of 19 isolates of C. auris collected 
over 72 days from a multi-visceral transplant recipient with 
refractory fungal peritonitis. Authors found that two C. auris 
isolates were resistant to four major classes of antifungal 
agents (azoles, echinocandins, polyene, and flucytosine) 
while several other strains exhibited resistance to three 
major drug classes [48].

Lastly, C. auris has an unprecedented capacity to cause 
nosocomial outbreaks, which are difficult to control in many 
countries and can persist for extended periods, even years 
[49,50].

These outbreaks, frequently reported during the COVID- 
19 pandemic, occurred through environmental reservoirs 
(sometimes difficult to pinpoint, such as thermometers), 
extensive colonization in humans detected in axilla, groin, 
nares, rectum, and high rate of horizontal transmission [51– 
53]. In Italy, the Liguria region reported a C. auris outbreak 
with at least 277 cases in eight healthcare facilities. The first 
of these cases was detected in one hospital in July 2019, 
and cases sporadically continued to occur in the same 
hospital [54,55]. In February 2020, C. auris was detected in 
an intensive care unit (ICU) dedicated to patients with 
severe COVID-19 in the same hospital, with a subsequent 
increase in cases throughout 2020 and 2021. Another 11 
cases have occurred in facilities in the neighboring Emilia- 
Romagna region so far [56]. C. auris infections have been 
described by a number of countries in Asia. Interestingly, 
the first C. auris candidemia was reported from 
a retrospective analysis of South Korean unidentified 
Candida isolates using rDNA sequencing. Later on, several 
reports and outbreaks of C. auris infections have been 
described in China, Hong Kong, and Taiwan [57].
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While a significantly higher risk for microbiologic recur-
rence within 60 days of completion of antifungal therapy was 
observed in C. auris patients, the outcome of patients with 
C. auris candidemia was similar to patients with candidemia 
due to other species [58,59].

Although still considered rare, the emergent C. haemulonii 
species complex (C. haemulonii sensu stricto, Candida duobush-
aemulonii, and Candida haemulonii var. vulnera) has been 
increasingly reported worldwide over the last 10 years, espe-
cially in patients with previous antimicrobial/antifungal ther-
apy, those with malignant tumors, organ transplants, diabetes 
mellitus, and vascular diseases. Outbreaks in neonatal inten-
sive care units have been reported in Korea and India, high-
lighting that this species may reach the blood by the 
exogenous route [60]. Furthermore, the C. haemulonii species 
complex shows increased resistance to the available antifun-
gal drugs such as fluconazole and AmB [61].

Candida lusitaniae (C. lusitaniae), generally considered 
a low-frequency emerging pathogen, has been associated 
with peritonitis, meningitis, and urinary tract infections [62] 
and can cause fatal infections in immunocompromised 
patients [63]. In this setting, while representing approximately 
1.3% of all candidemia episodes among cancer patients, 
C. lusitaniae caused up to 28% and 19% of fungemia and 
breakthrough fungemia caused by uncommon Candida spe-
cies (19/68 and 7/37, respectively), with an overall mortality of 
53% [64]. Additionally, C. lusitaniae has been implicated in 
nosocomial acquisition [20] and person-to-person transmis-
sion [65]. Most importantly, C. lusitaniae is known for its ability 
to acquire in vivo drug resistance under antifungal treatment 
and multidrug resistance has also been reported [66]. Very 
recently, the emergence of C. lusitaniae isolates with 
decreased micafungin susceptibility emerged during micafun-
gin monotherapy was shown; furthermore, for the first time, 
cross-resistance to fluconazole despite no history of drug use 
was observed [67].

Candida palmioleophila, often misidentified as Meyerozyma 
guilliermondii (Candida guilliermondii) or Candida famata, is an 
emerging pathogen in Denmark [68]. Isolates of this species 
are still susceptible to echinocandins and resistant to azoles, 
especially fluconazole. Recently, two strains, misidentified as 
C. albicans, were described in the Campania region in 
Italy [69].

4. Clinical approach to candidemia

The decision whether to initiate antifungal treatment for can-
didemia depends on several considerations, including epide-
miology (community vs. hospital-acquired), setting (ICU, IM), 
risk factors (immunosuppression, severity of the underlying 
conditions, chronic respiratory diseases), severity of infection 
(septic shock), possibility of source control and treatment 
strategies (empiric, preemptive or targeted strategies, de- 
escalation) [70–72].

However, one of the main drivers for better outcomes is 
represented by early antifungal treatment [73,74]. Indeed, 
a retrospective cohort of 230 patients with candidemia 
showed that mortality was lower if fluconazole was started 
on the same day of the index culture than if started later (15% 

vs 24% vs 37% vs 41% if started at day 1, day 2 or day 3 or 
later, respectively) [75]. On the other hand, a > 12-hour delay 
in antifungal therapy initiation from the time of blood sample 
collection increased mortality (33.1% vs 11.1%) [76], while 
receiving antifungal treatment within 72 h from index blood 
culture had a significant benefit on mortality (27% versus 
40%) [73].

Likewise, in patients with septic shock and candidemia, 
delayed antifungal treatment and failure to achieve source 
control were independently associated with hospital mortality 
[74].

The decision to initiate early antifungal therapy should be 
guided by the use of biomarkers and/or risk factor-based 
prediction rules. This approach aims to identify patients at 
the highest risk of developing candidemia and, conversely, 
to avoid unnecessary antifungal treatment when results are 
negative. While blood cultures are considered the gold stan-
dard for diagnosing candidemia, their overall sensitivity is 
approximately 50% (ranging from 21% to 71%). Furthermore, 
blood cultures may require a significant amount of time to 
yield positive results, potentially leading to delays in initiating 
appropriate antifungal treatment [77,78].

As additional tools, non-culture-based assays may aid in 
guiding the diagnosis of candidemia. 1–3 β-D-glucan (BDG) 
has a pooled sensitivity and specificity of 80% and 82%, 
respectively, with the most accurate cutoff value >80 pg/mL 
[79–81]. However, its main advantage is its high negative 
predictive value (98.7%), allowing early interruption of anti-
fungal therapy if started empirically based on clinical suspicion 
and/or prediction scores [82]. There are experiences and pro-
posals for different cutoffs in IM Wards [83].

T2Candida is a novel nanodiagnostic panel that uses T2 
magnetic resonance (T2MR) and a dedicated instrument (T2Dx 
Instrument) to detect Candida directly in whole blood samples 
[84,85]. This instrument is able to identify the five most com-
mon Candida species [C. albicans, C. glabrata (N. glabrata), 
C. parapsilosis, C. tropicalis, C. krusei (P. kudriavzeveii)] [86] 
with an estimated sensitivity and specificity of 91.1% and 
99.4%, respectively [87]. Interestingly, T2Candida can detect 
candidemia in 3–5 hrs., thus reducing the time to a negative 
result by some days. Along with its high negative predictive 
value (approximately 100%), T2 Candida negative results may 
suggest that antifungal therapy can be early withdrawn. In 
fact, stopping antifungal treatment when no longer necessary 
counteracts the detrimental effects of over-treatment in terms 
of selective pressure with a shift to resistant Candida species, 
emergence of resistance and increased costs [88,89].

Clinical prediction rules/scores have also been proposed for 
the identification of patients at high risk of candidemia neces-
sitating early antifungal treatment and include, although not 
limited to, the Ostrosky-Zeichner or the Candida scores [90– 
93]. Despite differences in sensitivity, they have high negative 
predictive value, ranging from 97% to 99.4% [78]. Again, this 
feature allows not to start or early discontinue antifungal 
treatment when not necessary.

Several updated detailed guidelines for candidemia treat-
ment can support healthcare professionals [70,72,94]. Initial 
treatment with echinocandins is strongly recommended either 
in neutropenic or non-neutropenic candidemia patients, in 
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more severe patients or where biofilm activity is needed 
[10,94,95]. This recommendation is mainly based on trials 
comparing caspofungin or micafungin versus AmB (deoxycho-
late or liposomal, respectively), showing similar effectiveness 
but fewer adverse events [96,97], or a randomized controlled 
trial showing non-inferiority of anidulafungin versus flucona-
zole [98]. A subsequent post-hoc analysis focused on 
C. albicans showed that global response was significantly 
better for anidulafungin than fluconazole and that anidulafun-
gin was associated with significantly faster clearance of blood 
cultures [99]. Furthermore, in approximately 2,000 patients 
from seven trials (three including patients with candidemia, 
four including patients with either candidemia or ICIs), echi-
nocandins were associated with a significantly lower 30-day 
mortality rate than azoles or AmB [100]. Notwithstanding the 
lower in-vitro activity vs. C. parapsilosis, echinocandins were 
associated with clinical effectiveness [101,102].

The echinocandin armamentarium currently available is 
being reinforced by the new long-acting, once weekly admi-
nistered, rezafungin [103], which demonstrated non-inferiority 
to caspofungin in the treatment of candidemia or ICIs regard-
ing the primary endpoints of day-14 global cure (European 
Medicine Agency, EMA) and 30-day all-cause mortality (Food 
and Drugs Administration, FDA) [23].

Compared to echinocandins, azoles may have advantages 
as a first-line therapy in stable patients if C. krusei 
(P. kudriavzeveii) or C. glabrata (N. glabrata) are not considered 
and in the absence of immunosuppression [10,94].

Interestingly, in patients admitted to IM wards and with 
septic shock due to candidemia, there are conflicting reports 
concerning echinocandin effectiveness over fluconazole, per-
haps related to methodology, patient clinical complexity, fre-
quencies of septic shock and treatment delays [103–107]. 
Indeed, the initial echinocandin therapy does not seem to 
impact the outcome of candidemia patients with septic 
shock, while the benefit over fluconazole was mainly observed 
in non-septic patients [108]. Similar results were obtained in 
a Spanish prospective study showing that both empirical and 
targeted treatment with fluconazole was not associated with 
increased 30-day mortality compared to echinocandins [108]. 
On the other hand, echinocandins were associated with sig-
nificantly higher survival as a definitive therapy in IM 
wards [104].

Among azoles, isavuconazole should not be used in treat-
ing candidemia because of the excess of mortality observed in 
the trial vs. caspofungin [106].

AmB deoxycholate or, preferably, lipid and especially lipo-
somal formulations are fungicidal, active against Candida bio-
film and able to penetrate the blood-brain barrier [95,109]. 
Despite these promising features, a recent meta-analysis 
revealed that the initial treatment of candidemia with echino-
candins had a reduced mortality rate compared to polyenes 
[95]. Furthermore, AmB use may be limited by the risk of 
nephrotoxicity and varying sensitivity of C. auris.

Echinocandins are the current preferred treatment options 
for C. auris infections [16]. However, emergence of resistance 
and pan-fungal resistance have been reported [16,48,55]. 
Amphotericin B may be an alternative to echinocandins since 

it has fungicidal activity and good biofilm penetration. Its main 
drawbacks include a relatively high rate of resistance in some 
C. auris clades, such as Clade I, potentially explaining the 
therapeutic failures observed in some clinical cases [110]. 
Moreover, a case of in-vivo development of high-level AmB 
resistance during therapy was recently reported, and a novel 
mutation mechanism in the C. auris sterol-methyltransferase 
gene ERG6 was found [111]. Delayed (or not executed) source 
control was another risk factor for the development of resis-
tance to antifungals in C. auris [49]. While some studies have 
reported susceptibility to azoles other than fluconazole, there 
are currently no established breakpoints for interpreting 
in vitro MIC values. In complex cases, especially when dealing 
with persistent infections or failure of echinocandins, alterna-
tive treatment options may be necessary. These may involve 
the use of combination therapies based on in-vitro and in vivo 
experiments such as colistin plus echinocandins [112], isavu-
conazole plus echinocandins [113,114], posaconazole plus cas-
pofungin [115], isavuconazole plus colistin [116], or novel 
agents, such as rezafungin (which has in vitro activity against 
strains resistant to other echinocandins), ibrexafungerp, or 
fosmanogepix may be considered [5,117–120].

The correct choice of the antifungal should be accompa-
nied by the demonstration of negative blood cultures if pre-
viously positive, by at least 14 days of effective treatment and 
by appropriate de-escalation strategies, depending on clinical 
stability, isolates and guidelines, 3-to-7 days after the begin-
ning of therapy, usually from echinocandins to fluconazole. As 
a matter of fact, it is safe to stepdown therapy to oral fluco-
nazole or voriconazole as soon as patients are clinically stable 
and blood cultures are negative [106,121]. Nevertheless, early 
(day 5) de-escalation to fluconazole was only performed in 
a minority of cases despite no negative impact on patients’ 
outcome (in only 23% out of 235 eligible patients in a cohort 
from 3 RCTs including 1023 patients) [122]. Compared to 
fluconazole, voriconazole is active against C. guilliermondii, 
C. glabrata (N. glabrata), and C. krusei (P. kudriavzeveii) with 
reduced susceptibility, or resistance, to fluconazole. The switch 
to oral azoles may undoubtedly present the advantage of 
allowing patient discharge, if feasible, while long-acting reza-
fungin can be a valid alternative in the case of azole 
resistance.

5. Epidemiology and clinical aspects of ICIs other 
than candidemia only

The epidemiology of ICIs (with or without concomitant candi-
demia) is still a difficult and unsolved enigma for the scientific 
community, due to variability in definitions, difficulties in dif-
ferentiating colonization from infection and diagnostic issues 
[123]. Indeed, only 17% of cases of deep-seated candidiasis 
were detected by blood cultures [124], suggesting that many 
cases of ICIs could be under diagnosed [125].

ICIs are most commonly observed in the ICU setting, where 
up to two-thirds of patients have concomitant candidemia, 
while 80% of patients without candidemia have intra- 
abdominal candidiasis (IAC) [126,127]. IAC accounts for most 
deep-seated cases, with approximately 30% occurring in 
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critical care settings [126,127]. A multinational retrospective 
study conducted in several European ICUs showed 
a cumulative incidence of 7.07 episodes per 1,000 ICU admis-
sions (5.52 and 1.84 episodes per 1,000 ICU admissions for 
candidemia and IAC, respectively). C. albicans was the most 
frequently isolated species (57%), followed by C. glabrata 
(N. glabrata) (21%) and C. parapsilosis (13%) [15]. Of note, 
significant between-center variability and increased incidence 
over time were observed. Understanding ICI epidemiology in 
IM units is even more challenging, with a recent Italian study 
showing an overall incidence of 1.89 cases/1,000 hospital 
admissions [14].

In general, ICIs other than ‘candidemia only’ include a variety 
of deep-seated infections that may be caused by fungal seeding 
in various organs as a consequence of hematogenous spread 
from a distant infectious focus [21,22,128–133] or by direct con-
tamination during surgery, trauma, or extension from 
a contiguous infected site [123,130,134]. The majority of ICIs 
other than candidemia present the classical risk factors for inva-
sive fungal diseases, such as previous or concomitant antibiotic 
therapy and immunosuppression often mediated by steroid 
therapy [123,130]. Table 2 reports additional specific factors for 
each type of ICI [21,22,128,129,132,133,138–141,144–152,154– 
158]. Along the same line, the spectrum of the Candida species 
involved varies according to the different type of infection. In 
general, C. albicans remains the most common pathogen, fol-
lowed by C. glabrata (N. glabrata) and C. tropicalis in many deep- 
seated infections that usually represent a source of secondary 
candidemia, especially intra-abdominal and urinary tract infec-
tions [135,136,138–140,158]. On the other hand, C. parapsilosis is 
the second cause of all intravascular infections, shunt-related 
meningitis, and the leading cause of trauma or fracture-related 
Candida infections [134,141,144,145]. Of interest, C. dubliniensis 
may be considered an emerging pathogen since it has repre-
sented, in recent case series, not only an increasing cause of 
endophthalmitis and esophagitis, particularly in cases of infec-
tion related to intravenous drug addiction, but also a leading 
cause of Candida meningitis not related to intraventricular 
devices [133,147,148].

Some infections usually manifest with an acute onset, with 
septic shock being a possible ominous component of the initial 
clinical picture. It typically occurs in patients with ascending or 
emphysematous pyelonephritis [140], but also in many intrab-
dominal infections [135,158] or serious intravascular infections 
[130–132] such as peripheral vein septic thrombophlebitis [145] 
or central vein septic thrombosis [146]. In these instances, 
prompt adequate antifungal therapy, either directed against 
the offending pathogen or in terms of antimicrobial exposure 
in the infection sites, and surgical source control (when indi-
cated, as outlined in Table 2) are crucial for patient survival.

Other infections have a very insidious and misleading pre-
sentation. A typical example is that of Candida meningitis not 
related to intraventricular devices [133,147,148]: this infection, 
nowadays more commonly sustained by C. dubliniensis, has an 
indolent course that mimics tubercular meningitis, and seems 
to be a late complication of a previous, apparently resolved, 
nosocomial candidemia or a side effect of intravenous drug 
addiction [133,147,148]. Similarly, Candida prosthetic valve 
endocarditis is a typical biofilm-related infection that may be 

acquired during a candidemia episode in the early post cardio- 
surgery period [132,142]: despite apparent cure with standard 
antifungal therapy, Candida seeding on the prosthetic valve 
and surrounding endocardium persists and the infection man-
ifests insidiously even after more than 1 year [132,143]. Under 
these circumstances, both the prompt recognition of the clin-
ical syndrome and a correct approach to the microbiological 
diagnosis, along with the use of biomarkers, are of paramount 
importance for optimal management.

Despite being a very rare disease, hepatosplenic candidiasis 
is the most frequent form of chronic disseminated candidiasis 
(CDC) and typically occurs in patients with hematological 
malignancies and long-lasting neutropenia [19,20,153]. CDC 
is now considered as a fungal immune reconstitution inflam-
matory syndrome (IRIS), because of the lack of microbiologi-
cally active lesions (often documented by negative cultures of 
liver biopsies and rare documentation of recent candidemia 
episodes), contrasting with a major inflammatory reaction and 
high levels of immune activation [153]. Following the hypoth-
esis that CDC may be driven by IRIS, the use of concomitant 
glucocorticosteroids may be considered for the management 
of this condition, along with long-term antifungals [22].

In most ICIs other than candidemia, a proper therapeutic 
approach includes an initial treatment regimen, usually with 
intravenous fungicidal and effective anti-biofilm agents such 
as echinocandins and liposomal AmB [94,137]. Being hydro-
philic agents, the former may have poor penetration across 
the blood-brain barrier, in the vitreous, and in the mesothelial 
cavities. Consequently, in the presence of deep-seated infec-
tions involving these body sites, fluconazole, voriconazole or 
liposomal AmB may be valuable alternatives or add-on thera-
pies [159]. In any case, as soon as clinical improvement, and 
clearance of a possible concomitant candidemia have been 
achieved with the initial treatment, intravenous or oral azoles, 
usually fluconazole or voriconazole, are the agents of choice 
for maintenance therapy [160]. Various forms of source control 
are of paramount importance in many instances: surgical or 
percutaneous drainage or debridement, such as in secondary 
peritonitis or intrabdominal abscesses [158,161], and device 
removal with or without replacement, such as in prosthetic 
valve endocarditis or shunt-related meningitis [94,132,150]. 
Peripheral vein thrombophlebitis, an infectious process that 
involves adventitia, intima, and adjacent thrombus, requires 
debridement or phlebotomy in most instances [144]. On the 
other hand, in central vein septic thrombosis, which involves 
almost only the thrombus, anticoagulation, and antifungal 
therapy allow clinical cure in most cases [145,161].

In certain cases, maintenance antifungal therapy with oral 
azoles may be prolonged from 2 to 12 months, as in cases of 
hepatosplenic candidiasis [141], osteomyelitis or disc space 
infection [154–156]. Likewise, chronic suppressive therapy 
with oral azoles may be required in selected cases of intravas-
cular device infections (prosthetic valve endocarditis, aortic 
graft infections, and cardiac implantable electronic device 
infections), where surgical device removal and replacement 
cannot be performed [132]. In these cases, other therapeutic 
options should be considered when oral antifungal treatment 
is not suitable, as in the case of azole resistance. A reasonable 
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approach to the above clinical settings may be the use of the 
novel long-acting echinocandin rezafungin [162,163].

6. Rezafungin

Rezafungin is a novel echinocandin derived from the precursor 
anidulafungin with an additional choline ether (Figure 2) 
[164,165]. Rezafungin shares the same mechanism of action 
as other echinocandins, which consists in inhibiting fungal cell 
wall synthesis by blocking the beta 1,3 D-glucan synthetase 
activity [162].

6.1. In-vitro activity

Rezafungin activity against Candida spp. is similar to that of 
other members of the echinocandin class, exhibiting potent 
in-vitro activity against most wild-type and azole-resistant 
Candida spp [166].

In a wide in-vitro study performed on several clinical 
Candida isolates in four different European Laboratories fol-
lowing the EUCAST method, the lowest rezafungin MICs 
(range, mg/L) were observed for C. albicans (0.002–0.125) 
and the highest for C. parapsilosis (0.063->4). Of note, unex-
plained laboratory variation was observed for C. albicans, 
including the quality control strains [167].

Additionally, the in-vitro activity of rezafungin and com-
parators (caspofungin, anidulafungin, micafungin, and 
azoles) was analyzed on a worldwide collection performed 
on 2,205 invasive fungal isolates including 1,904 isolates 
from six Candida species and recovered from 2016 to 2018 
by using Clinical and Laboratory Standards Institute (CLSI) 
broth microdilution methods. Authors found that rezafungin 
inhibited 99.8% of C. albicans isolates (MIC50/90, 0.03/0.06  
μg/ml), 95.7% of C. glabrata (N. glabrata) isolates (MIC50/90, 
0.06/0.12 μg/ml), 97.4% of C. tropicalis isolates (MIC50/90, 
0.03/0.06 μg/ml), 100.0% of C. kruzei (P. kudriavzeveii) iso-
lates (MIC50/90, 0.03/0.06 μg/ml), and 100.0% of 
C. dubliniensis isolates (MIC50/90, 0.06/0.12 μg/ml) at ≤0.12  
μg/ml. All (329/329) C. parapsilosis isolates (MIC50/90, 1/2  
μg/ml) were inhibited by rezafungin at ≤4 μg/ml [168]. 
Indeed, C. parapsilosis was the least susceptible species in- 

vitro, with MICs up to 4 μg/mL [166], while C. metapsilosis, 
C. orthopsilosis, and C. guilliermondii showed MICs between 
0.5 and 1 μg/mL [162]. Despite the lower in-vitro suscept-
ibility for C. parapsilosis, treatment failures have not yet 
been described [103].

Another study determined the in-vitro susceptibility of 689 
clinical isolates of Candida species, including 19 rare Candida 
species, and Saccharomyces cerevisiae by using CLSI methods, 
showing excellent in-vitro activity against both wild-type and 
azole-resistant Candida species, as well as against S. cerevisiae 
[169]. For C. lusitaniae (C. lusitaniae), MICs were 0.25 μg/ 
mL [162].

Overall, rezafungin had species-specific activity similar to 
other echinocandin, being equally or more active than flu-
conazole and amphotericin B against the most common 
Candida species, except C. parapsilosis [166,167]. Of note, 
rezafungin seems to be more potent in-vitro against C. auris 
than caspofungin and micafungin, with MIC 0.25 μg/mL 
[16,162,170].

The selection of FKS mutants occurred at a similar low 
frequency for rezafungin as for anidulafungin and caspofun-
gin. As expected, rezafungin shares with the other echino-
candins the reduced activity against strains carrying 
mutations of the FKS1 and FKS2 genes [16,162]. 
Interestingly, fks1 mutations raised rezafungin MICs notably 
less than anidulafungin and micafungin MICs in 
C. auris [166].

Rezafungin also exhibits high activity against Aspergillus 
spp., including azole-resistant strains, while it is not active 
against non-Aspergillus molds, Cryptococcus, Trichosporon, 
and Rhodotorula [162,170].

6.2. Pharmacokinetics

The major difference between rezafungin and the first- 
generation class of echinocandins is the much lower clearance 
rate, which prolongs the elimination half-life up to 6 to 10-fold 
compared to anidulafungin, caspofungin, or micafungin 
(Table 3).

This gives rezafungin a unique feature within the class of 
the echinocandins, namely the possibility of being adminis-
tered once weekly instead of once daily, unlike all other avail-
able echinocandins. Rezafungin biotransformation is minimal 
in humans, and fecal excretion is the major route of elimina-
tion [171]. It does not interact with the cytochrome P450 
isoenzymes; therefore, it is not prone to drug–drug pharma-
cokinetic interactions, similarly to the other echinocandins 
[172]. Specifically, it was recently shown that co- 
administration of rezafungin did not impact cyclosporine or 
mycophenolate mofetil pharmacokinetics [173]. Rezafungin is 
minimally excreted by the renal route, and consequently, in an 
ex vivo bovine blood model, it was not shown to be cleared by 
continuous veno-venous hemofiltration [174]. Interestingly, 
a population pharmacokinetic model based on data from 
a phase 1 study showed that none of several subject descrip-
tors (including sex, infection status, serum albumin, and body 
surface area) affected the pharmacokinetic behavior of reza-
fungin in a clinically relevant manner [175,176].

Figure 2. Chemical structure of rezafungin.
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6.3. Pharmacodynamics

Like first-generation echinocandins, the major pharmacody-
namic determinant of rezafungin efficacy is the area under 
the concentration-time curve (AUC) to the MIC ratio [177,178].

In a neutropenic animal model of disseminated candidiasis 
caused by C. tropicalis and C. dubliniensis, free AUC/MIC ratio 
values ranging from 3 to 25 were associated with stasis, and 
values ranging from 4.3 to 62 were associated with 1-log kill 
[179,180]. It was estimated that a dosing regimen of 400 mg 
loading dose on week 1 followed by 200 mg once weekly may 
guarantee these AUC/MIC targets against the vast majority 
(>99%) of C. tropicalis and C. dubliniensis clinical isolates 
[179,180]. In a neutropenic mouse model of disseminated 
candidiasis caused by C. albicans, C. glabrata (N. glabrata) 
and C. parapsilosis, free AUC/MIC ratio values of 2.92, 0.07 
and 2,61, respectively, were associated with stasis whereas 
values two- to four-fold higher than these were associated 
with 1-log kill [179–181].

Studies on different dosing schedules for the same total 
weekly dose of rezafungin showed that once weekly dosing 
may guarantee more effective fungal killing than twice-weekly 
or once-daily regimens [182]. Monte Carlo simulations con-
ducted with three different intravenous rezafungin regimens 
(namely, single 400 mg dose; 400 mg week 1 followed by 200  
mg weekly for 5 weeks; 400 mg weekly for 6 weeks) showed 
that the likelihood of attaining PK-PD targets against C. albicans 
and C. glabrata (N. glabrata) were always ≥90%. These analyses 
supported the use of single and once weekly rezafungin regi-
mens for treating patients with candidemia and/or candidiasis 
due to C. albicans or C. glabrata (N. glabrata) [183].

In a neutropenic mouse model of invasive candidiasis 
caused by C. auris, the free AUC/MIC ratio value for stasis 
was 1.88, whereas that for 1-log kill was 5.77 [181]. Likewise, 
in a disseminated immunocompromised mouse model of can-
didiasis, rezafungin exhibited potent antifungal activity 
against C. auris, with significantly lower renal tissue fungal 
burden than AmB- and vehicle-treated mice [184].

6.4. Registrative and real-life studies

The STRIVE trial was a phase II trial comparing adults with 
candidemia and/or ICI randomized to receive either rezafun-
gin 400 mg once weekly or rezafungin 400 mg on week 1 
followed by 200 mg once weekly or caspofungin 70 mg as 
a loading dose, followed by 50 mg daily for ≤4 weeks [103]. 

The primary efficacy endpoint was overall cure at day 14 as 
demonstrated by mycological eradication and resolution of 
signs. The overall cure rate was highest for rezafungin 400/ 
200 mg compared to rezafungin 400 mg or caspofungin 
(76.1% vs 60.5% vs 67.2%, respectively); likewise, the mor-
tality rate was lowest for rezafungin 400/200 mg compared 
to rezafungin 400 mg or caspofungin (4.4% vs 15.8% vs 
13.1%, respectively). Interestingly, candidemia was cleared 
earlier in patients on rezafungin than those receiving cas-
pofungin. No significant safety issues were observed [103]. 
The observed discrepancies between the two rezafungin 
dosing regimens were explained as a possible paradoxical 
effect at higher concentrations.

The subsequent ReSTORE trial was a multicenter, double- 
blind, double-dummy, randomized phase III trial including 
adults with candidaemia or ICI randomly assigned (1:1) to 
receive either intravenous rezafungin once weekly (400 mg in 
week 1, followed by 200 mg weekly, for a total of two to four 
doses) or intravenous caspofungin (70 mg loading dose 
on day 1, followed by 50 mg daily) for up to 4 weeks. The 
primary endpoints were global cure (consisting of clinical cure, 
radiological cure, and mycological eradication) at day 14 for 
the EMA and 30-day all-cause mortality for the FDA. The global 
cure rate at day 14 was 59% in the rezafungin group, com-
pared to 61% in the caspofungin group, while 30-day mortal-
ity was 24% and 21% in the rezafungin and caspofungin 
groups, respectively, thus showing non-inferiority of rezafun-
gin to caspofungin [23].

A Phase III, multicenter, prospective, randomized, double- 
blind study is currently ongoing to evaluate the efficacy and 
safety of rezafungin (400 mg/200 mg once weekly) versus the 
standard antimicrobial regimen (daily azole prophylaxis with 
fluconazole or posaconazole and oral trimethoprim- 
sulfamethoxazole for anti-Pneumocystis jirovecii prophylaxis) 
for the prevention of invasive fungal diseases including 
Candida spp., Aspergillus spp., and P. jirovecii in subjects under-
going allogeneic blood and bone marrow transplantation. 
Fungal-free survival at day 90 is the primary outcome [177].

A post-hoc analysis of the STRIVE and ReSTORE trials aimed 
to examine the outcomes of all-cause mortality in patients 
with candidemia/ICI and day-5 mycological eradication in 
patients with candidemia. The integrated analysis included 
294 patients (139 in the rezafungin arm, 155 patients the in 
caspofungin arm) and showed that 30-day mortality was 
18.7% and 19.4% for the rezafungin and caspofungin groups, 
respectively. Patients with candidemia exhibited higher 

Table 3. Pharmacokinetic parameters of rezafungin vs. older echinocandins.

Rezafungin Anidulafungin Caspofungin Micafungin

Dose (mg) 400 LD/200 OW 200 LD/100 OD 70 LD/50 OD 100 OD
Cmax (mg/L) 22.7 7.2 12.1 7.2
Plasma protein binding (%) 99 99 97 99
Vd (L) 35.9 35.2 9.7 25.6
CL (L/h) 0.2 1.0 0.6 1.3
Elimination t1/2 (h) 129–133 24–26 9–11 11–17
Excretion in feces (%) 38 30 35 40
Excretion in urine (%) 14 1 41 15

Note: LD: loading dose; OW: once weekly; OD: once daily; Vd: Volume of distribution; CL: clearance. 
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mycological eradication rates at day 5 (80.0% for rezafungin vs 
67.8% for caspofungin) [23,103,185].

To date, there are only three reports of successful compas-
sionate use of rezafungin in the treatment of patients with 
Candida spp infections: i) a multidrug-resistant C. glabrata 
(N. glabrata) mediastinal infection from vascular graft infection 
and retained foreign material, where rezafungin was adminis-
tered for over 1 year, in the absence of adverse effects [163]; ii) 
a refractory intra-abdominal candidiasis due to C. krusei 
(P. kudriavzeveii) in a liver transplant recipient, where rezafun-
gin was administered for 12 weeks [186] and iii) a chronic 
mucocutaneous candidiasis sustained by azole-resistant 
C. albicans in a 19-year-old man with STAT1-GOF immunode-
ficiency, where rezafungin was administered for 5 weeks [187].

6.5. Safety

Rezafungin is characterized by higher chemical stability com-
pared to anidulafungin, which may prevent the formation of 
reactive metabolites potentially causing toxicity [164,165,172]. 
A preclinical 2-week repeat-dose comparison study in rats 
showed some degree of toxicity and hepatotoxicity with ani-
dulafungin, but not with rezafungin [172].

In a phase I, single-center, randomized, double-blind trial 
assessing the effects of intravenous rezafungin vs. intravenous 
placebo (with moxifloxacin as positive control) on the QT 
interval of the electrocardiogram, therapeutic (600 mg), and 
supratherapeutic (1,400 mg) rezafungin doses did not cause 
any clinically relevant QT interval prolongation [178].

6.6. Economic impact

The health economic burden associated with candidemia/ 
ICIs is largely due to prolonged hospital and ICU stays, 
contributing to more than half of the total costs [17]. The 
once-weekly administration of rezafungin may possibly 
reduce hospitalization costs or length of stay. In this regard, 
the integrated analysis of the STRIVE and ReSTORE trials 
showed that, among patients hospitalized in the ICU, survi-
vors receiving rezafungin had a reduction of 7.1 days in ICU 
length of stay (15.9 vs. 23 days, respectively). Although 
slightly reduced, this trend was confirmed after adjusting 
for mechanical ventilation (17.3 vs. 21.4 days in the rezafun-
gin and caspofungin groups, respectively, with a difference 
of 4.1 days) [185].

7. Expert opinion

Candidemia and ICI are major causes of in-hospital morbidity 
and mortality, accounting for prolonged ICU/hospital stays 
and leading to excessive healthcare economic burden 
[188,189]. The advances in healthcare as well as the evolution 
of patient risk factors and the ability of some Candida species 
to spread within the hospital environment and cause out-
breaks have led to a change in the epidemiology of invasive 
fungal infections [3–5,38]. As a matter of fact, despite 
C. albicans being still the most common, a continuous increase 
in non-albicans species has been observed in recent years, 

along with the emergence of worrisome and drug resistant 
species such as C. auris [16,38,127].

The shift toward non-albicans species may be influenced 
by the different and evolving pathophysiology behind the 
development of candidemia/ICIs. In fact, while the endo-
genous route (consisting of Candida species passing 
through an intestinal barrier damaged by a variety of 
insults) is mostly commonly observed for C. albicans, 
C. tropicalis, C. glabrata (N. glabrata), C parapsilosis, and 
C. krusei (P. kudriavzeveii), the exogenous route (consisting 
in healthcare workers’ hands, patients’ skin or central lines 
contamination and subsequent spread into the blood) 
applies, above all, for C. auris, C. parapsilosis, and 
C. haemulonii [16,22].

Among the increasing proportion of infections caused by 
non-albicans Candida species, those caused by the emerging 
C. auris are of particular concern, given its long-lasting ability 
to colonize patients and the environment and its high rate of 
resistance to antifungals. Indeed, up to 40% of C. auris isolates 
may be resistant to at least two classes of antifungals, and 
resistance to echinocandins, although to a lesser extent, may 
also occur [16]. Prompt and adequate source control as well as 
the adoption of effective infection control measures are key 
strategies to manage infected patients and reduce cross- 
transmission and outbreaks.

C. parapsilosis and C. auris share the ability to colonize 
central lines and cause nosocomial outbreaks. One of the 
main concerns lies in the fact that up to one-third of the 
strains are resistant to fluconazole, thus limiting the available 
therapeutic options to AmB or, as an alternative, to echino-
candins [31,190].

Furthermore, some ICIs, such as endovascular infections, in 
which source control is not feasible, require prolonged treat-
ment, up to weeks or months.

In all the aforementioned conditions, the availability of 
long-acting rezafungin is of paramount importance [162]. In 
general terms, the advent of long-acting antimicrobial agents 
(e.g. dalbavancin) has represented a real revolution in the 
field of infectious diseases, enabling outpatient treatment of 
complex infections and allowing therapeutic switch in 
patients suitable for hospital discharge [189–192]. As for fun-
gal infections, rezafungin combines the strengths of the echi-
nocandin class with a prolonged elimination half-life, a low 
likelihood of drug–drug interactions and a robust safety pro-
file, thus opening up several possibilities for its future use 
[16,162].

In particular, it may allow earlier hospital discharge when 
clinical conditions are favorable and extend outpatient access 
to treatment of invasive candidiasis, especially when pro-
longed treatment duration is expected. Rezafungin’s high 
activity against Candida spp., including species resistant to 
azoles or C. auris, makes it highly attractive for the treatment 
of candidemia/ICI. An additional advantage may be the poten-
tial effect on hospital stay duration and the costs associated 
with candidemia/ICI, such as those related to the need of daily 
infusions and the use of central lines. Unfortunately, there are 
still limited data available on these interesting aspects and 
more studies are needed to ascertain the cost-effectiveness of 
rezafungin over other antifungals. Its pharmacological 
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characteristics make rezafungin attractive also for the prophy-
laxis of invasive fungal diseases in high-risk populations 
[16,177].

8. Conclusion

In the recent years, candidemia and ICIs have undergone an 
important change in their epidemiology, with a shift toward 
non-albicans species as causative agents. In the meantime, 
the emergence of C. auris as a worrisome agent of nosoco-
mial outbreaks and the growing rate of antifungal resis-
tance in some species highlight the dynamic aspects of 
this evolving condition, which may result from the different 
underlying pathophysiology (endogenous vs. exogenous 
route of infection). In this scenario, the novel long-acting 
echinocandin rezafungin, which combines a potent in-vitro 
activity against Candida species, including azole-resistant 
strains, with a low likelihood of drug–drug interactions 
and a good safety profile, may revolutionize the treatment 
of candidemia/ICI. Indeed, it may allow earlier hospital dis-
charge and management of complex fungal infections in an 
outpatient setting, with a possible, although not yet quan-
tifiable, reduction in associated costs and length of hospital 
stay.
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