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ABSTRACT The Information Bottleneck (IB) method is an information theoretical framework to design
a parsimonious and tunable feature-extraction mechanism, such that the extracted features are maximally
relevant to a specific learning or inference task. Despite its theoretical value, the IB is based on a
functional optimization problem that admits a closed form solution only on specific cases (e.g., Gaussian
distributions), making it difficult to be applied in most applications, where it is necessary to resort
to complex and approximated variational implementations. To overcome this limitation, we propose an
approach to adapt the closed-form solution of the Gaussian IB to a general task. Whichever is the inference
task to be performed by a (possibly deep) neural-network, the key idea is to opportunistically design a
regression sub-task, embedded in the original problem, where we can safely assume a (joint) multivariate
normality between the sub-task’s inputs and outputs. In this way we can exploit a fixed and pre-trained
neural network to process the input data, using a tunable number of features, to trade data-size and
complexity for accuracy. This approach is particularly useful every time a device needs to transmit data
(or features) to a server that has to fulfil an inference task, as it provides a principled way to extract the
most relevant features for the task to be executed, while looking for the best trade-off between the size
of the feature vector to be transmitted, inference accuracy, and complexity. Extensive simulation results
testify the effectiveness of the proposed method and encourage to further investigate this research line.

INDEX TERMS Goal-oriented communications, information bottleneck, edge-intelligence.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) and Machine Learning
(ML) are experiencing an unprecedented explosion

nowadays, with a proliferation of applications and use-cases,
such as Generative Deep Learning [1], Natural Language
Processing (NLP) [2], object detection/recognition [3],
motion planning [4], and many others.
The sixth generation of mobile networks is expected to

be one of the main key-enablers for these applications [5],
with an ever-increasing integration of AI/ML blocks within

the communication infrastructure. In many ML application
scenarios, there is the need to bring intelligence to peripheral
devices (sensors), which however have very limited resources
(e.g., IoT devices, Unnamed Aerial Vehicles (UAVs) [6],
etc.). The problem is even more critical when the applications
to be run are delay-sensitive, or there is a stringent constraint
either on the accuracy of the decision to be taken, or on
the energy consumption, or both. In these cases, the Edge
Intelligence (EI) paradigm [7] offers a solution through
computation offloading from the Edge Device (ED) to an
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Edge Server (ES), thus enabling learning and inference tasks
under strict energy, latency, and reliability constraints.
In an energy saving perspective, it is important to maintain

the computational complexity, of the employed learning
models, as low as possible. At the same time, taking
into account the envisaged exponential traffic growth in
the next years [8], [9], we also need to search for new
and more sustainable communication paradigms, capable to
save bandwidth and power resources, while preserving the
effectiveness. To this end, Goal-Oriented Communications
(GOCs) [8] represent a hot research topic, suggesting
to overcome the classical Shannon paradigm [10], which
focuses on recovering all the transmitted bits, irrespective of
the purpose those bits are transmitted for. Conversely, GOCs
tunes the source encoding rule and adapts the transmission
rate focusing directly on the task that motivated the exchange
of information, while respecting task-specific performance
constraints. This approach makes possible to reach high
compression degrees, and to save as much transmission
resources as possible, any time an ED decides to offload
computations to an ES.
From this viewpoint, the Information Bottleneck (IB)

method [11], inspired by rate-distortion theory arguments,
is a theoretical framework that can be used to extract
from data (and parsimoniously encode) those features
that are particularly meaningful for a specific learning or
inference task, and, consequently, it is a promising way
to formalize and implement GOCs. Specifically, the IB
method is designed to retrieve a representation of an input
random source that, for any (compact) features size and
its associated bit-compressed representation, is as much
informative as possible with respect to the target of a specific
learning or inference task [11]. Specifically, the IB acts
as a supervised Feature Extractor (FE) where, differently
from unsupervised methods such as PCA, the compression
targets a proper representation for the final decision, rather
than the fidelity of the input reconstruction. Unfortunately,
since the IB relies on a functional optimization problem
based on Mutual Information (MI), it admits a closed-form
solution only on specific cases [11]. The most noticeable
one is when the input and the output of a regression
task are characterized by a joint multi-variate Gaussian
distribution [12], [13]. The aim of this paper is to overcome
this limitation, proposing a quite general framework to adapt
the Gaussian IB principle to tasks that deviate from multi-
variate Normal regression, which turns out to be particularly
helpful to deploy Edge Intelligence tasks using a GOC
philosophy.
Related Works. There are several works in the recent

literature where the IB principle is employed to support ML
applications [14]. The authors in [15], [16] propose IB-based
approaches for medical imaging classification and segmen-
tation. To overcome the difficulty to adapt the IB principle
without Gaussian assumptions, their solution relies on a
Variational Information Bottleneck (VIB) framework [17]
that, considering a variational bound of the IB cost function,

derives a loss function that is employed to train Variational
Auto-Encoders (VAEs) [18].

In [19], the authors propose a variation of the original
Information Bottleneck problem named Scalable Information
Bottleneck, where multiple compressed representations, with
increasingly richer features, are considered. The work in [20]
proposes a solution for a distributed implementation of the
IB problem, that is suitable in both the discrete and Gaussian
case.
Other noticeable examples can be found in [21], [22],

where the IB is proposed as a method to improve the
generalization capabilities for DNN-based tasks, also in
the presence of out-of-distribution (OOD) data. The IB
principle has been applied also in conjunction with Graph
Neural Networks (GNNs), in the so-called Graph Information
Bottleneck framework [23], [24].
Some recent works testify the importance of the IB method

for GOCs communications. Specifically, the approaches
proposed in [25], [26], [27], [28], [29] can be exploited
in Edge Intelligence settings, where one or more Edge
Devices offload a specific learning/inference task towards
the servers placed at the edge network. The work in [30]
proposes an IB framework for task-oriented communica-
tions, which is based on a slight modification of the
IB formulation to cope with OOD data. Reference [31]
proposes a Robust Information Bottleneck (RIB) formulation
to cope with digital communication schemes. In [13], the
authors propose an optimal resource allocation framework
based on the Gaussian IB, e.g., regression tasks, for Edge
Machine Learning applications. The authors in [32] propose
an approach to optimize the shared codebook in Type-
Based Multiple Access (TBMA) based on the Information
Bottleneck.
Except for [13], where the Gaussian assumption holds

true, all the aforementioned works are based on the VIB,
which retrieves a good approximation of the IB optimal
solution, paying the cost of a considerable complexity.
To reduce this complexity, [33], [34] propose an heuristic
approximation of the IB principle, where the latent (and
tunable) compact representation, together with the final
decisions, are obtained by a framework that exploits multiple
couples of Convolutional Encoders (CEs) and Convolutional
Classifiers (CCs). However, this approach is highly based
on empirical considerations, without any theoretical claim
on the performance and accuracy that is possible to obtain
by different compression architectures, or different feature
sizes. Actually, although it is practically impossible to derive
a closed-form expression to link the inference accuracy of
a neural network with the input feature vectors, some sub-
optimal and theoretically grounded criteria can be exploited.
A possible attempt in this direction can be found in [35],
where the authors study a multi-user Edge-Intelligence
scenario, where the Edge Devices perform feature extraction
and quantization prior to the transmission of the data towards
a centralized edge-server for the final inference. Specifically,
the authors in [35] propose to quantify performance by the
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so called discriminant-gain (i.e., the symmetrized Kullback-
Leibler divergence between two classes in the Euclidean
feature space). The method we propose, if applied to a
Goal-Oriented and Edge-Assisted Communication Scenario
(which is out of the scope of this paper) would share
some similarities with [35]: indeed, both the methods rely
on Gaussian assumptions of the features, and their linear
extraction by either PCA in [35], or Gaussian Information
Bottleneck, as we propose. Specifically, the authors in [35]
propose the discriminant-gain to optimally allocate resources,
such as quantization bits, under energy and latency con-
straints. Actually, our proposal does not consider features
quantization, which could be handled either by the approach
proposed in [35], or simply by exploiting mean squared error
(MSE) cost functions, as we will detail in Section III-A.
Furthermore, differently from [35], our approach is naturally
oriented to dynamically optimize also the feature’s vector
size, by means of Section III-B, Fig. 2 and [33], [34], [36].
Our Contribution. In this paper we propose a novel

method to adapt the Gaussian IB (GIB) principle [12] to any
Goal-Oriented inference task that exploits a (Deep) NN to
come up with a decision. In a nutshell, our solution embeds
an opportunistic regression step between a transformation of
the input data and the output of the first layer of the NN
trained to perform a task (for instance, image classification).
This opportunistic regression is instrumental to exploit the
IB method to extract the most relevant features from the
data in a principled way, giving us the flexibility to trade
the learning task accuracy with the feature’s vector size.
Differently from [33], [34], [36], the proposed solution can
be implemented by training and exploiting a single DNN
architecture, rather than a bank of DNNs, e.g., one for
each specific size of the input features. The advantages of
our formulation with respect to the Variational Information
Bottleneck implementations [17], which is widely considered
in the recent literature, are mainly related to the inference
and training complexity:

• First of all, in classical VIB implementations, the
size of the compressed representation is constrained
by the encoder architecture. Thus, like the scheme
proposed in [33], [34], [36], VIB requests different
encoder/classifier architectures for different compres-
sion levels. Conversely, the proposed approach may
possibly rely on a single (classifying) neural network,
which follows a simple compression stage and is trained
once and for all.

• Compared to the proposed OIB approach, the VIB
encoding requests an extra neural network to pro-
duce a compact representation of the data, which has
to be jointly trained with the classifying network.
Furthermore, the VIB training procedure needs Monte-
Carlo sampling (obtained through, the reparametrization
trick) to obtain an unbiased estimation of the gradient,
thus further increasing the complexity with respect to
the proposed OIB.

TABLE 1. Main Notation and Definitions.

The simulation results testify the effectiveness of the
proposed approach, showing either a performance gain with
respect to other compression strategies, or lower complexity,
or both. Furthermore, the simulation results also show that
the proposed approach allows to minimize the entropy
of the compressed representations of the input data, with
respect to competitive approaches. This means, that it is
theoretically possible to search for compression schemes
capable to represent the source with less bits, making
our proposal particularly attractive for Edge-Assisted Goal-
Oriented Communications.
Outline. The rest of this paper is organized as fol-

lows. In Section II, we give a general background about
feature compression and we briefly recall the Information
Bottleneck problem, with focus on the Gaussian case. Then,
in Section III, we describe our opportunistic approach to
adapt the Gaussian IB solution to general Inference Tasks,
and in Section IV we present and discuss our simulation
results. Finally, Section V draws the conclusion and sketches
the possible future research directions.

II. BACKGROUND
This section provides a brief summary about feature
extraction and compression, and the Information Bottleneck
method. For the sake of clarity, in Table 1 we report the
main notation and definitions used throughout the paper.

A. FEATURE EXTRACTION AND COMPRESSION
Feature-Extraction (FE) aims to extract features from the
raw data that are relevant for the underlying inference
task. Classical machine learning models (e.g., SVM, linear
regression, etc.) envisage to perform Feature-Extraction as
a separated data pre-processing stage. Conversely, when we
deal with Deep Neural Networks, FE is directly embedded
in the first layers, which allows us to retrieve parsimonious
data representations containing all the necessary information
to fulfil the final learning/inference task. In some cases,
Feature Extraction can lead to a substantial dimensionality
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reduction of the input data. In this case we talk about
Feature Compression, which can be highly beneficial in all
applications where it is required to share or communicate
the learned representation, as in Edge Intelligence scenarios.
Specifically, let us consider a data-set D{(xn, yn)}Nn=1,

where xn ∈ R
nx are input variables and yn ∈ R

ny are the
associated labels. Feature-Compression is a pre-processing
stage that reduces the size of the input data xn from nx to nz,
by generating a new variable zn ∈ R

nz , whose compression-
ratio is expressed by ρ = nx/nz. The size reduction aims
to simplify the decision function of the learning task.
Furthermore, a well-designed features extraction process
should allow to capture only the information that is relevant
for the specific inference task, with a possible improvement
in terms of the model generalization capabilities [37].
In general, a feature extractor is modeled through a

function zρ = fρ(x). When f (·) is linear with respect to x,
we end up with a Linear Feature Extractor (LFE)

zρ = Aρx, (1)

where Aρ ∈ R
nx×nz is the compression matrix, for a specific

compression ratio ρ. Typically, LFEs are employed before
an inference/learning task based on non-linear models, e.g.,
a (Deep) NN [38], while non-linear FE are typically used
jointly with a linear discriminant function.
The compression matrix Aρ can be designed according

to different (possibly optimal) criteria. Supervised LFEs
derive the projection matrix plugging the training labels yn
in the design criteria, differently from unsupervised LFEs,
like PCA [39], which take into account only the training
input data, identifying for instance the most relevant features
to reconstruct the original input xn from the compressed
features zρ,n.
In the sequel we will show how the Gaussian Information

Bottleneck solution naturally leads to a supervised Feature-
Compression process, which can be exploited to design
parsimonious computational offloading operations in Edge-
Assisted inference tasks. More specifically, the GIB does
not only identify the best features to extract, for any given
feature’s size, but it also weight them in order to minimize
a lower bound on the bits necessary for their representation.

B. THE INFORMATION BOTTLENECK METHOD
Let’s suppose to have two random variables x ∈ R

nx and
y ∈ R

ny . Our goal is to characterize the information on
x that is relevant about y. In a ML setting, x and y
represent the input and the output of a specific inference
task, respectively. The IB method aims to find a probabilistic
compact representation z of the input variable x, while
preserving a certain amount of information about the output
of the inference task y. This problem can be formulated in
Lagrangian form [40] as follows [11]

minimize
p(z|x)

I(z, x) − βI(z, y). (2)

where I(·, ·) denotes the mutual information [41] function.
More specifically, we look for a statistical mapping p(z|x)

that, minimizing I(x, z) encourages a probabilistic compres-
sion on z, while controlling through I(z, y) the amount of
information retained by z about the output y.

When the Lagrange multiplier β → ∞ we get a more
informative representation, while at the same time penalizing
the compression. Otherwise, as β → 0, we obtain a more
compact representation in probabilistic sense, sacrificing the
learning performance.
In the general case, it does not exist a closed-form

solution for (2). In the discrete case, we must resort to an
iterative fixed-point algorithm [11], [42], which suffers of a
considerable computational complexity and some instability,
due to the estimation of the mutual information. For the
continuous case, it is possible to resort to sub-optimal VIB
formulations, which are quite complex to be implemented
in practice [25]. A valuable exception is represented by the
Gaussian case [12], which admits an elegant closed form
solution, as we recall in the following.

C. GAUSSIAN INFORMATION BOTTLENECK
If x and y are jointly characterized by a multivariate Gaussian
distribution, i.e., (x, y) ∼ N (0, �xy), the solution of (2) can
be expressed in closed-form. More specifically, it can be
proved that the optimal statistical mapping is linear, and it
is given by [12]

z = Aρx + ξ, (3)

where ξ ∼ N (0, I) is an additive Gaussian vector, sta-
tistically independent of x and z, and the compression
matrix Aρ is built from the eigenvalues and left eigenvectors
{λi, vi}i=1,...,nx of �x|y�−1

x , where �x|y is the conditional
covariance matrix of x given y, while �−1

x is the inverse
covariance matrix of x. Interestingly, the solution relies
on the same eigenvectors used in Canonical Correlation
Analysis (CCA) [43]. More specifically, sorting the eigen-
vectors vi by the ascending values of the corresponding
eigenvalues λi, for any fixed value of the Lagrange multiplier
β, the matrix Aρ is obtained by the non-zero rows of

A =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
0T; 0T; . . . ; 0T]

, 0 ≤ β ≤ βc1[
α1vT1 ; 0T; . . . ; 0T]

, βc1 < β ≤ βc2[
α1vT1 ;α2vT1 ; 0T; . . . ; 0T]

, βc2 < β ≤ βc3
...

...
[
α1vT1 ;α2vT2 ; . . . ;αnvTn

]
, βcn < β

(4)

where βci = 1
1−λi

, αi =
√

β(1−λi)−1
λiri

, and ri = vti�xvi.
The structure of the matrix A makes evident the trade-

off between the features’ compression and the learning
performance. Indeed, considering that only the first nz =
nx/ρ non-zero rows are used for compression when βcnz <

β ≤ βcnz+1, low values of β induces the use of few
CCA eigenvectors, thus reaching an extreme compression
degree, with a consequent degradation in terms of learning
performance. On the other hand, as β increases, we start
adding more eigenvectors to the compression matrix Aρ ,
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FIGURE 1. GIB architecture. x is the input of the specific inference task (e.g., image classification), x̃ represents the Gaussian Transformation of the data while ỹ is the output
of the first layer of the considered neural network.

thus obtaining a larger intermediate representation zρ , with
a higher amount of information with respect to y.

D. RELATIONSHIPS BETWEEN GIB AND CCA
Looking at eq. (4) we note that, differently from CCA, the
GIB solution characterizes also the loadings αi. Furthermore,
it considers a noise term ξ in the mapping. These differences
arise since the IB aims to optimize the trade-off between
compression, captured by the term I(x, z), and relevance with
respect to the outcome, captured by I(z, y). Conversely,
if we fix a priori the dimension nz of the feature vector, it
makes sense to search for the best linear mapping z = Mx+ε

that maximizes I(z, y). Solving the optimization problem
under Gaussian assumptions, turns out that the optimal
transformation matrix M∗ is given by the eigenvectors of
�x|y�−1

x . Furthermore, �ε = 0 (cf. Appendix for the proof).
Interestingly, the (accuracy) optimal solution does not depend
on the loadings αi of the eigenvectors (and is equivalent in
this sense to usual CCA). This fact leads us to the following
considerations:

• Under Gaussian assumptions, the projection on the CCA
basis vector is the best linear projection in terms of
mutual information I(z, y), i.e., accuracy-wise.

• Since the solution does not depend on the loadings αi
on (4) (see Appendix), if we focus only on the size
of the compressed representation z without care about
its representational complexity, GIB and CCA become
equivalent.

Thus, in performing feature extraction with a fixed number of
components and a fixed encoding, if Multivariate Gaussian
assumptions hold true, we can get rid of the noise term ε

and project on the basis vectors of CCA. This is actually
obvious, because the noise term of the GIB is not informative
with respect to the task outcome y.
Conversely, the GIB mapping in (3) gives us represen-

tations that are optimized in terms of minimum I(x, z),
i.e., offering the possibility to design an encoding rule
that minimizes the number of bits [41], in the spirit of
rate-distortion theory arguments. While this aspect may
be of relative importance in classical ML, which tipically
focuses only on the feature’s size nz, it turns out particularly
useful in Edge Inference scenarios assisted by Goal-Oriented
communications, where we want to save as much trans-
mission resources (e.g., source-coding bits) as possible,

while targeting specific requirements in terms of learning
performance [8].

III. PROPOSED APPROACH
Herein we present a strategy to adapt the GIB framework
to a generic (non-linear, non-Gaussian) inference task. The
proposed system model is depicted in Fig. 1. We start from
the input x of the inference task and then we apply a linear
and invertible data transformation h(·) to obtain another
vector x̃ = h(x), which is assumed to be well approximated
by a multivariate Normal, by Central Limit Theorem (CLT)
arguments [44]. Without restriction of generality, in this
manuscript we employ a (bidimensional) Discrete Fourier
Transform (DFT) [45], which enjoys the appealing feature
of fast and low complexity implementation by Fast Fourier
Transform (FFT) algorithms. Thus, x̃ represents the input for
an opportunistic regression task, that we define on purpose to
exploit the GIB framework. x̃ is also the input to the overall
classifying NN shown in Fig. 1, where L0 is an operator
representing the mixing stage of the first NN layer (before
the activation function).
In this work, we stick with a linear mapping, i.e., L0 is a

matrix, because it preserves the joint Gaussianity of x̃ and ỹ:
this is instrumental to exploit the GIB principle to infer ỹ by
a compressed version zρ of x̃. This is consistent with the use
of a shallow neural networks, as well as of a convolutional
neural networks [46].
Denoting the training-set as Dtr = {(xn, yn)}Ntr

n=1, the
proposed training procedure is essentially divided in three
steps:
1) We firstly train the preferred inference network on the

(transformed) training set {(x̃n, yn)}Ntr
n=1.

1

2) On the trained model, we compute the transformation
ỹn = L0x̃n + λ η, where η ∼ N (0, Iny), and λ is a
regularization parameter to be chosen. This way, we
construct a regression data-set D̃tr = {(x̃n, ỹn)}Ntr

n=1.
3) We use D̃tr to compute the sample-mean estimators

of the CCA covariance matrices �x̃ and �x̃|ỹ, that the
GIB exploits to build the compression matrix Aρ , as
detailed in Section II-C and (4).2

1 We stress that the method can be applied to any inference/classification
network. Thus, herein we do not focus on any sort of optimality of the
network, and we will mostly use convolutional NN networks, due to the
image classification application we focus on to verify the results.

2Actually, step (2) could be avoided because ỹ = L0x̃n and �x̃|ỹ can be
directly computed by the knowledge (estimate) of �x̃ and L0 [47].
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FIGURE 2. Alternative classification schemes. Note that although each LFE method shares the same linear structure of the encoder E(·), it is characterized by a specific
(linear) transformation h(·) and compression matrix Aρ .

Specifically, the noise term we add at the output of L0 is
necessary since the Gaussian Information Bottleneck fails in
dealing with deterministic transformations [12]. Indeed, in
case of deterministic mapping, the eigenvalues of �x|y�−1

x
would assume values in the set [0, 1] [43], thus making
infeasible the computation of the loads αi in (4). This way,
the solution is equivalent to the well-known Ridge Canonical
Correlation Analysis (RCCA) [48], a regularized version of
the classical CCA with a penalty on the L2 norm of the
projection vectors.
Once we learned how to compress features by the

proposed Opportunistic IB (OIB), we can exploit this
knowledge to classify data on the test-set Dtest, according
to two different schemes, as detailed in the two following
sub-sections. In particular, note that, for any possible
compression ratio ρ, the associated matrix Aρ is simply
obtained by (4), selecting the first nz eigenvectors of a fixed

CCA. Thus, the compressive transformation is unique, and
just the loading parameters αi depends on (and has to be
stored for) the specific compression ratio ρ = nx/nz, i.e., for
the specific β = βcnz+1.

3 This is clearly attractive complexity
wise.

A. CLASSIFICATION WITH FEATURE EXPANSION
The first and more appealing strategy, depicted in Fig. 2(a),
envisages to use a single NN C(·) to perform the inference
task, i.e., the same NN for any compression ratio ρ used
by the OIB-based features’ compression. To this end, we
don’t use the first layer L0 the original NN has been trained
with, and we use the GIB-compressed representation zρ to

3Note that, as detailed in the following, herein we can handle the
classification based on a size-tunable compressed representation zρ , by
using a single NN, rather than a bank of encoders and classifiers, as it
happens in [33], [34].
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produce an estimate ỹ(r)ρ = gρ(zρ) of the ỹ = L0x̃ that would
have been actually obtained by using the first NN layer
L0. This reconstructed ỹ(r)ρ is used to feed the shortened
classification network C(·). For any fixed β, i.e., for any
fixed compression ratio ρ = nx/nz, we assume the estimator
gρ(zρ) to be linear, as expressed by

ỹ(r)ρ = �ρzρ. (5)

Actually, (5) includes also the optimal Bayesian MMSE
estimator, when ỹ and zρ are jointly Gaussian, as it can be
safely assumed for the proposed OIB, thanks to the capability
of the 2D-DFT transform to generate (almost) Gaussian
distributed x̃.

Thus, in this case, the Bayesian optimal reconstruction
matrix �ρ is given by the classical Linear (L)-MMSE
estimator that, assuming zero-mean data, is expressed by [47]

�ρ = Cỹ,zρC
−1
zρzρ , (6)

where Cỹ,zρ is the cross-correlation between ỹ and zρ , while
C−1
zρzρ is the inverse correlation matrix of the compressed

representation. In our practical setting, considering the
training-set of the opportunistic regression sub-task, D̃ρ,tr =
{(zρ,i, ỹi)}Ntri=1, we approximate the L-MMSE by its sample-
mean counterpart, i.e., by the LS expression [47].

�̂ρ =
(
ZTρ,trZρ,tr

)−1
ZTρ,trỸtr, (7)

where the design-matrix Zρ,tr = [zTρ,1; . . . ; zTρ,1] ∈ R
Ntr×nz

collects the compressed representations of the training
data, while Ỹtr = [ỹTρ,1; . . . ; ỹTρ,1] ∈ R

Ntr×ny collects the
associated outcomes.4

It is interesting to observe that MMSE estimation of ỹ
is also meaningful from a mutual information perspective,
because for any estimator it holds true [41]

E{||ỹ − ỹ(r)ρ

(
zρ

)||2} ≥ ny
2πe

e
2H(ỹ|zρ)

ny , (8)

where H(ỹ|zρ) is the conditional entropy of ỹ given zρ .
Thus, considering the mutual information I(zρ; y) = H(y)−
H(y|zρ) of the NN output y and the compact features
zρ , by the information processing inequality I(zρ; ỹ) ≥
I(zρ; y) [41], we can conclude that the MSE minimization
in (8), corresponds to a maximization of an upper bound of
the mutual information I(zρ; y), that is highly related to the
final classification accuracy, which we actually target as the
final classification performance.
This way, we pass to the classifying network C(·)

a reconstructed ỹrec that is optimized from the mutual
information perspective: this would possibly lead to the
best possible reconstruction from the (final) classification
performance point of view (see the interplay of mutual
information and cross-entropy [49]). The main steps of the
proposed approach are summarized in Algorithm 1.

4Note that we are implicitly assuming to cope with an over-determined
system (i.e., Ntr > nz) with zρ,tr full-rank matrix, which guarantee the
uniqueness of the estimation. Otherwise, although non-unique, the L-MMSE
can still be computed via Singular Value Decomposition [47].

Algorithm 1 Opportunistic Information Bottleneck
Input:
Training-set: Dtr(xn, yn)

Ntr
n=1

inference network M = L0 ∪ [L1, . . . ,Lk]
The size of the compressed representation nz.
Output:
The optimal compression transformation Aρ

Process:
1: Compute a gaussian transformation h(·) of the input data

and obtain {x̃n}Ntr
n=1

2: Train the preferred inference network M on the training-
set {(x̃n, yn)}Ntr

n=1
3: Run the network to compute ỹn = L0x̃n + λη and build

the regression data-set D̃tr = {(x̃n, ỹn)}Ntr
n=1.

4: Compute the Gaussian IB transformation Aρ to infer the
regression data-set D̃tr from a compressed representation
z ∈ R

nz .
5: Collect the transformation for each training sample on

the design matrix Zρ,tr = [zTρ,1; . . . ; zTρ,1] ∈ R
Ntr×nz , and

the associated outcomes in [ỹTρ,1; . . . ; ỹTρ,1] ∈ R
Ntr×ny .

6: compute the L-MMSE estimator using Eq. (6)
7: return Aρ , �̃ρ .

B. CLASSIFICATION ON THE COMPRESSED
REPRESENTATION
An alternative, although less flexible and appealing scheme,
can be obtained assuming to use the OIB-compressed
features zρ to directly feed a classifying NN with a (smaller)
input-size nz, as shown in Fig. 2. In this case, once we
learned the OIB compression matrix Aρ by the procedure
described in the previous section, we have to train (and
exploit) a specific (different) classification network Cρ(·) for
each possible compression factor ρ, ending-up with a bank of
NN classifiers, similarly to what proposed in [33] to decode
the output of a matched bank of encoders, which played the
role of the OIB-encoders we introduce herein. This further
training of the bank of reduced networks on the compressed
features of the training set, may clearly help to improve the
classification performance of the system, which exploits a
dedicated NN for each specific compression ratio ρ. The
price to be paid is a much higher complexity, both for
the training phase, as well as for the overall architecture,
which requires a bank of multiple NNs to perform the final
classification. In this sense we consider this option less
attractive, although it is interesting to investigate the merits
and limits of the single-NN architecture we described before.

C. COMPLEXITY ANALYSIS
We detail herein the complexity analysis of the proposed
algorithm both for classification training and test. As far as
the training phase is concerned, we bear four main costs:

1) The training cost of the preferred inference network,
which depends on the network architecture and on the
data-set.
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2) The transformation cost associated with the 2D-FFT
of the training-set, which is equal to O(Ntrnx log2 nx).

3) The computation cost to determine the GIB compres-
sion matrix Aρ , which is dominated by the estimation
of the conditioned data covariance matrix �x|y and
the computation of the Singular Value Decomposition
(SVD) of �x|y�−1

x , leading to an overall computational
complexityO(n3

x + n2
xNtr).

4) The computation cost of the L-MMSE estimator, which
requests O(n2

zNtr) operations.
Since the computation cost of the L-MMSE estimator and
of the compression matrix Aρ dominate the cost of the
2D-FFT, the overall computation complexity is similar to
that one of a classical PCA, which also requests SVD.
Furthermore, the complexity is drastically reduced with
respect to the Linear Feature Extractor based on Mutual
Information [38], which also exploits a preliminary PCA
computation, followed by a gradient based procedure to
retrieve the compressed features. During the inference
procedure, all the methods based on linear feature extraction
need for a computational complexity which is O(nxnz+nznỹ)
due to the compression and reconstruction.On the other hand,
The Variational Information Bottleneck needs an extra NN
to perform compression, whose computational complexity
would be dramatically higher with respect to performing
a matrix multiplication. This confirms that the proposed
method would be particularly useful in Edge Inference
scenarios, where devices are typically characterized by
limited computational capabilities.

IV. EXPERIMENTS
In this section we discuss our experimental results to demon-
strate the effectiveness of the proposed approach. Firstly, we
describe the data-sets employed in our simulations. Then,
for the sake of comparisons, we briefly summarize four
alternative FE strategies available in the literature. Finally,
we asses the performance of the proposed method.

A. DATA-SET AND NN TRAINING
We considered three data-sets in our experiments:

• The GTSRB data-set [50], composed of 1213 RGB
traffic sign images divided in 43 different classes with
a size nx = 32 × 32 px × 3 colors. In order to obtain a
reliable estimation of the covariance matrices involved
in the OIB framework (and in PCA), we considered
a data-augmentation factor equal to 5, obtained by
applying random rotations to the original images. This
procedure led us to deal with an augmented data-set of
6.065 images, that we split in 4.852 for the training-set
and 1.213 for the test-set.

• The Euro-SAT data-set [51], composed of 2.7 × 104

RGB images captured by the Sentinel-2 satellite divided
in 10 different classes. Also this data-set has images
with size nx = 32 × 32 px ×3 colors. We considered
21.600 images for the training-set and 5.400 images for
the test-set.

• The MNIST data-set [52], which is composed of
7 × 104 grey-scale images of handwritten digits divided
in 10 different classes, with a size nx = 28 × 28 =
784 px. The images are split in 6 × 104 for the training-
set and 1 × 104 for the test-set.

We focused on these well known data-sets, because they
lead to a training phase of the proposed architecture, with
reasonable complexity and computational time. Indeed, as
clarified in Section III, the proposed OIB needs to estimate
data covariance matrices (and an inverse), e.g., �x|y, and
�−1
x , with a complexity that scales cubical with the image

size: thus, for larger images the computational burden could
become problematic for a standard PC, as the one we
used to test the proposed approach.5 Regarding the training
procedure, we employed the well-know Adam optimizer [53].
We considered 30 epochs in all our simulations, a learning
rate lr = 10−3 and a batch-size |B| = 32.

The validity of the multivariate Normal assumptions under
the proposed OIB strategy, have been successfully verified
by the Henze-Zirkler test for Multivariate Normality [54],
that has been applied on the 2D-DFT outputs x̃ that feed the
OIB stage.

B. COMPETITIVE APPROACHES
We compare the OIB framework with four alternative FE
strategies:

• The well-know Principal Component Analysis
(PCA) [39], which is typically used for unsupervised
LFE, i.e., without taking into account relevance to
the specific inference task y. In this case, for any
compression ration ρ = nx/nz, the features are obtained
projecting the data x on the first nz eigenvectors of the
estimated covariance matrix �̃x.

• The Mutual Information Based LFE (MIB-LFE) [38],
which proposes to improve PCA by embedding the full
PCA on a lower dimensional space by an orthogonal
projection matrix A, which is learnt (together with the
classifying NN) by maximizing an approximated bound
of the mutual information I(zρ, y). The optimization
procedure is based on gradient ascent and Gram-
Schmidt ortho-normalization. This method, as the
proposed OIB, represents a theoretically principled,
task-oriented, supervised LFE, whose effectiveness has
been experimentally confirmed and validated in many
works [55].

• The nonlinear-FE framework proposed in [33], [34],
[36], that exploits a bank of encoders and classi-
fiers, each characterized by a different compression
ratio ρ. Specifically, each encoder produces zρ by
down-sampling the input image x by a cascade
of convolutional/max-pooling layers and it is jointly
trained with an associated CC, which performs the final
classification.

5The reduction of the complexity to train the system, and to estimate
the covariance and precision matrices by exploiting the data-structure and
parallel computations, will be investigated in future works.
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• The Variational Information Bottleneck (VIB)
method [17], which is a well-know approximation of
the IB principle, based on a variational bound of the
IB cost function in (2). Actually, also the VIB can be
implemented by considering an architecture with an
encoder to extract the features zρ and a NN decoder
to classify them [17], [25]. The main disadvantage of
the VIB is that, since the output size of the encoder is
fixed, similarly to the approach described in [33], it is
necessary to train a bank of encoders/classifiers, each
one associated to a specific compression factor.

We stress that the first two LFE methods share a similar
structure with the proposed OIB in Fig. 2(d). Indeed, while
h(·) stands for 2D-DFT in the OIB, it represents a lossless
PCA for the other two methods. Then, Aρ = [Inz, 0] for
unsupervised PCA, while Aρ is a full nx×nz mixing matrix
for MIB-LFE [38]. Consequently, like the OIB, also the
first two methods admit a single-NN classification strategy,
while the nonlinear-FEs in [33], [34], [36] and the VIB
are structurally designed with a bank-of-NNs, as shown in
Fig. 2(d)(b).

C. CLASSIFICATION BY A SINGLE-NN
A single-NN is trained by the procedure described in
Section III. Thus, for any different compression ratio ρ, the
input of this NN is obtained from the compact representation
zρ , by the LS-estimator in (7). Employing CLT arguments,
we can assume that, also for unsupervised PCA and
MIB-LFE, the compact representation zρ and ỹ are jointly-
Gaussian. Thus, L-MMSE expansion from zρ to ỹ turns out
to be optimal, as for the OIB. Conversely, given the non-
linear structure of the compressive encoder in [33] and of
the encoders in the VIB [17], we cannot assume the joint
Gaussianity of zρ and ỹ, and an L-MMSE reconstruction of
the CC input would be sub-optimal.
To explore the generality and potentials of the proposed

approach, we did tests by exploiting both Shallow and
Convolutional Neural Networks (SNNs and CNNs). Actually
a SNN has been tested only on the MNIST data-set since,
differently from the GTSRB data-set, it can be reliably
classified also by simple SNN models, thanks to the low
complexity of the underlying classification task.
Tables 2, 3 and 4 report the details for baseline NNs

that we employed to implement the overall classification
network shown in Fig. 2, without exploiting the proposed
OIB approach. Tables also report the Multiplication and
Accumulation Complexity (MAC), associated to each layer.
All the NNs employ a relu(·) activation function.
We remind that the goal of the proposed OIB is to

implement classification by a size-tunable feature extraction,
optimally trading performance for complexity. The single-
network architectures summarized in Fig. 2(d), fulfil this
goal by introducing a 2D-DFT processing, and replacing
layer L0 by the compressing matrix Aρ and the expanding
matrix �ρ . Table 6 reports the MACs of the proposed
architecture, for different compression ratios ρ = nx/nz,

TABLE 2. Architecture of the Shallow network used to classify the MNIST data-set.

TABLE 3. Architecture of the Convolutional Neural Network used to classify the
GTSRB data-set. Each Convolutional stage considers a 2 × 2 stride.

TABLE 4. Architecture of the Convolutional Neural Network used to classify the
Euro-SAT data-set. The first stage considers a 2 × 2 stride, while the max-pooling
stages consider a 2 × 2 window.

TABLE 5. Saving in terms of computational complexity for both the UE and the ES
for the shallow NN architecture (MNIST data-set).

distinguishing between the compressive FE and the final
classification, which exploits only layers L1-L4 of the
original network.
The FE cost is due to the 2D-FFT and the subsequent

multiplication by Aρ , while the classification cost is due
to multiplication with the matrix �ρ , and the computations
through the NN layers L1-L4.6

6The proposed architecture is particularly valuable when the FE is
performed at a given device, while the final classification at a central server
equipped with more powerful processing capabilities, such as it happens
in cloud-based applications, and Edge Machine Learning [13], [36], [56]
frameworks.
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FIGURE 3. Performance comparison with feature’s re-expansion and a single-NN
architecture.

Fig. 3 plots the accuracy performance of the single-NN,
as a function of the number nz of extracted features, i.e.,
of the compression ratio ρ = 784/nz. It is clear how the
proposed approach outperforms both the MIB-LFE [38] and
the unsupervised PCA compression [39]. PCA, as expected,
shows the worst performance because it retrieves features
that are the most informative for image reconstruction
purposes, without taking into account their relevance for the
actual classification task. However, even though [38] would
allow to extract features in a supervised and task-oriented
manner, its adaptation to such a single-NN architecture,
with tunable compression ratio, produces higher performance
degradation with respect to the proposed OIB.

D. ANALYSIS OF COMPRESSION/RELEVANCE
TRADE-OFFS
In the previous section, we testified the effectiveness of our
method as a supervised linear feature extractor. However,
as already pointed out in Section II-D, the Information
Bottleneck method, that the OIB takes inspiration from, is
focused on a compression/relevance trade-off. The compres-
sion term is associated to the mutual information I(x̃, z) (cf
eq. (2)), that the IB aims to minimize in order to retrieve a
compact representation of the input, although still relevant
for the outcome of the learning task. Taking in mind the
relationship I(x̃, z) = H(z)−H(z|x̃) we note that minimizing
the IB cost is somehow related to reducing the entropy of the
compressed representation H(z), which represents a lower-
bound on the minimum number of bits required to encode
the source without loss of information [41]. Thus, in Edge-
Assisted Goal-Oriented Communications scenarios, where
we aim to transmit the minimum amount of data to pursue
a Goal, minimizing latency and energy consumption [8],
it makes sense to analyze the task performance (e.g., the

FIGURE 4. H(z) as a function of the number of extracted components for PCA, CCA
and OIB.

correct classification rate) as a function of the entropy of
the compressed representation.
Furthermore, although the loading coefficients αi in (4)

of the GIB solution don’t carry any improvement in terms
of learning performance with respect to any other loading
set, as clarified in Section II-D, they turn out useful in
a data compression perspective. To better highlight this
fact, we compare our OIB approach with PCA and CCA.
Specifically, CCA projects the inputs x̃ in the same directions
of the OIB solution, giving however the same load to each
component (i.e., {αi}nzi=1 = 1). We did our comparisons on the
MNIST data-set, trained on the shallow network architecture
considered in the previous section. The network considered
for PCA has been trained on the original images of the
data-set, while for CCA and OIB we used the same network
architecture trained on the 2D-DFT of the images. In Fig. 4
we show the entropy H(z) as a function of the number of
components for the considered approaches. As expected, OIB
leads to a lower entropy on the compressed representation
with respect to the competitors. This means that it is possible
to find an encoding rule that allows to minimize the number
of bits to represent z, and associated savings in terms of
transmission resources.
In Fig. 5 we compare the three compression philosophies

considering the informativeness of the compressed repre-
sentation with respect to the classification task with the
same entropy amount H(z). Using Central Limit Theorem
arguments, we can assume that the compressed represen-
tation z has a multivariate Normal distribution. Thus, we
computed the entropy considering the formula H(z) =
1
2 log((2πe)nz |�z|)[41], where the covariance matrix has
been estimated by sample-mean.7 As expected, our OIB
approach performs better with respect to the competitive
approaches, since it is the only one specifically focused on
the compression maximization under learning performance

7Note, since the differential entropy is scale-dependant, to make fair
comparisons we normalized the power of z for all the considered approaches.
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FIGURE 5. Accuracy as a function of H(z) for PCA, CCA and OIB.

constraints. As in the previous case, the unsupervised PCA
approach shows the worst performance. Regarding CCA,
taking in mind that the loadings do not affect the task
performance, if we consider the same compressed size nz
we would have the same performance of the OIB approach.
However, as shown in Fig. 4, CCA leads to a solution
characterized by a higher complexity of representation
(captured by H(z)) for a fixed number of components. To
reach the same complexity with the OIB transformation,
we have to consider more components, with a consequent
improvement in terms of accuracy, when comparing the
schemes at the same entropy.

E. CLASSIFICATION WITH A BANK-OF-NNS
In this section we test the performance using the architecture
in Fig. 2, which exploits multiple classifying NNs, each one
with an input size that is matched to the size nz of the
extracted features zρ , without re-expanding them to ỹ(r)

ρ .
For the CE compression strategy, we employed the joint
CE/CC training procedure described in [33]. To perform fair
comparisons, for the CE compression strategy we employed
a bank of CEs, whose MACs complexity is similar to the OIB
method. This has been done considering a mixed architecture
composed of two convolutional layers followed by a fully
connected layer, used to adjust the output size to the desired
size nz. The number of channel at the output of the first layer
has been adjusted in order to match the desired complexity.
The architecture of the encoder for the sizes nz is reported in
Table 6. In the table we also report the comparison between
the computational complexity of the proposed encoder and
the Opportunistic Information Bottleneck.
We assessed our performance considering the GTSRB

data-set [50] and we compare the proposed approach with
the Method proposed in [38] and with the well-know
Variational Information Bottleneck (VIB) [17]. Indeed, these
two methods based on Information Theory arguments [41],
and they are specifically tailored to classify directly on the
compressed features without require the re-expansion.

FIGURE 6. Performance comparison with the bank -of-NN architecture.

Fig. 6, which shows the accuracy versus the percent-
age of compressed features, witnesses that the Variational
Information Bottleneck, performs slightly better with respect
to the other methods. VIB represents an alternative way
to train a Convolutional Encoder, which is based on a
more principled approximation of the Information Bottleneck
principle [17]. Furthermore, differently from what we will
show in Section IV-F, the VIB performs better with respect
to the OIB framework. This represents a benefit of the
joint training procedure of the compression and classification
networks based on the Variational Bound [17], which
represents a theoretically-grounded approximation of the
IB objective function. Conversely, there are no substantial
differences between the proposed approach, the CE-based
compression and the Linear Feature Exctractor based on
mutual information. As far as the CE-based compression is
concerned, the CEs in [33], can be interpreted as a (non-
linear) heuristic mimicking of the Information Bottleneck
principle: somehow this fact is confirmed by the similar
performance with respect to the proposed OIB, which
is also a sub-optimal approximation of the IB, although
more theoretically principled. The proposed OIB in such a
multi-NN implementation, performs similarly to the MIB-
LFE in [38], for any compression ratio. Note, that in this
case we are not re-expanding the feature size. i.e., we
are working for each compression ratio with the structure
underlying the original MIB-LFE design. Thus, in this case
OIB and MIB-LFE performs similarly because they share
a quite similar structure and both the methods propose
a way to approximate the maximization of the mutual
information between the compact representation zρ and
the learning task output y. Specifically, [38] proposes an
approximation of the I(zρ, x) that analytically relies on a
statistical independence assumptions of the data, which is
only approximated by the full-PCA pre-processing for non-
Gaussian features. Further approximations are introduced
in [38] to compute the negentropy in the objective function.
In the proposed OIB, we opportunistically embedded in the

2428 VOLUME 5, 2024



TABLE 6. Variable encoder architecture for the different compression factors. C1,2 represents the two convolutional layers, while L1 is the linear layer. For the convolutional
layers we considered 3 × 3 convolutions and an input image with size 32 × 32 × 3 px.

original inference task, another IB sub-problem, that we
are able to optimally solve in closed form by the GIB.
The main assumption here is that the good performance
of the surrogate linear regression task solved by the GIB,
induces also an almost optimal performance of the associated
classification task. This intuitive explanation, which has been
partially supported by information theoretic arguments in
Section III-A, is confirmed by the comparable performance
with the MIB-LFE approach. The nice part of the OIB is
that it is a bit easier to be trained and furthermore, shows
better performance in the single-NN architecture described
in the previous section.

F. COMPARISONS WITH THE VARIATIONAL
INFORMATION BOTTLENECK
To further prove the effectiveness of the proposed approach,
we compare it with the well-known Variational Information
Bottleneck (VIB) method [17]. We made our experimental
validation considering the network architectures reported
in Table 3 and Table 4, trained on the GTSRB [50]
and the Euro-SAT data-sets [51]. VIB is a well-know
approximation of the Information Bottleneck principle, based
on a variational bound of the IB cost function, which
can be easily implemented considering an encoder/decoder
architecture.
As already pointed out, the main disadvantage of the

VIB is that, since the output size of the encoder is fixed,
similarly to the approach described in [33], it is necessary to
train a bank of encoders/classifiers, each one associated to
a specific compression factor ρ. Thus, to fairly compare the
two approaches, we adapted the VIB formulation to work
with the single-architecture setting, considering the following
training procedure:.
1) We trained the CNN reported in Table 3 on the GTSRB

data-set the CNN reported in Table 4 on the Euro-SAT
data-set.

2) We trained the VIB networks considering the proce-
dure described in [17] for all the possible number
of features. We implemented an encoder with the
following structure: Conv2D(F) → Linear(256×F,2 ×
nz), where F is the number of output filters. The
number of filters has been changed for the different
compression factors to maintain the same complexity,

FIGURE 7. Comparisons between the proposed approach and the Variational
Information Bottleneck on the GTSRB data-set.

in terms of MACs, of the OIB compression. As far
as the decoder is concerned, we implemented the
same architecture reported in Tables 3 and 4, ignoring
the layer L0. We considered a linear layer between
the encoder and the decoder in order to expand the
encoder to the expected input size of the layer L1, i.e.,
16 × 16 × 1 for the network reported in Table 3
and 32 × 32 × 1 for the network reported in Table 4.

3) After the end of the training procedure, we got
rid of the decoder and we performed the same
procedure reported in Section III in order to get the
LS estimators �ρ , which allows us to reconstruct the
input of the intermediate layer L1 from the compressed
representation obtained through the VIB encoder.

4) We re-trained the classification networks with re-
expansion for each possible compression factor ρ.

In order to fairly compare the proposed OIB with the
VIB, we also re-trained the OIB classification network
for each possible size of nz (i.e., for each ρ), by re-
expanding the compressed features zρ with the proper LS
estimator �̃ρ .
In Fig. 7 we report the average accuracy versus the per-

centage of compressed features on the test-set of the GTSRB
data-set. We firstly note that, as expected, the re-training
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FIGURE 8. Comparisons between the proposed approach and the Variational
Information Bottleneck on the Euro-SAT data-set.

procedure on the expanded features allows to highly improve
the performance for the proposed OIB, which slightly
outperforms the classification accuracy of the VIB. However,
a classical VIB approach, with a tunable FE size, naturally
leads to a higher complexity of the system, since it is
necessary to consider a classification architecture with
multiple NNs, each one trained on a compressed zρ with a
specific number of features nz (i.e., a specific ρ = nx/nz).
To avoid such implementation complexity, another possible
approach is to consider a single classifying NN that is trained
on a set of ỹ(r)

ρ , which are re-expanded versions of zρ , having
different compression ratios, i.e., ρ ∈ {ρ1, ρ2, . . . , .., ρk} and,
consequently, a different number of features nz. Specifically,
during the training phase, we randomly compressed the
training data considering a uniform discrete distribution for
the possible values of ρ. Then, we tested this average
architecture, both for the VIB and the OIB design, at
different (fixed) levels of compression. Fig. 7 shows that
such average classifying NN suffers some performance
degradation with respect to the classification based on
the multiple-NNs architectures. However, it also grants a
noticeable performance improvement with respect to the
single-NN architecture without re-training and, noticeably,
also in this case the quite simple and elegant OIB framework
outperforms the VIB. The same considerations hold also for
the Euro-SAT data-set, as witnessed by Fig. 8.

G. SENSITIVITY ANALYSIS
This section analyzes the sensitivity of the proposed method
to the neural network structure, focusing on convolutional
and fully connected neural networks. Let us consider the
case of data classification with feature re-expansion (through
the L-MMSE estimator).
We firstly remark that we are approximating the first

linear layer of our network L0, by a (low-rank) matrix
factorization expressed by L̃0 = Aρ�ρ . Thus, the robustness

FIGURE 9. Accuracy on the test-set of the MNIST data-set for different number of
components nz on shallow and convolutional neural networks.

of our algorithm is related to the error we induce by said
approximation, which naturally gets worse using smaller
sizes nz (i.e., lower-rank approximation) for the compressed
representation.
However, it is important to note that the possible clas-

sification degradation depends also on another factor, i.e.,
the capability of the last network layers [L1, . . . ,Ln] to be
robust, or capable to adapt, to additive noise ignited in the
first network layer L0.
To clarify this point, we show in the following the

simulation results obtained exploiting both fully connected
and convolutional neural networks, evaluating the accuracy
degradation with respect to the originally trained (full) NN,
for different number nz of extracted features. Specifically,
we used the MNIST data-set, and the system has been
retrained with the procedure detailed in Section III-A.
Results are shown for a set of possible feature’s size nz ∈
[5, 10, 15, . . . , 70].
For the fully connected neural network, the first layer

is characterized by a matrix L0 ∈ R
784×196, while for

the convolutional architecture we employed a 2 × 2 strided
convolution to down-sample the input data from 28 × 28 =
784 px to 196 px, ending up with an equivalent (block
diagonal) matrix L0 ∈ R

784×196.
As expected, Fig. 9 shows that the OIB-approximated

NN provides better classification accuracy as we increase
the size nz of the compressed representation zρ , for any
fixed architecture and (re-) training strategy, due to the fact
that the low-rank approximation L̃0 = Aρ�ρ gets better.
Furthermore, Fig. 9 shows that the convolutional neural
network seems to be more sensitive to the approximation
of L̃0. This higher sensitivity of CNN can be explained
by considering that reconstructing ỹ by L̃0x̃, has an effect
similar to adding noise on the inputs of the next network
layer L1, and is well known that CNNs have robustness
issues in this case [57]. However, this in-layer noise
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effect can be mitigated by re-training the last network
layers [L1, . . . ,Ln] on the reconstructed data, i.e., on the
output of L̃0, paying the price to introduce some extra
training complexity. Actually, by this retraining, the CNN
performance for the proposed classification data-set are
equivalent to those of the fully-connected architecture, as
witnessed the blue curve in Fig. 9. Although, this is just
a simple example, it is reasonable that properly retraining
also other NN architectures, it is possible to make the
approximation error introduced by OIB quite insensitive to
the specific NN, as the NN layers [L1, . . . ,Ln] should be
capable to capture by re-training the mutual information
I(ỹ(r)

ρ , ŷ) if they were capable to capture I(ỹ, ŷ).

V. CONCLUSION AND FUTURE WORK
We presented a new approach to opportunistically exploit the
closed-form solution of the Gaussian Information Bottleneck
(GIB) in a general inference task, to enable a tunable
and effective supervised feature extraction, highlighting the
specific merit of the GIB with respect to CCA, as the
best compact representation of the (same) extracted features.
Experimental results on an image classification task testifies
the effectiveness of the proposed approach and encourages
to further investigate this research line. In particular, the
proposed formulation seems particularly attractive any time
there is the need, or the opportunity, to perform inference
by a single-NN, with a number of features that may change
in time as a function of the system resources, such as hard-
ware, energy, storage, communications, and computations.
In this view, future works may include the employment
of the proposed compression strategy in dynamic resource
allocation strategies for edge-assisted goal-oriented commu-
nications scenarios (see, e.g., [33], [34], [36]). Furthermore,
it may be interesting to apply the OIB formulation to
different inference tasks, to better assess its generality.
Finally, the investigation of possible interplays between OIB
and Variational IB formulations represents another appealing
research line.

APPENDIX
MAXIMIZATION OF MUTUAL INFORMATION UNDER
GAUSSIAN ASSUMPTIONS
Let us define the following optimization problem

max
�s

I(z, y)

s.t. z = M, �ε (9)

where x and y are characterized by a multivariate Normal dis-
tribution and ε is also Normal and statistically independent
from both x and y. Since I(z, y) = H(z) −H(z|y), recalling
the expression of the entropy for Multivariate Gaussian
variables [41], the objective function becomes

I(z, y) = log
(|M�xMt + �ε |

) − log
(|M�x|yMt + �ε |

)
.

Proceeding as in [12], nulling the derivative ∂I(·,·)
∂M we

obtain the following equation
[
M�xMt + �ε

]−1M�x − [
M�x|yMt + �ε

]−1M�x|y = 0
[
M�x|yMt + �ε

][
M�xMt + �ε

]−1M = M�x|y�−1
x .

(10)

Thus, M�x|y�−1
x must reside in the space generated by

the rows of M, and it is composed by left eigenvectors
of �x|y�−1

x . This means we can write the optimal trans-
formation matrix as M = WV, where the rows of V are
composed by the left eigenvectors of �x|y�−1

x , while W =
diag(wi), i = 1, . . . , nx is the loadings matrix.

By definition of left eigenvector, V�x|y�−1
x = DV, where

D = diag(λi), i = 1, . . . , nx. Substituting in eq (9) we obtain
the following derivations

[
WDV�xVtWt + �ε

][
WV�xVtWt + �ε

]−1W = WD
[
WDRWt + �ε

][
WRWt + �ε

]−1W = WD,

where R = V�xVt. Now, pre-multiplying by W−1, post-
multiplying by W−1(WRWt + �ε)W and re-arranging, we
end up with the following equation

W−1�εW = DW−1�εW. (11)

Assuming that D is not the identity matrix (which would
imply that x and y are independent), eq. (11) is verified
if and only if �ε = 0, for any possible loading matrix W,
which does not influence the optimization.
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