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Abstract
Abiotic factors are usually considered key drivers of species distribution at macro 
scales, while biotic interactions are mostly used at local scales. A few studies have ex-
plored the role of biotic interactions at macro scales, but all considered a limited num-
ber of species and obligate interactions. We examine the role of biotic interactions 
in large-scale SDMs by testing two main hypotheses: (1) biotic factors in SDMs can 
have an important role at continental scale; (2) the inclusion of biotic factors in large-
scale SDMs is important also for generalist species. We used a maximum entropy 
algorithm to model the distribution of 177 bat species in Africa calibrating two SDMs 
for each species: one considering only abiotic variables (noBIO-SDMs) and the other 
(BIO-SDMs) including also biotic variables (trophic resource richness). We focused 
the interpretation of our results on variable importance and response curves. For 
each species, we also compared the potential distribution measuring the percentage 
of change between the two models in each pixel of the study area. All models gave 
AUC >0.7, with values on average higher in BIO-SDMs compared to noBIO-SDMs. 
Trophic resources showed an importance overall higher level than all abiotic predic-
tors in most of the species (~68%), including generalist species. Response curves were 
highly interpretable in all models, confirming the ecological reliability of our models. 
Model comparison between the two models showed a change in potential distribution 
for more than 80% of the species, particularly in tropical forests and shrublands. Our 
results highlight the importance of considering biotic interactions in SDMs at macro 
scales. We demonstrated that a generic biotic proxy can be important for modeling 
species distribution when species-specific data are not available, but we envision that 
a multi-scale analysis combined with a better knowledge of the species might provide 
a better understanding of the role of biotic interactions.
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1  |  INTRODUC TION

The distribution of animals and plants is linked to many different 
components, going from evolutionary history to abiotic (e.g., cli-
mate, land cover, topography) and biotic (e.g., parasitism, competi-
tion, predation) factors. Traditionally, abiotic factors like climate are 
considered the main drivers of biodiversity at macro scales (from 
regional to continental), whereas biotic factors are considered im-
portant almost only at local scales (e.g., from landscape to individual 
home-range) (Pearson & Dawson,  2003; Soberón, 2007). In partic-
ular, the productivity hypothesis postulates that energy and water 
availability are the main factors that explain the spatial distribution 
of biodiversity richness across broader scale (Hawkins et al., 2003; 
Whittaker,  1975). Often, this is translated into calibrating models 
with variables such as mean temperature and precipitation (Thuiller 
et al., 2004) without considering any type of biotic factors.

However, biotic interactions clearly have a direct influence on 
species' spatial patterns with many different mechanisms, going 
from predation to competition, from resource–consumer interac-
tions to host–parasite interactions (e.g., Bascompte, 2009). Gilman 
et al. (2010) suggested that species interactions can strongly influ-
ence how climate change affects species distribution at every scale 
and failing to incorporate these interactions in species distribution 
models certainly limits our ability to predict species responses to 
climate change. This is true particularly for positive interactions 
(e.g., facilitation) which may be detectable at large scales, while neg-
ative interactions (e.g., competition), being more scale-dependent, 
are often assumed to be important only at local scales (Araújo & 
Rozenfeld, 2014; Belmaker et al., 2015).

Wisz et al.  (2013) reviewed the literature on interspecific in-
teractions searching for evidence of their importance in shaping 
large-scale species distributions. They found few empirical stud-
ies (e.g., Araújo & Luoto,  2007; Heikkinen et al.,  2007; Koenig & 
Haydock,  1999) mostly focused on a limited set of species with 
“obligate” interactions (e.g., butterfly-plants). For example, Araújo 
and Luoto  (2007) modeled the distribution of the clouded Apollo 
butterfly (Parnassius mnemosyne) by using climate variables only, cli-
mate variables plus the occurrence of four larval host plants as biotic 
variable, and biotic variables only. According to their findings, the 
inclusion of a biotic interaction can significantly alter species' dis-
tribution at macro scales for both the current time and under future 
climate change scenarios. These results were not unexpected, since 
the study is focused on one butterfly species highly dependent on 
the three host plant species during its larval stage.

In the last few years, only a handful of studies have been 
added, focusing on trophic (Arumoogum et al.,  2019), competitive 
(Labadessa & Ancillotto, 2022; Stephenson et al., 2022), and animal–
host interactions (González-Salazar et al., 2013). Alaniz et al. (2020) 
provided an interesting example considering the Magellanic wood-
pecker (Campephilus magellanicus) and its preys in South America. 
They demonstrated that the inclusion of biotic interactions (specif-
ically the distribution of prey species) helped in defining the niche 
and distribution of a specialist predator at the continental scale. All 

these analyses have been performed considering relatively simple 
systems, with a good level of knowledge, and focusing on specialist 
species, leaving an open discussion on the generalizability of their 
results.

Braga et al.  (2019) extended these results considering a food-
web database to model the distribution of terrestrial vertebrates 
in Europe. However, these analyses rely on food-web data or more 
generically on biotic interactions data, which are often not available 
in many regions of the world (the so-called Eltonian shortfall; Hortal 
et al., 2015), especially in areas with a high level of biodiversity and 
limited knowledge of complex trophic interaction webs, such as the 
African continent.

Several studies overcame the paucity of data using proxies for 
biotic interactions like, for example, richness of prey species (Aragón 
& Sánchez-Fernández,  2013; de Araújo et al.,  2014; Gherghel 
et al.,  2018). All these studies found that proxies for biotic inter-
actions can be important in modeling species distributions at large 
scales, but all of them focused on a single predator and its preys 
(e.g., Aragón & Sánchez-Fernández, 2013) or on a limited set of spe-
cies within peculiar ecological systems (e.g., 5 species of sea kraits in 
South-East Asia; Gherghel et al., 2018).

Here, we investigate the importance of including biotic variables 
in large-scale species distribution models while considering many 
species with very different trophic ecology. We modeled the dis-
tribution of all bat species occurring in Africa calibrating two SDMs 
for each species: one “traditional” SDM calibrated with abiotic vari-
ables only (hereafter noBIO-SDM) and one SDM calibrated with 
both biotic and abiotic variables (hereafter BIO-SDM). We compared 
variable importance in the two sets of SDMs to test two main hy-
potheses: (1) biotic factors in SDMs can have an important role at 
the continental scale and (2) the inclusion of biotic factors in large-
scale SDMs is important also for generalist species.

Bats represent one of the most successful radiations among 
mammals, with more than 1400 species, a global distribution (ex-
cept for the polar regions), and a huge variety of ecological niches 
(Simmons, 2005). Their trophic ecology covers a huge diversity in 
both the food items consumed (e.g., plants, arthropods, or verte-
brates) and the degree of dietary specialization. In addition, they 
are often sensitive to climatic and environmental variation (Cooper-
Bohannon et al., 2016; Schoeman et al., 2013), making them an inter-
esting case study for testing our hypotheses.

2  |  METHODS

2.1  |  Species distribution data

We considered all 314 species of bats present in Africa (Wilson 
& Mittermeier,  2019; Figure  S1.1 in Appendix  S1 in Supporting 
Information) and we obtained 117,928 occurrences from the 
African Chiroptera Report database (Van Cakenberghe & 
Seamark,  2020). Two co-authors (V.V.C. and E.S.) provided ad-
ditional unpublished locations; the final occurrences database 
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included 159,380 locations for 310 species. For 137 species with 
few (<20) or no occurrences, we looked for additional data from 
online databases (e.g., GBIF and iNaturalist), and peer-reviewed 
literature (the complete list of data sources and references is given 
in Appendix S1 Table S1.2 and Table S1.3) and we obtained 3232 
additional locations for 84 species. The full database included 
162,612 locations for 310 species.

We removed all locations without coordinates, all duplicated 
records, and all records with dubious taxonomy. We excluded from 
further analyses 4 species for which no presence data were available 
as well as 133 species with less than 20 occurrences which would re-
sult in unstable and/or unrealistic models (van Proosdij et al., 2016; 
Wisz et al., 2008).

To limit autocorrelation in the data, for the remaining 177 spe-
cies, we kept only one location per 1 km2 obtaining a total of 22,730 
locations, with an average of 128 locations per species (range: 
20–944).

For the entire set of 314 species, we also collected data on trophic 
guild (frugivores vs insectivores) and diet specialization (number of 
food items registered in the diet) from the Bat Eco-Interactions data-
base (Geiselman & Younger, 2020; http://batba​se.org/) and Wilson 
and Mittermeier (2019). Food items were obtained at the family level 
for plants, and at the order level for arthropods. All species feeding 
on plant resources (fruits, nectar, other plant parts) were classified 
as frugivores while those feeding mainly on arthropods were classi-
fied as insectivores (Appendix S1 Table S1.4). Focusing on visitation, 
consumption, and predation of food resources, we defined as gener-
alists all bat species feeding on more than one food item.

2.2  |  Environmental and biotic data

We included in our analyses as many variables as possible among 
those potentially important in shaping species distribution in bats 
(Cooper-Bohannon et al., 2016; Herkt et al., 2016). We included abi-
otic variables (climate, terrain ruggedness, distance to waters), biotic 
variables (richness of trophic resources), and anthropogenic factors 
(human population density). All layers considered were resampled at 
1 km2 resolution (Appendix S1 Table S1.5). All data management was 
performed in R 4.1.2 (packages ‘usdm’, ‘fossil’, ‘randomForest’) and 
ArcGis Pro 2.8.3 (ESRI ©).

All abiotic variables we included are linked directly or indirectly 
to the habitat used by bats. We included a Terrain Ruggedness Index 
(TRI) as a proxy for roost availability, assuming that more complex 
topographies are associated with greater availability of rock crevices 
(including cave-like roosts; Kunz, 1982). We calculated the TRI fol-
lowing Nielsen et al. (2004) using a 90 m resolution digital elevation 
model (SRTM v4.1; Jarvis et al., 2008).

Inland water availability is a critically important factor for many 
bat species, especially in hot and dry areas such as those present in 
the African continent (Korine et al., 2016). Water springs, streams, 
rivers, ponds, and lakes are crucial not only for drinking but also 
for plant and invertebrate abundance (McCain,  2007; Monadjem 

et al.,  2018). We included water availability in our analyses using 
two layers of distance to water: permanent water bodies and tem-
porary water bodies. To define permanent inland waters, we used 
permanent lakes, ponds, rivers, and streams obtained combining the 
World Waterbodies database (ESRI ©), the World Waterlines data-
base (ESRI ©) and the Global Surface Water database (GSW; Pekel 
et al., 2016). The two ESRI databases include vector layers while the 
GSW is a raster database with 30 m resolution. From the GSW, we 
considered the water transition layer with 10 water classes repre-
senting changes in water presence between any two consecutive 
years (from 1984 to 2015). We focused on permanent water (classes 
1, 2, and 7). To define temporary inland waters, we considered the 
other 7 classes in the same GSW layer and temporary waterbodies, 
and ponds from the two ESRI databases. Furthermore, we included 
temporary waterbodies (3rd, 4th, and 5th Strahler order) from the 
AQUAMAPS Rivers of Africa database (FAO,  2014; https://data.
apps.fao.org/aquamaps).

Climate variables (e.g., temperature and precipitation) are im-
portant predictors of habitat suitability for many bat species both 
directly given their physiological constraints (Jones et al.,  2009; 
Ortega-García et al., 2017) and indirectly considering the seasonal 
changes in the availability of their trophic resources (Cumming & 
Bernard, 1997). Therefore, we considered an initial set of 19 biocli-
matic variables at 30 arc-seconds resolution (roughly 1 km2 at the 
equator) obtained from Chelsa V2.1 (Karger et al., 2017).

We obtained human population density from the SEDAC data-
base (Gao, 2020; https://sedac.ciesin.colum​bia.edu) which gives the 
number of people living in each 30 arc-seconds resolution pixel. We 
considered this variable as a proxy for human disturbance repre-
sented by threats like habitat loss and roosts disturbance (e.g., for 
mining, cave tourism) as well as persecution and harvesting pressure 
for human–wildlife conflicts (e.g., orchards farmers) (Aziz et al., 2016; 
Mildenstein et al., 2016).

No information is available on trophic resource availability for 
bats at the scale of the entire African continent. Therefore, we in-
cluded in the analyses a model of trophic resource richness as a 
proxy for biotic factors. From Cosentino and Maiorano  (2021), we 
selected occurrences for plants (at the genus level) and arthro-
pods (at the family level) consumed by African bats (Geiselman & 
Younger,  2020; Wilson & Mittermeier,  2019). We used a bias cor-
rected version of these data to calibrate a Random Forest model 
(1000 trees; Breiman,  2001) for plants and for arthropods, using 
richness of taxa (Gotelli & Colwell, 2011) as response variables and 
climate (annual mean temperature, precipitation seasonality, tem-
perature annual range, precipitation of warmest quarter, precipita-
tion of coldest quarter), TRI, and water availability (km2 of water/ 
km2 pixel) as explanatory variables.

To exclude collinearity between predictors, we performed a 
variance inflation factor (VIF) analysis with all predictors, and we re-
tained only variables with a VIF < 3 (Zuur et al., 2010; Appendix S2 
Table S2.6). The final set of variables included climate (mean tem-
perature of wettest quarter, mean temperature of driest quarter, 
precipitation of driest month, precipitation seasonality, precipitation 
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of coldest quarter), distance to permanent and temporary waters, 
human population density, TRI, and trophic resources.

2.3  |  Species distribution models and 
statistical analysis

For each species, we calibrated two species distribution models, one 
(noBIO-SDM) considering only abiotic variables (climate, TRI, dis-
tance to permanent and temporary waters, and human population 
density) and the other (BIO-SDM) including all abiotic variables plus 
trophic resource availability. To calibrate the two SDMs with the 
same number of explanatory variables, we added to the noBIO-SDM 
a dummy variable set to zero over entire Africa, therefore ensuring a 
full comparability between the two models (Zhang et al., 2022). We 
calibrated all models using a maximum entropy algorithm (Maxent 
v.3.4.1; Merow et al., 2013) with default parameters which produce 
reliable and accurate species distribution models (Valavi et al., 2022).

Although a target-group approach is recommended to re-
duce the sampling bias when citizen science data are used (Ranc 
et al., 2017), our database on bat occurrences does not present any 
particular environmental bias (Appendix S2 Figure S2.7). Therefore, 
we considered for all species the same set of 10,000 random back-
ground points covering the entire African continent (Barbet-Massin 
et al., 2012). We calibrated all models using a random 80% sample of 
the species occurrences and we used the remaining 20% for model 
evaluation and we repeated the same procedure for 10 replicates. 
For each replicate, we evaluated the predictive capacity of each 
model calculating the area under the curve (AUC) of the receiver 
operating characteristic (ROC; Swets, 1988), the true skill statistics 
(TSS; Allouche et al., 2006), and the Boyce index (Boyce et al., 2002). 
We evaluated the differences in predictive capacity between the 
BIO-SDMs and noBIO-SDMs performing a Wilcoxon test on the 
evaluation statistics (Wilcoxon, 1945). The final model was obtained 
by averaging all replicates with AUC > 0.7. For each replicate, we 
also measured variable importance using a jackknife approach which 
removes one variable at time and records the change in the AUC: 
the higher the change, the more important the variable (Peterson 
et al., 2011; Shcheglovitova & Anderson, 2013). To compare the vari-
able importance between the two models, for each predictor vari-
able, we calculated the average and standard deviation importance 
among all 177 bat species for BIO-SDMs and noBIO-SDMs. Using 
the same strategy, we also compared variable importance between 
the two models considering only generalist species.

For each species and for both the BIO-SDM and the noBIO-
SDM, we mapped the potential species distribution in Africa. All 
final models were binarized using a species-specific threshold maxi-
mizing the true skill statistics (TSS; Liu et al., 2016), a threshold that 
maximizes the ability of the model to discriminate presences from 
background points. We projected the binary models over all eco-
logical zones (as defined by FAO, 2012; Appendix S2 Figure S2.8) by 
where the species occurs (Marsh et al., 2022; Monadjem et al., 2020; 
Wilson & Mittermeier,  2019), accounting therefore for historical 

biogeographical factors that were not possible to include in the 
modeling (e.g., dispersal limitations).

For each predictor variable, we also calculated the average re-
sponse curves of frugivore and insectivore bats to evaluate the eco-
logical reliability of our results compared with the available literature 
on African bats (Monadjem et al., 2020; Wilson & Mittermeier, 2019).

We mapped the spatial discrepancy among BIO-SDMs and 
noBIO-SDMs by measuring the percentage of species showing a dif-
ference between the two models in each pixel of the study area. We 
explored the influence of different traits on this discrepancy using a 
linear regression with a phylogenetic correction (Brownian model; 
Ho & Ané, 2014). We focused our analysis on four traits (number of 
occurrences, mean body mass, mean colony size, and the number of 
diet items) representing the detectability and trophic ecology of the 
species. Body mass and colony size were obtained from Wilson and 
Mittermeier (2019) and Monadjem et al. (2020), while phylogenetic 
data were downloaded from VertLife database (Upham et al., 2019). 
Since phylogenetic data were not available for all bats, we performed 
only this analysis on 162 species (out of 177).

3  |  RESULTS

All evaluation metrics gave comparable results with a slight yet 
significant (p < .0001) improvement of the predictive power for 
BIO-SDMs compared to noBIO-SDMs (Appendix  S3 Table  S3.9, 
Figure  S3.10). Focusing on the AUC, BIO-SDMs gave on average 
higher values (average =  0.94; st. dev.  =  0.04; range: 0.77–0.99) 
compared to those of the noBIO-SDMs (average AUC  =  0.93; 
st.dev. = 0.04; range: 0.82–0.99).

Trophic resource availability was the most important variable in 
62 species out of 177 with an average variable importance of almost 
48% (Table 1; Appendix S3 Table S3.11). For 34 species, it was the 
second most important variable, while for 24 species, it was the third 
(Table 1; Appendix S3 Table S3.12, S3.13).

Climatic variables were important in shaping species distribution 
even when biotic variables are included, with “precipitation of the 
driest month” and “mean temperature of the driest quarter” being 
the first variable for 33 and 18 species, respectively (average im-
portance of roughly 40% for both; Appendix  S3 Table  S3.14). For 
noBIO-SDMs, the precipitation of the driest month was the most 
important variable in 60 species out of 177, with an average impor-
tance value of almost 50% (Appendix S3 Table S3.15).

Distance to inland permanent water was always a strong predic-
tor (irrespective of the presence of the trophic resource availability), 
being the most important variable for 35 species in BIO-SDMs (av-
erage importance = 36%; Table S3.14) and for 70 species in noBIO-
SDMs (average importance = 40%; Table S3.15). Distance to inland 
temporary waters, TRI, the other climatic variables, and human pop-
ulation density were often marginal in shaping species distribution 
for African bats.

For both frugivore and insectivore bats, the response curves for 
the biotic variables showed an increasing probability of presence 
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    |  5 of 10COSENTINO et al.

with increasing availability of trophic resources (Figure 1). Frugivore 
bats showed a constantly increasing probability of presence for 
higher plant richness, while insectivorous bats showed an increasing 
probability of presence up to medium arthropod richness, getting up 
to a plateau after which the probability of presence remained con-
stant (Figure 1a, b).

The response curves for all other variables remained substan-
tially unchanged for models with and without the trophic resources. 
All species showed a strong relationship with distance to inland 
permanent waters, decreasing their probability of presence for in-
creasing distances to permanent waters (Figure 1c, d). The response 
curves of the climatic variables showed for all species an increasing 
probability of presence for increasing levels of precipitation, quickly 
reaching a peak in probability of presence at roughly 200–500 mm 
of precipitation in the driest month that gradually declines with in-
creasing values (Figure 1e, f). The response curve for temperature 
was similar, reaching a peak at intermediate temperatures, and then 
decreasing (Figure 1g, h; see Appendix S3 Figure S3.16, S3.17 for 
response curves of other variables).

Among the species modeled, 70 were trophic generalists 
(Table S1.4); for 43% of these species, trophic resource availability 
was by far the most important variable (average importance = 47%; 
Appendix S3 Table S3.18, S3.19).

On average, BIO-SDMs and noBIO-SDMs differed for 7.8% of 
their spatial predictions (st.dev. = 5.1%; range: 0.3%–32.7%). For al-
most 22% of the species, the changes in potential distribution cov-
ered more than 10% of the study area (Appendix S3 Table S3.20). 
Species with a higher percentage of change showed a lower num-
ber of occurrences (p < .001), a high number of items in the diet 

(p < .001), and a small colony size (p < .05), while the body mass gave 
no significant result (Appendix S3 Table S3.21).

Tropical forests and shrublands host the areas with the highest 
percentage of species showing a change in their potential distribu-
tion between BIO-SDMs and noBIO-SDMs (Figure  2). More than 
50% of the species showed a change in their potential distribution 
between the two models in the tropical moist forests surrounding 
the Congo basin, with peaks greater than 80% of the species along 
the Sahel belt (from Senegal up to Eritrea), and in Botswana. Also, 
the tropical rainforests in the south of the Congo basin showed a 
particularly high percentage of species with changes between the 
two models (>80%). Subtropical dry forests (Mediterranean coasts; 
South Africa), the Horn of Africa, the Namib desert, and most of 
Madagascar showed changes for <50% of the species in most of 
their area. In the Sahara desert, the BIO-SDMs and noBIO-SDMs 
were extremely similar, except in proximity of wadi (dry creeks and 
riverbeds) which showed changes in potential distribution for >80% 
of the species.

4  |  DISCUSSION

Traditionally, biogeographical analyses and species distribution mod-
els consider biotic factors at local scales only, while climatic variables 
dominate at regional to continental scales (Guisan & Thuiller, 2005; 
Pearson & Dawson, 2003; Wisz et al., 2013). However, the specific 
role of the different types of variables is still poorly covered in the 
existing literature, especially considering species with large niche 
breadth.

TA B L E  1 Percentages of species for which each variable is ranked as the first, second, or third most important variable when trophic 
resource availability is included or excluded in SDM calibration.

Variable name % species

Permutation importance rank with trophic resources
Permutation importance rank without trophic 
resources

1st 2nd 3rd 1st 2nd 3rd

Trophic resource availability 35.0% 19.2% 13.6% / / /

Distance to Permanent Water 19.8% 20.9% 13.0% 39.6% 21.5% 10.2%

Distance to Temporary Water 0.6% 0% 0.6% 1.7% 2.8% 5.1%

Mean Temperature of Wettest 
Quarter (bio8)

2.8% 7.9% 4.0% 2.3% 7.3% 14.1%

Mean Temperature of Driest 
Quarter (bio9)

10.2% 9.6% 17.0% 8.5% 21.0% 16.4%

Precipitation of Driest Month 
(bio14)

18.6% 18.6% 11.9% 34.0% 16.4% 12.4%

Precipitation Seasonality (bio15) 5.7% 9.6% 11.3% 6.8% 11.9% 13.6%

Precipitation of Coldest Quarter 
(bio19)

2.8% 6.2% 12.4% 4.0% 11.9% 14.7%

Human Population Density 4.0% 7.9% 13.6% 2.8% 6.2% 11.3%

Terrain Ruggedness Index (TRI) 0.6% 0% 2.8% 0.6% 1.1% 2.3%
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F I G U R E  1 Response curves (average over all species/replicates) for models calibrated including the biotic variable. Shaded areas 
represent 1 standard deviation.
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Previous studies considered only a limited number of species 
characterized by well-known and direct biotic interactions, often 
focusing on the trophic niche, and on species with a high degree of 
diet specialization. The most common examples are related to host–
plant or predator–prey interactions (Alaniz et al.,  2020; Aragón & 
Sánchez-Fernández, 2013; Araújo & Luoto, 2007). Few studies fo-
cused on trophic interactions considered prey richness to model the 
distribution of predators with a wider niche breadth, but still with 
well-known trophic interactions (e.g., arctic fox-Norway lemming, 
Hof et al., 2012; Gherghel et al., 2018). Here, modeling multiple spe-
cies at the scale of the entire African continent, and using a very 
general proxy for biotic interactions in model calibration, we found 
that biotic factors do play an important role when modeling spe-
cies distribution at macro scales irrespective of the ecology of the 
species considered. In fact, trophic resources were in the top three 
ranks of importance for most species (roughly 68%), including gen-
eralist species with a wider niche breadth, for which the availability 
of trophic resources should not be a limiting factor. Although the 
importance of considering other factors besides climate in SDMs is 
now confirmed by several studies, this idea has been tested so far at 
macro scales only focusing on species highly dependent on the biotic 
factor considered. Our findings highlight the importance of consid-
ering species interactions in SDMs at macro scales regardless of the 
species dependence for the biotic factor considered.

Moreover, the inclusion of biotic interactions in predicting spe-
cies distribution affected the species' spatial predictions. In fact, the 
areas with the highest richness of bats (Herkt et al., 2016) showed 
a change in potential distribution between BIO-SDMs and noBIO-
SDMs for more than 80% of the species. In particular, the highest 

percentages are in areas highly variable both from an environmental 
and climatic point of view (e.g., Sahel belt, wadi in the Sahara desert). 
These results highlight the importance of including biotic interac-
tions in modeling species distributions in specific areas and hotspots 
of biodiversity with potential conservation and management impli-
cations. Along the same line, we found the highest percentages of 
change in rare species, with limited colony size, and a high number 
of food items in the diet, highlighting the significant role of biotic 
factors in the explicative part of the model, especially for species 
hard to detect for which the climatic niche may be undersampled, 
and more mechanistic factors are needed.

The interpretation of our results should clearly consider the lim-
itations and assumptions of our analyses. First of all, we considered 
only one type of biotic interaction among all those possible (e.g., 
competition, mutualism, parasitism; Morales-Castilla et al.,  2015). 
Although trophic interaction represents a fundamental component 
of the realized niche of a species (Hutchinson,  1957), competitive 
interactions, parasitism and diseases, facilitations and others could 
be important as well (Araújo & Guisan, 2006; Mpakairi et al., 2017).

Second, we used a generic proxy of the trophic interaction (tro-
phic resource richness) based on high taxonomic level of food re-
sources which is not necessarily representative of the trophic niche 
of a species. Valuable alternatives are represented by abundance or 
biomass of prey species, and species-specific trophic links or food-
web data with approaches such as joint species distribution models 
(Pollock et al., 2014) and food-web analysis (e.g., Braga et al., 2019; 
Gaüzère et al., 2022). However, these approaches are almost impos-
sible at the continental scale and for organisms for which species-
specific data on food preferences are often not available, especially 

F I G U R E  2 Percentage of species that 
showed a change in potential distribution 
when comparing models calibrated with 
and without trophic resources.
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in remote areas such as the African continent. On the other hand, 
given the paucity of data on species-specific trophic interactions, 
relying on high taxonomic levels (e.g., arthropods order) is a com-
mon approach at macro scales (e.g., insect orders/families in 
Boyles & Storm, 2007, Dodd et al., 2012; plants genera in Sánchez 
& Giannini,  2018), as well as using proxies for biotic interactions 
(Alaniz et al., 2020; Aragón & Sánchez-Fernández, 2013; de Araújo 
et al., 2014; Gherghel et al., 2018). Moreover, experimental evidence 
showed that the relationship between species richness and produc-
tivity/biomass is almost always positive or hump-shaped in both 
plants and animals at several geographic scales (Liang et al., 2016; 
Mittelbach et al., 2001; Ouyang et al., 2019). Therefore, we expect 
that areas supporting a high diversity of species are likely also to 
harbor a high density of individuals, providing a good representation 
of trophic resource availability.

Finally, even if a few variables were in common between the 
trophic resource model and the bat SDMs (precipitation season-
ality, precipitation of coldest quarter, TRI index), we found no sign 
of collinearity among our predictors. We performed a classical VIF 
analysis which, however, is able to detect only linear relationships 
(Table  S2.6). We also checked the stability in variable importance 
and in the shape of their response curves. Both would be influenced 
by collinearity, but they remained unchanged when the biotic vari-
able is excluded from the model (Table S3.14, S3.15, Figure S3.16, 
S3.17), clearly indicating the absence of problems.

Despite the potential uncertainties of our study, we provide ev-
idence of the importance of including biotic interactions in SDMs 
at macro scales. Trophic resource richness was particularly import-
ant for generalist species confirming also our second hypothesis. In 
this framework, proxies for trophic interactions like species richness 
have been proven to be useful in SDMs when species-specific data 
are not available. Nevertheless, despite the improvements that have 
been made in the modeling frameworks to investigate this question, 
bridging the state of knowledge on species interactions remains a 
fundamental and urgent challenge, particularly in the regions with 
the highest level of biodiversity (Hortal et al., 2015).

Future directions should explore multi-scale analysis consider-
ing that both abiotic and biotic factors change over time and space. 
Studies that investigate biotic interactions through time and space 
combined with a deeper knowledge of the species are crucial, espe-
cially in a global change context.
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