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Abstract The primary goal of structural health mon-
itoring is to detect damage at its onset before it reaches
a critical level. In the present work an in-depth inves-
tigation addresses deep learning applied to data-driven
damage detection in nonlinear dynamic systems. In
particular, autoencoders and generative adversarial net-
works are implemented leveraging on 1Dconvolutional
neural networks. The onset of damage is detected in
the investigated nonlinear dynamic systems by exciting
random vibrations of varying intensity, without prior
knowledge of the system or the excitation and in unsu-
pervised manner. The comprehensive numerical study
is conducted on dynamic systems exhibiting different
types of nonlinear behavior. An experimental applica-
tion related to a magneto-elastic nonlinear system is
also presented to corroborate the conclusions.
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1 Introduction

Damage is any unintended alteration in material and/or
geometric properties that may impact a structural sys-
tem, including its boundary and connectivity condi-
tions, leading to detrimental effects on both current and
future performance (e.g., [63]). By leveraging on sens-
ing, data acquisition and data transfer systems, struc-
tural health monitoring (SHM) techniques are aimed
at identifying damage by means of suitable process-
ing and analysis methods [26]. Carrying out a com-
plete damage identification procedure is a multi-level
process that encompasses damage detection, damage
localization, damage quantification, and residual life
prediction [52]. Damage detection can be possibly car-
ried out by means of pure data-driven methods, and it
is especially important to prevent costly maintenance
plans or, even worse, important social, economic and
environmental consequences. Early detection of dam-
age is crucial to optimize proactive maintenance inter-
ventions before the onset of a critical system state.
Vibration-based methods are particularly attractive for
this task because they can detect damage analyzing the
system dynamic response, also when damage is not
severe enough to be visually apparent [34]. They are
very common because of the availability of low-cost
sensing solutions that can be deployed with minimal
interference with the construction. The feasibility of
vibration-based damage detection methods has been
extensively investigated, yet most efforts so far have
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focused on dynamic systems exhibiting linear behav-
ior.

Several vibration-based methods have been devel-
oped either in frequency or time domain by assum-
ing that the structure exhibits a linear behavior before
and after damage [24]. The widespread use of mode
shapes, natural frequencies and damping ratios for
damage detection in linear dynamic systems is sup-
ported by well-established output-only techniques for
operational modal analysis of structures. In particular,
modal curvatures have proven to be especially useful in
detecting damages in linear structures (e.g., [43,48]).
Conversely, natural frequencies turn out to be almost
insensitive to several damage scenarios (e.g., [15,17])
while damping ratios do not always provide consistent
results (e.g., [9,53]). Time-domain methods have been
also explored for damage detection in linear structures
[18], and they usually leverage on state-space (e.g.,
[16,22] or autoregressive-type models (e.g., [35,58]).

Damage detection in case of nonlinear dynamics has
received considerably less attention. Initial attempts
were based on the assumption that the undamaged
structure behaves linearlywhile the occurrence of dam-
age causes the transition to a nonlinear response [64].
However, the hypothesis of initial linear behavior does
not hold true for a large class of dynamic systems. Some
vibration-based methods have been thus developed
for initially nonlinear dynamic systems. For instance,
Adams and Nataraju [2] have shown that model reduc-
tion near bifurcations can be useful to identify certain
features that can facilitate damage detection in non-
linear dynamic systems. The extension of the modal-
based damage detection approach to nonlinear dynamic
systems has been pursued by Lacarbonara et al. [33]
through the use of nonlinear normal modes. This ana-
lytical study proved that the sensitivity of the effec-
tive nonlinearity coefficients regulating the nonlinear
modal backbones is higher than the sensitivity of the
linear frequencies with respect to damage. Such the-
oretical evidence was later confirmed in some experi-
mental results reported by Civera et al. [13] and Car-
boni et al. [10]. Prawin and Rao [46] addressed the
damage detection for nonlinear dynamic systems in the
frequency domain using an improved describing func-
tion. Among the existing time-domain methods, sev-
eral proposals deal with the use of Volterra series since
such method provides an attractive way to describe the
response of nonlinear dynamic systems. For example,
Shiki et al. [56] and Villani et al. [59,60] applied the

discrete-time Volterra series and a stochastic version
of Volterra series, respectively, to detect damage in
dynamic systems exhibiting a nonlinear behavior even
in the undamaged configuration. The output-only ver-
sion of the Volterra series proposed by Peng et al. [45]
for nonlinear structural damage detection employs the
structural responses at two different locations in order
to identify the kernel function parameters and to eval-
uate the contribution of the nonlinear components.

Recent advances in machine learning methods are
paving theway towards significant advances in damage
detection. In particular, Avci et al. [3] highlighted that
deep learning (DL) algorithms hold significant poten-
tial for data-driven, vibration-based damage detection.
These algorithms enable computational models with
multiple processing layers to learn data representa-
tions with varying levels of abstraction. Autoencoders
(AEs) and generative adversarial networks (GANs) are
among the most promising DL architectures for this
task according to Avci et al. [3] thanks to their capabil-
ity of learning directly from the raw signals, but their
applications are still limited and primarily focused on
linear dynamic systems. These architectures employ an
unsupervised learning paradigm, which obviates the
need for extensive labeled datasets for training (e.g.,
[47,66]). For example, Pathirage et al. [44] proposed
anAE-based damage detection approachwhere the nat-
ural frequencies andmode shapes of the linear dynamic
system are employed as input data. The AE imple-
mented byMa et al. [41] utilizes themeasured dynamic
response for detecting damage in a linear system while
the application reported by Shang et al. [55] is based
on the use of the multi-dimensional cross-correlation
functions computed from linear vibrations. Boccagna
et al. [5] performed damage detection via AE by using
univariate statistics estimated from the measured lin-
ear dynamic response after performing dimensionality
reduction through principal component analysis. The
AE-based damage detection approach proposed by Li
et al. [36] makes use of the power cepstral coefficients
extracted from the acceleration response of a linear
dynamic system to provide a compact representation
of its linear modal properties. Applications of GANs
for damage detection are even fewer. The state-of-the-
art reviewbyAvci et al. [3] highlights the lack of studies
on the use of GANs for damage detection in civil struc-
tures until 2019. Some examples of vibration-based
damage detection in linear dynamic systems via GANs
appeared only recently [39,40].
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Machine learning algorithms applied to data-driven,
vibration-baseddamagedetection innonlinear dynamic
systems are infrequent. A seminal work in this context
is due to Bornn et al. [6], who reported an experimen-
tal application about the use of the autoregressive sup-
port vector machine for damage detection in a small-
scale laboratory shear-type system subject to random
basemotionwith constant intensity. This system exhib-
ited nonlinear behavior due to impacts and experienced
damage from completely loosened bolts in a single
column. The use of DL techniques has only recently
started to emerge. For instance, Jin et al. [25] success-
fully applied a multi-kernel extreme DL machine for
fault diagnosis of rotating machineries. Kim et al. [27]
proposed the application of DL for the identification
of reduced-order models, whereas Feng et al. [19] and
Wang et al. [61] demonstrated the effectiveness in esti-
mating simultaneously both model and noise parame-
ters of stochastic systems. Zhang et al. [69] presented a
numerical investigation about the use of AEs for dam-
age detection in conventional bearings for seismic iso-
lation. In this case, the onset of damage was simulated
through the complete loss of functionality of one or two
bearings at the corners of the isolation level, whereas
seismic ground motion records were selected so as to
match a target seismic spectrum. Nonlinear dynami-
cal systems identification through GANs was recently
addressed by Yu and Liu [68], but no proposals are
known to exist about their application to damage detec-
tion problems.

Indeed, output-only, vibration-based damage detec-
tion in time-domain of initially nonlinear systems is
very challenging. This is because the features of the
nonlinear dynamic systems response can change con-
siderably in time, especially under random vibrations
and varying excitation conditions (e.g., [38]). As a con-
sequence, discerning the effects induced by damage
from those caused by the nonlinear response becomes
a truly difficult task [6]. This is a significant concern
for output-only vibration-based damage detection by
means of machine learning methods that deserves in-
depth investigations.

This work explores the use of DL algorithms for
data-driven, vibration-based damage detection in non-
linear dynamic systems subject to random excitation
with varying intensity.Within this framework, the orig-
inal contribution here lies in a comprehensive investi-
gation aimed at evaluating the comparative effective-
ness and performance of AEs and GANs. The remain-

ing part of the work is organized as follows. Sections2
and 3 illustrate the adopted DL architectures for dam-
age detection in nonlinear dynamic systems. Section4
presents the results of an extensive numerical investi-
gation while Sect. 5 illustrates an experimental appli-
cation. The most important outcomes of the present
research are finally summarized in Sect. 6.

2 Autoencoder for damage detection

2.1 General working principle of the autoencoder

The AE originally proposed by Rumelhart et al. [51]
is an unsupervised algorithm aimed at performing the
input reconstruction with the least possible amount of
distortion. Itsmain components are the encoder, a latent
feature representation, and the decoder. Let x ∈ R

n be
the normalized time history response of the nonlinear
dynamic system, the encoder is a function g : Rn →
R
m such that:

h = g(x), (1)

where h ∈ R
m is the latent feature representation of x.

The decoder is another function f : Rm → R
n such

that:

x̃ = f(h) = f(g(x)), (2)

where x̃ ∈ R
n is the input reconstruction. Since com-

prehensive state-of-the-art reviews aboutAEs are avail-
able [e.g., 29,37,67], only details related to the adopted
implementation for damage detection applications in
nonlinear dynamic systems are presented hereafter.

2.2 Proposed architecture of the autoencoder for
damage detection

In most typical AE architectures, the functions f and g
in Eqs. (1), (2) representing the encoding and decoding
blocks are artificial neural networks (NNs). In particu-
lar, convolutional NNs (CNNs) aremainly employed in
AEs because they excel at recognizing the most impor-
tant signal features and at capturing relevant patterns
in the data. 1D CNNs are preferred in the present work
because of theirminimumcomputational complexity. It
is noted that a normalized input is fed into the AE algo-
rithm so as to reduce the variability among data points
from different scales and to speed up the convergence
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of the networks during training phase [8]. Scaling the
signals to a uniform bounded range mitigates the dom-
inance of higher magnitude features over smaller ones,
which allows to recognize subtle patterns of damage
without bias towards more prominent signal features.
In the current study, data normalization is accomplished
throughmin-max scalingwithin the range [0, 1], which
is generally recognized to display enhanced perfor-
mance when handling time series in DL algorithms
[4]. The components of the implemented CNN-based
AE architecture are: input layer, convolutional layer,
pooling layer, fully connected layer, and output layer.
The input layer of the CNN aims at importing the nor-
malized 1D time history response data of the nonlin-
ear dynamic system. A deep AE is here considered,
which means that it involves more than one convo-
lutional layer in the encoding and decoding blocks.
Within a convolutional layer, the convolution opera-
tor applies on a given input (i.e., the output from the
previous layer) using a convolution filter to produce a
feature map, whereas a nonlinear activation function is
next employed to obtain the output features. The con-
volutional operation involves sliding a small filter (also
known as kernel) and computing dot products between
the filter weights and the input values at each location
as follows:

�+1yi ( j) = �Ki ∗ �x̂( j) + �bi , (3)

where �Ki and �bi denote the weights and the bias of
the i th filter in the �th layer, respectively, �x̂( j) is the
j th receptive field in the �th layer (i.e., the local region
representing the portion of the input values that is being
processed at a given step of the convolution operation),
and �+1yi ( j) is the input of the j th artificial neuron
in the i th frame of the following (� + 1)th layer. One
filter corresponds to one frame in the following layer,
and the number of frames is also known as layer depth.
It is noted that the same set of learnable parameters
(weights) across different receptive fields is utilized.
Such weight-sharing allows the network to detect pat-
terns and features regardless of their location. This
is because the same filter is applied across the entire
input, reducing the computational effort. Zero padding
is applied to both the beginning and the end of the
input to preserve the original length of the convolution
result. This approach enhances the network’s ability to
learn features at the boundaries, which is particularly
important for short inputs. The stride, defined as the
number of positions by which the filter moves across

the input during the convolution operation, is chosen
to ensure consistent alignment between the input and
output across the different layers of the network.

The implementation of artificial neurons with a non-
linear activation function after the convolution opera-
tions is of utmost importance. In fact, without a nonlin-
ear activation function, the output of each convolution
would be a linear transformation of the input, which
is unfit to capture inherent complex patterns from the
data. Conversely, introducing nonlinearity allows the
network to learn and represent complex relationships
in the input. In the present study, the Leaky ReLU acti-
vation function is utilized. It was proposed to address
one of themain limitations of the traditional ReLUacti-
vation function, which is due to the fact that it sets all
negative inputs to 0, potentially leading to vanishing
gradients [20,42]. The Leaky ReLU activation func-
tion mitigates this issue by introducing a small, non-
null gradient when the activation function is negative
as follows:
�+1ai ( j) = ψ(�+1yi ( j))

=
{

�+1yi ( j) if �+1yi ( j) > 0
�+1μyi ( j) otherwise

, (4)

where �+1ai ( j) is the activation value of the convolu-
tion operation result �+1yi ( j) in Eq. (3) while μ is the
slope coefficient, which controls the angle of the nega-
tive slope in case of negative input values. By using the
Leaky ReLU activation function, the network can learn
fromnegative inputs, enhancing its robustness and abil-
ity to capture complex patterns. Furthermore, using
min-max scaling in combination with Leaky ReLU
activation function ensures that the majority of input
falls into an active learning range, reducing the risk of
inactive neurons.

A pooling layer after the convolutional layer is
meant at lowering both the size of the features and
the parameters of the network. This, in turn, forces the
network to learn only the most important features of
the input. Additionally, it reduces training time and
mitigates overfitting. The max-pooling layer is here
employed. Let �qi (s) be the value of the artificial neu-
ron s in the i th frame of the �th layer, the max-pooling
transformation is applied as follows:

�+1 pi ( j) = max
( j−1)W+1≤s≤ jW

�qi (s), (5)

where �+1 pi ( j) is the corresponding value of the arti-
ficial neuron in the (� + 1)th layer of the pooling oper-
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ation. The parameter W in Eq. (5) defines the pooling
width.

By adjusting padding and stride, convolutional lay-
ers for the encoder are designed to downscale the input
together with pooling layers, while convolutional lay-
ers in the decoder are intended to upscale the input
(through transposed convolution operations, and pool-
ing layers do not take place in this case). Convolutional
layers also serve as output layer of the AE. Conversely,
fully connected layers are implemented in the latent
feature representation to effectively lower the dimen-
sionality of the input, as this taskwould be cumbersome
with convolutional layers. Controlling the size of the
latent representation is important because it plays an
important role in determining how the machine learn-
ing model performs on the assigned data. A fully con-
nected layer, also known as dense layer, is a standard
layer where each artificial neuron is connected to every
artificial neuron in the previous layer, similar to a tradi-
tional NN (e.g., [49]). Before the fully connected layer
is applied, the output from the last pooling layer in the
encoding block is flattened.

The AE must accurately reconstruct the input time
history response of the nonlinear dynamic system
while producing ameaningful latent representation that
avoids overfitting. This is accomplished through proper
training of the AE, which basically consists of finding
the optimal set of hyperameters θ ruling the functions f
and g that represent the encoding and decoding blocks.
To this end, two main strategies leveraging on parsi-
mony are adopted [31] and are based on creating a bot-
tleneck and adding a regularization term. A bottleneck
involves reducing the dimensionality m of the latent
features compared to that of the data n. Including a
regularization term in the training process also prevents
the model from fitting the noise in the training data too
closely. In the present work, the L2 technique is imple-
mented, and thus the AE training seeks the solution of
the following optimization problem:

min
θ

{
E [Δ(x, f (g(x); θ))] + λ‖θ‖22

}
, (6)

where thefirst term is a loss function that quantifies how
input and output of the AE differ each other, on aver-
age, across allx (E represents the expectation operator),
while λ and ‖θ‖2 in the second term are the regulariza-
tion coefficient and the L2-norm of the hyperameters
θ involved in the functions f and g, respectively. The
adopted loss function in the present study is the mean
absolute error (MAE). The set of tuned hyperparame-

ters θ includes kernel size, filter numbers, batch size
(i.e., number of input values processed simultaneously
during one training step), and latent filters. The values
of slope coefficientμ in Eq. (4) and regularization coef-
ficient λ in Eq. (6) are instead established before train-
ing (the slope coefficient is set to 0.2 whereas the reg-
ularization coefficient is optimized in the range 10−4

to 10−8 through cross-validation according to Kruse et
al. [30]).

The adaptive moment estimation (ADAM) opti-
mizer is adopted to solve Eq. (6). It is a gradient-
based technique [28] that combines the advantages of
the adaptive gradient algorithm and root mean square
propagation. ADAM computes adaptive learning rates
for each hyperparameter based on estimates of the first
and second moments of the gradient. The update rules
in ADAM are the following:

mτ = β1mτ−1 + (1 − β1)∇τ , (7a)

vτ = β2vτ−1 + (1 − β2)∇2
τ , (7b)

m̂τ = mτ

1 − βτ
1
, (7c)

v̂τ = vτ

1 − βτ
2
, (7d)

θ τ+1 = θ τ − η√
v̂τ + ε

m̂τ , (7e)

where mτ and vτ are the updated first (i.e., mean)
and second (i.e., uncentered variance) moments of the
gradients, respectively, β1 and β2 are the exponential
decay rates for these moment estimates (set to 0.9 and
0.999, respectively), ∇τ is the objective function gra-
dient at iteration τ , η is the learning rate (in the range
10−2 to 10−4), and ε is a small scalar added to improve
numerical stability (set to 10−8). The result of Eq. (7)
is θ τ+1, which represents the updated hyperparameters
for the next iteration (aka epoch), or the outcome of the
optimization if the convergence criterion is fulfilled.
To further strengthen the network against overfitting
phenomenon, early stopping is executed by setting a
low value of the patience (i.e., the number of epochs
the training process continues without improvement)
between 4 and 6.

2.3 Proposed implementation of the autoencoder for
damage detection

The suitability of AE for data-driven damage detection
relies on the evidence that, once properly trained over
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Fig. 1 Implemented AE architecture based on 1D CNNs for
damage detection in nonlinear dynamic systems

time data collected from an undamaged dynamic sys-
tem, it will turn into a large loss function value when
attempting to reconstruct the response of a damaged
one. Figure1 illustrates the implemented AE architec-
ture based on 1D CNNs for damage detection in non-
linear dynamic systems. The corresponding algorithm
was developed using TensorFlow [1].

3 Generative adversarial network for damage
detection

3.1 General working principle of the generative
adversarial network

A GAN is an unsupervised algorithm originally pro-
posed by Goodfellow et al. [21] that consists of two
models called generator and discriminator. The gener-
ator tries to create realistic data, while the discriminator
aims to differentiate between real data and the fake data
created by the generator. On the one hand, the generator
canbe represented as adifferentiable functionG(z; θG)

where z is a vector of random noise extracted out of
a distribution ϕz(z) and θG is a set of hyperparame-
ters. It produces synthetic data samples, which should
resemble real data samples. On the other hand, the dis-
criminator is another differentiable function D(x; θD)

where x is a data sample from a distribution ϕdata(x)
and θD is a set of hyperparameters. It produces a scalar
output representing the probability that x comes from
the real data distribution rather than the generator’s dis-
tribution. Data normalization through min-max scaling
is also performed in GAN to enhance the performance
of the algorithm as well as the efficiency of the training
phase.

The training of GAN is a non-cooperative game.
Hence, GAN optimization is attained at the Nash equi-
librium point [50] corresponding to a stable state where
neither the generator, nor the discriminator obtains a
beneficial effect (i.e., gain) by deviating from the cur-
rent configuration. At this equilibrium point, the gener-
ator produces data that are so realistic that the discrim-
inator cannot distinguish whether they are real or fake,
and the discriminator cannot improve its accuracy by
further adjustments. The training of discriminator D
and generator G in GAN requires the solution of the
following optimization problems:

max
θD

{
Ex∼ϕdata(x)[log D(x; θD)]

+Ez∼ϕx(z)[log (1 − D(G(z|θG); θD))]
}
, (8)

min
θG

{
Ez∼ϕz(z)[log (1 − D(G(z; θG)|θD))]

}
. (9)

Altogether, Eqs. (8), (9) are equivalent to the following
min-max optimization problem:

min
θG

max
θD

{
Ex∼ϕdata(x)[log D(x; θD)]

+Ez∼ϕx(z)[log (1 − D(G(z; θG); θD))]
}
, (10)

wherein the objective function is related to the Jensen-
Shannon divergence between ϕdata(x) and ϕz(z) [23]
(E represents the expectation concerning the distri-
bution indicated by the subscript). The GAN version
based on the optimization problem in Eq. (10) is com-
monly referred to as vanilla GAN. The details concern-
ing the specific implementation of GAN for damage
detection applications in nonlinear dynamic systems
will be presented hereafter while more general infor-
mation can be found elsewhere [e.g., 14,23,65].
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3.2 Proposed architecture of the generative
adversarial network for damage detection

A deep GAN is here implemented by stacking mul-
tiple 1D CNNs. In particular, 1D convolutional lay-
ers according to Eqs. (3), (4) are used for both gen-
erator and discriminator (wherein transposed convolu-
tion operations are employed for the generator). In this
regard, a significant novelty deals with the output layer
of the discriminator, which implements a Sigmoid acti-
vation function as follows:

�+1ai ( j) = ψ(�+1yi ( j)) =
�+1yi ( j)

1 + e�+1yi ( j)
. (11)

It is noted that the output of the Sigmoid activation
function (i.e., the output of the discriminator) given by
Eq. (11) lies between 0 (for certainly fake data) and 1
(for certainly real data).

The hyperparameters are tuned alternatively solving
Eqs. (8), (9) throughout the training stage by means of
ADAM update rules in Eq. (7). During training, the
hyperparameters of one model are updated, while the
hyperparameters of the other are fixed. The set of tuned
hyperparameters for GAN includes number filters, ker-
nel size, stride length, and depth of the neural network
(these hyperparameters are different for the genera-
tor and discriminator). The training process for GAN
runs until a number of epochs between 1000 and 2000
is achieved (no early stopping is implemented in this
case). Overfitting mitigation in the GAN discriminator
is accomplished via dropout. Accordingly, throughout
the training, an artificial neuron is temporarily dropped
at each iteration (i.e., all the inputs and outputs to this
artificial neuron are disabled at the current iteration)
with an assigned probability. The dropped-out artifi-
cial neurons are resampled with the same probability
at every training step, so a dropped out neuron at one
step can be active at the next one.

3.3 Proposed implementation of the generative
adversarial network for damage detection

There are no known proposals regarding the use of
GAN in damage detection problems. Nonetheless, the
suitability of GAN for data-driven damage detection
stems from the fact that, upon proper training with
time series data collected from an undamaged system,
the discriminator will be no longer able to differen-
tiate between actual distribution of undamaged data

and distribution of synthetic data produced by the gen-
erator. This implies that the discriminator will recog-
nize the data from a damaged system as fake because
they no longer resemble those of the undamaged sys-
tem, thereby allowing the detection of damage. In this
regard, it is interesting to note that, by implementing the
Sigmoid activation function at the output layer of the
discriminator, a quantitative assessment of the dynamic
system state is obtained from the discriminator. In fact,
numerical values of the discriminator output close to
1 are associated with an undamaged state while lower
values approaching to 0 highlight a deviation from the
(trained) undamaged condition, thereby pointing out
the presence of damage. Hence, the discriminator out-
put can be exploited to compute a damage index.

This vanilla GAN architecture based on 1D CNNs
for damage detection in nonlinear dynamic systems
has been implemented using TensorFlow [1]. Figure2
shows pictorially the implemented GAN architecture.

4 Numerical investigation

Numerical simulations are initially performed to evalu-
ate the effectiveness of both AE and GAN in detecting
damage within nonlinear dynamic systems from their
time-domain response only. Herein, damage is intro-
duced by reducing the system stiffness. To replicate
the most common and challenging scenario, the non-
linear dynamic systems under consideration are sub-
jected to random vibrations of varying intensity, and
the response is contaminated by white Gaussian noise
with a noise level of 10%.

The database for training and validating both DL
architectures includes samples of undamaged system
displacements over 2 s time windows, assuming a sam-
pling rate of 250 Hz. A total of 2000 time series was
collected for such tasks: 80% of the generated time
history samples is utilized for training the algorithms
(i.e., training set), while the remaining 20% is allocated
for their validation (i.e., validation set). The validation
dataset was used to check if the training of the net-
work converged properly, avoiding overfitting or under-
fitting. The full database thus consists of about 1h of
recording of the undamaged system response under dif-
ferent magnitudes of the input random excitation. It is
highlighted that neither the applied dynamic loading
conditions nor the dynamic system characteristics are
ultimately involved in the implementation of the con-
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Fig. 2 Implemented GAN
architecture based on 1D
CNNs for damage detection
in nonlinear dynamic
systems

sidered DL architectures. This means that both AE and
GAN are meant to perform output-only damage detec-
tion of unknown dynamic systems.

The selected configuration of AE and GAN for each
application is first established through preliminary sim-
ulations, and then its trainable parameters are found.
The training runtime reported in the current numerical
investigation are obtained using a MacBook Pro M2
Max with 32 Gb RAM and 38 core GPU.

Once both DL algorithms have been trained and
validated using the samples of undamaged system
response, they are employed to detect damage. To this
end, 2000 time series of noisy system displacements,
each of 2 s duration, were generated for constant dam-
age levels ranging from5% to 30%. Therefore, bothAE
and GAN are required to detect damage, if any, from
about 1h long of recording of the system response.
While low damage levels are considered to test the
capability of detecting the onset of damage, the results
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for increasing damage levels are examined to inspect
the proper working of the implemented DL schemes.

4.1 Single-degree-of-freedom system with cubic
nonlinearity

A large variety of dynamic systems can exhibit a non-
linear behavior for high levels of excitation due to
geometric or material nonlinear effects. The actual
response of such systems can be effectively simulated
by means of a restoring force that is dependent upon
the cube of the displacement, known as a Duffing-type
system. Hence, this class of nonlinear dynamic sys-
tems provides a relevant benchmark for evaluating the
effectiveness of damage detection techniques in practi-
cal applications. This system can be seen as a reduced-
order model of an axially restrained beam, a plate or
any symmetric geometrically nonlinear structure [32].
The equation of motion for a single-degree-of-freedom
(1-DOF) systemwith cubic nonlinearity and linear vis-
cous damping is the following:

Mẍ + Cẋ + K1x + K3x
3 = F(t), (12)

where x(t) represents the displacement of the system
at time t (overdots denote differentiation with respect
to time t), whereas M is the mass and C is the vis-
cous damping coefficient. Moreover, K1 and K3 are
the linear and nonlinear stiffness coefficients, respec-
tively, while F(t) is the external time-varying load.
The numerical values of the system parameters in Eq.
(12) for this numerical study are set to: M = 412 kg,
C = 405.95 kg/s (corresponding to a damping ratio
of 1%), K1 = 1 kN/mm, K3 = 0.001 kN/mm3. It is
assumed that the presence of damage corresponds to a
reduction of both linear and nonlinear stiffness by the
same amount, without effects on mass or damping.

The dynamics of such system are first investigated
by computing the frequency response curves (FRCs)
upon applying a harmonic base excitation such that
F(t) = −MA cosΩt , where A is the peak accelera-
tion value and Ω is the excitation frequency. Results
for the undamaged and damaged system are plotted
in Fig. 3 assuming A between 0.003g and 0.1g. The
considered dynamic system exhibits a linear behavior
for A less than or equal to 0.01 g while a nonlinear
behavior is apparent otherwise. In particular, a mod-
erately nonlinear response is observed for A between
0.01g and 0.06g, whereas a stronger nonlinear behav-
ior occurs for higher values of the input excitation. For

the undamaged system, if A is less than or equal to
0.01g, then the resonant frequency is 7.8 Hz, while it
shifts to 8.8 Hz (increase by 12.8%) when A is 0.1g.

Figure 3 is also useful to explain why time-domain,
output-only damage detection in nonlinear dynamic
systems subject to varying dynamic excitation is so
challenging as pointed out by Bornn et al. [6]. In fact,
Fig. 3 shows that the shift of the resonant frequency
due to the hardening-type nonlinear response can mis-
lead the fault recognition, thus hindering the accurate
damage detection.

The effectiveness of both AE and GAN is inves-
tigated through numerical simulations by solving Eq.
(12) under random excitation such that F = −Mẍb,
where ẍb is represented by a white noise signal. The
time histories of the undamaged and damaged system
are computed once time history samples of ẍb are gen-
erated and the corresponding peak values are scaled to
a uniform random value between 0.01g and 0.1g so as
to focus on the nonlinear response only, in agreement
with Fig. 3. Details about configuration and training
of both AE and GAN are provided in Tables 1 and 2,
respectively.

The representative results reported in Fig. 4 con-
firm that the trained AE is able to reconstruct the time
history displacement of the undamaged nonlinear sys-
tem (the system response under the highest excitation
is plotted herein). Conversely, it is no longer able to
achieve similar accuracy levels when it attempts to
reconstruct the displacement time history of the dam-
aged system. This mismatch between input and out-
put of AE highlights a deviation from the conditions
of the training process, and thus points to the occur-
rence of the damage. The greater the damage level, the
larger the difference between the input and output of
the AE scheme. GAN operates differently, requiring
the generator to accurately mimic the undamaged sys-
tem response. This maximizes the damage sensitivity
of the discriminator throughout the training process.
In this regard, a representative pair of actual and gen-
erated displacement time histories is plotted in Fig. 5
(the dominant frequency herein is about 8.8 Hz, which
corresponds to the highest excitation level according to
Fig. 3). The high similarity between them in the time-
frequency domain demonstrates the fidelity of GAN
in simulating the dynamics of the undamaged nonlin-
ear system. This, in turn, implies that the discriminator
has been successfully trained and will thus be able to
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Fig. 3 Frequency response
curves (FRCs) of the 1-DOF
system for different
excitation amplitudes and
damage levels (solid and
dashed lines represent the
stable and unstable branches
of periodic solutions,
respectively)

Table 1 Configuration of the DL architectures for damage detection in the 1-DOF system

Type Component Convolution layers Kernel size Number of filters Strides

AE Encoder 3 (100,50,25) (10,5,2) (1,1,1)

Decoder 3 (25,50,100) (5,10,1) (2,2,1)

GAN Generator 3 (2,3,6) (32,32,1) (2,1,2)

Discriminator 3 (6,6,6) (64,64,64) (2,2,2)

Table 2 Training data of the DL architectures for damage detection in the 1-DOF system

Type Component Trainable parameters Epochs Training time

AE Encoder 3767 89 0.16 min

Decoder 66,056

GAN Generator 16,018 2000 11.47 min

Discriminator 8,117,729

123



Deep learning architectures...

Fig. 4 Reconstruction of the 1-DOF system response through AE for different damage levels

recognize accurately a deviation from the training con-
ditions, such as the occurrence of damage.

Figure 6 compares the performance of both DL
architectures in detecting damage. Each dot in the scat-
ter plots represents the reconstruction loss (in terms
of MAE) of AE and the discriminator output of GAN
for each time series sample given the damage level,
while the trend lines connect the corresponding aver-
age values. The labels on the horizontal axis, centered
with respect to each cluster of dots having uniform
color, indicate the damage level (i.e., relative varia-
tion of the system parameters due to damage, with
0% representing the undamaged scenario). Since the
discriminator output is bounded between 0 and 1, a
damage index is defined as the complement of the dis-
criminator output. Figure6 shows that reconstruction
loss values shift upwards (i.e., the reconstruction loss
increases) as the damage severity grows. It can also

be inferred from Fig. 6 that the discriminator outputs
are close to 1 when there is no damage, while a grow-
ing number of outcomes approaches 0 as the damage
level increases. Therefore, the relative variation of the
normalized reconstruction loss and that of the dam-
age index based on the discriminator loss are properly
correlated with the damage level. Notably, a significant
deviation from the reference value corresponding to the
undamaged configuration already occurs at the lowest
level of damage (i.e., relative variation larger than 10%
for the lowest damage severity), which demonstrates a
satisfactory sensitivity of both DL architectures.

4.2 Two-degree-of-freedom system with cubic
nonlinearity

Damage detection in a two-degree-of-freedom (2-
DOF) nonlinear dynamic system with cubic nonlinear-
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Fig. 5 Time history and corresponding time-frequency representation via wavelet transform of the undamaged 1-DOF system response:
actual data and results carried out from the GAN generation block

ity and linear viscous damping is considered next. The
corresponding equations of motion are the following:

M1 ẍ1 + C1 ẋ1 + K11x1 + K13x
3
1

− C2 (ẋ2 − ẋ1) − K21 (x2 − x1)

− K23 (x2 − x1)
3 = F1(t),

(13a)

M2 ẍ2 + C2 (ẋ2 − ẋ1) + K21 (x2 − x1)

+K23 (x2 − x1)
3 = F2(t), (13b)

where x1(t) and x2(t) are the displacements of the
two oscillators, M1 and M2 are the masses, K11 and
K21 are the linear stiffness coefficients, C1 and C2 are
the viscous damping coefficients, K13 and K23 are the
cubic stiffness coefficients, F1 and F2 are the excita-
tion forces. The numerical values of the system param-
eters in Eq. (13) are set to: M1 = M2 = 400 kg,
C1 = C2 = 400kg/s (corresponding to a damping ratio

of 1%), K11 = K21 = 1 kN/mm, K13 = K23 = 0.001
kN/mm3. It is assumed that linear and nonlinear stiff-
ness coefficients get reduced by the same amount in
both oscillators as a result of damage, while dam-
age does not affect their masses and damping coeffi-
cients. The FRCs of the undamaged and damaged 2-
DOF nonlinear system are shown in Fig. 7 for F1 =
−MA cosΩt and F2 = 0, with A between 0.1g and
0.6g.

A random excitation is employed to detect damage
assuming F1 = −M1 ẍb and F2 = 0. The displacement
time histories of both the undamaged and damaged sys-
tems are thus calculated through Eq. (13) by generating
independent time history samples of the white noise ẍb
and adjusting their peaks to match a uniformly ran-
dom value between 0.1g and 0.6g in order to restrict
the analysis to a mid-large nonlinear response accord-
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Fig. 6 Damage sensitivity
of the two DL architectures
for the 1-DOF system:
reconstruction loss values
obtained by AE and relative
variation of its normalized
average value, together with
the discriminator output
values obtained by GAN
and relative variation of the
associated average damage
index

Fig. 7 Frequency response
curves (FRCs) of the 2-DOF
system for different
excitation amplitudes and
damage levels (solid and
dashed lines represent the
stable and unstable branches
of periodic solutions,
respectively)
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Table 3 Configuration of the DL architectures for damage detection in the 2-DOF system

Type Component Convolution layers Kernel size Number of filters Strides

AE Encoder 3 (50,25,12) (100,50,25) (1,1,1)

Decoder 4 (12,25,25,50) (50,100,100,2) (2,2,1,1)

GAN Generator 3 (6,6,4) (64,32,2) (2,1,2)

Discriminator 3 (6,6,6) (32,32,32) (2,2,2)

Table 4 Training data of the DL architectures for damage detection in the 2-DOF system

Type Component Trainable parameters Epochs Training time

AE Encoder 150,175 43 1.21 min

Decoder 2,142,902

GAN Generator 38,151 1000 6.55 min

Discriminator 4,050,770

ing to Fig. 7. The settings adopted to implement the
DL architectures are listed in Table 3 whereas Table 4
provides relevant outcomes of the training process.

Although the interaction of the two nonlinear oscil-
lators complicates the overall dynamic behavior, both
architectures confirm their goodperformances as shown
in Figs. 8 and 9. As far as the application of AE is con-
cerned, Fig. 8 shows that the undamaged response of
both oscillators is well reconstructed after the training
process, whereas the accuracy decreases as expected
once the system is damaged. Figure9 confirms the
good performance of GAN since the real response (i.e.,
the response obtained as the solution of the equations
of motion) and the generated response of the undam-
aged oscillators look similar in the time-frequency
domain. This indicates that the discriminator has been
successfully trained to recognize the undamaged sys-
tem response as genuine, while the damaged system
response is likely to be classified as fake, with varying
degrees of deviation.

The application of both AE and GAN yields the
results provided in Fig. 10. Since both architectures
are applied individually to the dynamic response of
each mass, Fig. 10 illustrates the reconstruction loss
(in terms of MAE) obtained by AE and the discrimina-
tor output obtained by GAN for all time series samples
of each of the two masses for a given damage level.
Instead, the trend lines connect the values obtained by
averaging the results calculated for bothmasses in order

to enable the detection of damage through the inspec-
tion of a single parameter.

While the considered DL architectures displayed a
similar performance for the 1-DOF system (see Fig. 6),
Fig. 10 shows that AE is more sensitive to damage than
GAN for this 2-DOF system. The lower damage sen-
sitivity of GAN in this application seems to be asso-
ciated with the reduced accuracy of its discriminator
in correctly classifying the undamaged response of the
2-DOF system compared to that of the 1-DOF system.
In fact, some discriminator outputs are somewhat far
from 1 for the undamaged system, meaning that GAN
produces a non-negligible number of false positives
(i.e., the discriminator sometimes recognizes as fake
the response of the undamaged system, which implies
that it detects damage even when there is no damage).
Anyway, Fig. 10 proves that both algorithms enable the
early detection of damage and they perform as expected
when the damage level increases.

4.3 Seismic isolator with superelastic hysteresis and
negative stiffness

Health monitoring of seismic isolation systems is cru-
cial to ensure that the isolated structures preserve their
target performance levels during earthquakes. Conse-
quently, several technical codes and guidelines world-
wide require inspections of seismic isolators, both reg-
ularly and past seismic events [11,57]. Visual inspec-
tions, whenever possible, can only detect damage or
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Fig. 8 Reconstruction of
the 2-DOF system response
through AE for different
damage levels

aging effects when they are visible on the surface,
and their reliability heavily depends on the inspec-
tors’ experience. Therefore, this numerical study inves-
tigates the feasibility of usingDLarchitectures to detect
damage in seismic isolators. A seismic isolator with
superelastic hysteresis and negative stiffness proposed
by Salvatore et al. [54] is here examined. The isola-
tor mechanical model combines the Bouc-Wen model
of hysteresis [7,62], the model of a negative stiff-
ness mechanism, and a superelastic model proposed
by Charalampakis and Tsiatas [12]. The equation of
motion reads:

Mẍ + fr = F(t), (14)

where the total restoring force of the seismic isolation
device is given by fr = fi + fn+ fs , in which fi corre-
sponds to the traditional elastomeric isolator restoring
force, fs is the superelastic force and fn reflects the
negative stiffness mechanism. The contribution to the

restoring force given by fi is defined as follows:

fi = Cẋ + αKi x + (1 − α) Ki z, (15a)

ż = ẋ[1 − (γ + βsign(zẋ))]|z|n, (15b)

where z is the hysteretic force governed by α, which is
the ratio between the post-elastic and the stiffness Ki at
the origin. Moreover, γ and β control the shape of the
hysteresis and n regulates the smoothness of elastic-
to-plastic transition. The contribution to the restoring
force given by fn is defined as follows:

fn =
(
−Knx + K3x

3
) [

1 + sign
(
x f − |x |)]
2

, (16)

where Kn is the negative linear stiffness, K3 is the pos-
itive cubic stiffness, and x f controls the extent of the
negative stiffness force. The last contribution to the
restoring force given by fs is defined as follows [12]:

ḟs = (1 − s)Ks

[
ẋ − |ẋ | sign ( fs − βs)

( | fs − βs |
Y

)ns]
+sKm ẋ, (17a)
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Fig. 9 Time history and
corresponding
time-frequency
representation via wavelet
transform of the undamaged
2-DOF system response:
actual data and results
carried out from the GAN
generation block

βs = Ksαs

{
x − fs

Ks
+ ft tanh(as x)

[
1 + sign(−x ẋ)

2

]}
,

(17b)

s = tanh [cs (|x | − xm)] + 1

2
, ft = (2Y − ysY )

αs Ks
,

as = tan−1(ãs Ks)

Y − ysY
, (17c)

where Ks and Km are the initial stiffness during the
austenitic phase and the fullymartensitic phase, respec-
tively, whereas Y is the yielding force and αs con-
trols the post-elastic stiffness. The parameter ns reg-
ulates the smoothness of the transition from the initial
elastic to the post-elastic phase while ft and as con-
trol the twinning hysteresis and super-elasticity and
the pinching across the origin along the cycle, respec-
tively. The numerical values of the system parameters
in Eqs. (14)–(17) for this application are based on the
previous study by Salvatore et al. [54] and are set to:
M = 400 kg, C = 0.4767 kg/s, Ki = 1.1 kN/mm,

Kn = 0.5 kN/mm, K3 = 0.00001 kN/mm3, xu = 100
mm, xm = 0.7xu , x f = 0.7xu , α = 0.2, β = 0.0007,
c = 0.01, γ = 0.00001, n = 1, and ns = 3. Dam-
age is simulated by reducing both Ki and Kn by the
same amount. The complex dynamics resulting from
Eqs. (14)–(17) is a formidable challenge for testing the
ability of AE and GAN to detect damage in nonlinear
systems.

Both AE and GAN are assessed through numerical
simulations by solving Eq. (14) under random exci-
tation such that F = −Mẍb, where the peak value
of the time history samples of ẍb are scaled to a uni-
form random value between 0.04g and 0.80g. Tables 5
and 6 shows the details about architecture and train-
ing process of both AE and GAN for this numerical
application.

Representative results obtained with the applica-
tion of AE and GAN are reported in Figs. 11 and 12,
respectively. A close inspection of the results in Fig. 11
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Fig. 10 Damage sensitivity
of the two DL architectures
for the 2-DOF system:
reconstruction loss values
obtained by AE and relative
variation of its normalized
average value, together with
discriminator output values
obtained by GAN and
relative variation of the
associated average damage
index

Table 5 Configuration of the DL architectures for damage detection in the seismic isolator

Type Component Convolution layers Kernel size Number of filters Strides

AE Encoder 3 (20,10,5) (50,50,50) (1,1,1)

Decoder 3 (5,10,20) (50,50,1) (2,2,1)

GAN Generator 2 (2,8) (2,1) (2,2)

Discriminator 3 (8,4,2) (8,4,2) (2,2,1)

demonstrates that AE continues to reconstruct the
undamaged response of the dynamic system quite sat-
isfactorily while its performance degrades as expected
when the level of damage increases. GAN faces some
difficulties in this application, as it can be inferred from
the comparison in the time-frequency domain between
actual and generated response given in Fig. 12 (i.e.,
some frequency components in the actual response
are missing in the output produced by the generator).
Indeed, the discriminator sometimes mislabels data

from the generator as real, even though the compar-
ison with the reference isolator response in the time-
frequency domain exhibits some differences. This is
due to the very rich dynamics given by Eqs. (14)–(17)
and anticipates a lower sensitivity of GAN in detecting
damage.

Results in Fig. 13 agree with the evidence drawn
from Figs. 11 and 12. In fact, Fig. 13 shows that AE
properly detects the presence of damage. The sensitiv-
ity of AE in this application remains satisfactory for
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Table 6 Training data of the DL architectures for damage detection in the seismic isolator

Type Component Trainable parameters Epochs Training time

AE Encoder 38,650 191 0.51 min

Decoder 791,596

GAN Generator 898 500 6.49 min

Discriminator 100,623

Fig. 11 Reconstruction of the seismic isolator response through AE for different damage levels

all damage levels, but it is generally lower compared
to Figs. 6 or 10. The presence of damage in the seis-
mic isolator is also successfully recognized by GAN,
provided that the damage severity is large enough (the
relative variation of the damage index is around 10%
once the damage level approaches 15%) while the out-
put is almost inconclusive otherwise. This is mainly
because the discriminator tends to produce more false
negatives in this application (i.e., too many samples of
the damaged response of the isolator are incorrectly

classified as true, meaning they are mistakenly consid-
ered as representative of a healthy state).

5 Experimental application

Both AE and GAN are finally tested using real data
from a laboratory experiment reported by Shiki et al.
[56] and Villani et al. [60]. The experimental setup is
shown in Fig. 14 and consists of a 300mm × 19mm
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Fig. 12 Time history and corresponding time-frequency representation via wavelet transform of the undamaged seismic isolator
response: actual data and results carried out from the GAN generation block

× 3.2 mm cantilever aluminum beam with a small
steel mass attached to its free end that interacts with
a neodymiummagnet positioned at a distance of 2mm.
A bolted connection provided with up to four nuts is
positioned 150mm from the free end and is introduced
to simulate damage in the system through a change of
the mass by varying the number of nuts. An electrody-
namic shaker is placed 50mm away from the clamped
end of the beam whereas a laser vibrometer measures
the velocity of the free end. A hardening-type nonlin-
earity originates in this magneto-elastic dynamic sys-
tem from the interaction between the permanent mag-
net and the steel mass at the beam free end.While chirp
and stepped sine were used as excitation by Shiki et al.
[56] and Villani et al. [60], the present experimental
application deals with output-only damage detection
under random vibrations. Accordingly, the measured

system response under band-pass filtered white noise
is considered. The filter bandwidth in the experiment
was set to 10–420 Hz whereas the input excitation lev-
els were equal to 0.01, 0.05, 0.10, 0.11, 0.12, 0.13,
0.14, and 0.15 VRMS. In this experimental applica-
tion, the magneto-elastic system layout consisting of
four nuts represents the baseline (undamaged) condi-
tion and the data corresponding to this configuration
have been employed to train both AE and GAN. The
damage datasets collect the experimental response of
the system as each nut is removed sequentially: con-
sidering the mass of each nut and the number of nuts,
the damage levels turn out to be equal to 2%, 4% and
6%.

Once again, the system dynamic response under dif-
ferent (unknown) excitation levels is taken into account
to assess the effectiveness of the DL architectures in
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Fig. 13 Damage sensitivity
of DL architectures for a
seismic isolator:
reconstruction loss values
obtained by AE and relative
variation of its normalized
average value, together with
discriminator output values
obtained by GAN and
relative variation of the
associated average damage
index

Fig. 14 Layout of the experimental test consisting of a cantiliver beam and a magnet close to the tip mass ([60], reprinted with
permission)

detecting damage, regardless of the experienced level
of nonlinearity. Configuration parameters and training
data of AE and GAN adopted in such experimental
application are given in Tables 7 and 8, respectively
(training runtime refers to the same hardware adopted
in the numerical investigations).

Figures 15 and 16 show the performances of both
architectures after training while Fig. 17 demonstrates
their effectiveness in detecting damage. On the one
hand, the reconstruction error of AE displays an abrupt
increment as soon as a small damage occurs. On the

other hand, a growing number of time series data is
classified as fake by the discriminator of GAN once a
small damage occurs because they no longer represent
the dynamics of a healthy system. The very good sensi-
tivity of both architectures for the lowest damage level
of 2% confirms their ability in early damage detection.
In particular, the damage indexbasedon the discrimina-
tor loss highlights the exceptional performance ofGAN
in recognizing the onset of damage in this experimen-
tal application. However, the relative variation of the
normalized reconstruction loss and that of the damage
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Table 7 Configuration of the DL architectures for damage detection in the magneto-elastic system

Type Component Convolution layers Kernel size Number of filters Strides

AE Encoder 4 (20,100,50,25) (100,100,50,25) (1,1,1,1)

Decoder 3 (50,50,20) (50,100,1). (1,2,2)

GAN Generator 3 (10,20,2) (100,200,1) (1,2,2)

Discriminator 4 (3,50,15,10) (200,200,100,50) (1,1,1,1)

Table 8 Training data of the DL architectures for damage detection in the magneto-elastic system

Type Component Trainable parameters Epochs Training time

AE Encoder 1,283,525 29 0.46 min

Decoder 527,679

GAN Generator 414,629 1,000 24.00 min

Discriminator 2,357,201

Fig. 15 Reconstruction of the magneto-elastic system response through AE for different damage levels
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Fig. 16 Time history response and corresponding time-frequency representation via wavelet transform of the undamaged magneto-
elastic system: actual data and results carried out from the GAN generation block

index based on the discriminator loss for damage lev-
els of 4% and 6% are fairly close to the corresponding
values observed for the minimum damage level equal
to 2%. Ultimately, this experimental application fur-
ther confirms that both AE and GAN are able to detect
damage without a priori information about the system
or the applied excitation signals, and irrespective of the
degree of nonlinearity.

6 Conclusions

The original contribution of this work lies in the
first comprehensive study on using DL architectures

for unsupervised, data-driven, vibration-based damage
detection in nonlinear dynamic systems. The perfor-
mance of both AE and GAN was deeply examined,
considering different nonlinear behaviors. The excita-
tion scenarios involve random excitation with varying
intensity. Numerical investigations and experimental
applications were carried out under the assumption that
neither the system nor the excitation are known. The
following conclusions can be drawn from the extensive
study on different systems and datasets.

• Both AE and GAN are able to detect the onset
of damage in different nonlinear dynamic sys-
tems provided that their architectures are properly
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Fig. 17 Damage sensitivity
of DL architectures for the
magneto-elastic system:
reconstruction loss values
obtained by AE and relative
variation of its normalized
average value, together with
discriminator output values
obtained by GAN and
relative variation of the
associated average damage
index

designed and trained. They also show consistent
results upon increasing damage levels.

• On the one hand, it seems that AE displays a more
consistent performance than GAN. GAN did not
consistently detect the lowest damage level; how-
ever, it can exhibit exceptional damage sensitiv-
ity. This is also influenced by the fact that the AE
architecture conditioning proved easier than GAN.
Moreover, training AE was less time consuming
than GAN.

• Conversely, the main advantage of the GAN dis-
criminator lies in its output being interpretable as
damage index since it is bounded between two
limit values corresponding to healthy andunhealthy
state. While GAN is applied to detect the occur-
rence of damage, it can be possibly used for other
tasks related to the undamaged system, such as syn-
thetic data generation, uncertainty quantification,
and reliability assessment.

In addition to extending both numerical and experi-
mental applications, some issues should be addressed
in future efforts, as listed below.

• Damage was introduced in the nonlinear systems
as either a change in stiffness or mass. Comprehen-
sive numerical and experimental investigations are
necessary to confirm the effectiveness of these DL
architectures across other damage scenarios.

• It is known that the effects attributable to environ-
mental conditions can obscure those due to damage.
Therefore, understanding whether these DL archi-
tectures can detect effectively damage in nonlin-
ear dynamic systems under changing environmen-
tal conditions without preliminary data processing
is still an open issue.

• Both AE and GAN were employed to establish
whether the nonlinear dynamic system was dam-
aged or not (i.e., novelty detection). Damage local-
ization and quantification were not addressed. Fur-
ther studies should aim to understand whether the
output of such DL architectures can be eventually
correlated with the damage position and/or magni-
tude.
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