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Abstract: Adult skeletal muscle is capable of active and efficient differentiation in the event of injury 

in both physiological and pathological conditions, such as in Duchenne muscular dystrophy (DMD). 

DMD is characterized by different features, such as continuous cycles of degeneration/regeneration, 

fiber heterogeneity, chronic inflammation and fibrosis. A well-defined and standardized approach 

for histological and morphometric analysis of muscle samples is necessary in order to measure and 

quantify specific regenerative parameters in myopathies. Indeed, non-automatic methods are time-

consuming and prone to error. Here, we describe a simple automatized computational approach to 

quantify muscle parameters with specific pipelines to be run by CellProfiler software in an open-

source and well-defined fashion. Our pipelines consist of running image-processing modules in 

CellProfiler with the aim of quantifying different histopathological muscle hallmarks in mdx mice 

compared to their wild-type littermates. Specifically, we quantified the minimum Feret diameter, 

centrally nucleated fibers and the number of macrophages, starting from multiple images. Finally, 

for extracellular matrix quantification, we used Sirius red staining. Collectively, we developed 

reliable and easy-to-use pipelines that automatically measure parameters of muscle histology, 

useful for research in myobiology. These findings should simplify and shorten the time needed for 

the quantification of muscle histological properties, avoiding challenging manual procedures. 

Keywords: skeletal muscle; skeletal muscle differentiation; histology; quantitative analysis;  

myopathies; Duchenne muscular dystrophy; cell localization; histopathological analysis 

 

1. Introduction 

Skeletal muscle is a highly dynamic and plastic organ, able to respond to 

environmental changes and characterized by complete functional recovery upon 

perturbations such as endurance exercise, overload or muscle injury [1]. These exceptional 

adaptive features of adult skeletal muscle are reduced or even compromised in conditions 

such as aging and atrophy or in genetic myopathies, such as Duchenne muscular 

dystrophy (DMD) [1–3]. DMD is a lethal X-linked recessive disease that affects 

approximately 1/3500 boys and is caused by different mutations in the dystrophin gene, 

leading to the loss of the functional protein, which is crucial for the proper structure and 

stability of myofibers [4]. The dystrophin-deficient mouse (C57BL/10ScSn-DMDmdx/J), 

referred to as mdx mouse, represents the most frequently used animal model to study 

DMD, although the pathology is less severe in this animal compared to DMD patients 

[5,6]. In both cases, this fatal myopathy leads to continuous cycles of degeneration and 

regeneration, resulting in high heterogeneity in fiber size and distribution as well as an 
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increase in centrally nucleated fibers (CNFs) [7]. Another key feature of DMD is chronic 

inflammation, resulting in persistent inflammatory cell infiltration, mainly macrophages, 

upon the degeneration of myofibers, accompanied by irreversible extracellular matrix 

deposition (ECM), leading to fibrosis [8,9]. 

The study of skeletal muscle physiology or pathologies mainly relies on histological 

analyses of muscle cross-sections. This analysis is commonly carried out by measuring the 

cross-sectional area (CSA) or minimum Feret diameter (MFD) of myofibers and the fiber 

size distribution in order to evaluate muscle fiber size and heterogeneity within the 

muscle [10]. Indeed, in physiological conditions, wild-type mice show a homogenous fiber 

size distribution and a constant CSA in the absence of perturbations. On the contrary, mdx 

mice usually show decreased CSA and an increase in fibers with a smaller caliber, together 

with high fiber heterogeneity, which becomes more evident with the progression of the 

disease. Notably, MFD quantification is usually preferable to CSA [11]. CSA and fiber size 

distribution measurements are usually performed by anti-laminin immunofluorescence 

with the goal of detecting fiber boundaries, whereas, for CNF quantification, nuclei 

detection is also necessary, which can be accomplished, for example, using 4′,6-diamidino-

2-phenylindole (DAPI) [1]. This type of analysis can be performed by many software 

packages that can allow either manual or automated quantification, although both of these 

procedures have crucial pros and cons. Indeed, although manual quantification accounts 

for the critical assessment of the investigator concerning the biological problems under 

examination, this approach is undoubtedly time-consuming and highly subjective among 

users. On the contrary, automatized software packages are designed to save time and to 

standardize the procedure but often do not include a step of “manual revision” by the 

user, thus compromising the accuracy of the quantification. Moreover, some of these 

software platforms are not open-source, can be difficult to implement and require specific 

operating systems or a good knowledge of programming languages [10,12–18]. 

Additionally, automatized software is usually not designed for the quantification of a cell 

population or the extracellular matrix deposition within the muscle, two fundamental 

features in myobiology [1,17]. Different readily available software packages are often 

optimized towards one or more parameters, reducing the ability of the user to mine 

different data measurements and the versatility of the software [19]. 

CellProfiler represents a robust, user-friendly and open-access software platform 

with algorithms and features that facilitate high-throughput work in biological research 

[20]. Advanced algorithms for image analysis are organized in individual modules that 

can be inserted in a sequential order to generate a customizable pipeline to identify or 

measure biological elements, named “objects”, or quantify positive areas in acquired 

images [20–22]. 

In the current manuscript, we propose a method to perform image analysis of muscle 

sections by using pipelines built with CellProfiler software, which have been recently 

implemented and updated to CellProfiler 4 [23]. Specifically, we present the data obtained 

by using a pipeline, which we named MyoProfiler, to measure MFD, CNF, PNF, cell 

localization and the number of macrophages in muscle sections from mdx mice compared 

with wild-type ones. We also developed another pipeline, which we named SiriusProfiler, 

for the precise quantification of extracellular matrix deposition. Moreover, with the goal 

of validating the performance of our method, we compared automatic quantification, 

performed using CellProfiler, with manual quantification, performed using Fiji software. 

The results show that these pipelines allow the automatic analysis of multiple images in a 

quick and reliable manner by using a single software package for multiple outputs, thus 

representing useful tools for the quantification of key muscle parameters in both 

physiological and non-physiological conditions. 
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2. Materials and Methods 

2.1. Mice and Ethical Approval 

Wild-type (C57BL/10J, The Jackson Laboratory, Bar Harbor, ME, USA) and 

dystrophic mdx mice (C57BL/10ScSn-DMDmdx/J, The Jackson Laboratory, Bar Harbor, ME, 

USA) were purchased from Charles River. Five-month-old wild-type and mdx mice were 

used for experiments. All experimental protocols and procedures were conducted 

following the National Ethical Guidelines (Italian Ministry of Health; D.L. 26, 4 March 

2014), approved by the local ethics committee (protocol number 375/2019/PR). Animals 

were housed at controlled temperature (22 ± 1 °C) and humidity (60 ± 5%) and maintained 

under a 12 h/12 h light/dark cycle with ad libitum access to food and water. 

Mice were euthanized and then dissected in order to carefully excise tibialis anterior 

(TA) muscles from the hind limbs. Collected TA muscles were mounted in Optimal 

Cutting Temperature (OCT, Tissue Tek®, Sakura Finetek, The Netherlands, Europe) 

compound and then frozen in liquid nitrogen-cooled isopentane (2-methylbutane; Sigma-

Aldrich, Merck KGaA, Burlington, MA, USA). Embedded muscles were then cross-

sectioned at a thickness of 8 µm using a Leica cryostat (Leica CM1850UV, Wetzlar, 

Germany) set at −25 °C, and sections were stored in a −80 °C freezer. 

2.2. Immunofluorescence of Muscle Sections and Image Acquisition 

The immunofluorescence of muscle sections was performed following a previously 

described procedure [3,24]. Primary antibodies used for this study were rabbit polyclonal 

antibody raised against laminin, α1 (Sigma-Aldrich, Merck KGaA, Burlington, MA, USA; 

Cat#: L9393, RRID:AB_477163, 1:500) and rat monoclonal antibody raised against F4/80 

(Bio-Rad Laboratories, Hercules, CA, USA; Cat#: MCA497G, RRID:AB_872005, 1:300). 

Secondary antibodies for immunofluorescence were Alexa Fluor® 488 goat anti-rabbit IgG 

(H+L; Thermo Fisher Scientific, Waltham, MA, USA; Cat#: A11034, RRID:AB_2576217, 

1:500) and Alexa Fluor® 594 goat anti-rat IgG (H+L; Molecular Probes, Cat#: A11007, 

RRID:AB_141374, 1:500). Nuclei were counterstained with 4′,6-diamidino-2-phenylindole 

(DAPI; Thermo Fisher Scientific, Waltham, MA, USA; Cat#: D1306, RRID:AB_2629482). 

Representative images of TA muscle immunofluorescences were acquired using an 

Olympus confocal microscope (Olympus FV1200, Olympus, Tokyo, Japan) with 40X 

magnification and visualized with FV10-ASW software (version 4.2; Olympus, Tokyo, 

Japan). Images for histological analysis were acquired using an Olympus BX53 

microscope mounting an XM10 cam (Olympus, Tokyo, Japan) and using “cellSens 

Standard” software (version 1.17; Olympus, Tokyo, Japan). We acquired adjacent images 

at 10X magnification of the whole muscle section from both WT and mdx mice. A few 

fields with evident histological defects were removed before the analysis in order to avoid 

artifacts. Images were saved and exported as 16-bit images (grayscale images). 

2.3. Staining for Extracellular Matrix Deposition and Image Acquisition 

Sirius red staining is commonly used to detect extracellular matrix deposition and 

fibrosis within tissue sections. Briefly, muscle cryosections were thawed and then fixed 

with Bouin’s solution (Sigma-Aldrich, Merk KGaA, Burlington, MA, USA; Cat#: HT10132) 

for 1 h, washed and then stained with Picrosirius red dye (Direct Red 80; Sigma-Aldrich, 

Merk KGaA, Burlington, MA, USA; Cat#: CI 35780) for 1 h, followed by sequential 

dehydration in 90%, 100% ethanol and xylene and then mounted with EUKITT (Sigma-

Aldrich, Merk KGaA, Burlington, MA, USA; Cat#: 03989). Images were acquired using an 

Olympus BX-41 microscope (Olympus, Tokyo, Japan) with 10X magnification and 

visualized using “cellSens Entry” software (version 3.1.1, Olympus, Tokyo, Japan). 

Specifically, we acquired adjacent images at 10X magnification of entire muscle sections 

from both genotypes. 
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2.4. CellProfiler-Based Pipelines for Muscle Analysis 

CellProfiler, developed by the Carpenter Lab at the Broad Institute of Harvard and 

MIT, is open-access software and available for Windows and macOS [20,21]. CellProfiler 

code was written using Python [22], and an updated, faster version of CellProfiler was 

recently released (CellProfiler 4) [23]. Java (www.java.com, accessed on 20 October 2018) 

installation and update are required prior to CellProfiler installation. Inexperienced users 

are encouraged to read the CellProfiler manual before using it. For the analysis of data 

described in this paper, we used the latest version (4.2.1) of CellProfiler downloaded from 

the official CellProfiler website (www.cellprofiler.org, accessed on 11 October 2021) and 

installed it on a laptop computer (Intel® Core™ i7 4500 U CPU @1.80 GHz 2.40 GHz, 8.00 

GB RAM, and 64 bit Windows 10 Home operating system). CellProfiler can process a wide 

range of image formats using the BioFormats library (complete list of formats permissible 

here). 

To use a pipeline, the user has to run CellProfiler (version 4.2.1), go to “file”, select 

“open project” and run the project corresponding to the pipeline of interest. Alternatively, 

.cpproj or .cppipe files can be run. Then, a list of images can be dropped into the Images 

module. Image processing and data extraction can be performed through Metadata, 

NamesAndTypes and Groups modules: for each module, a caption with detailed infor-

mation is available. Together with these four standard modules, custom modules are dis-

played as soon as the pipeline/project is opened. We also added captions for each module 

of both pipelines that we designed. The shared workflow proceeds with data processing, 

including the pipeline of interest (composed of defined modules), and then with the test 

mode (Start Test Mode) in order to check the result of each module, followed by image 

analysis (Analyze Images). Test mode is particularly convenient when the user is design-

ing a new pipeline or implementing an old one in order to check how the pipeline itself 

works with different image sets. Before running these commands, modules can also be 

selected/deselected (checkmark) or hidden, depending on the outputs that have to be dis-

played. The analysis ends with the generation of output data and a spreadsheet. It is im-

portant to define input and output folders before image processing. Pipelines developed 

in our lab are available in the Supplementary Materials section (Supplementary Files S1–

S3). Additionally, in the Supplementary Materials section, we provide a troubleshooting 

guide (Troubleshooting_guide, Supplementary File S4). 

2.5. Validation of CellProfiler-Based Pipelines by Fiji 

Quantifications obtained with pipelines designed with CellProfiler were validated 

using Fiji software [25,26]. The quantification of the minimum Feret diameter (MFD) of 

muscle fibers began using anti-laminin, α1-labeled images. DAPI-labeled nuclei and anti-

F480-stained macrophages were manually counted using the Cell Counter plugin. CNFs 

were quantified by combining anti-laminin, α1-labeled images and DAPI-labeled images. 

All numerical data were exported to Excel files and used for final quantifications. Sirius 

red quantifications with Fiji were performed using the Color Deconvolution plugin, and 

the red image was thresholded using the Otsu threshold method [27]. All analyzed images 

and samples used for quantifications in CellProfiler were used for the validation with Fiji. 

2.6. Statistical Analysis 

Data are presented as means plus/minus standard error of the mean (SEM). Output 

data were compared by 2-tailed unpaired Student’s t-test. Results with p value < 0.05 were 

considered statistically significant. All “p values” are indicated on the graphs in the fig-

ures. All data analyses were performed using GraphPad Prism 9.3 (GraphPad Software, 

San Diego, CA, USA). 
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3. Results 

3.1. Fully Automated Segmentation of Muscle Fibers by MyoProfiler Pipeline 

Experiments concerning skeletal muscle regeneration usually require an overview of 

muscle architecture, which can be evaluated, for instance, by immunostaining muscle 

cross-sections with antibodies that recognize the sarcolemma (e.g., caveolin) or the basal 

lamina (e.g., laminin, α1) of muscle fibers [28]. In our study, we stained tibialis anterior 

(TA) muscle cryosections of both wild-type (WT) and mdx mice with anti-laminin, α1 

(muscle fiber boundaries) and anti-F480 (macrophage surface marker), and nuclei were 

counterstained with 4′,6-diamidino-2-phenylindole (DAPI). We used 16-bit grayscale im-

ages as input. If the input images are RGB color images, it is necessary to add a Color-

ToGray module for each fluorophore. 

For the quantification of minimum Feret diameter (MFD), we set up a pipeline pri-

marily aimed at better defining the edges of myofibers. The workflow of the first part of 

the MyoProfiler pipeline is reported in Figure 1A and downloadable in the Supplemen-

tary Materials section (Supplementary File S1). The first module of the pipeline was Re-

scaleIntensity, which stretches the intensity of the image to the full intensity range, which 

is particularly useful for 16-bit images (Figure 1B). The next steps aimed at making the 

boundaries of muscle fibers sharper, and to this end, we set up a custom “unsharp mask”. 

Briefly, we used GaussianFilter to blur the input image and reduce its background noise 

(Figure 1C). We then used two ImageMath modules, which perform simple mathematical 

operations on image intensities, as follows: with the first one, we subtracted the blurred 

image, obtained with GaussianFilter, from the rescaled laminin image in order to sharpen 

the edges of muscle fibers; secondly, we added the sharpened laminin image to the origi-

nal one (Figure 1C, ImageMath 1+2). 

As the name implies, the EnhanceOrSuppressFeatures module is designed to en-

hance or suppress specific image features of interest. In this case, we enhanced “Line struc-

tures” from original rescaled images in order to recover and highlight low-intensity linear 

structures (Figure 1D, EnhanceFeatures 1). With another EnhanceOrSuppressFeatures 

module, we made muscle fiber boundaries sharper and clearer by enhancing the “Neu-

rites” feature and using “Tubeness” as an enhancing method (Figure 1D, EnhanceFeatures 

2). The signal of the output image was then enhanced using an ImageMath module. Af-

terwards, another ImageMath module took the average of the two enhanced laminin out-

put images (“Enhance_Line_Laminin_09” and “Enhance_Laminin_11”) to further recon-

struct the laminin signal without increasing the background noise (Figure 1D, ImageMath 

3+4). A subsequent Closing module, which applies a Dilate/Erode cycle, closed the inten-

sity gaps between pixels with a disk-shaped structuring element of 2 pixels in order to 

connect interrupted fiber boundaries as much as possible (Figure 1E). We observed that 

increasing the size of the structuring element could lead to the formation of small over-

segmented fibers. Afterwards, we used the MedianFilter module to reduce the salt-and-

pepper noise in the image while still preserving the positive signal. (Figure 1F). 

The Threshold module is necessary to detect the entire positive signal before the seg-

mentation of muscle fibers. We selected a global threshold strategy and Otsu [27] with 

three classes as a thresholding method, since the percentage of the image covered by fore-

ground varied from image to image, especially in mdx samples. Accordingly, we chose to 

assign the middle-intensity class to the background in order to exclusively select the true-

positive signal. The output image is a binary image in which the negative signal is set to 

0, while the positive signal is set to 1 (Figure 1G). In order to ensure the correct perfor-

mance of the segmentation, we also added a Morph module, which further closed the gaps 

between muscle fibers and filled small holes, such as capillaries and nerve bundles (Figure 

1H). We then inverted the pixel values of the binary input image by using an ImageMath 

module (with the “Invert” operation). This step is necessary to ensure that the muscle 

fibers are segmented correctly, as explained in the next step (Figure 1I, ImageMath 5). 
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Figure 1. MyoProfiler: detection and segmentation of myofibers using anti-laminin, α1-stained mus-

cle cross-sections. (A) Workflow of the first part of MyoProfiler pipeline. (B) RescaleIntensity mod-

ule for laminin signal. Scale bar = 100 µm. (C) Custom “unsharp mask” step (GaussianFilter and 

ImageMath 1+2) for sharpening myofiber boundaries. (D) Line structures and myofiber boundaries 

are further enhanced with 4 sequential modules (two EnhanceAndSuppressFeatures modules and 

two ImageMath modules). (E) Closing module closes the intensity gaps between pixels. (F) Medi-

anFilter module reduces salt-and-pepper background noise. (G) Threshold module detects positive 

signal and produces a binary image. (H) Morph module closes the gaps between muscle fibers and 

fills small holes. (I) Inverted binary image (ImageMath 5). (J) Color map image of segmented myo-

fibers with IdentifyPrimaryObjects module. FilterObjects module discards wrong muscle fibers 

(magenta arrows point to discarded fibers). (K) OverlayOutlined generated an output image in 
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which both segmented (red) and discarded (yellow outlines and pointed by cyan arrows) myofibers 

are outlined. 

The IdentifyPrimaryObjects module received the inverted thresholded image as in-

put and identified muscle fibers as objects by using a global minimum cross-entropy 

threshold [29]. Objects touching borders were discarded. As a method to distinguish and 

segment clumped objects, we used “Intensity” (used for objects that are dimmer towards 

their edges and usually brighter in the middle) and “Shape” as the method to draw divid-

ing lines between clumped objects. This approach follows the indentation of two touching 

objects, which is useful for dividing fused muscle fibers. Another fundamental parameter 

to be defined is the typical diameter range (in pixel units) of objects. We found that a range 

of 18–2000 pixels in diameter was suitable for our images (Figure 1J). However, it is pos-

sible to measure the diameter of objects from the Images module before processing the 

image set. Afterwards, we used the MeasureObjectSizeShape module to measure the area 

and shape features of identified muscle fibers. FilterObjects (followed by a MeasureOb-

jectSizeShape module) is a very important module, since it allows the exclusion of objects 

that do not meet the criteria for specific parameters determined by the user. For our pipe-

line, we decided to discard all objects below 40 pixels in area and objects with a minimum 

value of 0.32 for the form factor and a minimum of 0.75 for solidity (Figure 1J; magenta-

colored arrows point to discarded objects). Nevertheless, we found that a minimal number 

of elongated muscle fibers (which is rarely present only in mdx mice or in poor histological 

sections) could be discarded. Overall, this setting was solid and successful in all image 

sets used for this paper. We also decided to add an optional module (EditObjectsManually 

#22, followed by a MeasureObjectSizeShape #23 module), which can be enabled and used 

in the analysis. Once the analysis of an image set reaches the EditObjectsManually mod-

ule, an editing user interface allows objects to be created, removed and edited. The inter-

face shows the current image overlaid with colored outlines of the selected objects. A 

number of operations are available: remove an object, restore a removed object, edit ob-

jects, finish editing an object and abandon changes to an object. Moreover, quick key com-

mands for object editing are listed. Object editing includes deletion, manually drawing, 

joining and splitting, or removal of an object. Furthermore, it is necessary to replace the 

input “Muscle_Fibers_20” of modules 24, 25, 26, 33 and 38 with “Edited_Muscle_Fi-

bers_22”. In “Select measurement” and “data to export” options of the ExportToSpread-

sheet module, it is necessary to select/indicate the correct modules accordingly. However, 

this semi-automatic step can be skipped if the overall detection and segmentation of mus-

cle fibers have been performed well. However, we suggest always using the “Test Mode” 

and the “Show display” mode provided by CellProfiler before analyzing new image sets. 

The output of all of these steps can be visualized with the OverlayOutlines module, 

with which the boundaries of final muscle fibers (from FilterObjects module) are identi-

fied (red) and displayed on the original image. Discarded objects are outlined in yellow 

in Figure 1K and indicated with cyan-colored arrows. Finally, the two following Calcu-

lateMath modules were used to convert the calculated CSA of muscle fibers from pixel to 

µm2 and the MFD from pixel to µm. Conversion factors for both modules were calculated 

starting from the pixel/µm ratio assigned to the immunofluorescence images used for this 

procedure. Finally, we also developed an alternative version of MyoProfiler (MyoPro-

filer_variant, Supplementary File S2), in which we selected an adaptive three-class Otsu 

threshold with an adaptive window set to 500 pixels. This could be useful for an input 

image if there is uneven intensity across the image. 

3.2. Quantification of Nuclei, CNFs and PNFs in Muscle Sections 

A well-known hallmark of skeletal muscle regeneration in physiological and patho-

logical conditions (e.g., DMD) is the presence of centrally nucleated fibers (CNFs), corre-

sponding to foci of regeneration in the injured muscle. This fact represents a reliable as-

pect of muscle condition, especially in mdx mice in which muscle fibers remain centrally 
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nucleated even at the end of the regenerative process, whereas the nuclei of regenerated 

healthy muscles migrate towards the periphery of myofibers (i.e., peripherally nucleated 

fibers or PNFs) [17,30]. Therefore, we co-stained tibialis anterior (TA) muscle cryosections 

of both wild-type and mdx mice with laminin, α1 and with 4′,6-diamidino-2-phenylindole 

(DAPI). 

The workflow of the second part of the MyoProfiler pipeline is shown in Figure 2A. 

First, we used RescaleIntensity on the DAPI signal (Figure 2B), similarly to what was pre-

viously performed with laminin. We then used the MedianFilter module to reduce the 

background noise, followed by the EnhanceOrSuppressFeatures module (Figure 2C, Me-

dianFilt+Enhance). In this case, we were interested in enhancing the speckles of nuclei, 

since the DAPI signal is usually characterized by spots of enhanced intensity relative to 

the background. The module enhances speckles using a white tophat filter. The feature 

size was set to 10 pixels, which corresponds, in our images, to the typical nucleus diame-

ter. Nuclei were segmented using IdentifyPrimaryObjects, setting a diameter range of 6–

20 pixels and using the minimum cross-entropy threshold method [29] with an adaptive 

window of 20 pixels in size, corresponding to the maximum diameter set for nuclei. Ob-

jects touching borders were discarded. Intensity was used as a method to both distinguish 

clumped objects and to draw lines between them (Figure 2D, IdentifyPrimaryObj). The 

OverlayOutlines module outlines identified nuclei to the rescaled original DAPI image 

(yellow outlines; Figure 2E). 

Once we had successfully identified and segmented both muscle fibers and nuclei, 

we focused on CNF and PNF detection. To this end, we used the ExpandOrShrinkObjects 

module to shrink identified muscle fibers by 5 pixels. This procedure is necessary to ex-

clude all peripheral nuclei juxtaposed to myofiber boundaries (Figure 2F, Ex-

pandOrShrinkObj). With another ExpandOrShrinkObjects module, this time, we shrank 

the nuclei to one point in order to clearly mask and detect nuclei of CNFs in the following 

steps. As previously mentioned, we took advantage of the MaskObjects module to mask 

and remove all one-point nuclei outside shrunken muscle fibers, thus considering only 

nuclei inside myofibers (Figure 2G, Shrink+MaskObjects). Afterwards, the RelateObjects 

module assigned the relationship between previously identified objects. In this case, 

“child objects” are all objects (nuclei) inside “parent objects” (shrunken fibers). Shrunken 

fibers were then classified into CNFs and PNFs by the ClassifyObjects module. Interest-

ingly, as output values, it is also possible to quantify the number of nuclei per CNF. Fi-

nally, we added an OverlayOutlines to highlight myofiber boundaries (red), nuclei (yel-

low), shrunken fibers (cyan) and nuclei of CNFs (outlined as pink dots; Figure 2G, Re-

lateObj+Overlay). 
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Figure 2. MyoProfiler: detection of centrally nucleated fibers (CNFs) and segmentation of nuclei and 

macrophages. (A) Workflow of the second part of MyoProfiler pipeline. (B) RescaleIntensity module 

for DAPI signal. Scale bar = 100 µm. (C) MedianFilter module reduces salt-and-pepper background 

noise and EnhanceOrSuppressFeatures enhances the “speckles” signal of nuclei. (D) Color map im-

age of segmented nuclei generated with IdentifyPrimaryObjects module. (E) OverlayOutlines gen-

erates an output image in which nuclei are outlined (yellow). (F) Color map image of shrunken 

myofibers generated with ExpandOrShrinkObjects module. (G) Output image generated from the 

shrinking of nuclei to one pixel and masking with shrunken myofibers (Shrink+MaskObjects) for 

the identification of CNFs. OverlayOutlines outlines segmented (red) and shrunken myofibers 
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(cyan), as well as nuclei inside (dark pink dots) and outside (yellow) of shrunken fibers. (H) Work-

flow of the third part of MyoProfiler pipeline. (I) RescaleIntensity module for F4/80 (macrophage) 

signal. Scale bar = 100 µm. (J) MedianFilter module reduces salt-and-pepper background noise, and 

EnhanceOrSuppressFeatures enhances the “speckles” signal of macrophages. (K) Color map image 

of segmented macrophages generated with IdentifyPrimaryObjects module. (L) Ex-

pandOrShrinkObjects module enlarges nuclei to improve detection of macrophages. (M) Color map 

image of nuclei belonging to macrophages (MaskObjects module); other nuclei are outlined in pur-

ple. RelateObjects module assigns the relationship between nuclei and macrophages. (N) Overlay-

Outlines outlines nuclei belonging (yellow) and not (purple) to macrophages. Macrophage bound-

aries are outlined in cyan. 

3.3. Detection and Quantification of Macrophages in Skeletal Muscle 

Cell localization is an important aspect in the field of cell biology and imaging; it is 

intended to locate and analyze specific cell populations within a tissue or organ. Usually, 

a specific cell population is identified by using cells expressing a reporter gene encoding 

for a fluorescent protein (e.g., GFP) or by using an antibody directed towards a protein 

specific for the cell population. For both methods, counterstaining with a nuclear dye (e.g., 

DAPI) is suggested [31]. In the context of skeletal muscle histology, cell localization is 

particularly important for the detection of muscle stem cells (i.e., satellite cells), interstitial 

cells (e.g., fibroadipogenic progenitors) and infiltrating immune cells, such as mono-

cytes/macrophages [3,30]. 

In this study, we detected and quantified the number of macrophages in muscle sec-

tions by automatically counting the number of cells (DAPI) co-stained with an antibody 

raised against F4/80, a pan-macrophage surface marker. Specifically, in the third part of 

the MyoProfiler pipeline (Figure 2H), we applied the RescaleIntensity module to an orig-

inal F4/80 image (Figure 2I), followed by MedianFilter for removing salt-and-pepper noise 

and the EnhanceOrSuppressFeatures module. This module enhances speckles using a 

white tophat filter. We chose a feature size of 100 pixels, since macrophages can assume 

different shapes, reflecting the position occupied by macrophages within the tissue in vivo 

with respect to an in vitro culture. Indeed, macrophages can also assume an elongated 

shape inside a tissue (Figure 2J, MedianFilt+Enhance). 

We then took advantage of the IdentifyPrimaryObjects module to detect macro-

phages as F4/80-positive signals. We chose the minimum cross-entropy threshold method, 

with an adaptive window of 100 pixels in size; as the diameter range, we chose 8–100 

pixels. Objects touching borders were discarded, as usual. We used intensity to distin-

guish clumped objects and shape to draw the dividing line between clumped objects, since 

the peak intensity of these objects is more variable than that of the nuclei. Moreover, we 

selected the “Log transform before thresholding” option, which helps to detect areas of 

staining that have a wide dynamic range, such as the F4/80 signal (Figure 2K, IdentifyPri-

maryObj). Afterwards, we decided to use an ExpandOrShrinkObjects module to expand 

the area of the nuclei by 2 pixels in order to better detect macrophages. Indeed, F4/80 is a 

membrane marker, and this module prevents objects with the DAPI signal juxtaposed to 

the F4/80 signal from being discarded (Figure 2L, ExpandOrShrinkObj). With the 

MaskObjects module, we were able to mask (remove) objects or regions outside the region 

of interest. The objects that were partially masked were removed on the basis of the over-

lap fraction. Mask objects (macrophages) will keep an object (expanded nuclei generated 

by the previous module) only if the overlap is at least 0.1, meaning that 1/10 of an object 

must be in the masking region (expanded nuclei are outlined in purple; Figure 2M, 

MaskObjects). Afterwards, the RelateObjects module assigned the relationship between 

previously identified objects (Figure 2M, RelateObjects). In this case, “child objects” are 

all objects (nuclei) inside “parent objects” (macrophages). Finally, we used the Overlay-

Outlines module to outline expanded nuclei (purple), masked macrophage nuclei (yel-

low) and macrophage boundaries (cyan; Figure 2N). Interestingly, the quantification of 

macrophages (F4/80-positive cells) is an approach that is potentially applicable to all quan-
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tification methods involving the co-localization or co-staining of DAPI with another fluo-

rescent dye or antibody, which is useful for the detection of many cell populations resid-

ing in tissues and organs. Indeed, it can be applied to other cell populations of skeletal 

muscle, such as satellite cells and fibro-adipogenic progenitors (Appendix A.1), or to cell 

populations of other tissues and organs. 

3.4. Comparison between CellProfiler-Based Fully Automatic Quantification and  

Non-Automatic Quantification 

In order to validate the accuracy of the MyoProfiler pipeline developed in our lab, 

we decided to compare output data generated with CellProfiler with those generated with 

Fiji, a widely used software package for image analysis. To this end, we used images ac-

quired from the immunofluorescence of TA muscle from wild-type (WT) and mdx mice 

stained for laminin, α1 (green), DAPI (blue) and F4/80 (red). Figure 3A shows a compact 

muscle architecture in WT and a heterogeneous myofiber composition in mdx muscle, to-

gether with a high increase in CNFs and massive macrophage infiltration (Figure 3A). 

The first output data generated by the MyoProfiler analysis was the MFD of muscle 

fibers, a well-known parameter for quantifying fiber size. Our data showed that MFD val-

ues quantified with MyoProfiler were extremely similar to those obtained with Fiji (WT: 

p = 0.8117; mdx: p = 0.8188). Consistently, fiber size distributions were also almost equal 

when comparing the two approaches (Figure 3B). Moreover, the numbers of detected and 

segmented nuclei were also comparable between the two methods (WT: p = 0.4880; mdx: p 

= 0.5724; Figure 3C). Consistency in detecting nuclei and segmenting myofibers was also 

observed for the quantification of CNFs (WT: p = 0.8906; mdx: p = 0.7162) and PNFs (WT: 

p = 0.9413; mdx: p = 0.6020; Figure 3D). Interestingly, MyoProfiler also allowed the quanti-

fication of the number of nuclei per myofiber. As expected, we observed a significant in-

crease in the number of nuclei per myofiber in mdx mice compared to their WT littermates 

(Figure 3E). Finally, we found that MyoProfiler was also proficient in segmenting macro-

phages in skeletal muscle, despite the irregular F4/80 signal (WT: p = 0.6536; mdx: p = 

0.8367; Figure 3F). Collectively, these data demonstrated that the MyoProfiler pipeline ef-

ficiently and robustly quantified many fundamental parameters for routine muscle anal-

ysis. 

We calculated an average processing time of 10 min for quantifying 10 image sets 

(each image set composed of laminin, α1, DAPI and F4/80 images) with MyoProfiler. Con-

versely, quantification performed with Fiji on the same image sets took several hours. 

Overall, our pipeline represents a robust, reliable and fast approach for quantifying many 

histological features starting from immunofluorescence images of muscle sections. 
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Figure 3. Quantitative measurements automatically performed with MyoProfiler and compared 

with Fiji software. (A) Representative immunofluorescence images of tibialis anterior sections from 

wild-type (WT) and mdx mice. Sections were stained with anti-laminin, α1 (green) and anti-F4/80 

(red) antibodies and counterstained with DAPI (blue). Scale bar = 50 µm. (B) Minimum Feret diam-

eter (MFD) quantification and fiber size distribution of myofibers. (C) Quantification of the number 

of nuclei. (D) Quantification of centrally nucleated (CNFs) and peripherally nucleated fibers (PNF). 

(E) Quantification of the number of nuclei per CNF performed by CellProfiler. (F) Quantification of 

the percentage of macrophages. Data are expressed as mean ± SEM, and unpaired t-test was used 

for comparison (N = 3 for WT and N = 4 for mdx; * = p < 0.05; ** = p < 0.01; *** = p < 0.001). 

3.5. Quantification of Extracellular Matrix in Skeletal Muscle 

Picrosirius red staining is a fast and reliable staining method that is largely used to 

identify and quantify the level of extracellular matrix (ECM) deposition in healthy and 

diseased muscle cross-sections. Direct Red 80 is a dye that stains the ECM red, whereas 

the cytoplasm and muscle fibers are yellow. 

The pipeline that we created for ECM quantification (SiriusProfiler, Supplementary 

File S3) comprises fewer modules (Figure 4A) with respect to the previous one. Once we 

updated the image set corresponding to a muscle section, we assigned the name “Sirius” 

to all of the images of the uploaded image set. We used RGB colored images (Figure 4B), 

so we selected “Color image” from the drop-down menu. We decided to add two optional 

sequential pre-processing modules designed to correct the background of the image when 

the illumination is not consistent. The illumination across the image is first calculated 

(CorrectIlluminationCalculate) and then fixed accordingly (CorrectIlluminationApply). 

The UnmixColors module creates different grayscale images starting from the origi-

nal colored one. The main goal is to select the best absorbance for Sirius red staining. Spe-

cifically, we split the image into blue, yellow and red by selecting Fast blue (blue), DAB 

(yellow) and Fast red (red). The reliability of this approach is clear, since the grayscale 

image resulting from the Fast red image perfectly corresponds to the red area of the orig-

inal image. Indeed, the grayscale Fast blue image is almost completely dark, while the 

greyscale DAB image highlights cytoplasm and muscle fibers (Figure 4C). 

The following module, Threshold, is the most critical when dealing with the quanti-

fication of areas. We applied a global Otsu thresholding method since it allows the divi-

sion of a grayscale input image into three classes. Indeed, the intensity of Sirius red ap-

peared to be composed of high- and middle-intensity signals. Therefore, we assigned pix-

els in the middle-intensity class to the foreground (Figure 4D). We also added two op-

tional modules to perform a quality check of the quantification. Briefly, the thresholded 

image is converted into objects (ConvertImageToObjects), and then this output image is 

used to display the outlines (in red) of the selected area in the original image. 

The positive area is then quantified and multiplied by a conversion factor (0.2289), 

calculated starting from the pixel/μm ratio value, in order to convert the calculated area 

from pixel to μm2. Output data are generated as a “.txt” file. Finally, we added another 

two optional modules, which allowed us to save the Fast red and thresholded image. 

Representative images of whole tibialis anterior muscles from WT and mdx mice 

stained with Sirius red clearly show a massive increase in fibrotic scars in mdx mice, a 

typical hallmark of DMD (Figure 4E). We calculated an average processing time of 80 s 

for quantifying 10 images with SiriusProfiler. Conversely, manual quantification with Fiji 

took approximately 13 min for 10 input images. As expected, the quantification of the 

percentage of the positive area increased in mdx mice compared to their WT littermates. 

Notably, the quantification performed with CellProfiler was almost identical to the one 

performed with Fiji (WT: p = 0.7361; mdx: p = 0.9591; Figure 4F) in both genotypes, thus 

validating the robustness of our fully automatic pipeline for ECM quantification. 

Among other applications, SiriusProfiler pipeline, allows also to quantify ECM, with 

appropriate modifications, by WGA-stained sections (Appendix A.2) or immunofluores-

cence of muscle sections for markers specific for ECM (e.g., anti-Collagen I; Appendix 
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A.2). Finally, SiriusProfiler pipeline can quantify ECM also in Masson’s Trichrome-stained 

muscle sections (Appendix A.3). 

 

Figure 4. SiriusProfiler workflow and quantitative measurements. (A) Workflow of SiriusProfiler 

pipeline. (B) Original input Sirius red image uploaded in Images module. Scale bar = 200 µm. (C) 

UnmixColors module for the split of input image into red (Fast red), yellow (DAB) and blue (Fast 

blue) components. (D) Threshold image of the red signal. (E) Representative images of Sirius red-

stained whole muscle sections of tibialis anterior muscle from wild-type (WT) and mdx mice. Scale 

bar = 500 µm. (F) Percentage of collagen-positive area (Sirius red staining) in WT and mdx mice, 

quantified with CellProfiler (SiriusProfiler) and Fiji software. Data are expressed as mean ± SEM, 

and unpaired t-test was used for comparison (N = 3 for WT and N = 4 for mdx). 
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4. Discussion 

Dystrophic muscles show high fiber heterogeneity, an elevated number of centrally 

nucleated fibers (CNFs) and heterogeneous cell populations and dynamics, especially in 

close proximity to injury sites. Moreover, due to massive extracellular matrix (ECM) dep-

osition, significant interstitial spaces are detectable, especially at late stages of the disease 

[30]. For this reason, the full automation of fiber quantification can be tricky and inaccu-

rate, and hence, a further step of manual adjustment and revision is required [15]. 

In the present study, by taking advantage of CellProfiler software, we developed two 

pipelines for the fully automated histological analysis of specific muscle hallmarks, start-

ing from tibialis anterior (TA) sections of mdx mice, a widely used animal model for Du-

chenne muscular dystrophy (DMD), and their wild-type (WT) littermates. The quantifica-

tions performed with CellProfiler were then compared to those performed with Fiji in 

order to validate the robustness and efficiency of our method. It is therefore clear that this 

work did not aim to address differences between the two genotypes, which have been 

widely investigated in a multitude of previous works. We are interested in the validation 

of our CellProfiler-based pipelines. The first pipeline, named MyoProfiler, was designed 

for enhancing and redefining myofiber boundaries, starting from images of muscle cross-

sections stained with laminin, α1 antibody; then, once the signal was satisfactorily identi-

fied, muscle sections were segmented, and their cross-sectional area (CSA) and minimum 

Feret diameter (MFD) were measured. The second part of MyoProfiler is aimed at identi-

fying and segmenting DAPI-stained nuclei and at classifying segmented myofibers into 

CNFs and peripherally nucleated fibers (PNFs). The last part of the pipeline included the 

detection of macrophages, starting from the detection of F4/80, a pan-macrophage-specific 

surface marker. Finally, the SiriusProfiler pipeline was developed with the goal of identi-

fying and quantifying ECM from Sirius red-stained muscle sections. To this end, we used 

the same samples used for the analysis by MyoProfiler. Concerning the time needed for 

analysis, Myoprofiler takes ~10 min to analyze 10 images, while an analysis performed 

with Fiji takes several hours for the user. Meanwhile, SiriusProfiler takes ~80 s to analyze 

10 images, while manual quantification with Fiji takes ~13 min. 

In the MyoProfiler pipeline, one of the most critical steps to deal with is the identifi-

cation of muscle fibers and their appropriate segmentation. Muscle fiber integrity and 

laminin, α1 signals rely on the quality of muscle sections. Moreover, the laminin signal 

identifies not only myofiber boundaries but also nerve bundles, capillaries, veins, arteries 

and interstitial space (among fiber boundaries). It is therefore necessary to enhance the 

laminin signal, fix interrupted fibers where possible and reduce the background. All of 

the steps preceding the Threshold module resolve those problems. Moreover, we used the 

three-class Otsu method [27], in which we assigned the middle-class to the background in 

order to exclusively select the positive signal. Object segmentation (IdentifyPrimaryOb-

jects module) was performed using the minimum-cross entropy threshold method [29]. 

Segmented fibers can be filtered out (FilterObjects module) if they do not achieve specified 

filter values (area, form factor and solidity). Finally, the automation of the procedure can 

be supported by a step of manual revision (EditObjects), necessary for an accurate evalu-

ation of the quantification. Interestingly, the lack of this step was one of the limitations of 

the previously published MuscleAnalyzer pipeline [32]. 

Contrary to myofibers, the identification and segmentation of nuclei are easily af-

fordable, as is nuclei segmentation from 2D cell culture images. This is possible since nu-

clei show a relatively uniform morphology, dimension and contrast due to the high con-

trast of the DAPI signal relative to the background. Once we reduced the salt-and-pepper 

background noise (MedianFilter) and increased the speckle features (EnhanceOrSup-

pressFeatures), we identified nuclei using an adaptive minimum-cross entropy threshold 

[29]. The quantification of nuclei worked appropriately, and the values obtained were 

comparable to those obtained with Fiji, although with Fiji, we detected slightly more nu-

clei. This is probably because in CellProfiler analysis, we excluded objects touching the 

borders. The identified nuclei were then shrunk to one point (ExpandOrShrinkObjects) 
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and masked with 5-pixel-shrunken fibers (MaskObjects) in order to detect CNFs and PNFs 

with RelateObjects and ClassifyObjects modules. The strategy of identification and quan-

tification of CNFs and PNFs, as with myofiber and nuclei, worked efficiently. 

We also used the identified nuclei for the detection and quantification of resident (in 

WT mice) and infiltrating (in mdx mice) macrophages. Once the background noise had 

been reduced (MedianFilter) and the F4/80 signal had been enhanced (EnhanceOrSup-

pressFeatures), we once again used an adaptive minimum cross-entropy threshold for 

macrophage segmentation. Since F4/80 is a membrane surface marker, we chose to expand 

nuclei dimensions by 2 pixels and then expanded segmented nuclei with macrophages in 

order to better detect them. To finely select true macrophages, we decided to discard all 

objects that were partially masked (10% of masking region). Despite the challenge in de-

tecting macrophages, especially in mdx cross-sections, we found overall comparable val-

ues in CellProfiler vs. Fiji analysis. 

The SiriusProfiler pipeline, in contrast to MyoProfiler, works on brightfield images. 

This pipeline consists of a few crucial steps: the splitting of the input image into red, yel-

low and blue components and then the application of a Threshold module to the image 

corresponding to the red component. In this case, we used the three-class Otsu method 

[27], in which we assigned the middle-class intensity to the foreground, since Sirius red 

staining always shows a bright red signal and a less intense one. For Fiji analysis, we ba-

sically used the same approach, and we found no differences between the two methods, 

demonstrating the effectiveness of this method. 

Occasionally, experimental errors can occur during the histological preparation of 

muscle samples, such as the wrong orientation of the sectioning angle (i.e., oblique sec-

tioning), thus resulting in muscle fibers with a non-polygonal/non-circular aspect. This 

fact results in the incorrect measurement of muscle area by the CSA of myofibers, as has 

been previously demonstrated [33]. This inconvenient issue can be overcome using the 

minimal Feret diameter (MFD) as a parameter for the analysis of muscle fibers. Indeed, 

MFD is defined as the distance between the two parallel planes restricting the object per-

pendicular to that direction, so it is independent of the sectioning angle of the sample [33]. 

Using MyoProfiler, we quantified both CSA and MFD, but we present only the MFD 

quantification (Figure 3B). Moreover, isolated muscles can undergo poor inclusion or in-

appropriate storage before the sectioning. Finally, histological artifacts can occur during 

the sectioning of muscles, or they can have an uneven or irregular signal pattern due to 

errors occurring during the staining. Even one of these events can make the identification 

of objects and cellular components difficult, thus also affecting the quantification. This 

identification is allowed by CellProfiler thanks to the IdentifyPrimaryObjects module, 

which relies on a thresholding method that needs to be finely tuned in order to realize 

correct image segmentation. Fortunately, CellProfiler provides a test mode that makes it 

possible to test the pipeline on selected image sets and correct or change specific parame-

ters once the output image has been generated. Of course, it is always better to test the 

pipeline, with a selected parameter, on a large set of images and on images of perfect or 

poorer quality, thus making the pipeline more robust. Finally, it is recommended to use 

appropriate conversion factors depending on camera properties and magnification, as 

well as parameters set in IdentifyPrimaryObjects, if necessary. 

Undoubtedly, an automatic or semi-automatic approach should only be applied us-

ing good or average–good staining and images to avoid, for instance, the quantification 

of interstitial spaces or of other non-fiber structures. MyoProfiler proficiently quantifies 

muscle fibers with minimal error and ensures the possibility of an automated method to 

decrease the time required for quantification and, at the same time, offers a step of manual 

editing in order to maximize the efficiency and reliability of this approach, if needed. 

In recent years, several other semi-automatic software packages or tools have been 

described [10,15,17,33]. Some of the issues with these approaches include the necessity of 

programming skills, the need for images of very high quality and the lack of implemen-

tation and of batch analysis. Moreover, Lau and colleagues proposed a method to detect 
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and quantify muscle fibers and CNFs by using a previous version of CellProfiler. As also 

stated by the authors, their pipeline is not designed to identify specific cell populations 

and does not have a manual editing step [32]. Finally, Sanz and colleagues proposed a 

useful pipeline for the detection of fibers and the capillary-to-muscle fiber interface on 

muscle biopsies. Nevertheless, the pipeline has been designed using only muscles from 

healthy patients and images acquired with 20X magnification, thus reducing the repro-

ducibility if input images are, for instance, 10X magnification-acquired images from dys-

trophic muscles [34]. Furthermore, the benefit of using CellProfiler for automated image 

analysis relies on its flexibility and the possibility of custom modifications that can also be 

applied by non-expert users. It can distinguish subtle changes and measure multiple prop-

erties at once. Moreover, it can perform batch analysis (thousands of images), and the 

latest version (CellProfiler 4) has been demonstrated to be faster and less tedious than 

previous ones [23]. Finally, the use of CellProfiler hints at the possibility to build user-

friendly tools that are able to adapt and perform their tasks without needing to use long 

and more complex tools based on machine learning or deep learning. 

The applicability of our pipelines relies on the possibility of also using them on im-

ages acquired from histological sections of human biopsies in order to obtain robust and 

valuable quantifications of histological parameters in both healthy and diseased patients 

(e.g., DMD patients). Indeed, as stated in Appendix A.4, our pipelines can be used also for 

quantifications on human muscle sections. Therefore, it would be possible, for instance, 

to histologically visualize the effect of corticosteroids, a widely used therapy in muscular 

dystrophies [35]. This should aid research and preclinical studies concerning muscle dis-

eases. 

To conclude, future directions starting from this work could include the development 

of novel CellProfiler-based pipelines aimed at quantifying other histological features of 

muscle histology as well as the detection and counting of other cell populations infiltrat-

ing or residing in skeletal muscle upon immunofluorescence for specific cell markers. 

5. Conclusions 

The CellProfiler-based pipelines designed in this study for the histopathological anal-

ysis of muscles allow the multi-parametric analysis of muscle sections in both physiolog-

ical and pathological (DMD) conditions. These pipelines were designed in order to ensure 

automatic quantification of multiple images, starting from images acquired with non-au-

tomatic microscopes, and reduce the time usually spent on manual quantification. With 

this approach, it is possible to compare different experiments from different laboratories 

in a highly reproducible and easy-to-use interface. Finally, we developed a tool that 

should aid in the study and evaluation of pathologies affecting skeletal muscle by facili-

tating data generation and analysis, thus further improving the consistency of quantifica-

tions and the reliability of results. 
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Appendix A. Additional Applications of MyoProfiler and SiriusProfiler Pipelines 

Appendix A.1. Identification and Segmentation of Specific Cell Populations by  

MyoProfiler Pipeline 

As stated in the manuscript, the identification and proper segmentation of cell pop-

ulations rely on the correct segmentation of nuclei and the cell population-specific 

marker/antibody and its distribution in the cell. For instance, F4/80 is a surface marker, 

and we had to expand nuclei to properly mask F4/80 with a DAPI signal. Moreover, in-

terstitial and infiltrating cells, such as macrophages, can assume elongated shapes within 

the muscle. The same issue could occur, for instance, with the detection and segmentation 

of fibro-adipogenic progenitors (FAPs), which are usually detected by immunofluores-

cence with an anti-PDGFRα antibody [36]. Since PDGFRα is a cell surface marker, we 

suggest using the same steps that we followed for macrophage segmentation. Of course, 

proper tuning of the Min and Max diameter and a threshold are needed before analyzing 

images. For the detection of satellite cells, we suggest the use of an anti-Pax7 antibody. 

Considering that Pax7 is expressed in the nuclei and that its signal is similar to the DAPI 

signal, we suggest using the same feature size in the EnhanceOrSuppressFeatures module 

(module #42 in MyoProfiler pipeline) that has been established for DAPI (module #30 in 

the MyoProfiler pipeline). Of course, the typical diameter of objects also has to be adjusted 

accordingly (IdentifyPrimaryObjects = module #43 in the MyoProfiler pipeline). Further-

more, the expansion of nuclei is not necessary because the Pax7 signal overlaps with the 

DAPI signal (ExpandOrShrinkObjects = module #44 in the MyoProfiler pipeline). Finally, 

concerning the MaskObjects module (module #45 in the MyoProfiler pipeline), we suggest 

using the option “Keep” for the handling of objects that are partially masked. Collectively, 

the proper identification and segmentation of a cell-population-specific marker require 

the following steps: measurement of the typical object size before image processing (Min 

and Max pixel values, to be used for EnhanceOrSuppressFeature and IdentifyPrimaryOb-

jects modules) and adjustment of threshold parameters in IdentifyPrimaryObjects mod-

ule. As for all types of measurements, “Test mode” helps the user in tuning the best setting 

before processing images. 

Appendix A.2. Quantification of Extracellular Matrix by WGA Immunofluorescence 

Fluorescently conjugated wheat germ agglutinin (WGA) can be potentially used to 

detect extracellular matrix accumulation [37]. CellProfiler offers the advantage of person-

alizing the modules with a low learning curve and providing a detailed explanation of 

every single module. Indeed, we have tested several images of WGA-stained muscle sec-

tions (which will be used for another project) using a modified version of the SiriusProfiler 

pipeline, and it worked correctly. Specifically, in the NamesAndTypes module, we se-

lected “grayscale image” instead of “color image” and then replaced UnmixColors with 

the RescaleIntensity module. The detection and quantification of WGA-positive areas 
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worked correctly with the threshold setting used in SiriusProfiler. However, a more ap-

propriate alternative to picrosirius red would be an anti-collagen I antibody (e.g., Abcam, 

Cat# ab6308), since WGA detects not only the extracellular matrix but also cell membranes 

[38] and is thus not completely specific for extracellular matrix. 

Appendix A.3. Analysis of Masson’s Trichrome Staining by SiriusProfiler 

We have found that Masson’s trichrome staining is successfully detected and quan-

tified using the same threshold parameters used for SiriusProfiler. However, since the 

blue component, corresponding to ECM/fibrosis, is present in this staining, we chose 

“Aniline blue” absorbance in the UnmixColors module for the detection of the signal. The 

best combination and results were obtained with the combination of “Aniline blue” for 

the blue component and “Fast red” for the red one. 

Appendix A.4. Application of SiriusProfiler and MyoProfiler to Muscle Samples from Larger 

Mammals 

A crucial aspect of myobiology is the need to translate methods established in mice 

to higher mammals, including human biopsies. Concerning SiriusProfiler and the quanti-

fication of ECM, the approach described for murine muscle sections can also be used for 

muscle sections obtained from larger mammals by loading and analyzing a larger number 

of fields. Indeed, the goal of the pipeline is to quantify the area positive for picrosirius red, 

so the approach can be used for muscle sections of larger mammals. In regard to MyoPro-

filer, it is necessary to test an image set (using “Test mode”) before analyzing images. The 

overall setting used in our pipeline most likely works for immunofluorescence of muscle 

sections from different animals (if the quality of the section and staining is good). The only 

thing that needs to be adjusted before image analysis is the expected Min and Max diam-

eter range, in pixel units, of muscle fibers. As is already known, the myofiber diameter 

can vary depending on the fiber type (Type IIB and IIX > Type IIA > Type I) or the muscle 

type and even from species to species. For instance, in relation to muscle cryosections of 

murine samples, we found a diameter range of 20–150 µm (considering TA muscles from 

both wild-type and mdx mice), whereas, for human samples, we found a diameter range 

of 30–250 µm (considering muscle biopsies from both DMD patients and healthy donors). 
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