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Abstract

We have analyzed the entire set of radiometric tracking data from the MErcury Surface, Space ENvironment,
GEochemistry, and Ranging (MESSENGER) mission. This analysis employed a method where standard Doppler
tracking data were transformed into line-of-sight accelerations. These accelerations have greater sensitivity to
small-scale features than standard Doppler. We estimated a gravity model expressed in spherical harmonics to
degree and order 180 and showed that this model is improved, as it has increased correlations with topography in
areas where tracking data were collected when the spacecraft altitude was low. The new model was used in an
analysis of the localized admittance between gravity and topography to determine properties of Mercury’s
lithosphere. Four areas with high correlations between gravity and topography were selected. These areas represent
different terrain types: the high-Mg region, the Strindberg crater plus some lobate scarps, heavily cratered terrain,
and smooth plains. We employed a Markov Chain Monte Carlo method to estimate crustal density, load density,
crustal thickness, elastic thickness, load depth, and a load parameter that describes the ratio between surface and
depth loading. We find densities around 2600 kg m−3 for three of the areas, with the density for the fourth area, the
northern rise, being higher. The elastic thickness is generally low, between 11 and 30 km.

Unified Astronomy Thesaurus concepts: Mercury (planet) (1024); Planetary interior (1248); Planetary structure
(1256); Markov chain Monte Carlo (1889); Metropolis-Hastings (1893); Gravitational fields (667); Litho-
sphere (928)

1. Introduction

Knowledge of the planet Mercury’s interior structure is
important because it can provide constraints on the formation of
the solar system, with Mercury being considered an end-member
of the formation processes because of both its location close to
the Sun and its high average density (e.g., Chapman 1988). The
MErcury Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) mission was launched in 2004,
carrying seven instruments and a radio science investigation to
answer questions about Mercury’s formation, geological history,
magnetic field, core, polar areas, and exosphere (Solomon et al.
2007). MESSENGER provided, among other things, the first
view of the entire planet and yielded invaluable data sets.
Important for the analysis presented in this work are the first
detailed maps of topography (Zuber et al. 2012) and
gravity (Smith et al. 2012). A much more complete overview
of MESSENGER’s accomplishments is given in Johnson &
Hauck (2016).

MESSENGER was inserted into a highly elliptical orbit with
a period of 12 hr around Mercury on 2011 March 18. After
2012 April, the orbital period was reduced to 8 hr. While its
pericenter was initially between 200 and 500 km above the
surface of the planet, it was as low as 15–25 km above the
surface during the final stages of its second extended mission
(which, in its entirety, lasted from 2013 March until 2015
April, the end of the mission). Lower spacecraft altitudes mean
better sensitivity with respect to small-scale gravity signals; so,

during the course of the mission, gravity field models were
extended in resolution as more low-altitude data became
available. The initial gravity field model, called HgM002, was
presented in Smith et al. (2012), and it had a resolution of
degree and order 20 in spherical harmonics. Using 3 yr of
MESSENGER data, Mazarico et al. (2014) presented a model
of degree and order 50 called HgM005. Using the same data
set, these results were confirmed by the analysis of Verma &
Margot (2016), who presented the degree and order 40 model,
HgMUCLA40x40. The first model to use the entire set of
MESSENGER tracking data was the degree and order 100
model, called HgM008, by Genova et al. (2019). Recently,
Konopliv et al. (2020) analyzed the entire MESSENGER data
set, increasing the model expansion to degree and order 160,
resulting in a series of models called Mess160a.
The Mercury Laser Altimeter (MLA) instrument (Cavanaugh

et al. 2007) measured the topography. The most recent models,
expressed in spherical harmonics, have a maximum degree and
order of 150 (Neumann 2016). Due to the elliptical orbit of
MESSENGER and instrument limitations, these models only have
sufficient detail in the northern hemisphere. Toward the equator,
MLA tracks were much more sparse and can be kilometers away
from each other. Topography models based on camera data also
exist, both global models (Becker et al. 2016) and those consisting
of high-resolution regional quadrangles (Preusker et al. 2018). In
our analysis, we use the GTMES150 model based on
MLA (Neumann 2016).
A joint analysis of gravity and topography can be used to infer

the interior structure of a planet (e.g., Wieczorek 2015). In
particular, the transfer function between topography and gravity,
called admittance, provides a powerful method to probe the
structure of the lithosphere of a planet. An understanding of the
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lithosphere can inform us about Mercury’s interior structure and
temperature distribution, and as such, it provides constraints on
the history of thermochemical convection (e.g., Solomon 1976;
Michel et al. 2013; Tosi et al. 2013), radial contraction (e.g.,
Hauck et al. 2013; Byrne et al. 2014), and dynamo generation
(e.g., Manthilake et al. 2019; Takahashi et al. 2019). Results
from the MESSENGER mission have thus been used to study
properties such as lithospheric thickness (e.g., Tosi et al. 2015),
crustal thickness (e.g., Padovan et al. 2015; Sori 2018; Beuthe
et al. 2020a), and topographic support (e.g., James et al. 2015;
Kay & Dombard 2019).

Several of these studies relied on earlier gravity field models
and were consequently restricted to long-wavelength signals.
The short-wavelength part of the gravity field can be used to
further probe the properties of the lithosphere, especially the
density of the crust. The most recent gravity field
models (Genova et al. 2019; Konopliv et al. 2020) contain
the low-altitude data and thus have an improved resolution over
older models. Yet because of the highly eccentric orbit of
MESSENGER, the tracking data coverage shows large spatial
variations, as we show in Figure 1. As a result, the gravity field
has its best resolution in the northern hemisphere. With
increasing degree and order, small-scale features can be
described in more detail, but with geographically varying
tracking data coverage, the determination of the globally
supported spherical harmonics coefficients might become
unstable. This determination of a global field then requires
regularization, and the choice is often to apply what is called a
Kaula rule (Kaula 1966), which biases the coefficients of the
spherical harmonic expansion to zero with an expectation that
their power is proportional to 1/n2, where n is the degree. As a
result, the short-wavelength signal is often suppressed (e.g.,
Konopliv et al. 2001). Regularization methods that take into

account geographically varying data coverage also exist and
have been applied at Venus (Konopliv et al. 1999) and
Mercury (Konopliv et al. 2020).
Alternative data analysis methods based on local instead

of global representations exist, and they have been used
successfully in the planetary sciences to determine local
gravity fields on the Moon (e.g., Muller & Sjogren 1968;
Wong et al. 1971; Goossens et al. 2014), Mars (e.g., Beuthe
et al. 2006), Venus (e.g., Barriot & Balmino 1994; Kaula
1996), and Ganymede (Anderson et al. 2004; Palguta et al.
2006). Methods based on line-of-sight (LOS) accelerations
(time derivatives of the Doppler tracking data residuals,
the difference between measured and modeled tracking data
observations) have also been used to determine both local
(e.g., Barriot & Balmino 1992) and global (e.g., Barriot et al.
1998) gravity fields. They have also been used to directly
determine a property such as the elastic thickness (e.g.,
McKenzie & Nimmo 1997; Crosby & McKenzie 2005), which
is a proxy for the mechanical thickness of the lithosphere, which
is in turn dependent on the geothermal gradient and the planetary
heat flux.
In order to extract short-wavelength information in the

(especially low-altitude) tracking data, we have developed an
analysis method based on LOS acceleration data. Our aim in
this analysis is to investigate whether we can locally improve
the gravity models by using a different representation. We
convert the Doppler residuals into LOS accelerations and then
proceed with the estimation of a gravity field expressed in
standard global spherical harmonics. We will show that models
based on LOS data can have improved localized correlations
with topography. We then use such LOS models for a localized
analysis of admittance for four areas on Mercury where
correlations with topography are noticeably high.
This paper is structured as follows. We introduce the LOS

analysis method in Section 2. We show the gravity field model
results using this analysis method in Section 3. We then use
these gravity field models for an analysis of admittance for four
selected areas, and we present the results in Section 4. We
discuss our results in Section 5 and end with our conclusions in
Section 6.

2. LOS Analysis Method

The determination of the gravity field models and related
parameters from spacecraft tracking data is based on the precise
determination of the spacecraft’s orbit. The differential
equations describing the orbit are numerically integrated over
a continuous span of time (called an arc) using high-fidelity
models for the forces acting on the spacecraft, as well as for the
measurements. The modeled measurements can be compared to
the actual measurements, and their discrepancy (residuals) can
be used to determine the parameters of interest that describe the
forces and measurements using a batch least-squares method to
iteratively minimize the residuals (e.g., Montenbruck &
Gill 2000; Tapley et al. 2004).
The analysis of MESSENGER tracking data in Genova et al.

(2019) was based on a technique where the equations of
motion for the MESSENGER spacecraft and Mercury itself
were numerically integrated simultaneously, with the goal to
determine the parameters related to Mercury and its orbital
dynamics (Genova et al. 2018). In our analysis, we use the
same method of Genova et al. (2019), with the exception that
while we still simultaneously integrate both orbits numerically,

Figure 1. Minimum altitude above Mercury’s surface for MESSENGER
tracking data in a north polar stereographic projection down to 10°N.
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we now use the updated Mercury ephemeris from Genova et al.
(2019) for each arc and no longer estimate it. We refer to
Genova et al. (2018, 2019) for the details about the processing
of MESSENGER data. We use the NASA Goddard Space
Flight Center GEODYN II Orbit Determination and Geodetic
Parameter Estimation Program (Pavlis & Nicholas 2017),
which has been used extensively for many years to analyze
Earth and planetary orbiter tracking data.

The gravitational potential U is expressed in spherical
harmonics (Kaula 1966) by
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where r, λ, and f are the spherical coordinates radius, longitude,
and latitude of the point where the potential is to be computed,
respectively, and ae is the reference radius of the planet. We use a
value of 2440 km for Mercury. The gravity coefficients Cnm¯ and
Snm¯ are the normalized harmonic coefficients of the expansion of
degree n and order m, and Pnm¯ are the normalized associated
Legendre functions. We use the standard 4π normalization that is
used in geodesy (Kaula 1966), which is given by
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where δ0m is the Kronecker delta, which is 1 when m= 0 and
zero when m≠ 0. The gravity coefficients Cnm¯ and Snm¯ are
normalized using C P C Pnm nm nm nm¯ ¯ = (and the same holds, of
course, for the Snm coefficients). In our analysis, we used the
same starting gravity field model that was used to determine the
HgM008 model.

Up to this point, our analysis is no different from previous
analyses of MESSENGER tracking data. We process the
Doppler data and generate partial derivatives of the measure-
ments with respect to the estimation parameters (see Section 3.1
for more details), such as the coefficients of a gravity field model
expressed in spherical harmonics. Our next step, however, is
different from standard analysis, as we transform the Doppler
residuals into LOS accelerations. These LOS data have a better
sensitivity to local features, which will enable us to improve the
gravity field at short wavelengths. We demonstrate the LOS
sensitivity in Figure 2, where we show the influence of a gravity
anomaly of 10 mGal (1 mGal= 10−5 m s–2) at the surface of

size 1° by 1° on both Doppler data and LOS data, collected from
an orbit with its pericenter at 40 km above the surface. The
signal for the standard Doppler data is broad, whereas the signal
for the LOS data is much narrower. In other words, anomalies
further away from the LOS residual affect that residual less,
whereas the Doppler signal gets smeared over a larger area. The
LOS data localize the gravity signal better and are thus expected
to more readily extract local signals.
We generate the LOS data from the standard Doppler

residuals through numerical differentiation. We fit a cubic
spline (smooth, piecewise polynomial) with natural boundary
conditions through a time series of Doppler residuals and take
the derivative of this spline to compute the LOS acceleration.
This requires the Doppler data to be separated into passes; only
one distinct combination of uplink and downlink station (called
either two-way data when both stations are the same or three-
way data when they are different) is processed at a time to
ensure that proper LOS accelerations are computed. We apply
the same differentiation to the system of partial derivatives of
measurements with respect to estimation parameters in order to
obtain a consistent set of observation equations. We then form
systems of normal equations (see Section 3.1) from these new
partial derivatives and LOS accelerations.

3. Results for Gravity Field Model Estimation with LOS
Accelerations

The MESSENGER tracking data were analyzed as outlined
above. We compare solutions using Doppler data (which we
will call standard models) to solutions using LOS data (called
LOS models). Konopliv et al. (2020) presented solutions in
spherical harmonics of degree and order 160 because of the
sensitivity of the low-altitude data to small-scale features. We
present solutions up to degree and order 180 and discuss the
merits of these larger expansions below. Solutions at such a
high resolution require stabilization in the form of regulariza-
tion, and this is also discussed. Before discussing the results of
our analysis, we first outline the general estimation procedure.

3.1. Least-squares Solution

As mentioned in Section 2, we use linearized least-squares to
estimate the spherical harmonics coefficients of a gravity field
model. In gravity field determination, this often requires the use
of regularization, i.e., the use of a priori information to stabilize
or smooth the solution. If the noise on the data has a covariance
W−1, and we assume the use of a priori information xA with
covariance P−1, then the kth iteration of the solutionΔxk can be
found through (e.g., Montenbruck & Gill 2000; Tapley et al.
2004)

x A WA P A Wr P x x
x x x
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where Ak is the partial derivative matrix that was mentioned in
Section 2 evaluated at current solution xk, λ is a Lagrange
multiplier (which can also be seen as a weight factor on the
constraint), rk are the current residuals, andΔxk is the adjustment
to the current solution. Partial derivatives are constructed from
the numerical integration of the variational equations, which
express the sensitivity of the data residuals with respect to
changes in the estimated parameters. We refer to textbooks such
as Montenbruck & Gill (2000) and Tapley et al. (2004) for a

Figure 2. Influence of a 1° by 1° gravity anomaly Δg of 10 mGal on normal
Doppler data and LOS accelerations.
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detailed description. The system in Equation (3) is called the
normal equation system, with the conditioned normal equation
given as A WA Pk

T
k l+ . This thus consists of two parts, one

part (A WAk
T

k) describing the data and the other (λP) describing
the constraint.

The constraint often applied in gravity field determination
assumes that the expectation for the coefficient values is zero
(xA= 0), with a variance of K/n2, where K is a constant
depending on the planet (Kaula 1966). We also refer to Ermakov
et al. (2018) for a discussion about power laws for gravity and
topography. In Equation (3), this means that P is a diagonal
matrix with entries n4/K2 on the diagonal, where n is the specific
degree of the corresponding coefficient in x. For our solutions,
we applied the Kaula constraint for degrees n� 10.

For the standard model, we used the same constant as
HgM008, K= 4× 10−5. However, we use a different factor
for the LOS models. There is a difference in the magnitude of
the residuals when comparing Doppler to LOS data (see
Figure 2). The data part of the normal equation contains the
weight matrix W, and we did not update this when
transforming the system from Doppler to LOS. As a result
of the difference in magnitude in the residuals, the diagonals
of the data parts of the standard and LOS system differ in
magnitude, ranging between a factor of 20 and a factor of
1× 10−7 on an element-by-element basis, with the latter
being much more prevalent. We thus found that the use of a
standard value of K would result in an LOS model that overly
conforms to a Kaula rule at the expense of fitting the data. In
other words, using the standard Kaula constraint would
overconstrain the solution because relatively, the constraint
would contribute more information to the normal equation
system in the case of the LOS solution. Rather than
reweighting the data, we opted to reweight the constraint
contribution (by using λ in Equation (3)) because this is a
simple diagonal matrix.

We investigated a variety of factors and used K= 17.9×
10−5 as the nominal factor for our LOS models, as that
provided power spectra (see the next section) that are similar to
the standard models. This factor was determined from applying
a weight of 0.05 to a Kaula matrix with K= 4× 10−5. We
discuss additional weight factors in Section 3.3.

We also apply variance component estimation (Kusche 2003)
to determine the scale factors on sets of normal matrices. We
divide the set of MESSENGER orbital tracking data into three
periods based on periapsis altitude and include the flyby data as
a separate set. We show the periapsis altitude history of
MESSENGER in the Appendix in Figure A1, and the resulting
factors are listed in Table 1. The Appendix referred to here and
throughout can be found at the data repository for this paper,
Zenodo: 10.5281/zenodo.6547874, as well as at our data
archive, https://pgda.gsfc.nasa.gov/products/84.

3.2. Power Spectra and Gravity Anomalies

In Figure 3, we show the rms power spectrum per degree
p(n) of different gravity field models. This is expressed
following

p n
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Despite small-scale differences between HgM008 and the
standard model, their power spectra are virtually the same. The
only difference is around degree 100, because the standard
model has a larger maximum degree. Signals of aliasing and
leakage such as are present in HgM008 (shown by an uptick in
power at the higher end of the spectrum) are much less present,
if at all, in the new models due to the larger expansion. The
spectrum for the LOS model follows that of HgM008 and the
standard model but deviates for a range of degrees around
n= 20 and then for n> 60. The LOS model may have
decreased sensitivity with respect to the lower degrees than
models based on Doppler data due to the enhanced sensitivity
with respect to small-scale features that the numerical
differentiation achieves. For comparison, we also include the
power spectrum of the Mess160a model, and the LOS model
follows this spectrum.
Figure 3 includes the error power spectra, which are also

computed from Equation (4) by using the formal errors for the
coefficients (which are obtained from the covariance matrix of
the estimation process; see Equation (3)) instead of the
coefficient values themselves. The error spectra for HgM008
and the standard model are indistinguishable and close to that
of Mess160a, except for the lower degrees. The error spectrum
for the LOS model, however, is very different, with much
larger formal errors. This is related to the regularization that
was applied. Not updating the weight matrix for the LOS data
likely results in much larger formal errors because the
covariance depends strongly on this. The formal errors for
the LOS model are thus probably too conservative. The errors
are already quickly larger than the coefficient values them-
selves, which would indicate coefficients that are indistinguish-
able from zero. However, as we will show in the next section,

Table 1
Variance Component Estimation Scale Factors

Data Set Standard Solution LOS Model

1 0.859 19.467
2 0.855 18.793
Low 0.879 19.004
Flyby 1.642 3.266

Figure 3. The rms power per degree for various gravity field models. Dashed
lines indicate the error curves for each model.
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we have independent evidence that at higher degrees, the LOS
model performs better than the standard model in areas where
low-altitude data were available.

We also include the rms power of the coefficient differences
between the standard and LOS model, and this spectrum only
has large differences in some of the lower degrees. This is
expected because, as mentioned above, the LOS signal is better
at localizing small-scale features and may have decreased
sensitivity with respect to the lower degrees. For higher
degrees, the rms power of the differences is well below the
formal errors of the other models, indicating that the formal
errors of the LOS model are indeed too high.

Finally, we present solutions expressed in terms of gravity
anomalies in Figure 4. These gravity anomalies Δg are defined
by Δg= −∂U/∂r− 2U/r (Heiskanen & Moritz 1984). The
standard model shows streaks in its anomaly map that are along
orbital ground tracks. Careful editing was applied, and residual
tracks with an anomalously high residual signal were not
included, yet some tracks may still result in streaks in the maps
due to correlations with other parameters (such as the state
vector). The standard model itself is close to the HgM008
model, but there are some differences due to the data editing
applied. The LOS model, on the other hand, appears to be
smoother. Streaks such as are visible in the standard model
around 240°E are not present in the LOS model. The gravity
signal closer to the equator appears to be smoother as well for
the LOS model. Data closer to the equator have a higher
spacecraft altitude, and this affects the LOS sensitivity; they
cannot resolve smaller-scale features but also do not seem to
introduce spurious signal, especially in terms of narrow north–
south features, or latitudinal anomalies/streaks.

3.3. Regularization, Correlations with Topography, and Model
Resolution

At a glance, the anomaly map of Figure 4(B) that shows the
LOS model appears to have more circular features than the map
of the standard model in Figure 4(A). This can be tested

quantitatively by computing the correlations between topogra-
phy and gravity, where, in general, a model with higher
correlations for higher degrees is deemed better, since it is
expected that at small scales, gravity is primarily the result of
topography (e.g., Wieczorek 2015). In this section, we discuss
these correlations together with the topic of model resolution
and regularization because the latter two influence the former.
Correlations γ(n) per degree between two spherical harmonic

expansions with coefficients C S,A nm A nm, ,( ¯ ¯ ) and C S,B nm B nm, ,( ¯ ¯ )
are computed using the cross-power SAB(n) following (e.g.,
Wieczorek 2015)
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Global correlations between gravity and topography are
shown in Figure 5(A), and they indicate that there is only a
small difference between HgM008 and the standard model.
They also show that, overall, the global correlations for the
LOS model are below those for the other two models,
indicating that despite appearances, it does not capture the
topographic signal as well as the other two models. The
correlations are especially low in the lower degree range
10–20, where we also find large differences in coefficient
power (see Figure 3). This is likely due to less sensitivity of the
LOS data to the lower degrees, as mentioned before; with half
the sphere lacking in data, and with decreased sensitivity as the
spacecraft has a higher altitude, we do not necessarily expect
the global correlations to improve. Also, we applied the Kaula
constraint for degrees n� 10, and this may further compound
the insensitivity issue in this degree range. However, we
emphasize that our goal was to investigate the models locally.
We thus applied a localized analysis (Wieczorek &
Simons 2005, 2007; Simons & Dahlen 2007), and we show
results focused on the area with low-altitude data in Figure 5.

Figure 4. Gravity anomalies for a standard solution based on Doppler data (A) and for a solution based on LOS data (B). Both solutions are expanded to their
maximum degree and order of 180. The projection is the same as that for Figure 1.
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Localized correlations and admittance were computed using a
single taper for a spherical cap with a radius of 15° centered on
270°E, 50°N using a windowing bandwidth of Lwin= 27 such
that the taper has a concentration factor of 99.99% (Wieczorek
& Simons 2005).

In Figures 5(B)–(E), we compare localized correlations and
admittance for HgM008, the standard model, and the LOS

models. Correlations with topography are generally high for
this area, above 0.9. The standard model has lower correlations
than HgM008 for this area (although still above 0.9), but the
admittance signal is very similar, except at the higher degrees.
Small differences in the anomaly map (shown in Figure A2)
likely result in decreased correlations. The LOS models have
higher correlations with topography than the standard model

Figure 5. Global (panel (A)) and localized correlations between gravity and topography (panels (B) and (D)) and admittance (panels (C) and (E)) for various gravity
field models. For the localized correlations, we show models with different Kaula rules applied (panels (B) and (C)) and models with different resolution (panels (D)
and (E)). In one of the admittance plots (panel (C)), we also include theoretical curves following Turcotte et al. (1981) using different values for the crustal density ρc
[kg m−3], crustal thickness Tc [km], and elastic thickness Te [km] to show the dependency on these parameters. The localization is centered on 270°E, 50°N with a
radius of 15° and a windowing bandwidth Lwin = 22.
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and HgM008, and, as Figure A2 shows, they show fewer
stripes in the gravity map. These increased correlations with
topography, which are an independent measure to evaluate the
gravity field model, thus indicate an improved model. Despite
similar, or even lower, global correlations, the LOS models do
show local improvements. This also strengthens our earlier
observation that the formal errors for the LOS models are too
conservative.

Konopliv et al. (2020) investigated a set of constraints in
their analysis, and it should be noted that one of their solutions
uses K= 5× 10−5, which is 25% larger than our nominal value
for the Doppler models. Looser Kaula constraints (i.e., those
with a larger value for K ) will increase the power of the
solution. As mentioned earlier, we already used a looser Kaula
constraint for our LOS model in order to have the model’s
power match more closely with that of standard models. We
investigated looser Kaula constraints in more detail and found
that this influences both the local correlations and the
admittance of the solutions. Konopliv et al. (2020) noted that
their models have higher localized admittances compared to
earlier models. In Figures 5(B) and (C), we include a result for
an LOS model with a looser Kaula constraint of K= 80× 10−5

(resulting from applying a weight of 0.0025 to the Kaula matrix
with K= 4× 10−5). This model, while it will have spurious
power for most of the areas, has improved correlations for this
area. The admittance curve is also different in shape; it levels
off at higher degrees instead of quickly decreasing. The quick
drop in admittance for the other models is likely caused by the
dominance of noise in the gravity field models, in addition to
suppressed signal by a stronger Kaula constraint. A more level
admittance is more in line with theoretical loading models (e.g.,
Turcotte et al. 1981). We show this in Figure 5(C) by including
localized admittance following Turcotte et al. (1981). We
include curves for different crustal densities, crustal thickness,
and elastic thickness (see Section 4.2 for more details) to
indicate dependency on these parameters. This means that the
gravity field model with the looser Kaula constraint can be used
while including higher degrees in an admittance analysis,
which improves the determination of parameters from such an
analysis.

Following Konopliv et al. (2020), we increased the
resolution of our models from the initial size of HgM008 of
degree and order 100 to solutions with a maximum degree of
180. Intermediate solutions had a resolution of degree and
order 120, and judging from the correlations with topography
as presented in Figure 5, the solutions’ effective resolution,
where correlations are still high enough, would be up to degree
80 (for the localized spectrum). However, we noticed that
especially the admittance can be influenced by the model
resolution, and we show this in Figures 5(C) and (D), with
models of a lower resolution of degree and order 120. While
the correlations are not different between the models of
different resolution, the admittance for the degree and order
120 model is not as level as that for the degree and order 180
model. The differences are not very big, but at these higher
degrees, the admittance is expected to be more or less flat.
Hence, we will use the degree and order 180 LOS model with
the relaxed Kaula constraint in our analysis of admittance.

4. Admittance Analysis

We now use our LOS model in an analysis of admittance to
determine properties of the lithosphere. The focus is on four

different areas, where correlations between gravity and
topography are high. The areas are introduced here, together
with the chosen admittance model. We then show the results of
estimating parameters by fitting the admittance in a least-
squares sense for each area.

4.1. Area Selection

The models and LOS technique were developed with the
goal to improve the gravity field model locally. We use global
spherical harmonics because they are widely used in geophy-
sics, but we stress that our model with the relaxed Kaula
constraint of K= 80× 10−5 is to be used only locally. In areas
where especially the altitude of the spacecraft was low and
tracking data were collected, it will perform well, but it will
show spurious signal in other areas.
To select the areas we investigate, we performed a localized

analysis of gravity and topography. We computed localized
correlations (and admittance) for spherical caps with a radius of
15° centered on points at intervals of 5° in both latitude and
longitude, covering the entire planet. For this analysis, we used
a windowing bandwidth of Lwin= 22 such that each taper has a
concentration factor of 99.9%. Most of the energy of the taper
will be concentrated in a smaller area around the center
coordinates. For each spectrum, we compute the average
correlation ḡ , which we weigh with a weight wn that relates
how much this correlation deviates from a threshold value γT,
following
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Here we use γT= 0.9, and this enables us to readily identify
areas that have correlations close to 0.9 without having the
average be adversely affected by low correlation values in a
spectrum. We note that areas with only a few degrees with
correlations close to 0.9 will also produce high average
correlations. We choose a threshold value of 0.9 in order to
satisfy as closely as possible the assumption that correlations
between gravity and topography are unity in the theoretical
models (see Section 4.2). Correlations can also be related to a
measure of the signal-to-noise ratio (S/N) per degree, S/N(n),
under the assumption that deviations from unity correlations
are caused by unmodeled gravity signals that are not correlated
with topography, following (Grott & Wieczorek 2012)
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For correlations of 0.9, the S/N is 4.26.
In Figure 6, we show the result of mapping the average

correlations for each spectrum and indicate the four areas that
we selected. We also include a map of the topography to show
the context of the areas. We only highlight average correlations
higher than 0.8 (an S/N of 1.8), and most are lower than this.
Several areas, however, do show clusters of higher correlations.
If we set the threshold value γT to 1.0 instead of 0.9, the areas
with high average correlations decrease in size but are in the
same locations (Figure A3). The areas in northern latitudes and
the western hemisphere are related to areas where low-altitude
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tracking data were collected (like our sample area in Figure 5)
and are thus of special interest. We select two areas there, both
in cratered terrain, as can be seen in the topography map. We
also select two more areas: one in a lower-latitude area with
more pronounced topography and one focused on the feature
known as the northern rise, recognized in both
topography (Zuber et al. 2012) and gravity (Smith et al. 2012)
early on during MESSENGER’s mission. In Figures A4–A7,
we show the topography and gravity anomalies for each area.

For each selected area, we choose the central locations such
that all surrounding grid cells (which are 5° by 5° because of
our spacing) also have a weighted average correlation better
than 0.9. This results in the following central locations: area 1
is centered on 275°E, 50°N; area 2 on 225°E, 55°N; area 3 on
90°E, 25°N; and area 4 on 40°E, 70°N (northern rise). In
Figure 5, we showed that the correlations with topography are
higher for the LOS model compared to the standard model for
area 1. For area 2, the correlations are also (slightly) higher for
the LOS model, and they are very similar for both models for
areas 3 and 4.

As stated before, a high average correlation may mean that
only a few degrees of the spectrum have a correlation close to
the threshold, 0.9, which would make the spectrum less suitable
for admittance analysis. Upon inspection of the spectra of areas
3 and 4, we found that when using Lwin= 22, the range of
degrees with high correlations is limited (Figure A8). We opted
to increase the cap radius to 30°, decreasing Lwin to 8 to still
obtain a concentration factor of 99% for the first taper. As
stated above, the energy is still mostly concentrated in a smaller
area around the center coordinates. For area 3, this means that it
still covers an area with high topography, and for area 4, it
includes a slightly wider area covering the northern rise. In
addition, because of a relatively high admittance for the loose
Kaula model (Figure A9), we opted to use the standard model
for area 3 in the admittance analysis.
The admittance and correlations for these areas are shown in

Figure 7. For each area, we selected a degree range that will be
used when estimating the lithospheric parameters. This degree
range is indicated in Figure 7. For areas 1 and 2, because of
high correlations over a large degree range, we limited the
correlations to be above 0.9. For areas 3 and 4, however,

Figure 6. Averaged correlations weighted by their deviation from 0.9 (A) and topography from MLA, with the southern hemisphere where no MLA data were
collected masked in gray (B). Both maps indicate the chosen locations for areas with high average correlations (stars in the top map, numbers in the bottom map). In
the topography map, we include the spherical caps with a radius of 15° that we use in the localizations. The maps are in Mollweide projection centered on the prime
meridian.
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despite narrowing the windowing bandwidth, the correlations
still drop quickly. For these two areas, we adopt a threshold of
0.7 in the correlations, which corresponds to an S/N of 1. This
does not affect the results much, as most degrees in the range
used have higher correlations and thus a higher S/N. The
admittance also has a higher error for those degrees; thus, they
are downweighted in our admittance analysis.

The variance of the admittance, σ2(n), is computed from the
correlation with topography following Wieczorek (2008),
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Here Γ now represents the localized gravity and Φ the localized
topography. In Figure 7, the error bars show three times the
error, σ(n), as computed from Equation (8), to use a
conservative error estimate in our admittance analysis. We
found that using the tighter, 1σ, error in our admittance analysis
does not change the parameter distributions; overall, we just
find fewer models that are accepted in our analysis.

Considering Equation (7), increasing the admittance error
may also suggest that we implicitly adopt a lower S/N
threshold, which could also mean that we could increase the
degree range for our admittance fit. We choose not to do the

latter because the admittance models require high correlations
between gravity and topography.
Finally, for area 3, the error at high degrees becomes very

small (e.g., Figure A8A) because the gravity power SΓΓ
becomes small, whereas this is much less the case for the other
areas. While unrealistic, this is in a degree range that we do not
use in our analysis, and it does not affect our results.

4.2. Admittance Model and Parameter Estimation Procedure

We use the admittance model of Grott & Wieczorek (2012).
Their model describes the effects on the gravity field of loads
placed on and beneath the surface, and it relates gravity and
topography through a transfer function Q(n) in the spherical
harmonics domain. Their function is dependent on a set of
parameters that describe the densities and elastic properties of
the lithosphere. This set of parameters is given by the crustal
density ρc, the load density ρl, the mantle density ρm, the crustal
thickness Tc, the elastic thickness Te, the load depth z, and a
load parameter L.
Loads are described by thin mass sheets with surface density

σnm, and the subsurface load can be characterized by the ratio
fnm nm

z
nm
ss s= , where z refers to the subsurface load and s to

loading at the surface. This ratio can depend on the degree and

Figure 7. Localized admittance and correlation spectra for the areas that we selected. Correlations are shown with black dashed lines, and admittance is shown in gray.
For areas 1 and 2, the localization used Lwin = 22, and for areas 3 and 4, Lwin = 8 was used. For each area, we select a degree range that will be used in the admittance
analysis. The admittance over this degree range is shown with a red solid line. We indicate the location of each area on a north pole–centered stereographic map of
topography. Admittance errors are indicated with error bars and are three times the error computed from Equation (8).
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order, but here it is assumed to be isotropic, and the subscripts
can be dropped. Because f ranges between zero (top loading)
and ±∞ (bottom loading with negative or positive loads),
Grott & Wieczorek (2012) introduced the load parameter L,

L
f

f1
, 9

∣ ∣
( )=

+

with L varying between −1 and 1, where L= 0 corresponds to
top loading only, L= ±1 is bottom loading only, and L=−1/2
for f=−1 (the loads are the same but of different sign). For
completeness, we list the equations that describe the model in the
Appendix, Section A. Additional parameters in the model are the
material properties of Young’s modulus E and Poisson’s ratio ν.
We use standard values of E= 100 GPa and ν= 0.25. The value
for E is only really valid for intact rock, and modifications for
deformed rock can be made that can result in values very
different from the standard value (Klimczak et al. 2015). Our
analysis is not that sensitive to values of E, or it would easily
trade with subtle variations in Te (see Section A1).

This admittance model was originally developed for Mars
and applied to Tyrrhena Patera, and it has been applied to other
volcanoes on Mars (e.g., Broquet & Wieczorek 2019). We use
it here because it has several features that also apply to
Mercury. The model of Grott & Wieczorek (2012) has both top
and bottom loading, which are in phase. This means that
correlations between gravity and topography are assumed to be
one, and deviations from unity correlations can be used to infer
errors on the admittance (Wieczorek 2008). This also makes it
suitable to be applied to our areas of interest that have high
gravity–topography correlations. In Grott & Wieczorek (2012),
top loading can be considered as extrusive volcanic deposits,
and subsurface loading can be considered as high-density rocks
in the crust, under the volcano. To some extent, depending on
the area on Mercury, a similar interpretation can be given.
Otherwise, in cratered terrains, a crater that excavates crust is a
negative top load, for example, and the loads can thus be
interpreted in this way on Mercury.

Our main goal is to estimate geophysical parameters using
our new gravity models locally. We leave several considera-
tions for future analysis, such as the use of admittance models
that are specifically constructed for Mercury with cratering,
effusive volcanism, and dynamic mantle flow. We assume that
top and bottom loading are in phase, and for now, we will not
simultaneously fit admittance and correlation spectra, such as is
done in, e.g., Audet (2014). We acknowledge that this may
affect the estimated parameter distributions, but we stress that
this is why we focus on areas where correlations between
gravity and topography are high.

Our parameter estimation procedure is as follows. Initially,
we explore a wide range of parameter values and perform a grid
search to find the best-fit model in a least-squares sense. The
parameters we vary are crustal density, load density, crustal
thickness, elastic thickness, load depth, and load parameter. We
set the planet radius to 2440 km and use a fixed mantle density
of 3200 kg m−3 (e.g., Hauck et al. 2013). For each area, we first
downward continue gravity to the average radius in that area,
which is obtained from localization (see, for example,
Wieczorek 2008). We list the average radii for each area in
Table 3 and note that they all are close to the average planet
radius of 2440 km. We then compute the localized measured
spectrum (as shown in Figure 7). We construct theoretical

gravity models from admittance for the set of parameters and
apply the same downward continuation and localization. We
then compare the theoretical spectrum to the measured one by
computing the misfit for the admittance over the selected range
of degrees. We list this range for each area in the following
sections.
Once we determine the best-fit model, we use it in an

additional analysis using a Markov Chain Monte Carlo (MCMC)
method (e.g., Mosegaard & Tarantola 1995). We refine our grid
search by randomly perturbing the parameter values of the best-
fit model. In Table 2, we list our estimated parameters and the
bounds that we use in our MCMC analysis. For each model, a
new theoretical admittance model is computed using the
randomized parameters, and the localized admittance of
this new model is tested against the measured admittance
spectrum in a Metropolis–Hastings scheme (Metropolis et al.
1953; Hastings 1970). We compute a probability function P( j)
for each jth model from

dx C dxP j exp
1

2
, 10T 1⎛

⎝
⎞
⎠

( ) ( )= -

where dx is the vector of admittance differences between the
theoretical and the measured admittance at each degree, and C
is a diagonal matrix with the square of the admittance error
from Equation (8) at each degree on the diagonal. In the
MCMC algorithm, a model is accepted if the probability ratio
P( j)/P( j− 1) is larger than a draw from a uniform distribution.
We run a total of 200,000 models and do this separately 10–20
times (each is called a chain). We retain only the accepted
models. The result is a set of parameters that produce
admittance spectra that fit the measured spectrum within the
computed errors per degree from Equation (8). As stated
before, we take a conservative approach and multiply these
errors by a factor of 3.

4.3. Results

We discuss the distributions for the parameters below. For
each area, the MCMC analysis resulted in a set of models with
their admittance within the specified errors. We show the fitted
admittance spectra in Figure 8. We list the central values and
their standard deviations for the estimated parameters in
Table 3. This table also indicates the range of degrees that
were used in the fits (see also Section 4.1). For areas 1 and 2,
we used a localization cap radius of 15° and a windowing
bandwidth of Lwin= 22, whereas we used 30° and 8 for areas 3
and 4.

Table 2
Parameters and Bounds Used in the MCMC Method

Parameter Symbol Unit Lower Bound Upper Bound

Crustal density ρc kg m–3 1600 3200
Load density ρl kg m–3 1600 3200
Crustal thicknessa Tc km 2 150
Elastic thicknessa Te km 2 150
Load deptha z km 2 Crustal thickness
Load parameter L None −1 1

Note.
a To prevent instabilities, we use a minimum of 2 km for thickness or depth.
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For areas 3 and 4, we perform an additional analysis where
we fix several of the parameters. We set the crustal and load
density to be equal (thus representing an average crustal
density) and use only the top-loading scenario (eliminating the
depth and load parameters). We also fix the crustal thickness to
a value of 40 km (see, for example, Beuthe et al. 2020a and
Section 5.4), as we appear to be not that sensitive to crustal
thickness variations, despite reasonably well-defined parameter
distributions in our MCMC analysis. With this, we only have
two parameters to adjust, the (crustal/load) density and elastic
thickness.

In general, the spread for the parameter values in the
distributions is large, as can be seen by the errors quoted in
Table 3. This is likely to be due to the intrinsic nonuniqueness
of the inversion, partly by fitting only a limited part of the
spectrum, rather than our use of three times the errors on
admittance. As stated earlier, using 1σ changes the number of
models accepted in our MCMC analysis but not the distribu-
tion. This may make the interpretation of the values per area
more difficult. Rather, we focus on the differences between the
areas, which may indicate variations in Mercury’s lithospheric
properties.

4.3.1. Results for Area 1: 275°E, 50°N

Area 1 is a cratered terrain, with the center close to the
Stravinsky and Vyāsa craters, and it is located in the high-Mg
region identified from MESSENGER X-ray spectrometer
data (e.g., Weider et al. 2015). The gravity map shows gravity
highs surrounding craters in a low terrain (Figure A4). We fit
the admittance for the degree range 30–78. As can be seen from
Figure 8(A), the admittance matches the measured spectrum
well over the entire degree range.
The parameter distributions from the MCMC analysis are

shown in Figure 9. The admittance analysis finds a crustal
density close to 2600 kg m−3. The load density is lower,
1900 kg m−3. The load parameter of 0.4 indicates that
subsurface loading is present. The load depth is about midway
in the crust. We discuss the load and sensitivity (in general, for
all of the areas) in more detail in Section 5.1. We find an elastic
thickness of 28 km for this area.
As expected, the spread for most of the parameters is large,

with a wide range of densities and crustal thicknesses allowed.
Only the elastic thickness appears relatively well determined,
having a narrow distribution. For this particular spectrum, the
correlations with topography are high over a relatively wide

Figure 8. Fitted admittance spectra from our MCMC analysis for each area. The measured spectra are shown in black, and the spectra for the MCMC models over the
degree range where correlations are high are shown in gray. The error bars are three times the errors from Equation (8).
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range of degrees, and the admittance itself is relatively flat at
the higher degrees, which is what the theoretical models
predict. By including the (to some extent) lower degree range
where the admittance is increasing, sensitivity with respect to
the elastic thickness is obtained, as that mostly has an influence
on the lower degrees.

4.3.2. Results for Area 2: 225°E, 55°N

Area 2 covers the Strindberg crater and also shows a mix of
gravity highs and lows (Figure A5), similar to area 1. It also
covers some lobate scarps (e.g., Watters et al. 2015). The
theoretical models again fit the measured spectrum well over
the entire range of degrees (Figure 8(B)). While the degree
range for this area is not as wide as for area 1, there are many
similarities between the two areas, as can be seen from both the
admittance curve and anomaly map.

The parameter distribution is shown in Figure 10. The results
in terms of the parameter distributions show some differences
from those for area 1. The densities are marginally consistent
with those of area 1 (see Table 3), but the distribution has
considerable overlap. The crustal thickness is consistent
between the two areas, but the elastic thickness is lower for
area 2. The peak at very small values for Te corresponds to
lower load factors L; without this peak, the average value for Te
would be closer to that of area 1, at around 20 km.

4.3.3. Results for Area 3: 90°E, 25°N

Area 3 covers both high and low topography in heavily
cratered terrain in the area of the Hafiz and Munkácsy craters
(Figure A6). The MCMC analysis results in models that fit this
spectrum well (Figure 8(C)), yet at the higher degree values,
the downward trend of admittance is not always captured, with
accepted models falling outside the 3σ range.

The parameter distribution for this analysis is shown in
Figure 11. We find a crustal density in line with that of the
previous two areas, around 2500 kg m−3. The elastic thickness
is lower at 11 km and has a narrow distribution. The crustal
thickness is considerably higher for this area, above 100 km.
The load parameter indicates some subsurface loading, and the
load density itself is low.

The narrower range of degrees (and differences in
parameters when using a different degree range; see
Section 5.1.2) makes the results for this area less robust than
those for the previous two areas. We thus performed an
analysis where we only estimate a density and elastic thickness,

keeping all other parameters fixed (as explained at the start of
Section 4.3).
The distributions for these two parameters are shown in

Figure 12. The average density and elastic thickness obtained
from these distributions both decrease, to 2412± 157 kg m−3

and 5± 3 km, respectively. The lower elastic thickness is likely
a result of the choice for top loading only. The distribution for
density overlaps with that from the case where all parameters
are estimated. We only consider the density and elastic
thickness results for this area to be robust.

4.3.4. Results for Area 4: 40°E, 70°N (Northern Rise)

Area 4 is centered on the northern rise in Mercury’s smooth
plains (Figure A7), and it is the only area in our set that focuses
on a single feature. The admittance for this area is generally
high (see also Figure A8B for the admittance using the smaller
spherical cap), which could be indicative of dense materials
beneath or in the crust. We noticed in the initial MCMC runs
for this area that the crustal density can be higher than the load
density, although not by very much. For the scenario of dense
materials in the crust, we thus present results here where we
enforce the load density to be larger than the crustal density.
We also show the parameter distributions and admittance fits
for the case where we do not enforce this in Figures A10 and
A11, respectively.
The theoretical models fit the measured spectra (Figure 8(D)),

but because of the relatively large error at the lower degrees, the
initial downward trend in admittance is not captured very well.
The models do match the trend at the higher end of the degree
range. The parameter distributions for this area are shown in
Figure 13. The results indicate a top-loading scenario (with the
load parameter centered closer to zero than it was for the other
areas), with higher densities than we find for the other areas. This
is consistent with earlier observations (e.g., James 2018). The
load parameter centering close to zero is also the result of
enforcing that the load density has to be larger than the crustal
density. When we do not enforce this, the load parameter is
slightly larger than zero (Figure A10), and in that case, larger
load parameters correspond to lower load densities. We also note
that a load parameter different from zero is often needed to fit the
downward trend in admittance at higher degrees. The load
density is limited to be smaller than the mantle density, hence the
cutoff in the histogram at 3200 kg m−3 in Figure 13(B).
For this area, we find a lower crustal thickness than for the

other areas, but it should also be noted that some of our MCMC
runs produce wider distributions for the crustal thickness,

Table 3
Results for the Central Values and Standard Deviation for the Lithospheric Parameters per Area, Localization Radii, Admittance Degree Range, and Fit

Parameter Area 1 Area 2 Area 3 Area 4

Crustal density [kg m−3] 2622 ± 190 2410 ± 205 2488 ± 160 2793 ± 146
Load density [kg m−3] 1905 ± 152 2156 ± 192 2033 ± 168 2924 ± 135
Load depth [km] 37 ± 14 68 ± 17 40 ± 16 29 ± 13
Crustal thickness [km] 65 ± 15 53 ± 20 112 ± 17 36 ± 14
Elastic thickness [km] 28 ± 7 15 ± 10 11 ± 7 23 ± 11
Load parameter [none] 0.39 ± 0.12 0.53 ± 0.17 0.25 ± 0.11 0.06 ± 0.05

Average radius for localization [km] 2438.332 2438.937 2439.519 2438.328
Admittance fit degree range 30–78 40–64 9–32 9–17
Admittance fit [mGal km–1] 5.51 ± 1.03 6.61 ± 1.80 8.08 ± 2.57 26.37 ± 1.92
Best fit [mGal km–1] 2.16 1.10 3.38 10.98
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indicating the results may not be as sensitive to this parameter.
In those cases, the other distributions do not vary much. The
elastic thickness is again relatively low but with a wider range
than some of the other areas. Apart from differences in density
and an insensitivity to crustal thickness in the results shown in
Figure A10, the distributions for the other parameters are very
similar, regardless of whether we enforce the load density to be
larger than the crustal density.

For the northern rise, we also performed the analysis where
we only estimate a density and elastic thickness. The
distributions for these parameters are shown in Figure 14. This
results in a narrow distribution for the density, with an average
of 3158± 26 kg m−3 (again, the density was limited by the
assumed mantle density). This density is higher than what we
find when estimating more parameters, although it is within the
distribution for the crustal density in Figure 13. (It is also closer
to the load density that we find when using Lwin= 22, as
discussed in Section 5.1.2 and shown in Figure A12.) The
elastic thickness distribution is consistent with that when we
estimate more parameters. We consider the density and elastic
thickness to be robust parameters in this analysis, together with
the indication of top loading. The density results vary between
the cases, but it is consistently higher than the density in the
other areas, which is consistent with earlier analyses. We
discuss the high densities for the northern rise in more detail in
Section 5.2.

5. Discussion

The results of our admittance analysis indicate differences in
the lithospheric properties for various areas on Mercury. For
each area, the degree range used to fit the admittance is
different, which may result in different sensitivities with respect
to each parameter, and this may affect the robustness of our
estimates. We discuss such sensitivities in this section. We also

briefly discuss the results for the northern rise and for our low
elastic thickness values in terms of heat flux. We compare our
results for crustal density and thickness to a recent analysis by
Beuthe et al. (2020a).

5.1. Sensitivity of the Solutions

Our MCMC analysis results in distributions for the
parameters that are mostly close to normal distributions (see
Figures 9–14), albeit with large spreads. Yet because of the
different degree ranges used, one can expect, for example, a
parameter such as crustal density to be not as well determined
as when higher degrees are included; at smaller scales,
admittance will be less dependent on parameters such as
elastic thickness, and it will be mostly determined by the
crustal density (e.g., Wieczorek et al. 2013).

5.1.1. Parameter Variations

For each area, we conduct a sensitivity test. We take the
theoretical model with the best fit to the admittance, and we
then vary one parameter at a time while keeping the others
fixed (at the best-fit values). This test shows that mostly, the
results are sensitive to all parameters. If we vary one parameter,
we see a clear minimum in admittance misfit. If our results
were not sensitive to a certain parameter, we expect to see a flat
admittance fit for a wide range of parameter values, but this is
not the case. We show an example in Figure A13. For the
elastic thickness example, we see a wide range of misfits close
around the best-fit value. Further analysis shows that this is
because of strong changes in the admittance curves for small
changes in Te (Figure A14). For larger values of Te, the fit to
the admittance levels off, but it is higher than the general level
of fit (this is the case for the other areas as well), which means

Figure 9. Results from the MCMC analysis for area 1, shown as a posteriori probability distributions for the estimated parameters: crustal density (A), load density
(B), load depth (C), crustal thickness (D), elastic thickness (E), and load parameter (F).
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those models can be excluded (as indeed, in this case, Figure 10
shows).

For this particular example in area 2, the best-fit Te value is 9
km, out of an evaluation of many models, while the histogram
in Figure 10 shows peaks at a low value, 20 km, and a small
one just above 40 km. We noted in Section 4.3.2 that a low Te
for this area correlates with low crustal densities and high
crustal thickness values.

We also note that MCMC not only obtains a best-fit value
but also maps out the models that fit the admittance over the
chosen degree range within the given errors. Hence, the
histogram for Te in Figure 10 shows a much wider range for Te,
not even centered on this best-fit value of 9 km. The strong
sensitivity seen in this test may also indicate an interdepen-
dency between the parameters for the admittance curves that
produce the best fit; there is a set of best-fit values, and
changing one by a small amount may change the admittance by
a large amount. We investigated this in more detail by plotting
the parameter values from our MCMC against each other in a
triangle plot in Figure 15. This allows us to investigate the
correlations between parameters. The results for area 1 in
Figure 15 show that there are no strong correlations between
the parameters because all two-dimensional a posteriori
distribution plots (of one parameter versus another) are fairly
circular. There is a negative correlation between load parameter
L and load density, which is to be expected. The plots for the
results for the other areas look similar.

The misfit curves from Figure 8, from which the models
form the basis of the histograms in Figure 10, indicate that the
MCMC method indeed retained only those models that fit the
admittance within the given errors (as it should). While small
parameter changes may change the fit for certain parameter
combinations, those models with large misfits are not included
in the MCMC results. Thus, the parameter distributions

presented in the histograms reflect the likely distributions in
order to fit the admittance.

5.1.2. Varying the Degree Range

The only sensitivity that may be more difficult to capture is
that with respect to the degree range used as explained above.
Using a larger degree range should allow for a better
determination of most of the parameters. We initially test this
sensitivity for area 1, using the range 40–65. We chose this
range because after this starting degree, the correlations have
slightly dropped and start to rise again (see Figure 7), and this
is more consistent with the correlation assumptions for the
admittance model. Using this smaller range of degrees, the
results for the parameters do not notably change when
compared to the results using the larger degree range. We
show the distributions using this narrower range in Figure A15
and the misfit to the admittance in Figure A16. The crustal
density and load density become somewhat lower, and the
elastic thickness increases, but all within the given spread. The
load parameter does become larger, indicating more subsurface
loading.
The robustness of the results for area 1 may also reflect the

stable admittance curve in the degree ranges used; it is mostly
flat, consistent with the theoretical models at higher degrees.
Both degree ranges also capture the admittance inflection and
should thus result in similar estimates of the parameters, as is
indeed the case. For areas 1 and 2, we have the widest degree
range, and our results may thus be the most robust for those
areas.
For areas 3 and 4, we changed the localization to increase the

range of degrees. We also performed the MCMC analysis for
both areas using the originally selected localization parameters
(a radius of 15° and Lwin= 22). For area 3, this results in a
degree range of 23–37, and for area 4, the range is 23–35.

Figure 10. Results from the MCMC analysis for area 2, shown as a posteriori probability distributions for the estimated parameters: crustal density (A), load density
(B), load depth (C), crustal thickness (D), elastic thickness (E), and load parameter (F).
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Using these parameters, we can also fit the measured
spectrum well for area 3 (see Figure A17A). We show the
distributions for this case in Figure A18. The results for the
densities and load parameters, however, are different from our
nominal case presented in Section 4.3.3; the densities are
higher for the case using Lwin= 22, and the load parameter
indicates strong subsurface loading, L being close to 1. The
elastic thickness is larger for the case with Lwin= 22.

With the originally selected localization, the admittance for
area 4 does not include a downward trend, as can be seen in
Figure A17B. We can again fit the admittance. The density
results change with this localization. The load parameter is now
clearly centered around zero. The lack of the downward
admittance trend may mean that a nonzero load parameter is
not necessary to fit the admittance. The load density is higher
than the crustal density (which itself is relatively low), which
also facilitates the top-loading scenario in this case. The crustal
thickness is also larger when using Lwin= 22.

5.1.3. Setting the Load Density Equal to the Crustal Density

For most of our areas under investigation (apart from area 4),
the load might be more difficult to interpret, since we cannot
localize on only one feature because of the resolution of the
gravity field. The combination of load and crustal density may
thus also indicate a more average crustal density. We tested this
for area 1 by fixing the load density to be the same as the
crustal density. For this case, the estimated density indeed
becomes close to the average of the two, although the central
value is slightly higher, at 2303± 109 kg m−3. The distribu-
tions for the other parameters are stable in this case (Figure
A19), again showing the robustness of the MCMC results. The
load parameter is now closer to zero as a result of forcing the
densities to be equal.

5.1.4. Parameter Resolution

In several instances above, we indicated that we consider the
elastic thickness and densities to be the most robustly
determined parameters in our analysis. We investigated this
in more detail in two ways. First, we conducted a simulation
using the parameters of area 1, where we constructed “truth”
admittance using a set of parameters and then applied MCMC
to fit this admittance spectrum. We used the same errors on
admittance in this simulation that we used in our actual analysis
for this area. We then compared the ensemble average with the
input parameters. We confirmed that the relatively large errors
are due to the intrinsic nonuniqueness because we again find
similar spreads when we use 1σ or 3σ errors. We also find that
elastic thickness, load density, and crustal density appear to be
the best-resolved parameters.
Second, we investigated the second derivative with respect

to the parameters of the localized admittance function evaluated
at the ensemble average state. This Hessian matrix can indicate
whether we have found the minimum of the cost function, and
it can inform us about the sensitivity of the system with respect
to the parameters. We compute this Hessian matrix numerically
using a finite difference method, obtaining a 6× 6 matrix (there
are six parameters). We then compute the eigenvalues and
eigenvectors of this system. This shows that in general, two
parameters are well resolved; for the two largest eigenvalues,
the eigenvectors are very close to being unit vectors. In this
analysis, these parameters are the load parameter and elastic
thickness. The eigenvalues quickly decrease, and the eigen-
vectors indicate a less clear result for the other parameters. This
is reasonably consistent with our interpretation and the
simulation study. The most important result is that indeed,
our elastic thickness results appear among the most robust.

Figure 11. Results from the MCMC analysis for area 3, shown as a posteriori probability distributions for the estimated parameters: crustal density (A), load density
(B), load depth (C), crustal thickness (D), elastic thickness (E), and load parameter (F).
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5.2. Northern Rise

For the northern rise, our results are consistent with earlier
observations (e.g., James 2018), as stated in Section 4.3.4. A
straightforward interpretation of the top-loading result would
mean dense material covering the surface, yet as James (2018)
stated, there is no obvious source for such a dense material,
although intrusive volcanism in the top of the crust could
possibly resolve this. We do not have depth constraints on a
possible density contrast in the crust at the northern rise.
Another possibility raised by James (2018) is that the cause of
the northern rise lies deeper in Mercury, in the mantle or at the
base of the crust. Recent analysis of magnetic data also hints at
this (Plattner & Johnson 2021). In order to probe this, we
reanalyzed the admittance curve for area 4, this time ensuring
that the model has the load depth in the mantle (z> Tc), which
also means a negative load parameter (Grott & Wiec-
zorek 2012). In this case, the distribution for several parameters
changes (as shown in Figure A20). The crustal density becomes
lower, with the load density not changing, which would still
indicate the area as a high-density area. The load is located
deep, as enforced in this case, and the load parameter is only
slightly negative. While the results show no sensitivity to
crustal thickness (there is a peak, but it is spread very widely),
the distribution for elastic thickness is now also much wider,
indicating no sensitivity to this parameter either.

Volcanism could have contributed to the high admittance
values observed at the northern rise. Much of Mercury’s
topography is a product of impact cratering, which is associated
with high porosities (e.g., Christeson et al. 2018). In contrast,
the porosity of a volcanic emplacement primarily results from
vesicularity associated with volatile exsolution, which can be
negligible (Vedanti et al. 2018). Furthermore, the heat of
magmatic intrusions can trigger pore space closure in a
previously porous crust (Wieczorek et al. 2013). Relatively
low porosity translates to relatively high bulk density, which
produces high admittance values. Furthermore, intrusive
volcanism could cause the near subsurface of the northern rise
area to be more mafic (i.e., denser) than remote sensing
indicates. An analysis focused on the northern rise with

specially constructed admittance models taking into account a
larger degree range than here is thus warranted.
Interpretation for the northern rise remains difficult in these

different scenarios, as both the nominal solution (where we
enforce the load density to be larger than the crustal density,
which results in a mostly top-loading scenario) and the solution
with the load at depth seem plausible. The fit to the admittance
for both is close (see Figure A21). A more detailed analysis of
this area with a tailored admittance model that can include a
wider range of degrees is warranted.

5.3. Elastic Thickness and Heat Flux

As indicated in Section 5.1.4, the elastic thickness appears
well resolved in our analysis. Yet we also find surprisingly low
values. The regions under consideration have modest levels of
insolation (Williams et al. 2011), and this could mean that our
values, already low, are slightly higher than the global average.
Elastic thickness can be related to heat flux. While a detailed

analysis of elastic thickness and its meaning for the thermal
state of the lithosphere is outside of the scope of this analysis,
we can relate elastic thickness to heat flux in a first-order
approach. Heat flux q can be expressed using Fourier’s law of
heat conduction (e.g., Turcotte & Schubert 2002) and simpli-
fied by assuming a linear temperature gradient following

q k
dT

dr
k

T T

T
, 11

e

base surf ( )= - =
-

where k is the coefficient of thermal conductivity, T is the
temperature (at either the base of the lithosphere or the surface),
and r is the radial coordinate. Low elastic thickness values such
as we find for our four areas thus result in high heat flux values.
If we assume the temperature at the base to be 1050 K (e.g.,
Breuer & Moore 2007) and use a surface temperature of
440 K (e.g., Padovan et al. 2014) and thermal conductivity of 3
W m−1 K−1 (e.g., Michel et al. 2013), then for Te= 20 km
(roughly the average of our range), q= 105 mW m−2, which is
a very high heat flux. Assuming a low-conducting crust by a
crustal conductivity of 2 W m−1 K−1 results in a surface heat
flux of q= 70 mW m−2, which is still high.

Figure 12. Results from the MCMC analysis for area 3, when we estimate only two parameters: density (A) and elastic thickness (B). We used the spectrum obtained
with Lwin = 8.
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Elastic thickness is related to a point in time when most of
the topography was formed. For Mercury, most of the
topography is either from impacts, which occurred mostly in
the first billion years (e.g., Marchi et al. 2013), or from
volcanism, which ended by about 3.5 Gya (e.g., Byrne et al.
2016). Hence, the elastic thickness values thus likely
correspond to the early history of Mercury, 3.5–4.2 Gya. Our
results for Te and q thus indicate a high heat flux for early
Mercury, at the time of formation of its topography (e.g., Ruiz
et al. 2006). If the planet was (partially) molten at the end of
accretion and cooled rapidly, a high initial heat flux is
expected (Nimmo & Watters 2004). The latter found elastic
thickness values of 25–30 km from a pre-MESSENGER
analysis of faulting, while Watters et al. (2002) found a value
of 40 km at 4 Gya. Both found lower heat fluxes in the range
10–50 mW m−2. The upper ranges of our values for Te are
relatively consistent with those of Nimmo & Watters (2004).

5.4. Comparison for Crustal Density and Thickness

Our results can also be compared to earlier works. Elastic
thickness was explored, for example, by Tosi et al. (2015).
However, their focus was on the low-degree (degrees 2 and 4)
geoid, resulting in planetwide high values for Te, whereas ours
focus on shorter wavelengths, and the results may thus not be
readily comparable.

Crustal thickness was investigated in several studies (Padovan
et al. 2015; Sori 2018; Beuthe et al. 2020a). Padovan et al.
(2015) obtained a planetwide average of 35± 18 km from geoid-
to-topography ratios. Sori (2018) argued for a thin, dense crust
for Mercury, with an average crustal thickness of 26± 11 km.
Our results, which are much more local than the two results
mentioned here, contradict the latter, as we generally find lower
densities and a thicker crust (see Table 3), except for the northern

rise. The difference in crustal thickness could be related to the
difference in density or method, as our admittance fits rely on a
different degree range, for example. The resolution of the used
gravity field model may also play a part, as Padovan et al. (2015)
and Sori (2018) used the older, lower-resolution HgM005 model,
which lacked the last mission year with the low-altitude data.
We also compared our results with a recent study by Beuthe

et al. (2020a). In contrast to the other studies mentioned here,
they used the more recent gravity field model HgM008, and
they explored various crustal density models; in addition to a
crust of uniform density, they also considered models based on
a crust with variable density. The variable crustal density model
is based on surface mineralogy from geochemical mapping and
laboratory experiments. A grain density map was derived for
the surface, and the crustal density was derived assuming a
surface porosity and a compaction model (increase of density
with depth). Their crustal thickness based on a uniform crustal
density is similar to the results presented in Genova et al.
(2019), who presented the first crustal thickness model
based on high-resolution gravity (assuming a uniform crustal
density).
We list values for crustal density and thickness in Table 4. We

obtained the crustal thickness and density models from Beuthe
et al. (2020a) from their data archive (Beuthe et al. 2020b). For
crustal thickness, we used their uniform density model, “U0”;
their variable density models with 24% porosity, “V0”; and 12%
porosity, “V1” because these are obvious end-members to test
our results against. Because our crustal thickness values tend to
be high, we also include their “thick crust” model “V4.” The V
models have a high value for the correlation between crustal
thickness and mantle melting, whereas the “U0” model does not.
For the values for crustal thickness and density for each area
from the models of Beuthe et al. (2020a), we took the average

Figure 13. Results from the MCMC analysis for area 4, shown as a posteriori probability distributions for the estimated parameters: crustal density (A), load density
(B), load depth (C), crustal thickness (D), elastic thickness (E), and load parameter (F).
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density in the spherical caps that we used for our localizations.
Because Beuthe et al. (2020a) did not provide errors on their
densities or thicknesses, we assign errors to each value in
Table 4 by taking the standard deviation around the mean in the
spherical cap. This is not an actual error and is thus likely to be
an underestimate. We also note that their results depend on their
assumption for the average thickness of Mercury’s crust. We
find that for areas 1 and 2, our crustal thickness values
correspond with those from Beuthe et al. (2020a) if we take the
lower bounds; our central values are higher, and again, the
spread in our values is also large. For area 3, our results indicate
results that are very different: a much thicker crust, whereas
Beuthe et al. (2020a) found a thinner crust. For the northern rise,
however, we find a density that is relatively close to that of
Beuthe et al. (2020a). Our results match even better for areas 1,
2, and 4, when we compare them to their “thick crust” model.

The densities we find are mostly consistent with the 12%
porosity variable density values from Beuthe et al. (2020a), at
least within our (relatively large) errors. The results for area 3
using the localization with Lwin= 22 would indicate a higher
density, whereas the crustal density for area 4 would be much
lower for that same localization (but the load density is then
close to what we find for the results using Lwin= 8). When we
estimate only two parameters, the densities for areas 3 and 4
increase and would be higher than those of Beuthe et al.
(2020a). The densities we find for area 4 are close to the grain
density reported by Beuthe et al. (2020a) and even higher than
that, close to the mantle density, when we estimate only two
parameters. For the other areas, if we assume the combination
of load and crustal density to indicate an average crustal
density, our results would be closer to the 24% porosity density
values.

Our results indicate variations of the lithospheric properties
for Mercury. With large error bars, the densities we find for
three areas are fairly consistent and lower than perhaps
generally assumed, in the range of 2500–2600 kg m−3, noting
that, following the results from the Gravity Recovery and
Interior Laboratory mission (Zuber et al. 2013), the Moon’s
crustal density was found to be lower than assumed (Wieczorek
et al. 2013). For area 4, the northern rise, our results may be

affected by the smaller degree range we used to fit the
admittance, despite increasing the cap radius and decreasing the
windowing bandwidth. This may result in less reliable results
for parameters such as crustal density (and thickness), although
elastic thickness can be determined, since it mostly controls the
admittance signal at lower degrees. We do find consistently
higher densities for the northern rise using different localiza-
tions and degree ranges when fitting the admittance.

6. Conclusions

We analyzed the entire set of MESSENGER tracking data to
determine a high-resolution gravity field model based on line-
of-sight acceleration data instead of Doppler tracking. We
showed that these line-of-sight accelerations have a greater
sensitivity to small-scale features than Doppler data, which
makes them suitable for high-resolution gravity field determi-
nation. We presented models based on these accelerations,
showing that they have fewer streaks from orbital tracks, and
they can resolve circular features in the gravity field. In order to
quantify the latter, an analysis of localized correlations between
gravity and topography was performed, and it was shown that
the line-of-sight models can indeed have improved correlations
with topography, especially in areas where tracking data were
collected when the spacecraft was at a low altitude above the
surface.
We explored the influence of increasing the resolution of the

gravity field model and the influence of constraints. The latter
are necessary in order to stabilize the solutions due to spatial
variations in data coverage that may not allow the same global
high resolution everywhere. It was found that having a looser
constraint (in other words, having less of an influence of the
constraint on the solution) improves the correlations in certain
regions and also influences the admittance (the transfer
function between topography and gravity). The latter becomes
flatter at higher degrees, which is more in line with
expectations from theoretical models. The looser constraints
also result in higher admittance values, which is consistent with
other recent studies.
We used this line-of-sight model in a study of admittance.

Four areas on Mercury were selected where the correlations

Figure 14. Results from the MCMC analysis for area 4, when we estimate only two parameters: density (A) and elastic thickness (B). We used the spectrum obtained
with Lwin = 8.
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between gravity and topography were high enough to warrant
such an analysis, because the assumption for this analysis is
that gravity and topography correlate perfectly (a correlation
value of 1). Two of the areas are in cratered terrains, one
straddles an area with high topography, and the final area is
centered on the northern rise, an area of high topography and
gravity in Mercury’s northern smooth plains. We employ an
admittance model originally developed for volcanic features on
Mars. A Markov Chain Monte Carlo method was used to fit
theoretical models of admittance to the measured, localized
admittance spectrum. The estimation parameters are crustal
density, load density, crustal thickness, elastic thickness, load
depth, and a load parameter that describes the ratio between top
and bottom loading.

The results indicate variations in the lithospheric properties
at Mercury. For the cratered terrains and the area that straddles
high topography, the density we find is between 2500 and
2600 kg m−3, with lower load densities. If we assume the
combination of load and crustal density to indicate the average
crustal density in the area, the densities we find are close to
2300–2400 kg m−3.
For the northern rise, we find a preference for a top-loading

scenario, with a load density close to 3000 kg m−3. The range
of degrees used in the admittance analysis, however, is narrow
(degrees 9–17), which may affect the estimates. When we limit
our analysis to estimating only density and elastic thickness for
the northern rise, we find an even higher density with a narrow
distribution. Following recent results that indicate the northern

Figure 15. Results for area 1 from our MCMC analysis, where we plot the parameters against each other, including the rms of misfit for the admittance, in a triangle
plot. This figure was made with the Python package “corner” (Foreman-Mackey 2016).
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rise may originate deeper in Mercury, we enforced the load to
be at depth. For such a scenario, the crustal density decreases
and the load density increases, still indicating that the northern
rise is a high-density area. The results do not seem to clearly
favor the top-loading scenario over the deeper load scenario.

We find relatively low effective elastic thicknesses for all
areas, ranging between 11 and 30 km. These values correspond
to regions with modest levels of insolation, which implies that
these elastic thicknesses may even be slightly higher than the
global average. We also find that elastic thickness is often well
determined in our analysis, as shown by the relatively narrow
parameter distributions. These relatively low elastic thickness
estimates could indicate high heat flow at the time of the
formation of Mercury’s topography, although we leave a
rigorous inference of heat flux for future work.

We compared our crustal thickness and density values to
recent studies and found that, except for the northern rise, the
density results are mostly consistent with those from Beuthe
et al. (2020a) for their models using a spatially variable crustal
density. While there are some differences, for the first two
areas, both the crustal density and thickness compare well,
whereas only the densities compare well for the third area. For
the fourth area, our crustal thickness is relatively close, but we
find higher densities. This could be due to the degree range
used in our admittance study. If we compare our crustal
thickness to their “thick crust” values, our results for areas 1, 2,
and 4 match even better. These comparison results strengthen
our presumption that the results for the first two areas are the
most robust from our analysis.

The data used in this analysis can be found at the
MESSENGER archive on the PDS. In particular, radio tracking
data can be found at https://pds-geosciences.wustl.edu/
messenger/mess-v_h-rss-1-edr-rawdata-v1/messrs_0xxx/data/
odf/. Gravity and topography models in spherical harmonics
can be found at https://pds-geosciences.wustl.edu/messenger/
mess-h-rss_mla-5-sdp-v1/messrs_1001/data/shadr/. The crus-
tal thickness and density models from Beuthe et al. (2020a) were
obtained from their data archive at Zenodo (Beuthe et al. 2020b),
which can be found at https://zenodo.org/record/3727115.
Results from this analysis are available at Zenodo: 10.5281/
zenodo.6547874, and at our data archive, https://pgda.gsfc.
nasa.gov/products/84. At these links, we provide the Appendix,
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Table 4
Comparison of Crustal Thickness and Density Results with Beuthe et al. (2020a)

Parameter Area 1 Area 2 Area 3 Area 4

This Study
Crustal density [kg m−3] 2622 ± 190 2410 ± 205 2488 ± 160 2793 ± 146

Results from Beuthe et al. (2020a)
Grain density 3043 ± 84 2949 ± 47 2930 ± 32 2915 ± 46
Porosity 24% 2312 ± 64 2241 ± 36 2227 ± 24 2216 ± 35
Porosity 12% 2678 ± 74 2595 ± 41 2579 ± 28 2565 ± 41

This Study
Crustal thickness [km] 65 ± 15 53 ± 20 112 ± 17 36 ± 14

Results from Beuthe et al. (2020a)
Uniform density crust, model “U0” 29 ± 7 35 ± 5 35 ± 8 27 ± 4
Variable density crust (24% porosity, model “V0”) 44 ± 11 33 ± 6 31 ± 7 23 ± 6
Thick crust, model “V4” (24% porosity) 62 ± 18 42 ± 8 40 ± 7 31 ± 8

Note. Errors for the results by Beuthe et al. (2020a) are obtained from the standard deviation from the mean of the density or thickness in the spherical cap area used
for localization. These errors are likely to be underestimates of the actual error.
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