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Abstract

In this thesis, the peculiar effects of the hydrodynamic confinement on the
dynamic of a colloid in the Stokes regime have been addressed theoretically. Practical
expressions, useful to investigate the transport of particles in complex geometries,
have been provided for force, torque and higher order moments on the particle and
for the disturbed velocity field of the fluid.

To begin with, a new formulation of the Stokesian singularity method is developed
by introducing a bitensorial distributional formalism. This formalism overcomes the
ambiguities of the classical hydrodynamic formulation of the singularity method
that limits its application in confined problems. The formalism proposed permits
naturally to distinguish between pole and field points of tensorial singular fields and
to clearly define each singularity from its associated Stokes problem.

As a consequence of this approach an explicit expression for the singularity
operator is provided, giving the disturbance field due to a body once applied to
an ambient flow of the fluid. The operator is expressed in terms of the volume
moments and its expression is valid regardless of the boundary conditions applied to
the surface of the body. The dualism between the singularity operator giving the
disturbance flow of a n-th order ambient flow and the n-th order Faxén operator has
been investigated. It has been found that this dualism, referred to as the Hinch-Kim
dualism, holds only if the boundary conditions satisfy a property that is referred to
as the Boundary-Condition reciprocity (BC-reciprocity, for short). If this property is
fulfilled, the Faxén operators can be expressed in terms of (m,n)-th order geometrical
moments of volume forces (defined in Chapter 3). In addition, it is shown that in
these cases, the hydromechanics of the fluid-body system is completely determined
by the entire system of the Faxén operators. Classical boundary conditions of
hydrodynamic practice (involving slippage, fluid-fluid interfaces, porous materials,
etc.) are investigated in light of this property. It is found the analytical expression
for the 0-th, 1-st and 2-nd Faxén operators for a sphere with Navier-slip boundary
conditions.

These results are applied in order to express the hydrodynamics of particles in
confined fluids in terms of quantities related to the geometry of the particle and the
geometry of the confinement separately using the reflection method. Specifically,
closed-form results and practical expressions for the velocity field of the fluid and
the functional form of force and torque acting on a particle are derived in terms
of: (i) the Faxén operators of the body of the particle (given by its unbounded
geometrical moments) and (ii) the multi-poles in the domain of the confinement. The
convergence of the reflection method is examined and it is found that the expressions
obtained are also valid for distances between particle and walls of the confinement
of the same magnitude order, failing only in the limit case of the lubrication range.
The reflection solutions obtained with the present theory, approximated to the order
O
(
(ℓb/ℓd)5), are compared with the exact solution of a sphere near a planar wall,

and the expressions for forces and torques considering the more general situation of
Navier-slip boundary conditions on the body are provided.

A general formulation of the fluctuation-dissipation relations in confined geome-
tries, the paradoxes associated with no-slip boundary conditions close to a solid
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boundary, and the modal representation of the inertial kernels for complex fluids
complete the present dissertation. Specifically, the general setting of the overdamped
approximation in confined geometries is provided, by explicitly expressing the ther-
mal contributions associated with the rigid rototranslational motion of a body. In
passing, the extension of fluctuation-dissipation results to non-equilibrium conditions,
such as those arising in thermophoretic flows in the presence of a steady temperature
profile is developed. The influence of boundary conditions on the fluctuational form
of the force acting on a rigid particle near a solid wall is addressed, showing that
the classical Stokesian paradox of infinite touching time in the presence of no-slip
boundary conditions can be resolved by considering the arbitrarily small slippage
effects on both surfaces, leading to an integrable logarithmic singularity. Finally, a
preliminary extension of fluid-particle interactions either in a time-dependent Stokes
regime or in the presence of complex (viscoelastic) flows is addressed, focusing on
the modal representation of the dissipative and fluid inertial memory kernels, and
on the fluctional form of the latter. Specifically, it is shown that for a viscoelastic
fluid, characterized by a finite and non-vanishing relaxation rate, the generalized
Basset kernel is a regular function of time, also close to t = 0, which is not the case
of a Newtonian fluid for which the Basset kernel scales as 1/

√
t.
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Introduction

One of the main characteristics of fluid flows at the microscale is the accurate
predictability of their hydrodynamics. Also for this reason, by a detailed design
of microfluidic devices, it is possible to realize highly controlled, sensitive and
selective processes. This capability, coupled with their main limitation of very small
processed volumes, make microfluidic devices mainly employed in middle/high-value
applications, concerning fields such as pharmaceutical [213, 246], food [222, 109, 180],
environment [239, 247], optics [203, 69, 151], microelectronics [96, 249] and precision
mechanics [99, 155].

The predictability of the behavior of a microfluidic system is strictly related to
the equations governing fluid motion in the low Reynolds number regime, typical at
this length scale. In fact, in most cases, the flow can be considered in the Stokes
regime (Re → 0) and, when the inertia becomes significant (Re ∼ 1), perturbations
of the Stokes solution can be enforced [107]. From the mathematical point of view,
this means that the configurations assumed by the fluid flows belong to the set of
solutions of a well-posed linear problem for which the uniqueness and the convergence
in specific functional spaces are ensured [137].

On the other hand, in scaling the size of a fluidic system, other difficulties arise,
making the detailed predictability far from being effective by a superficial approach
to the design of microfluidic devices. Typical complications occurring in dealing
with microfluidic devices can be basically distinguished into two main classes: (i)
difficulties extrinsic to the fluid flow, and (ii) difficulties intrinsically related to the
peculiarity of the laminar regime of the flow. The complications belonging to the
first class can be attributed to typical disturbance phenomena affecting the processes,
such as, for example, undesired electrostatic [16] and Casimir forces (becoming
significant at microscale [176, 20]) or the noise due to thermal fluctuations affecting
especially smaller particles. The second class encompasses difficulties strictly related
to transport phenomena in the low Reynolds-number regime such as: the enhanced
dispersion of solutes in channels due to the interaction between diffusional processes
and the high-velocity gradients of the fluid along the channel sections; the inhibition
of mixing processes due to the smallness of convective effects (corresponding to very
high Peclet numbers); the long-range interactions between bodies, due mainly to the
substantial incompressibility of these flows [84, 83]; the central role of an accurate
choice of the appropriate boundary conditions, the simplification of which can lead
to considerable errors both quantitatively and qualitatively, or even to evident
paradoxes [110, 111, 62, 200]. A more profound knowledge of these phenomena is
therefore essential in order to realize a correct design for these devices, overcoming,
whenever possible, these difficulties and, eventually, taking advantage from them in
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the development of innovative processes unachievable at the macroscale.
An important class of microfluidic processes involves transport of colloidal

particles. These can be either inactive (such as proteins, nucleic acids, viruses, fibers,
and organic and inorganic pollutants) or active colloids (such as biological [145]
or artificial microswimmers [170]) transported in devices such as microreactors for
protein crystallization [241], T-junctions for cell encapsulation [123], DNA sequencer
[160], flow cytometry channels for particle detection [219], separation capillaries
by hydrodynamic chromatography [227], etc. In many of these cases, microfluidic
devices (having, by definition, micrometric sizes) possess a characteristic length ℓd
comparable with the characteristic length ℓb of the processed particles.

The fact that both particles and flow devices possess characteristic lengthscales
of the same order of magnitude implies in turn that particles cannot be considered
as pointwise entities such as in the modeling of macroscopic systems, and their size
and geometrical properties should be considered. Therefore, in order to correctly
investigate the transport properties of these systems, it is necessary to take into
account steric hindrance, angular orientations and body deformations with respect to
the walls of the device and to the other particles. When considering particles of finite
size immersed in the fluid, also particle-fluid hydrodynamic interactions become
more complex than in pointwise models, for which hydrodynamic interactions can
be simply represented by a Stokes coefficient relating drag forces to the velocity
of particles and where the particle velocity can be considered equal to that of the
fluid (when external flows are present and in the absence of specific forces acting on
the particles, such as the Lorentz force for ferromagnetic particles in an electrically
neutral fluid). In fact, the main effects of fluid-body interactions can be summarized
as:

• the motion of the fluid is disturbed by the body and therefore the velocity
field in the domain of the fluid is different from the ambient fluid flow;

• the particle velocity is different from the velocity of the ambient flow at the
particle position, and therefore the particles flow rates can be considerably
discordant from those expected from the pointwise model;

• forces and torques on particles are related to translational and angular velocities
by a more general linear relation represented by a resistance matrix which takes
into account anisotropy, lift forces, coupling between rotations/translations
and forces/torques, and which reduces to a simple coefficient (isotropic matrix)
only in the case the particle is spherical and located far away from the device
walls.

Another implication of size similarity between particles and devices, coupled with
the slow spatial decay of Stokesian perturbations O(1/r), where r is the distance
from the perturbation point of application, regards the hydrodynamic interactions
between particles and boundaries of the flow domain. In fact, whenever an interface
in the vicinity of the particle is considered (such as the walls surrounding the fluid,
the interface with another fluid or the presence of other particles), the homogeneity
symmetry of the unbounded fluid is broken, and thus the resistance to the motion
of the particle in the confined system becomes dependent on the particle position.
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Specifically, the more the fluid is confined, the higher the resistance becomes [104].
Therefore, the resistance on a particle translating at the center of a channel with
a square section is lower than the resistance of a particle translating at the center
of the inscribed, and higher than resistance of a particle at the centerline of the
circumscribed channel with circular cross-sections, and the resistance of particles
within a dilute suspension will be lower than that in a concentrate one.

Finally, the motion of smaller particles in microfluidic systems is affected by
thermal fluctuations that cause an erratic particle movement also in quiescent fluids
which is responsible for colloidal diffusive transport. Also, these fluctuations forces,
strictly related to the hydrodynamic resistance by the fluctuation-dissipation theorem
[133, 134] are significantly affected by the heterogeneity and anisotropy of confined
environments typical of microfluidic devices.

In order to realize an accurate design of microfluidic systems, keeping a strict
control of the transport processes occurring within them, colloidal particle dynamics
should be accounted for in detail, and it requires a careful description of the different
forces acting on the generic colloidal particle in the diluted case. The total force FFF
and torque TTT acting on a rigid colloid, considered in an assigned external potential
Φ(xxx), can be resumed by the Newton equation(

FFF
TTT

)
=
(
FFF res

TTT res

)
+
(
FFF flow

TTT flow

)
+
(
FFF stocha

TTT stocha

)
−
(

∇Φ(xxx)
0

)
(0.1)

where FFF res and TTT res are force and torque contributions associated with the dissipative
hydrodynamic resistance of the solvent fluid, FFF flow and TTT flow are force and torque
exerted on the particle by to the ambient flow (e.g. a pressure-driven flow), while
FFF stocha and TTT stocha are stochastic force and torque acting on the particle due to the
thermal agitation of the fluid molecules. In eq (0.1), Φ(x) is an external potential
possibly acting on the particle.

The effect of the hydrodynamic confinement on a rigid particle in a Stokesian
fluid as regards the hydrodynamic resistance, determines a linear functional law
relating the force FFF res and torque TTT res to the translational UUU and angular velocity
ωωω of the particle, that can be expressed in tensorial form as(

FFF res

TTT res

)
= −HHH(xxx)

(
UUU
ω

)
(0.2)

where HHH(xxx) is the position-dependent 6 × 6 overall resistance matrix of the hydrody-
namic interactions, characterized by a block structure

HHH(xxx) =
(

η(xxx) CCC(1)(xxx)
CCC(2)(xxx) ηω(xxx)

)
(0.3)

where η, and ηω are the translational and rotational friction matrices, respectively,
and CCC(1), and CCC(2) the roto-translational coupling matrices. Either by thermody-
namical [138] or mechanical arguments [98] (see Chapter 3 and 4), it is possible to
prove that η and ηω are symmetric and positive definite matrices, while CCC(1) and
CCC(2) satisfy the property CCC(2) =

[
CCC(1)

]t
, where the superscript “t” indicates the
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transpose. Correspondingly, the overall resistance matrix HHH(xxx) is symmetric and
positive definite.

As regards the hydrodynamic force FFF flow and torque TTT flow deriving by the action
of the ambient flow on the colloidal particle, their representation is by far more
complex than that expressed by eq. (0.2) for the hydrodynamic resistances. This is
due to the fact that for a generic ambient flow uuu(xxx), all its derivatives need to be
considered. However, in the case that the fluid is considered unbounded (therefore
the nearest interfaces are far enough from the particle), by the generalized Faxén
law [194, pp. 51-52] it is possible to express them by linear functionals (operators)
F{ } and T { } of uuu(xxx) for the force and the torque, respectively, i.e.,(

FFF flow

TTT flow

)
=
(

F
T

)
{uuu(xxx)} (0.4)

where F{ } and T { } depend solely on the geometry of the particle. As it will be
addressed in detail in Chapter 4, it is possible to express the force and torque on the
particle due to a generic ambient flow as in eq. (0.4) also for confined systems, but,
in this case, the linear operators depend also on the position xxx of the colloid, i.e.,(

FFF flow

TTT flow

)
=
(

Fx

Tx

)
{uuu(xxx)} (0.5)

Following the original approach due to Einstein and Langevin [134], in the case that
the fluid is described by means of an instantaneous response (Stoke’s regime), it
is natural to represent Fstocha and Tstocha in the form of a linear superposition of
vector-valued Wiener processes, i.e. as

Fstocha(x)dt = α(x) dw(t) + γ(x) dwω(t)
Tstocha(x)dt = ε(x) dw(t) + β(x) dwω(t) (0.6)

where dw(t) = (dw1(t), d2(t), dw3(t)) and dwω(t) = (dwω
1 (t), dwω

2 (t), dwω
3 (t)) are

the increments in the time interval (t, t+ dt) of two mutually independent vector-
valued Wiener processes. This observation is a consequence of the fact that Wiener
processes are also memoryless, in the meaning that if one defines ξ(t) = dw(t)/dt =
(ξ1(t), ξ2(t), ξ3(t)), interpreted in a distributional meaning, the correlation function
of ξ(t) is

⟨ξi(t0,+t) ξj(t0)⟩ = δ(t) δi,j (0.7)

i.e. the stochastic forcing is delta-correlated (here ⟨·⟩ indicates indifferently either
ensemble or temporal averages owing to ergodicity, and t0 > 0 is any time instant,
owing to the stationarity of the process) [77].

In order to achieve a deeper understanding of the behavior of colloids transported
in microfluidic systems, in this thesis all the terms entering eq. (0.1) have been
investigated, providing from theoretical grounds, practical expressions for HHH(xxx),
(F , T ), (Fx, Tx) and for the matrices (ααα,βββ,γγγ, ϵϵϵ), addressing their properties and
their application limit.

Specifically, Chapter 1 addresses a succinct review of the basics concepts in the
theory of the Stokes flows useful for further developments.
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Chapters 2, 3 and 4 focus the attention on the purely hydrodynamic terms
entering eq. (0.1), i.e.(

FFF hydro

TTT hydro

)
=
(
FFF res

TTT res

)
+
(
FFF flow

TTT flow

)

providing, by using a Singularity Method [194, 130], their explicit relations to the
ambient flow, in a form as general as possible, and applying these relations to
specific case studies. Although hydrodynamic problems at the microscale can be
approached by means of typical numerical methods for solving the Stokes equation
(such as finite elements method [235, 53] and boundary integral method [194]), a
deeper mathematical understanding of fluid-particle interactions is beneficial in
order to overcome, by means of explicit analytical solutions, the limitations and the
shortcomings of the numerical approaches, to improve current numerical methods
(such as Stokesian dynamics [22]) and develop new ones, and to explain and predict
the non-intuitive flow and transport phenomena that may occur at the microscale.

For this reason, as the first step in tackling the problem, Chapter 2 introduces a
new mathematical bitensorial distributional formalism for the singularity method
in Stokes flows, able to describe the multi-body hydrodynamic interactions and
overcoming the ambiguities and imprecisions that arise in the classical singularity
formalism that, although irrelevant in unbounded systems, may become hindering
whenever confined problems are considered. In fact, the principal ambiguities and
imprecisions in the classical singularity method are:

• the singular solutions are not well defined, especially as regards the bounded
singular solutions, by its own associated non-homogeneous Stokes problems;

• the point where tensorial transformations are applied generates confusion
between field and pole points.

The bitensorial formalism [211, 230, 56], specifically developed for handling
the Green functions in field-theoretical developments within the theory of general
relativity makes a clear distinction between pole and field points of singular fields,
(i) allowing an unambiguous mathematical manipulation of the singularities, (ii)
providing a clear definition of the principal singular solutions introduced in the
theory of the Stokes flow, (iii) specifying the associated non-homogeneous equations
and boundary conditions, (iv) obtaining the most common unbounded singularities
as a particular case of the more general bounded counterparts.

As a direct application of this approach, it is found that the same operator
determining the disturbance flow due to a Stokeslet, provides a reflection principle
for any no-slip bounded solution in the same confined geometry. Finally, by applying
this result to the classical problem of the singularities bounded by a no-slip plane the
already-known image system for the sourcelet and couplet and the not-yet-known
image system for the source doublet and stresslet are obtained.

In Chapter 3, the problem of a particle in a generic ambient flow in an unbounded
fluid is addressed, with the aim of describing the entire hydrodynamics of the problem,
i.e. both the disturbance flow due to the presence of the body in the fluid and all
the moments (forces, torques, stresses) that the fluid exerts on the particle. As it is
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known [194, 130], in the case of no-slip boundary condition on the body, the Faxén
operators giving the force F and the torque T on the particle if applied to the generic
ambient flow, furnishes also the flow due to the particle translating and rotating in
the fluid, respectively, once applied to the pole of a Stokeslet (i.e. to the unbounded
Green function of the Stokes equations). This property is referred to in the thesis as
the Hinch-Kim dualism. The corresponding dualism is valid also for higher-order
moments/fluid motion. To begin with, the occurrence of the Hinch-Kim dualism
for more general boundary conditions of common hydrodynamic application are
investigated, and it is proved that the necessary condition upon which dualism holds
is that boundary condition should belong to a specific subclass that it is referred
to as BC-reciprocal. To the class of BC-reciprocal conditions belong: boundary
conditions for rigid bodies, Newtonian drops at the mechanical equilibrium, porous
bodies modeled by the Brinkman equation, while deforming linear elastic bodies,
deforming Newtonian drops, non-Newtonian drops and porous bodies modeled by
the Darcy equation do not have this property. Finally, it is shown that, whenever
BC-reciprocity holds, the system of Faxén operators describes completely the entire
hydromechanics of a particle in a Stokes flow, and that any Faxén operator can be
derived from the system of the n-th order moments on the particle in m-th order
ambient fields.

As a direct application of the theory, for the Navier-slip boundary conditions on
a rigid body, it is found that the n-th order Faxén operators are determined by the
n-th order surface tractions, and the analytical expression for the 0-th, 1-st and 2-nd
Faxén operators for a sphere with Navier-slip boundary conditions are provided.

The results obtained in the preceding Chapters are applied in Chapter 4 in order
to build the exact solution of the Stokes flow around a body in a confined fluid
starting from the simpler problems of the singularities of the bounded flow (i.e.,
all the derivatives of the Green function) and the Faxén operators of the particle
in the unbounded domain. To this aim, the reflection method [98] is used and its
convergence, still an open question in the general case, is addressed, finding that the
solution provided by the reflection method is valid for distances between the particle
and confined walls of the same order of magnitude of the size of the particle, ℓd ∼ ℓb,
and it may fail for very small gaps ℓd ≪ ℓb. As a direct application of this analysis,
the reflection solution obtained with the present theory (using Faxén operators
and bounded multi-pole available in the literature), approximated to the order
O((ℓb/ℓd)5), is compared and contrasted with the exact solution of a sphere near a
planar wall, obtaining an excellent agreement. This result is not only important in
itself, but it indicates that the present approach can be applied to obtain higher-
order solutions to generic problems involving particles of arbitrary shapes (ellipsoids,
spheroids, etc.), and more general confinements (cylindrical channels, rectangular
channels, etc.) from the exact, approximated or numerical expressions for the two
basic building blocks of the present theory: the Green function for the confinement,
and the moments of the particle in the unbounded case. As a novel result obtained
by the theory, the expression for the force and torque on a rigid spherical particle
near a planar wall in the more general case of Navier-slip boundary conditions on
the particle is obtained.

Chapter 5 addresses the stochastic description of the thermal forces, developing
the fluctuation-dissipation relations for confined geometries. Particular attention is



Contents 7

oriented towards the formulation of the overdamped approximation, as it involves
non-trivial issues in the elimination of the fast velocity variables, considering the
Stratonovich integral calculus. This is a consequence of the fact that for small but
finite particle inertia, the trajectories of micrometric particles are Lipshitz continuous,
and owing to the Wong-Zakai theorem, their limit process, does not coincide with the
Ito formulation of the Langevin equations, but with the Stratonovich interpretation.
Moreover, the implication of the singularities in the hydrodynamic resistances for a
particle approaching a solid wall are discussed, in connection with the paradoxes
arising from this property, focusing attention to the fact, that the generalization of
the no-slip condition to the Navier’s slip may cure some of them.

Chapter 6, addresses the description of more general classes of fluids, possessing
both dissipative and inertial memory effects, and extending the fluid-particle inter-
actions to time-dependent Stokes regime, and connects the representation of the
associated kernels, in order to obtain a feasible formulation of particle dynamics in
this case. Specifically, the modal decomposition of fluid inertial kernels, generalizing
the Basset kernel to the case of viscoelastic fluids is developed, and it is shown that
in the viscoelastic case, owing to the finite propagation velocity of the shear stresses,
the generalized Basset kernel is nonsingular at time t = 0.
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Chapter 1

Fundamentals of fluid-body
interaction in the Stokes regime

1.1 General Properties

In this chapter, the fundamental theorems for Stokes flows are briefly reviewed, as
they represent the starting point for the original developments addressed in the
subsequent chapters.

The equations governing a fluid flow in the vanishing Reynolds number regime
defined in a domain Df ∈ R3 are the well-known Stokes equations−∇ · σσσ(xxx) = µ∆vvv(xxx) − ∇s(xxx) = −ψψψ(xxx)

∇ · vvv(xxx) = 0; xxx ∈ Df

(1.1)

where µ is the viscosity of the fluid, vvv(xxx) the velocity of the fluid element at the
point xxx ∈ Df , s(xxx) the pressure field, ψψψ(xxx) an external volume force field and σσσ(xxx)
the stress tensor for a Newtonian fluid, hence

σσσ(xxx) = s(xxx)I − 2µeee(xxx); eee(xxx) = ∇vvv(xxx) + ∇vvv(xxx)t

2 (1.2)

where I is the identity matrix, eee(xxx) the strain rate tensor and the superscript t
denotes the transpose operator of a matrix.

The system of eqs. (1.1) requires boundary conditions at the boundary of the
fluid domain ∂Df depending on the physical nature of the interface. In Chapter
3, several boundary conditions at the fluid-body interface are addressed. Here we
consider exclusively the Navier-slip boundary condition, which is the most commonly
class of mixed boundary conditions assumed at the fluid-solid interface. As deduced
by Navier [179], a slippage occurs at the interface between the fluid and a fixed body,
and this slippage generates a linear opposite resistance by the surface of the body.
Enforcing the impermeability constraint, the boundary conditions becomevvv(xxx) ·nnn(xxx) = 0

nnn(xxx) · σσσ(xxx) · ttt(xxx) = −µ

λ
vvv(xxx) · ttt(xxx) xxx ∈ ∂Df

(1.3)
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where nnn(xxx) is the unit normal to the surface oriented towards the fluid (i.e. the
external unit vector to the body), ttt(xxx) = I −nnn(xxx) ⊗nnn(xxx) and λ, is the so-called slip
length which depends on the chemical characteristics of the interface. When the slip
length λ is much smaller than the characteristic size of the fluid system ℓ, hence for
λ ≪ ℓ, boundary conditions (1.3) reduce to no-slip boundary condition

vvv(xxx) = 0, xxx ∈ ∂Df (1.4)

corresponding to complete adherence between the fluid and the body at the interface.
Typical intrinsic slip length orders are λ ∼ 1÷100nm [146], therefore it is important
to consider slip at the interface especially in dealing with smaller colloids. However,
artifacts at the interface, such as the presence of gas bubbles or surface roughness,
can significantly enhance the slippage at the interface making necessary to consider
it also in dealing with larger particles.

From the system of the eqs. (1.1) and (1.3) it is possible to deduce several
properties of Stokes flows, the first two of which are straightforward.

i) Stokes equations and boundary conditions are linear. Therefore, given two
distinct solutions vvv′(xxx) and vvv′′(xxx) of eqs. (1.1) and (1.3) and given two 3×3 constant
matrices AAA and BBB , their linear superposition

vvv(xxx) = AAA · vvv′(xxx) +BBB · vvv′′(xxx) (1.5)

is still a Stokes flow, solution of eqs. (1.1) and (1.3).
ii) Material derivative vanishes in the Stokes regime, therefore if boundary

conditions change in time according to a given law (say for example the boundary
∂Df (t) changes in time, as in moving boundary problems), the time evolution of the
flow vvv(xxx, t) = vvvt(xxx) is a collection of instantaneous solutions of the Stokes equations,
independently of the history of the flow, in which time appears solely as a parameter.

Other properties are less intuitive; however, their proofs can be found in classical
monographs [98, 194, 130].

iii) A very useful property of Stokes flows is the reciprocity holding between two
solutions of the Stokes equations (1.1) with different external volume force fields and
boundary conditions. This theorem, firstly formulated by Lorentz [156, pp.23-26],
states that if (vvv′(xxx),σσσ′(xxx)) and (vvv′′(xxx),σσσ′′(xxx)) are two solutions of the Stokes eqs.
(1.1) in the domain Df with distinct boundary conditions on ∂Df and with ψψψ′(xxx)
and ψψψ′′(xxx) as external volume force field respectively, then∫

∂Df

(vvv′(xxx)·σσσ′′(xxx)−vvv′′(xxx)·σσσ′(xxx))·nnn(xxx)dS =
∫

Df

(vvv′(xxx)·ψψψ′′(xxx)−vvv′′(xxx)·ψψψ′(xxx))dV (1.6)

where dS and dV are the surface, and the volume elements, respectively. Eq. (1.6)
becomes in differential form

∇ · (vvv′(xxx) · σσσ′′(xxx) − vvv′′(xxx) · σσσ′(xxx)) = vvv′(xxx) ·ψψψ′′(xxx) − vvv′′(xxx) ·ψψψ′(xxx) (1.7)

As it will be shown in the remainder, the relation between two distinct Stokes flows
provided by eqs. (1.6) and (1.7) permit us to obtain the analytical expressions
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for complex flows in terms of simpler ones, and to deduce interesting relations for
the hydromechanics of bodies. An exhaustive discussion on the importance of the
Lorentz reciprocal theorem in fluid dynamics is addressed in [163]. Proofs of the
Lorentz reciprocal theorem, in the form eq. (1.6) and eq. (1.7), are reported in [130,
p. 19] and in [194, p. 9]; whereas in [98, pp. 85] it is proved a generalization of the
theorem to the case the two solutions refer to two different fluids with viscosity µ′

and µ′′.
iv) Another fundamental theorem for Stokes flow, firstly established by Helmholtz

(see [98, p. 91] or [5, p. 227]), is the minimum dissipation theorem. According to this
theorem, the velocity field vvv(xxx) solution of (1.1) produces the minimum dissipation
energy in the domain of the fluid [5, 138]

Φ[vvv(xxx)] = 2µ
∫

Df

eee(xxx) : eee(xxx)dV (1.8)

among all the incompressible flows vvv#(xxx) with equal boundary conditions. Therefore,
given a generic incompressible flow∇ · vvv#(xxx) = 0, xxx ∈ Df

vvv#(xxx) = vvv(xxx), xxx ∈ ∂Df

(1.9)

with eee#(xxx) = (∇vvv#(xxx) + ∇vvv#(xxx)t)/2 , then∫
Df

eee#(xxx) : eee#(xxx)dV ≥
∫

Df

eee(xxx) : eee(xxx)dV (1.10)

v) As a corollary of the minimum dissipation energy theorem [93, p. 24], the
Stokes flow is unique. More precisely, two solutions vvv′(xxx) and vvv′′(xxx) of the Stokes
eqs. (1.1), attaining the same values for all xxx ∈ ∂Df , are one and the same flow, i.e.,
vvv′(xxx) = vvv′′(xxx) for all xxx ∈ Df . In point of fact, as they solve the Stokes equations,
they both minimize the dissipation energy and therefore their associated strain rate
tensors are equal eee′(xxx) = eee′′(xxx). As consequence, the difference flow vvv′(xxx) − vvv′′(xxx)
is at most constant, hence a rigid motion. Enforcing the boundary condition, this
constant should be vanishing and thus vvv′(xxx) = vvv′′(xxx) in the entire domain Df .

vi) As a direct consequence of linearity and uniqueness, any Stokes flow is re-
versible. This means that, if the flow vvv′(xxx) is a solution of the Stokes equations
satisfying a boundary condition, say vvv′(xxx) = vvvS(xxx), the flow that satisfies the same
boundary conditions with reversed sign, i.e., vvv′′(xxx) = −vvvS(xxx), is exactly the initial
flow with the reversed sign, i.e., vvv′′(xxx) = −vvv′(xxx). Since a change in sign of the
solution involves (by linearity) also a change in the sign of the hydrodynamics forces
and torques acting on the immersed bodies, reversibility has important implications
on the motion of bodies in fluids at micro-scale, such as on the schemes which
micro-swimmers need to adopt to move (see for example the Purcell scallop theorem
[204, 145, pp. 25-26]), and on the suppression of lift forces on bodies in certain
symmetric systems [148, pp. 438-439]).

A fundamental solution of the Stokes flow is the unbounded Green function of
the system of equations (1.1), obtained by assuming an external volume force field



12 1. Fundamentals of fluid-body interaction in the Stokes regime

ψψψ(xxx) = ϕϕϕ δ(xxx− ξξξ) centered in a point ξξξ ∈ R3 and requiring for the velocity to vanish
at infinity, 

−∇ · σσσ∗(xxx,ξξξ) = µ∆vvv∗(xxx,ξξξ) − ∇s∗(xxx,ξξξ) = −ϕϕϕ δ(xxx− ξξξ)

∇ · vvv∗(xxx,ξξξ) = 0; xxx,ξξξ ∈ R3

vvv∗(xxx,ξξξ) = 0, xxx → ∞
(1.11)

The solution of eqs. (1.11), called the Oseen tensor [185, p. 98] or Stokeslet, can be
obtained by several approaches [137, 194, 84, 154], and it can be expressed as follows

vvv∗(xxx,ξξξ) = SSS(xxx,ξξξ) ·ϕϕϕ
8πµ

p∗(xxx,ξξξ) = PPP (xxx,ξξξ) ·ϕϕϕ
8π (1.12)

σσσ∗(xxx,ξξξ) = ΠΠΠ(xxx,ξξξ) ·ϕϕϕ
8π

where SSS(xxx,ξξξ), PPP (xxx,ξξξ) and ΠΠΠ(xxx,ξξξ) are tensors with entries

Sij(xxx,ξξξ) = δij

r
+ (xxx− ξξξ)i(xxx− ξξξ)j

r3

Pj(xxx,ξξξ) = 2(xxx− ξξξ)j

r3 (1.13)

Πijk(xxx,ξξξ) = 6(xxx− ξξξ)i(xxx− ξξξ)j(xxx− ξξξ)k

r5

i, j, k = 1, 2, 3, where r =
√

(xxx− ξξξ) · (xxx− ξξξ) and “·” indicates the Euclidean scalar
product.

The Stokeslet solution is the kernel by which it is possible to construct the
Ladyzhenskaya volume potential [137, p. 49], providing any solutions of eqs. (1.1)
vanishing at infinity

vvv(xxx) =
∫
SSS(xxx,ξξξ) ·ψψψ(ξξξ)

8πµ dV (ξξξ)

p(xxx) =
∫
PPP (xxx,ξξξ) ·ψψψ(ξξξ)

8π dV (ξξξ) (1.14)

σσσ(xxx) =
∫ ΠΠΠ(xxx,ξξξ) ·ψψψ(ξξξ)

8π dV (ξξξ)

where dV (ξξξ) is the volume element at ξξξ ∈ R3.
If the fluid domain is bounded, the system of equation (1.11) with homogeneous

boundary conditions becomes
−∇ · σσσ∗(xxx,ξξξ) = µ∆vvv∗(xxx,ξξξ) − ∇s∗(xxx,ξξξ) = −ϕϕϕ δ(xxx− ξξξ)

∇ · vvv∗(xxx,ξξξ) = 0; xxx,ξξξ ∈ Df

vvv∗(xxx,ξξξ) = 0, xxx ∈ ∂Df

(1.15)
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and the solution can be also expressed as

vvv∗(xxx,ξξξ) = GGG(xxx,ξξξ) ·ϕϕϕ
8πµ

p∗(xxx,ξξξ) = PPP(xxx,ξξξ) ·ϕϕϕ
8π (1.16)

σσσ∗(xxx,ξξξ) = ΣΣΣ(xxx,ξξξ) ·ϕϕϕ
8π

where GGG(xxx,ξξξ), PPP(xxx,ξξξ) and ΣΣΣ(xxx,ξξξ) are kernels, depending on the geometry of the
domain Df , by means of which it is possible to construct the volume potentials
analogous to eqs. (1.14) [137, p. 63]. Examples of fluid domains for which the
Green function GGG(xxx,ξξξ) is available in the literature are: the half space [18], the
space enclosed between two parallel walls [152], the space enclosed by cylindrical
boundary [153], the space enclosed in spherical boundaries [185, 164], the space
outside a sphere [185, 165].

A remarkable property of the Stokes Green functions, valid for all the domains,
is the reciprocal symmetry of its entries

Gij(xxx,ξξξ) = Gji(ξξξ,xxx) (1.17)

see [194, pp. 76-77] for the proof.
By applying the Lorentz reciprocal theorem eq. (1.6) to the Stokeslet solution

vvv′(xxx) = vvv∗(xxx,ξξξ) in eqs. (1.12) and (1.13) with ξξξ ∈ Df and to a generic solution
vvv′′(xxx) = vvv(xxx), and by using the property eq. (1.17) for the Stokeslet, it is possible to
obtain the boundary integral expressions for the Stokes flow [137, p. 52]

8πµvvv(xxx) =
∫

Df

SSS(xxx,ξξξ) ·ψψψ(ξξξ)dV (ξξξ)

+
∫

∂Df

(µvvv(ξξξ) · ΠΠΠ(xxx,ξξξ) −SSS(xxx,ξξξ) · σσσ(ξξξ)) ·nnn(ξξξ)dS(ξξξ) (1.18)

that, in accordance with the uniqueness of the Stokes solutions, expresses that the
flow is univocally determined by its values at the boundary of the domain.

1.2 A single body in Stokes flow

Next, let us focus on the case of a body immersed in the unbounded Stokes fluid.
The domain of the body is Db ⊂ R3 with boundaries ∂Db and therefore, the domain
of the fluid is Df ≡ R3/Db with boundaries ∂Df ≡ ∂Db ∪ ∂D∞, where ∂D∞ is an
ideal surface at infinity. The ambient flow of the fluid (i.e. the flow of the fluid
without the body inclusion) is uuu(xxx) with associated pressure p(xxx) and stress tensor
πππ(xxx), solution of the Stokes equations−∇ · πππ(xxx) = µ∆uuu(xxx) − ∇p(xxx) = 0

∇ · uuu(xxx) = 0 xxx ∈ R3
(1.19)
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The presence of the body in the fluid generates a disturbance flow at the boundaries
of the body ∂Db, that we generically call wwwS(xxx). Thus, a disturbance flow www(xxx) in
the domain of the fluid with associated pressure q(xxx) and stress tensor τττ(xxx) is a
solution of the Stokes equations

−∇ · τττ(xxx) = µ∆www(xxx) − ∇q(xxx) = 0

∇ ·www(xxx) = 0 xxx ∈ Df

www(xxx) = wwwS(xxx), τττ(xxx) = τττS(xxx) xxx ∈ ∂Db

(1.20)

where τττS(xxx) is the stress tensor of the disturbance flow at the surface of the body.
The total field, or disturbed flow, (vvv(xxx),σσσ(xxx)) = (uuu(xxx),πππ(xxx)) + (www(xxx), τττ(xxx)) is a

solution of the Stokes equations

−∇ · σσσ(xxx) = µ∆vvv(xxx) − ∇s(xxx) = 0

∇ · vvv(xxx) = 0 xxx ∈ Df

vvv(xxx) = vvvS(xxx), σσσ(xxx) = σσσS(xxx) xxx ∈ ∂Db

vvv(xxx) = uuu(xxx) xxx → ∞

(1.21)

s(xxx) = p(xxx) + q(xxx) being the total pressure field , vvvS(xxx) = wwwS(xxx) + uuu(xxx) and
σσσS(xxx) = τττS(xxx) + πππ(xxx) the total velocity field and stress tensor at the surface of the
body.

Assumingno-slip boundary conditions, i.e. wwwS(xxx) = −uuu(xxx) at the the interface
with the body, and no external forces on the fluid ψψψ(xxx) = 0, and considering that
as xxx → ∞ the disturbed field vanishes and vvv(xxx) → uuu(xxx), boundary integrals (1.18)
becomes

vvv(xxx) = 1
8πµ

∫
∂D∞

(µuuu(xxx) · ΠΠΠ(xxx,ζζζ) −SSS(xxx,ζζζ) · πππ(ζζζ)) ·nnn(ζζζ)dS(ζζζ)

− 1
8πµ

∫
∂Db

SSS(xxx,ζζζ) · σσσ(ζζζ) ·nnn(ζζζ)dS(ζζζ) (1.22)

Since the first integral on the r.h.s is the boundary integral representation of the
ambient flow, regular on the surface of the body, the disturbance field is

www(xxx) = − 1
8πµ

∫
∂Db

SSS(xxx,ζζζ) · hhh(ζζζ)dS(ζζζ) (1.23)

where hhh(xxx) = σσσ(xxx) ·nnn(xxx) is the surface traction of the total disturbed field.
By expanding the Stokeslet field at the point ζζζ ∈ ∂Db around an interior point

of the body ξξξ ∈ Db, we obtain the multi-pole expansion [130, p. 27], or singular
representation [194, p. 201], of a disturbance flow

8πµwww(xxx) = SSS(xxx,ξξξ) ·MMM (0) +∇ξSSS(xxx,ξξξ) : MMM (1)(ξξξ)+∇ξ∇ξSSS(xxx,ξξξ)
...M
MM (2)(ξξξ)

2! + ... (1.24)

where ∇ξ is the gradient operator at the point ξξξ, MMM (n)(ξξξ) are n-th order surface
moments of the traction hhh(ζζζ)

MMM (n)(ξξξ) =
∫

∂Db

n times︷ ︸︸ ︷
(ζζζ − ξξξ) ... (ζζζ − ξξξ) ·hhh(ζζζ)dS(ζζζ), n = 0, 1, 2, ... (1.25)
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and
n times︷ ︸︸ ︷

∇ξ ...∇ξ SSS(xxx,ξξξ)

are multi-poles, or higher order singularities, in the unbounded domain, obtained by
differentiating the Stokeslet at its pole point ξξξ.

From equation (1.24) we can deduce that the flow around a body with no-
slip boundary conditions can be always represented as a linear superposition of
unbounded multi-pole solutions. This result provides various advantages in the
applications, since it permits us to represent in a simple way some flows around
bodies with complex shapes, providing a way to estimate their far fields by computing
the leading order terms in the series. In addition, when the body admits specific
symmetries, such as in the case of spheres, ellipsoids or slender bodies, the expansion
(1.24) reduces to a limited set of multi-poles if singularities are centered on a manifold
following the symmetry of the body, and therefore, in this case, it is possible to
obtain the exact expressions of the solutions in a simple form. As a simple example,
the singular form of the Stokes solution of the disturbance field generated by a sphere
with radius Rp in a constant ambient flow uuu(xxx) = −UUU (hence, the field generated by
a translating sphere with a velocity UUU) is

www(xxx) =
(

3Rp

4 SSS(xxx,ξξξ) +
R3

p

8 ∆ξSSS(xxx,ξξξ)
)

·UUU (1.26)

ξξξ being the center of the sphere.
While for a sphere in a rotating fluid uuu(xxx) = −ΩΩΩ × (xxx− ξξξ)

www(xxx) =
R3

p

2 ∇ξ ×SSS(xxx,ξξξ) · ΩΩΩ (1.27)

Many other useful singularity solutions are available in the literature, such as
the disturbance flow for a sphere in a symmetric linear ambient flow [105], or for
translating [41] and rotating [40] spheroids, etc.

However, the procedure for finding the exact solution consists mainly of a
trial-and-tentative approach, by guessing the types of singularities constituting the
singular representation from physical considerations, and finding the associated
intensities that match the boundary conditions [194, pp. 201-212]. In Chapter 3, a
systematic procedure to obtain the multi-pole expansions by which the disturbance
field due to a sphere in a quadratic ambient flow is obtained in closed form.

The other fundamental issue we are interested in dealing with immersed bodies,
is the analytic expression for the hydrodynamics forces

FFF = −
∫

∂Df

σσσ(xxx) ·nnn(xxx) dS (1.28)

torques
TTT (ξξξ) = −

∫
∂Df

(xxx− ξξξ) × σσσ(xxx) ·nnn(xxx) dS (1.29)

and other moments that the fluid exerts on bodies. A very powerful theorem provided
by Faxén states that the forces and torques acting on a sphere with no-slip boundary
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conditions and radius Rp due to a generic ambient flow uuu(xxx) past the sphere are

FFF = 8πµ
(

3Rp

4 uuu(ξξξ) +
R3

p

8 ∆ξ uuu(ξξξ)
)

(1.30)

ξξξ being the center of the sphere, while for torque on a sphere in a rotating fluid
uuu(xxx) = −ΩΩΩ × (xxx− ξξξ), and

TTT (ξξξ) = 8πµ
R3

p

2 ∇ξ × uuu(ξξξ) (1.31)

For the original proof provided by Faxén see [185, p. 111-113], while for a simplified
proof see [148, p. 571]. As hypothesized firstly by Hinch [105] and then proved by
Kim [128], the extraordinary similarity between eqs. (1.26) and (1.27) with eqs.
(1.30) and (1.31) is not a coincidence, but a consequence of the Lorentz reciprocal
theorem of Stokes flows. This dualism can be helpful in several numerical and
analytical applications, it is widely employed in Stokesian dynamics [61, 228] and in
rheology of suspensions [7, 105]. As we will see in the next chapters, it is valid also for
higher order moments. However, as addressed in Chapter 3, its extension to bodies
with boundary conditions different from the no-slip ones is not straightforward and
the reciprocity of the Stokes flows does not ensure its validity when other boundary
conditions are assumed at the interface.
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Chapter 2

Bitensorial formulation of the
singularity method for Stokes
flows

2.1 Introduction

As seen in the Chapter 1, one advantageous strategy to investigate the hydrodynamics
of bodies immersed in Stokes flows, is to represent the flow by a set of singular
solutions with poles internal to the body, which match the prescribed boundary
conditions if placed on opportune manifolds with appropriate intensities. In fact,
since the pioneering works of Lorentz [156], Oseen [185] and Burger [181], the
use of fundamental solutions has become a common and widely applied approach
(referred to as the method of hydrodynamic singularities) for solving incompressible
Stokes flows [130, 194, 148]. Important theoretical results in low-Reynolds number
hydrodynamics have been obtained in this way, for instance, in quantifying the
resistance of an arbitrarily shaped particle in a confined fluid [46], in constructing
exact solutions for simple flows [40, 41], in expressing the Generalized Faxén theorem
[128] for generic immersed bodies. Furthermore, hydrodynamic singularities represent
also one of the principal tools in numerical methods, such as Stokesian dynamics
[22], Method of Fundamental Solutions [135] or Multipole Methods [216].

Depending on the presence of a solid boundary at a finite distance from the
pole of the singularity, a distinction can be made between unbounded and bounded
singularities [194]. In dealing with bounded singularities we consider, throughout
this thesis, exclusively no-slip conditions at the boundaries.

In the unbounded case, all the hydrodynamic singularities can be constructed
starting from the Stokeslet, by applying to it a differential operator at the pole or at
the source point as in eq. (1.24). The relative simplicity in constructing hydrody-
namic fields as a linear superposition of a collection of unbounded singularities has
made the use of singular solutions extremely popular in the analytical description of
velocity fields originated by the motion of solid bodies with different geometries in a
Stokes fluid, thus simplifying considerably their representation with respect to those
obtained by means of other approaches involving polar coordinates or multipole
expansions [130]. Some well-known examples of solutions of hydrodynamic problems
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expressed in the singular representation refer to the motion of solid spheres [33],
ellipsoids [40, 41, 128, 129], tori [119] or slender bodies [97, 2, 3, 6] in unbounded
Stokes fluids. Moreover, the singular representation of the solutions of the Stokes
flow has been used for characterizing the locomotion of microorganisms [97, 18], and
the rheological behavior of suspensions and complex fluids [7, 105].

In the overwhelming majority of these works, the singularity functions are repre-
sented in a Cartesian reference system, since either the flow domain is unbounded,
or, in the bounded case, the singularities lie on a flat manifold (mainly points and
lines). In point of fact, a general theory of the Stokes singularities should take into
account any possible system configuration, that can, in principle, be constituted by
curved boundaries (such as cylindrical channels, spheroidal capsules, wavy surfaces
etc.), and immersed curved objects (helical flagella, biconcave disk-shaped cells etc.),
for which it is convenient to associate singularities lying on curved manifolds due to
their symmetries. Therefore, it may happen that the appropriate coordinate system
for specific hydrodynamic problems is curvilinear. As well known, Navier-Stokes
fields are invariant under coordinate transformations and, it is easy to show, that
hydrodynamic singularities are invariant also at the pole.

Tensor calculus [210] is the natural geometric framework for addressing invariance
with respect to coordinate systems. In dealing with the singularity approach to
Stokes flows, the singular fields depend at least on two points (and in principle, are
multi-point functions), the source (at the pole of the singularity) and the field point
(at the fluid element position). Consequently, a generalization of tensor calculus
is required, represented by the bitensorial formalism [211, 230, 56], specifically
developed for handling the Green functions in field theoretical developments within
the theory of general relativity. The bitensor calculus, developed originally by Ruse
[211], and further extended by Synge [230] and De Witt [56] for describing multi-
point dependent fields in general relativity, is an extension of the tensor calculus that
allows us to distinguish between the components of two-point dependent tensors
(such as the Stokes singularities) and to make operations between them by means of
the so called parallel propagator. A thorough analysis of bitensor calculus can be
found in [190], while Appendix 2.A succinctly reviews the main concepts used in the
remainder of this chapter.

One goal of the present chapter is to develop a bitensorial formalism that ensures
and preserves in a simple way invariant relations for the hydrodynamic singularity
functions both at the source and the field points. In a broader perspective, the
aim of this work is not only to transfer the bitensor formalism to the analysis of
the hydrodynamic Green functions, which is a useful task in itself, as it makes the
Stokesian formalism clear and unambiguous, but also to derive out of this formalism
new hydrodynamic properties and operators. A significant example involves the
generalization of the Faxén operator associated with an immersed body developed
in Chapter 3 and the convenient description of the hydrodynamics of particles in
confined fluids developed in Chapter 4.

The chapter is organized as follows. Section 2.2 introduces the tensor algebra
within the framework of the Stokes equations. In Section 2.3, it is shown how
bitensor calculus eliminates the formal ambiguities (related to the meaning of the
tensorial indices, and to the action of linear operators on tensorial singularities)
occurring in the current formulation of Stokesian hydrodynamics [130, 194] and it
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allows us to obtain a clear definition of singular solutions of Stokes flow (bounded
and unbounded), specifying the associated homogeneous equations and boundary
conditions.

Since the Stokes singularities can be viewed as generalized functions (or distri-
butions), the generalized function theory [79] and its connections with the theory
of moments [124] are applied to bitensorial quantities of hydrodynamic interest in
Section 2.4. Specifically, it is shown that the linear operator providing the singularity
system of a bounded flow is uniquely specified by the system of moments associated
with the forces acting on the obstacle. Although the present definition of moments is
altogether different from that proposed in [115], where, assuming no-slip boundary
conditions, the moments are defined by surface integrals of the stress tensor, the
two approaches yield the same final result as regard the expression of the distur-
bance field, showing that the no-slip boundary condition assumption is unnecessary.
This represents the only intersection point between the present theory and the one
developed by Ichiki [115] in the particular case of no-slip spheres in a Stokes flow.

In Section 2.5, the operator yielding the disturbance field associated with a
Stokeslet is considered showing that it is directly related to the reflection operator
[220, 126] of the geometry considered. This result is applied in Section 2.6 to the
singularities near a plane wall. The characterization of the singularities bounded
by a no-slip planar wall has been analyzed in the literature either as a reflection
problem [156, 102, 149] or using a system of image singularities [18, 19]. These
two approaches are reviewed in [130]. In Section 2.6, it is shown that the present
formalism highlights the equivalence between these two approaches. In fact, the
same differential operator furnishes directly either the Lorentz’s mirror form of the
solution, if applied at the field point, or the Blakes’ singularity solution form, if
applied at the source point of the Stokeslet. Moreover, since the position of the pole
enters as a variable in the reflection operator, this formalism overcomes the original
shortcomings in obtaining the higher order bounded singularities by differentiating
the Green’s function at the pole, due to the fact that, in Blake’s solutions, the
distance of the pole from the plane enters as a parameter. In this way, we obtain
unknown (Source Dipole and Stresslet) and known (Rotlet and Sourcelet) bounded
singularities, the latter ones already derived in [19] by means of a more elaborate
Fourier-Hankel transform.

2.2 Covariant formulation of Stokes equations
If a Newtonian fluid, possessing viscosity µ, is subjected to a volume force field
ψψψ(xxx), the controvariant components of the stress field σσσ(xxx), the velocity vvv(xxx) and
the scalar pressure field p(xxx) are solution, for vanishing Reynolds number, and under
steady conditions, of the Stokes equations [72]{

−∇bσ
ab(xxx) = µ∆xv

a(xxx) − ∇ap(xxx) = −ψa(xxx)
∇av

a(xxx) = 0 xxx ∈ Df

(2.1)

a = 1, 2, 3 where Df is the fluid domain. Throughout this chapter, the Einstein
summation convention is adopted. The operators ∇a and ∇a in eq. (2.1) represent the
covariant and controvariant derivatives, respectively, related by the transformation
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∇a = gab∇b, where gab = gab(xxx) is the metric tensor [231] and ∆x = gab∇a∇b is the
Laplacian operator at the point xxx. For a rank-2 tensor T a

b in mixed representation,
its covariant derivative reads

∇cT
a
b = T a

b;c = ∂T a
b

∂xc
+ Γa

mcT
m
b − Γn

bcT
a
n (2.2)

where T a
b;c is an alternative and more compact notation for the covariant derivative

of T a
b, and Γa

mc are the Christoffel symbols

Γa
mc = 1

2 g
al
(
∂glm

∂xc
+ ∂glc

∂xm
− ∂gmc

∂xl

)
(2.3)

Henceforth, we will use both the notations ∇cT
a
b and T a

b;c for the covariant deriva-
tives.

The component of the associated stress tensor for a Newtonian incompressible
fluid are therefore expressed by [72]

σab = pgab − µ(∇bva + ∇avb) = pgab − µ(va;b + vb;a) (2.4)

As well known, the controvariant components of the generic tensorial field ψψψ(xxx) =
(ψa(xxx)) change from the coordinate system {xa} to a new system {x̃a} via a linear
transformation defined by the matrix

(
∂x̃b

∂xa

)
ψ̃b(xxx) = ψa(xxx) ∂x̃

b

∂xa
(2.5)

whereas the inverse matrix at the point xxx yields the transformation of the covariant
components

ψ̃b(xxx) = ψa(xxx) ∂x̃
a

∂xb
(2.6)

2.3 Bitensorial fundamental solutions of the Stokes flow
In this Section we extend the tensorial notation to the case of the fundamental
solutions of the Stokes flow, with the aim of obtaining a clear definition of its singular
solutions. From the theory of distributions, we can write the fields entering eq.
(2.1) equipped with homogeneous Dirichlet boundary condition at ∂Df as volume
potentials [137], with a kernel Ga

α(xxx,ξξξ) for the velocity field

va(xxx) =
∫

Ga
α(xxx,ξξξ) ψ

α(ξξξ)
8πµ

√
g(ξξξ)d3ξ (2.7)

and a kernel Pα(xxx,ξξξ) for the pressure field

p(xxx) =
∫

Pα(xxx,ξξξ) ψ
α(ξξξ)
8π

√
g(ξξξ)d3ξ (2.8)

where ψα(ξξξ) are the controvariant components of the force field at a source point ξξξ,
g(ξξξ) = det(gab(ξξξ)) and d3ξ = dξ1dξ2dξ3. Observe that the coordinate representation
of the source point ξξξ could in principle be different from that of the field point xxx. This
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fact is notationally highlighted throughout the chapter, by using greek letters instead
of latin ones for any index α = 1, 2, 3 referred to the entries of tensorial entities
evaluated at the source point. Therefore, the transformations for the controvariant
and covariant components of ψψψ(ξξξ) at the source point read

ψβ′(ξξξ′) = ψα(ξξξ) ∂ξ
β′

∂ξα
, fβ′(ξξξ) = ψα(ξξξ) ∂ξ

α

∂ξβ′ (2.9)

where ξβ′ are the components of ξξξ′. This notation, with primed indices to indicate
the transformed coordinated, will be used throughout the chapter.

The kernels Ga
α(xxx,ξξξ) and Pα(xxx,ξξξ) are two-point dependent distributions, with

tensorial character both at xxx and ξξξ, thus corresponding to bitensorial quantities
[211, 56, 230, 190]. This is a common feature of any fundamental solutions (or Green
functions) in mathematical physics. Further details on the theory of bitensors are
succintly reviewed in Appendix 2.A. Specifically, the kernel entries Ga

α(xxx,ξξξ) are the
components of a bitensor with vectorial character both at the source and the field
point, and consequently their transformation in new coordinate systems both at the
source and the field points takes the form

Gb′
β′(xxx′, ξξξ′) = Ga

α(xxx,ξξξ) ∂x
b′

∂xa

∂ξα

∂ξβ′ (2.10)

whereas the transformation rule for the pressure bitensor, with scalar character at
the field point xxx and vectorial at the source point ξξξ, is given by

Pβ′(xxx,ξξξ′) = Pα(xxx,ξξξ) ∂ξ
α

∂ξβ′ (2.11)

Finally, using the invariance properties of the Dirac delta function [190] and the
parallel transport of tensorial quantities, it is possible to express the force field
entering eq. (2.1) as

ψa(xxx) =
∫
ga

α(xxx,ξξξ)ψα(ξξξ)δ(xxx,ξξξ)
√
g(ξξξ)d3ξ; δ(xxx,ξξξ) = δ(xxx− ξξξ)√

g(ξξξ)
(2.12)

where ga
α(xxx,ξξξ) is the parallel propagator bitensor, which propagates in a parallel way

a vector along the unique geodesics connecting xxx to ξξξ. In a distributional meaning,
it follows that ga

α(xxx,ξξξ)δ(xxx,ξξξ) = δa
αδ(xxx,ξξξ) being xxx and ξξξ coincident.

By substituting eqs. (2.7), (2.8) and (2.12) in eq. (2.1), we obtain the bitensorial
Green function equations of the Stokes flow, yielding the velocity and pressure at
the field point xxx due to an impulsive force acting at the source point ξξξ

−∇bΣab
α (xxx,ξξξ) = ∆xGa

α(xxx,ξξξ) − ∇aPα(xxx,ξξξ) = −8πδa
αδ(xxx,ξξξ)

∇aGa
α(xxx,ξξξ) = 0

Ga
α(xxx,ξξξ)|xxx∈∂Df

= 0
(2.13)

From eq. (2.4), the stress field Σab
α (xxx,ξξξ) associated with the Green function is defined

by
Σab

α (xxx,ξξξ) = Pα(xxx,ξξξ)gab(xxx) − (Ga;b
α (xxx,ξξξ) + Gb;a

α (xxx,ξξξ)) (2.14)
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In the case the source point is kept fixed, bitensors become simple tensors depending
only on the field point. Therefore, by choosing the force field ψψψ(ξξξ) = ψψψ0δ(ξξξ − ξξξ0),
from eqs. (2.7) and (2.8), we obtain the velocity/pressure fields due to an impulsive
force with intensity ψψψ0 placed at a singular point ξξξ0

va(xxx) = ψα
0

8πµGa
α(xxx,ξξξ0) (2.15)

p(xxx) = ψα
0

8π Pα(xxx,ξξξ0) (2.16)

for which the stress tensor σab(xxx) takes the form

σab(xxx) = ψα
0

8πΣab
α(xxx,ξξξ0) (2.17)

The reciprocity relation [130, 194] for the Green function in bitensorial notation
becomes

Ga
α(xxx,ξξξ) = G a

α (ξξξ,xxx) (2.18)

By exchanging xxx ↔ ξξξ, and thus a ↔ α, and enforcing the reciprocity relation (2.18),
it follows that Ga

α(xxx,ξξξ) is also the solution of the system
−∇βΣa

αβ(ξξξ,xxx) = ∆ξGa
α(xxx,ξξξ) − ∇αPa(ξξξ,xxx) = −8πδa

αδ(xxx,ξξξ)
∇αGa

α(xxx,ξξξ) = 0
Ga

α(xxx,ξξξ)|ξξξ∈∂Df
= 0

(2.19)

where ∆ξ = gαβ(ξξξ)∇α∇β is the Laplacian at point ξξξ. In this case, the associated
stress field becomes

Σa
αβ(ξξξ,xxx) = Pa(ξξξ,xxx)gαβ(ξξξ) − (Ga

α;β(xxx,ξξξ) + Ga
β;α(xxx,ξξξ)) (2.20)

Since the Green function vanishes at ξξξ ∈ ∂Df for any xxx, Pα(xxx,ξξξ) must be constant
for ξξξ ∈ ∂Df due to eq. (2.13), and therefore can be set equal to zero. Furthermore,
the pressure scalar-vector Pα(xxx,ξξξ) is a potential scalar field at xxx possessing the
following properties

∆xPα(xxx,ξξξ) = 8π∇αδ(xxx,ξξξ)
∇αPα(xxx,ξξξ) = 8πδ(xxx,ξξξ) (2.21)
Pα(xxx,ξξξ)|ξξξ∈∂Df

= 0

The first relation stems from eq. (2.13), by taking the divergence with respect to xxx,
while the second relation follows by taking the divergence with respect to ξξξ, enforcing
the second relation in eq. (2.19). In a similar way, Pa(ξξξ,xxx) fulfills the relations

∆ξPa(ξξξ,xxx) = 8π∇aδ(xxx,ξξξ)
∇aPa(ξξξ,xxx) = 8πδ(xxx,ξξξ) (2.22)
Pa(ξξξ,xxx)|xxx∈∂Df

= 0

Observe that eq. (2.21) for Pα(xxx,ξξξ), and likewise eq. (2.22) for Pa(ξξξ,xxx) do not
constitute a boundary value problem for the pressure variable, as the boundary
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condition is assigned for a variable (ξξξ in eq. (2.21)) different from that involved in
the differential equation (xxx in eq. (2.21)), thus representing a collection of properties
fulfilled by the pressure field.

To obtain the higher order singularities, the Green function should be differenti-
ated at the pole ξξξ maintaining homogeneous Dirichlet conditions at the field point.
The first derivative at the pole yields the Stokesian dipole, the second derivative the
Stokesian quadrupole and so on.

The Stokesian dipole Ga
α;β(xxx,ξξξ) can also be expressed as superposition of two

other singular solutions of the Stokes equations: a symmetric and an antisymmetric
tensor field at the source points

Ga
α;β(xxx,ξξξ) = Ea

αβ(xxx,ξξξ) + εγαβΩaγ(xxx,ξξξ) (2.23)

where
Ea

αβ(xxx,ξξξ) = 1
2(Ga

α;β(xxx,ξξξ) + Ga
β;α(xxx,ξξξ)) (2.24)

is the field due to a singular strain of the fluid at the source point, and

Ωaγ(xxx,ξξξ) = εγϵη

2 Ga
ϵ;η(xxx,ξξξ) (2.25)

where εαβγ is the Levi-Civita symbol (in the italian mathematical literature also
called the Ricci tensor [72]), is the field due to a singular rotation of the fluid at the
source point.

The symmetric strain component is the solution of the Stokes system of equations
∆xEa

αβ(xxx,ξξξ) − 1
2 ∇a (Pα;β(xxx,ξξξ) + Pβ;α(xxx,ξξξ)) = −4π(δa

α∇β + δa
β∇α)δ(xxx,ξξξ)

∇aEa
αβ(xxx,ξξξ) = 0

Ea
αβ(xxx,ξξξ)|xxx∈∂Df

= 0
(2.26)

which can be also computed directly from eqs. (2.19),(2.20) by exchanging source
and field points in the pressure and stress fields related to the solution of the Green
function

Ea
α;β(xxx,ξξξ) = gαβ(ξξξ)

2 Pa(ξξξ,xxx) − 1
2Σa

αβ(ξξξ,xxx) (2.27)

The antisymmetric part of the Stokes dipole corresponds to the solution of the
Stokes system

∆xΩaγ(xxx,ξξξ) − 1
2ε

γϵη∇aPϵ;η(xxx,ξξξ) = −4πδa
ϵ ε

γϵη∇ηδ(xxx,ξξξ)
∇aΩaγ(xxx,ξξξ) = 0
Ωaγ(xxx,ξξξ)

∣∣
xxx∈∂Df

= 0
(2.28)

A further differentiation at the pole defines the Stokes quadrupole. Specifically,
by applying the Laplacian operator ∆ξ/2 to the Green function, we obtain the so
called Source Dipole

∆xDa
α(xxx,ξξξ) − 1

2∇a∆ξPα(xxx,ξξξ) = −4πδa
α∆ξδ(xxx,ξξξ)

∇aDa
α(xxx,ξξξ) = 0

Da
α(xxx,ξξξ)

∣∣
xxx∈∂Df

= 0
(2.29)
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Also the solution of this system can be obtained by exchanging source and field
points in the gradient of the pressure field associated with the Green function. In
point of fact, from the first relation in eq. (2.19), we have

Da
α(xxx,ξξξ) = −∆ξGa

α(xxx,ξξξ)
2 = −∇αPa(ξξξ,xxx)

2 + 4πδa
αδ(xxx,ξξξ) (2.30)

2.3.1 Unbounded singularities

In this paragraph, unbounded singularities are briefly analyzed. Due to translational
invariance, the singularities in R3, depend solely on the vector xxx− ξξξ. Henceforth,
the unbounded singular functions will be indicated by sans-serif capital letters. The
Green function Sa

α(xxx− ξξξ), usually referred to as the Stokeslet, is the solution of the
Stokes problem

−∇bΣab
α (xxx− ξξξ) = ∆xSa

α(xxx− ξξξ) − ∇aPα(xxx− ξξξ) = −8πδa
αδ(xxx,ξξξ)

∇aSa
α(xxx− ξξξ) = 0

Sa
α(xxx− ξξξ)

∣∣
|xxx−ξξξ|→∞ = 0

(2.31)

Since the Laplacian is invariant under translation (and, more generally, under
Euclidean transformations [217]), we have for a generic function f(xxx−ξξξ), ∆x−ξf(xxx−
ξξξ) = ∆xf(xxx− ξξξ) = ∆ξf(xxx− ξξξ). Therefore, it is possible to express the pressure in
eq. (2.21) as the solution of the harmonic problem∆ξPα(xxx− ξξξ) = 8π∇αδ(xxx,ξξξ)

Pα(xxx− ξξξ)
∣∣
|xxx−ξξξ|→∞ = 0

(2.32)

thus
Pα(xxx− ξξξ) = 2∇α

1
|xxx− ξξξ|

= 2(xxx− ξξξ)α

r3 (2.33)

while the associated velocity and stress-tensor fields are given by [194, 84]

Sa
α(xxx− ξξξ) = (δa

α∆ξ − ∇α∇a)|xxx− ξξξ| = δa
α

|xxx− ξξξ|
+ (xxx− ξξξ)a(xxx− ξξξ)α

|xxx− ξξξ|3
(2.34)

Σab
α (xxx− ξξξ) = 6(xxx− ξξξ)a(xxx− ξξξ)b(xxx− ξξξ)α

r5 (2.35)

As Pα;β(xxx− ξξξ) = Pβ;α(xxx− ξξξ), the symmetric part of the Stokes dipole corresponds
to the solution of the problem

∆xEa
αβ(xxx− ξξξ) − ∇aPα;β(xxx− ξξξ) = −4π(δa

α∇β + δa
β∇α)δ(xxx,ξξξ)

∇aEa
αβ(xxx− ξξξ) = 0

Ea
αβ(xxx− ξξξ)

∣∣
|xxx−ξξξ|→∞ = 0

(2.36)

and due to eq. (2.27) it takes the expression

Ea
αβ(xxx− ξξξ) = gαβ(ξξξ)

2 Pa(ξξξ − xxx) − 1
2Σa

αβ(ξξξ − xxx) (2.37)
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This field can be viewed as the superposition of two terms: the contribution Ma(xxx−
ξξξ) = −Pa(ξξξ − xxx)/2, which is the solution of a Stokes problem everywhere but at the
pole 

∆xMa(xxx− ξξξ) = −4π∇aδ(xxx,ξξξ)
∇aMa(xxx− ξξξ) = −4πδ(xxx,ξξξ)
Ma(xxx− ξξξ)

∣∣
|xxx−ξξξ|→∞ = 0

(2.38)

Strictly speaking, the field Ma(xxx− ξξξ), usually called the Sourcelet [19, 194], is not
a Stokesian singular solution, since its divergence does not vanish at the pole and,
thus, it does not satisfy the overall mass balance over the fluid. It can be physically
interpreted as the velocity field stemming from a pointwise fluid source (or sink, if
the sign is reversed) at the pole. Its bounded counterpart can be defined solely for
external problems, so that it could match the regularity condition and the overall
mass balance at infinity. However, it cannot be generally neither obtained from the
Green function (as the Green function is divergence-free), nor it is related to the
Green function pressure field, as in the unbounded case.

Similarly, also the second term is not a singular Stokesian solution. In fact, the
field Ta

αβ(xxx− ξξξ) = Σa
αβ(ξξξ − xxx)/2, called the Stresslet, is the solution of the problem

∆xTa
αβ(xxx− ξξξ) − ∇aPα;β(xxx− ξξξ) = −4π(gαβ(ξξξ)∇a + δa

α∇β + δa
β∇α)δ(xxx,ξξξ)

∇aTa
αβ(xxx− ξξξ) = −4πgαβ(ξξξ)δ(xxx,ξξξ)

Ta
αβ(xxx− ξξξ)

∣∣
|xxx−ξξξ|→∞ = 0

(2.39)
possessing non vanishing divergence. Therefore, the symmetric Strainlet eq. (2.37)
can be expressed as

Ea
αβ(xxx− ξξξ) = −gαβ(ξξξ)Ma(xxx− ξξξ) + Ta

αβ(xxx− ξξξ) (2.40)

Next consider the antisymmetric term defined by eq. (2.25). In unbounded flows
Ωaγ(xxx − ξξξ) is referred to as the Rotlet. Since εγϵηPϵ;η(xxx − ξξξ) = 0, the Rotlet is a
constant pressure solution of the Stokes system

∆xΩaγ(xxx− ξξξ) = −4πδa
ϵ ε

γϵη∇ηδ(xxx,ξξξ)
∇aΩaγ(xxx− ξξξ) = 0
Ωaγ(xxx− ξξξ)

∣∣
|xxx−ξξξ|→∞ = 0

(2.41)

the analytic expression of which is

Ωaγ(xxx− ξξξ) = −δa
ϵ ε

γϵη∇η
1

|xxx− ξξξ|
(2.42)

Another low order irrotational singularity of the Stokes problem is the solution
of eq. (2.29) in unbounded domain, namely

∆xDa
α(xxx− ξξξ) = −4π(δa

α∆ξ − ∇a∇α)δ(xxx,ξξξ)
∇aDa

α(xxx− ξξξ) = 0
Da

α(xxx− ξξξ)
∣∣
|xxx−ξξξ|→∞ = 0

(2.43)
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This solution, referred to as the Source Doublet, can be obtained from eq. (2.31)
and from the definition of Ma(xxx− ξξξ)

Da
α(xxx− ξξξ) = −∆ξSa

α(xxx− ξξξ)
2 = ∇αMa(xxx− ξξξ) + 4πδa

αδ(xxx,ξξξ) (2.44)

2.4 Singular representation of bounded flows
In the previous Section we have discussed how all the singularities of bounded flows
can be obtained by differentiating the Stokeslet at its pole. In this Section, we
develop a method to obtain the singular representation of a Stokes flow in a given
domain Df containing solid boundaries by means of a linear operator applied to
the Stokeslet in the external domain Dext ≡ R3/Df , and yielding the disturbance
field in Df . More precisely, consider a given solution uuu(xxx) of the Stokes equation in
Df , attaining arbitrary values at the boundaries ∂Df (at which, the Stokes problem
dictates no-slip boundary conditions). The velocity field uuu(xxx) is referred to as the
ambient flow. In order to match the no-slip boundary condition, a disturbance flow
www(xxx) should be added so that vvv(xxx) = www(xxx) + uuu(xxx) is the Stokes solution within Df

satisfying the no-slip conditions on ∂Df . Thus, the disturbance flow is a solution of
the equations 

µ∆xw
a(xxx) − ∇aq(xxx) = 0 xxx ∈ Df

∇aw
a(xxx) = 0

wa(xxx) = −ua(xxx) xxx ∈ ∂Df

(2.45)

where q(xxx) is the associated pressure field. It is convenient to extend this problem
over the whole physical space R3 in order to obtain its singular representation. To
this purpose, we can formulate the problem defined by eqs. (2.45) in the form of the
non-homogeneous unbounded Stokes equations in R3 as{

µ∆xw
a(xxx) − ∇aq(xxx) = −ψa(xxx) xxx ∈ R3

∇aw
a(xxx) = 0

(2.46)

with the condition that ψa(xxx) are distributions defined on a compact support in
Dext, and satisfying the integral equation∫

Dext

Sa
α(xxx,ξξξ)ψ

α(ξξξ)
8πµ

√
g(ξξξ)d3ξ = −ua(xxx) xxx ∈ ∂Df (2.47)

Let us introduce the n-th order tensorial moments of the function ψψψ(xxx), extending
the scalar moment theory [124], as

Mα
αααn

(ξξξ) =
∫

Dext

gα
a(ξξξ,xxx)g a1

α1 (ξξξ,xxx)...g an
αn

(ξξξ,xxx)ψa(xxx)(xxx−ξξξ)a1 ...(xxx−ξξξ)aaan

√
g(xxx)d3x , ξξξ ∈ Dext

(2.48)
or, using the scalar-product notation on the external domain

Mα
αααn

(ξξξ) =
〈
gα

a(ξξξ,xxx)ψa(xxx), g aaan
αααn

(ξξξ,xxx)(xxx− ξξξ)aaan

〉
(2.49)

where ⟨·, ·⟩ indicates the scalar product in Dext ≡ R3/Df , aaan = (a1, . . . , an) is a
multi-index, g aaan

αααn
(ξξξ,xxx) = g a1

α1 (ξξξ,xxx)...g an
αn

(ξξξ,xxx) and (xxx− ξξξ)aaan = (xxx− ξξξ)a1 ...(xxx− ξξξ)an .
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It is shown in Chapiter 3 that the moments Ma
aaan

(ξξξ) can be reduced to the surface
integrals. In the case no-slip boundary conditions are assumed, becomes

Mα
αααn

(ξξξ) =
∫

∂Df

gα
a(ξξξ,xxx)g aaan

αααn
(ξξξ,xxx)(xxx− ξξξ)aaanσ

ab(xxx)nb(xxx) dS(xxx) (2.50)

where σσσ(xxx) is the stress tensor related to the total velocity field vvv(xxx), and nb(xxx)
the covariant components of the inwardly oriented normal unit vector at points xxx
of ∂Df . Therefore, given a reference point ξξξ, all the moments on the volume Dext

are uniquely determined by the stress field at the surface, since eq. (2.50) does not
depend on the chosen function ψψψ(xxx).

Consider the tensorial Taylor expansion [212] of the components of the vectorial
test function ϕϕϕ(xxx) around a given point ξξξ ∈ Dext

ϕa(xxx) =
∞∑

n=0
(−1)n g

a
α(xxx,ξξξ)∇αααnϕ

α(ξξξ)
n! (ξξξ − xxx)αααn (2.51)

where ∇αααn = ∇α1 · · · ∇αn . Owing to the bitensorial notation, there is no ambiguity
in the definition of ∇αααn as greek indices refer to the source point.

Applying the test function to the momentum balance equation entering eq. (2.46)
we have

⟨ψa, ϕa⟩ =
∞∑

n=0

〈
ψa, (−1)n g

α
a (xxx,ξξξ)∇αααnϕα(ξξξ)

n! (ξξξ − xxx)αααn

〉

=
∞∑

n=0

∇αααnϕα(ξξξ)
n! Mα

αααn
(ξξξ) (2.52)

where we have made use of the relations g α
a (xxx,ξξξ) = gα

a(ξξξ,xxx) and (xxx − ξξξ)αααn =
(−1)n(ξξξ − xxx)αααn = (xxx− ξξξ)aaang αααn

aaan
(ξξξ,x) see Appendix A.

Since the derivatives of the test functions can be formulated in scalar-product
notation as

∇αααnϕα(ξξξ) = (−1)n ⟨∇αααnga
α(xxx,ξξξ)δ(xxx,ξξξ), ϕa(xxx)⟩ (2.53)

substituting eq. (2.53) into eq. (2.52), the function ψψψ(xxx) can be finally expressed as

ψa(xxx) =
∞∑

n=0
(−1)nM

α
αααn

(ξξξ)
n! ∇αααnga

α(xxx,ξξξ)δ(xxx,ξξξ) (2.54)

Although the moments depend on the reference points ξξξ, the summation in equation
(2.54) does not depend on ξξξ. Therefore, eq. (2.54) can be generalized by considering
ξξξ as a point of an arbitrary k-dimensional (k ≤ 3) set of points Ω, averaging eq.
(2.54) over Ω,

ψa(xxx) = 1
meas(Ω)

∫
Ω
dΩ(ξξξ)

∞∑
n=0

(−1)nM
α
αααn

(ξξξ)
n! ∇αααnga

α(xxx,ξξξ)δ(xxx,ξξξ) (2.55)

where dΩ(ξξξ) is the measure element and

meas(Ω) =
∫

Ω
dΩ(ξξξ)
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is the Lebesgue measure of Ω. Depending on the symmetries of the flow geometry,
the set Ω can be chosen in some particular cases as to reduce the infinite summation
entering eq. (2.55) to a finite number of terms.

From the structure of eq. (2.54) we can introduce a differential operator

D∗α =
∞∑

n=0
(−1)nM

α
αααn

(ξξξ)
n! ∇αααn (2.56)

that in eq. (2.54) acts on the Dirac delta function. In a similar way, if eq. (2.54) is
generalized by eq. (2.55), the operator D∗α attains an integro-differential represen-
tation

D∗α = 1
meas(Ω)

∫
Ω
dΩ(ξξξ)

∞∑
n=0

(−1)nM
α
αααn

(ξξξ)
n! ∇αααn (2.57)

so that ψa = D∗αga
α(xxx,ξξξ)δ(xxx,ξξξ). Its adjoint D, ⟨D∗af, g⟩ = ⟨f,Dg⟩, is expressed by

Dα = 1
meas(Ω)

∫
Ω
dΩ(ξξξ)

∞∑
n=0

Mα
αααn

(ξξξ)
n! ∇αααn (2.58)

Therefore, the problem defined by eq. (2.46) can be reformulated as

{
µ∆xw

a(xxx) − ∇aq(xxx) = −D∗αga
α(xxx,ξξξ)δ(xxx,ξξξ) xxx ∈ R3, ξξξ ∈ Dext

∇aw
a(xxx) = 0

(2.59)

and the singular representation of the velocity field www(xxx) follows from equations
(2.7)-(2.8), namely

wa(xxx) =
〈

D∗αδ(ξξξ′, ξξξ), Sa
α(xxx− ξξξ′)

8πµ

〉
= DαSa

α(xxx− ξξξ)
8πµ (2.60)

and

p(xxx) =
〈

D∗αδ(ξξξ′, ξξξ), P α(xxx− ξξξ′)
8π

〉
= DαP α(xxx− ξξξ)

8π (2.61)

where the scalar products in eqs. (2.60), (2.61) correspond to an integration over ξξξ′.
Thus the operator D defined by the (2.58) provides the singular expansion, of the
flow at the source point ξξξ.

The procedure outlined above, based on the generalized function theory, pro-
vides an explicit expression for the operator DDD in the form of a series expansion
the coefficients of which are the moments. The main advantages of this explicit
representation are: (i) for a specific flow problem the terms in the series expansion of
the operator can be obtained numerically with arbitrary precision, (ii) it is possible
to manipulate its formal structure in order to obtain new relations as will be shown
in the next Sections.
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2.5 Reflection operator
In hydrodynamics problems involving bounded flows and confined geometries, the
Green function Ga

α′(xxx,ζζζ), solution of the equations
−∇bΣab

α′(xxx,ζζζ) = ∆xGa
α′(xxx,ζζζ) − ∇aPα′(xxx,ζζζ) = −8πga

α′(xxx,ζζζ)δ(xxx,ζζζ)
∇aGa

α′(xxx,ζζζ) = 0; xxx,ζζζ ∈ Df

Ga
α′(xxx,ζζζ) = 0; xxx ∈ ∂Df

(2.62)

(referred for short to as the bounded Green function) plays a central role as it
provides the volume potential in the fluid domain Df , starting from which any flow
with no-slip boundary conditions at ∂Df , can be constructed.

Bounded Green function are available in the literature for a handful of simple
geometries, as reviewed in [194]. In special cases, such as for the Green function of a
fluid bounded by a plane [18] or outside a sphere [185, 164] (see also [130]), a repre-
sentation of the bounded Green function in terms of unbounded singularities placed
outside the fluid domain is available. This representation is referred to as the image
system [130], which is particularly handy for analytical and numerical calculations
whenever the set of singularities is either finite or localized on simple manifolds. The
latter property characterizes flows with suitable and simple symmetries while, for
generic bounded flows, an image system of singularities is not available.

Based on the theory developed in Section 2.4, this Section addresses the properties
of the operator providing the image system for a generic bounded Green function.
To this aim, let us to consider as the ambient field the unbounded flow due to
a Stokeslet centered at the point ζζζ ∈ Df and let us use the primed indices, say
α′, β′, ..., for referring to this point

ua(xxx) = ψα′
0

8πµSa
α′(xxx− ζζζ) (2.63)

As a consequence, the boundary condition for the disturbance field is given by

wa(xxx) = −ua(xxx) = − ψα′
0

8πµSa
α′(xxx− ζζζ) , xxx ∈ ∂Df (2.64)

Owing to linearity, let us define the field Wa
α′(xxx,ζζζ), depending on ζζζ, but regular at

this point, such that

wa(xxx) = ψα′
0

8πµWa
α′(xxx,ζζζ) (2.65)

The theory developed in Section 2.4 can be applied, and enforcing eq. (2.60) the
field Wa

α′ is given by
Wa

α′(xxx,ζζζ) = Dα
α′Sa

α(xxx− ξξξ) (2.66)
where

Dα
α′ = 1

meas(Ω)

∫
Ω
dΩ(ξξξ)

∞∑
n=0

Mα
α′αααn

(ξξξ, ζζζ)
n! ∇αααn

Mα
α′αααn

(ξξξ, ζζζ) = −
∫

∂Df

(xxx− ξξξ)αααng
α
a(ξξξ,xxx)Σab

α′(xxx,ζζζ)
8π nb(xxx)dS(xxx) (2.67)



30 2. Bitensorial formulation of the singularity method for Stokes flows

Therefore, the Green function solution of eq. (2.62) can be expressed as the sum of
two contributions: a singular part, due to the Stokeslet centered in the point ζζζ, and
a regular part due to the integro-differential operator Dα

α′ acting on the poles of the
Stokeslet outside the domain of the fluid

Ga
α′(xxx,ζζζ) = Sa

α′(xxx− ζζζ) + Dα
α′Sa

α(xxx− ξξξ) (2.68)

Owing to the properties of the Green functions, the same result can be obtained
by applying the operator Dα

α′ at the field point. In point of fact, making use
of the reciprocal identities for the Green functions, Ga

α′(xxx,ζζζ) = G a
α′(ζζζ,xxx) and

Sa
α′(xxx,ζζζ) = S a

α′(ζζζ,xxx), it follows that

Ga
α′(xxx,ζζζ) = G a

α′(ζζζ,xxx) = S a
α′(ζζζ − xxx) + D a

α S α
α′ (ζζζ − ξξξ) = Sa

α′(xxx− ζζζ) + D a
α Sα

α′(ξξξ − ζζζ)
(2.69)

where, due to the reciprocity, the point ξξξ (corresponding in eq. (2.66) to a source
point) has been transformed into a field point outside the domain. By changing the
dummy variable (ξξξ → yyy) ∈ Db and the index α, β, ... → a′, b′, ... in order to keep the
convention that field points are associated with latin lettering, the Green function
can be expressed as

Ga
α′(xxx,ζζζ) = Sa

α′(xxx− ζζζ) + D a
a′ Sa′

α′(yyy − ζζζ) (2.70)

where now

D a
a′ = 1

meas(Ω)

∫
Ω
dΩ(yyy)

∞∑
n=0

M
aaaa′

n
a′ (yyy,xxx)
n! ∇aaa′

n

M
aaaa′

n
a′ (yyy,xxx) = −

∫
∂Df

g a′′
a′ (yyy,zzz)(zzz − yyy)aaa′

n
Σab′′

a′′ (zzz,xxx)
8π nb′′(zzz)dS(zzz) (2.71)

Although equations (2.68) and (2.71) are equivalent, their physical meaning in
slightly different. In eq. (2.68), the Green function is expressed as a combination of
singular solutions of the unbounded Stokes equation, with poles in Ω, weighted by
the moments that, in turn, depend on the pole ζζζ entering the original problem eq.
(2.62). Conversely, in equation (2.71) the field variable enters in the expression of
the operator D a

a′ through the moments, and the regular part, solution of the Stokes
equations as a whole, is a combination of terms each of which individually is not a
solution of the Stokes equation.

The operators Dα
α′ defined by eq. (2.67), depend on the pole ζζζ via the moments,

and consequently, for each ζζζ, a new system of moments is defined, determining a
different operator Dα

α′ . For this reason, it is convenient to introduce a new operator,
independent of the position of the pole, and such that, its action on the Stokeslet
outside the domain of the fluid furnishes the Green function. To this purpose, let
us assume that the geometry of the problem is such that there exists a bijective
correspondence between points inside ζζζ and outside ξξξ the domain of the fluid, defined
by a smooth and invertible function r,

ξξξ = r−1(ζζζ), ζζζ = r(ξξξ) (2.72)
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As addressed in Appendix 2.A, and following the Ruse approach to bitensor calculus
[211], eq. (2.72) enables us to view ξξξ and ζζζ as conjugate points in two different
metric spaces, such that tensorial quantities defined at a point in one of the two
spaces can be transported to the conjugate point of the other space via the parallel
propagator

gαβ(ξξξ) = g α′
α (ξξξ, ζζζ)g β′

β (ξξξ, ζζζ)gα′β′(ζζζ) (2.73)

where the parallel propagator is given by

gα
α′(ξξξ, ζζζ) = ∂ξα

∂ζα′ (2.74)

It follows from eq. (2.73) and from the above bitensorial interpretation of the
bijective correspondence eq. (2.72) between point in the flow domain and image
points outside it, that the stress tensor Σab

α′(xxx,ζζζ) can be parallel transported from
the point ζζζ to the point ξξξ

Σab
α (xxx, r(ξξξ)) = g α′

α (ζζζ, ξξξ)Σab
α′(xxx,ζζζ) (2.75)

Substituting eq. (2.75) into eq. (2.67) one obtains

Mα
α′αααn

(ξξξ, ζζζ) = g β
α′ (ξξξ, ζζζ)Mα

βαααn
(ξξξ, r(ξξξ)) (2.76)

where

Mα
βαααn

(ξξξ, r(ξξξ)) = −
∫

∂Df

(xxx− ξξξ)αααng
α
a(ξξξ,xxx)

Σab
β (xxx, r(ξξξ))

8π nb(xxx)dS(xxx) (2.77)

Enforcing eq. (2.76), it is possible to express the operator Dα
α′ in terms of a reflection

operator independent of the pole ζζζ, and such that the functional dependence on ζζζ is
encompassed in the parallel propagator. For highlighting this delicate issue, let us
consider the simplest case where Ω reduces to a point r(ζζζ). In this case, it follows
from eq. (2.76) that the operator Dα

α′ attains the form

Dα
α′ = g β

α′ (ζζζ, ξξξ)Rα
β , Rα

β =
∞∑

n=0

Mα
βαααn

(ξξξ, r(ξξξ))
n! ∇αααn (2.78)

The operator Rα
β furnishes the regular part of the Green function starting from the

Stokeslet, independently on the source point ζζζ and, for the reasons discussed below,
it can be referred to as the reflection operator of the bounded flow problem.

By eqs. (2.68) and (2.70), the operator Rα
β can be applied on equal footing either

at the source or at the field point. In the first case, the Green function reads

Ga
α′(xxx,ζζζ) = Sa

α′(xxx− ζζζ) + g β
α′ (ζζζ, ξξξ)Rα

βSa
α(xxx− ξξξ) (2.79)

In the second case, i.e., by applying the operator at the field point, an alternative
representation of the Green function follows

Ga
α′(xxx,ζζζ) = Sa

α′(xxx− ζζζ) + ga
b′(xxx,yyy)Rb′

a′Sa′
α′(yyy − ζζζ) (2.80)

where yyy = r−1(xxx) and xxx = r(yyy). The latter expression permits to interpret the
regular part of the Green function as a "reflected field" of the ambient flow, that in
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the present case is given by a Stokeslet centered at the point ζζζ. In fact, the operator
R b

a′ furnishes a continuation of the Stokes solution with homogeneous Dirichlet
boundary conditions in the external domain, usually referred as a reflection principle
[220, 126]. To show this, consider the integral form of a generic solution vanishing
at the boundary ∂Df [137]

va(xxx) = −
∫

∂Df

σα′β′(ζζζ)nβ′(ζζζ)
8πµ Sa

α′(xxx− ζζζ)dS(ζζζ) xxx ∈ Df (2.81)

and its continuation in R3/Df ,

va′(yyy) =
∫

∂Df

σαβ(ξξξ)nβ(ξξξ)
8πµ Sa′

α(yyy − ξξξ)dS(ξξξ) yyy ∈ R3/Df (2.82)

Since, by the definition of the disturbed field

g β
α′ (ζζζ, ξξξ)Rα

βSa
α(xxx− ξξξ) = −Sa

α′(xxx− ζζζ), xxx ∈ ∂Df (2.83)

by using the reciprocal identity Sa
α′(xxx− ζζζ) = S a

α′(ζζζ − xxx) and exchanging latin and
greek letters, it easy to verify that

ga
b′(xxx,yyy)Rb′

a′Sa′
α′(yyy − ζζζ) = −Sa

α′(xxx− ζζζ), ζζζ ∈ ∂Df (2.84)

Therefore, by applying the operator Rb′
a′ at the field in (2.82) we obtain at the r.h.s

of eq. (2.82) the field defined by eq. (2.81) and the reflection formula can be derived

va(xxx) = ga
b′(xxx,yyy)Rb′

a′va′(r(xxx)) (2.85)

The reflection formula in eq. (2.85) requires in principle the estimate of infinite terms
as the operator Rb′

a′ admits in general a series expansion in terms of the countable
system of moments. It is known from harmonic function theory, that if the reflection
operator (e.g. associated with an electrostatic problem) possesses a finite number of
non-vanishing terms, then the boundary is either a plane or a sphere [66] and the
relation equivalent to eq. (2.85) is referred as a point-to-point reflection principle. In
the case of the solutions of the Stokes problem, that involves biharmonic functions,
it is known that a point-to-point reflection principle does not hold even for spherical
boundaries, and a weaker point-to-set principle [76, 66, 102] should be considered,
where a bijective relation occurs between a point xxx in the fluid domain and a set
parameterized by its conjugate point yyy = r(x) in the complementary domain.

Eq. (2.78) and the analysis developed in the previous Section indicate the
close relation (duality) between the image system of singularities of a bounded
flow problem and the formulation of a reflection principle, as the two problems
are governed by essentially the same operators Dα

α′ and Rα
β , parallel transported

between a source point and its conjugate image. The duality between image system
and reflection principle has been practically neglected in Stokesian hydrodynamics.
Several works have investigated the image system of singularities near a plane [18, 19]
or near spherical boundaries [164], and, almost independently, parallel works on
reflected fields near a planar [150] and spherical boundaries [102] has been published.
The main difficulty in recognizing a common formal structure underlying image
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systems and reflection principle in Stokesian hydrodynamics stems from the tensorial
nature of the operators involved, and by the need of a parallel transport between
conjugate points. The introduction of the bitensorial formalism for hydrodynamic
Green functions has made possible to highlight this issue.

The duality between the image system of singularities and the existence of a
reflection principle make it possible to transfer and apply methods and techniques
developed for solving one of these two problems to the other one. The next Section
provides an application of this principle in connection with the problem of singularities
bounded by planar boundaries.

2.6 Singular fields bounded by a single plane
Below, the results found in Section 2.5 are applied to the problem of the singularities
of a flow bounded by a rigid plane. In this case, the function r transforming
points xxx ∈ Df into conjugate points yyy ∈ R3/Df is given by the mirror operator
JJJ = III − 2nnn⊗nnn, III being the identity matrix, and nnn the unit normal to the plane, so
that yyy = JJJ · xxx and xxx = JJJ · yyy, since JJJ2 = III.

Consider a Cartesian coordinate system (X1, X2, X3) with the origin on the plane
and such that the flow domain corresponds to X3 > 0. Let xxx ∈ Df with coordinates
(x1,x2,x3), and its mirror point yyy ∈ R3/Df with coordinates ya′ = Ja′axa.

The parallel propagator (see Appendix 2.A) between these conjugate points is
given by

gaa′(xxx,yyy) = ∂ya′

∂xa
= Jaa′ (2.86)

The reflection operator acting at the point yyy, corresponding to eq. (2.85) is the so
called Lorentz mirror operator [156, 102]

Ra′b′ = −Ja′b′ − 2(yyy ·nnn)∇a′δ3b′ + (yyy ·nnn)2∆xδa′b′ (2.87)

The Green function of the Stokes flow centered at the source point ζζζ ∈ Df can be
obtained either by applying the reflection operator at the field point, according to
eq. (2.80), or at the source point, according to eq. (2.79). In the first case we have

Gaα′(xxx,ζζζ) = Saα′(xxx− ζζζ) + Jab′ [−Jb′a′ − 2y3∇b′δ3a′ + y2
3∆xδb′a′ ]Sa′α′(yyy − ζζζ) =

Saα′(xxx− ζζζ) − Saα′(JJJ · xxx− ζζζ) + 2x3Jab′ [∇b′S3α′(JJJ · xxx− ζζζ) + x3
2 ∆xSb′α′(JJJ · xxx− ζζζ)]

(2.88)

while the application at the source point provides

Gaα′(xxx,ζζζ) = Saα′(xxx−ζζζ) + Jα′β[−Jβα − 2(ξξξ ·nnn)∇βδ3α + (ξξξ ·nnn)2∆ξδβα]Saα(xxx−ξξξ) =

Saα′(xxx− ζζζ) − Saα′(xxx− ξξξ) − 2(ξξξ ·nnn)Jα′β[∇βSa3(xxx− ξξξ) − (ξξξ ·nnn)
2 ∆ξSaβ(xxx− ξξξ)]

(2.89)

with the expression for the pressure

Pα′(xxx,ζζζ) = Pα′(xxx− ζζζ) − Pα′(xxx− ξξξ) − 2(ξξξ ·nnn)Jα′β∇βP3(xxx− ξξξ) (2.90)
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and for the stress tensor

Σabα′(xxx,ζζζ) =

Σabα′(xxx− ζζζ) − Σabα′(xxx− ξξξ) − 2(ξξξ ·nnn)Jα′α[∇αΣab3(xxx− ξξξ) − (ξξξ ·nnn)
2 ∆ξΣabα(xxx− ξξξ)]

Since the pole is fixed at ξξξ = JJJ · ζζζ = (0, 0,−h), we obtain the singular form

Gaα′(xxx,ζζζ) = Saα′(xxx− ζζζ) − Saα′(xxx− ξξξ) + 2hJα′β[Sa3;β(xxx− ξξξ) − hDaβ(xxx− ξξξ)] (2.91)

and
Pα′(xxx,ζζζ) = Pα′(xxx− ζζζ) − Pα′(xxx− ξξξ) + 2hJα′β∇βP3(xxx− ξξξ) (2.92)

Σabα′(xxx,ζζζ) = Σabα′(xxx−ζζζ)−Σabα′(xxx−ξξξ)+2hJα′α

[
∇αΣab3(xxx− ξξξ) + h

2 ∆ξΣabα(xxx− ξξξ)
]

(2.93)
The singular representation of the Green function eq. (2.91), here obtained simply
by applying the Lorentz reflection operator at the source point, coincides with
the result obtained by Blake using a much more elaborate approach involving the
Fourier-Hankel transforms [18, 19].

Blake and Chwang in [18, 19] have obtained the singular reflection systems
related to bounded Stokeslet, Sourcelet and Rotlet by applying the Fourier-Hankel
transforms to separate and distict problems specified by the boundary conditions
adopted. In point of fact, the operator formalism developed in Section 2.5 permits
to obtain any higher-order singularity in a unitary way, by simply differentiating the
Green’s function at the pole, eqs. (2.89)-(2.91).

To begin with, consider the bounded Source Dipole Daα′(xxx,ζζζ) defined by (2.30),
applying the Laplacian operator −∆ζ/2 to the expression (2.89). Being the Laplacian
operator invariant with respect to any Euclidean transformation, and thus under
the reflection transformation ζζζ = JJJ · ξξξ, we have ∆ξ = ∆ζ , and therefore

Daα′(xxx,ζζζ) = Daα′(xxx− ζζζ) − Daα′(xxx− ξξξ)

+Jα′β∆ξ[(ξξξ ·nnn)∇βSa3(xxx− ξξξ)] + Jα′β∆ξ[(ξξξ ·nnn)2Daβ(xxx− ξξξ)] (2.94)

where, enforcing the identity,

∆ξSa3;β(xxx− ξξξ) = ∇β∆ξSa3(xxx− ξξξ) = −2Da3;β(xxx− ξξξ) (2.95)

the third term at the r.h.s of eq. (2.94) reads

Jα′β∆ξ[(ξξξ ·nnn)∇βSa3(xxx− ξξξ)] =
Jα′β∇γ(δγ3Sa3;β(xxx− ξξξ) + ξ3Sa3;βγ(xxx− ξξξ)) =
Jα′β(2Sa3;β3(xxx− ξξξ) − 2ξ3Da3;β(xxx− ξξξ)) (2.96)

The fourth term in eq. (2.94) can be simplified as

Jα′β∆ξ[(ξξξ ·nnn)2Daβ(xxx− ξξξ)] =
Jα′β∇γ(2δ3γξ3Daβ(xxx− ξξξ) + ξ2

3Daβ;γ(xxx− ξξξ)) =
Jα′β(2Daβ(xxx− ξξξ) + 4ξ3Daβ;3(xxx− ξξξ)) (2.97)
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so that the singular representation of the Source Dipole reads

Daα′(xxx,ζζζ) = Daα′(xxx−ζζζ)−Daα′(xxx−ξξξ)+2Jα′β

(
Daβ(xxx−ξξξ)+Sa3;β3(xxx−ξξξ)+ξ3Da3;β(xxx−ξξξ)

)
(2.98)

and since ξ3 = −h, eq. (2.98) becomes

Daα′(xxx,ζζζ) = Daα′(xxx−ζζζ)−Daα′(xxx−ξξξ)+2Jα′β

(
Daβ(xxx−ξξξ)+Sa3;β3(xxx−ξξξ)−hDa3;β(xxx−ξξξ)

)
(2.99)

The associated pressure field can obtained by applying the same operator
−∆ζ/2 = −∆ξ/2 to the pressure Green function eq. (2.90). Since the unbounded
pressure field is a potential vector field with respect to the source point coordinates,
the only non vanishing contribution is given by the third term at the r.h.s of eq.
(2.90), and therefore

− ∆ζPα′(xxx,ζζζ)
2 = 4π(∇α′δ(xxx− ζζζ) − δα′α∇αδ(xxx− ξξξ)) − Jα′β∆ξ (ξ3∇βP3(xxx− ξξξ)) =

4π(∇α′δ(xxx− ζζζ) − δα′α∇αδ(xxx− ξξξ)) − 2Jα′βδ3γ∇β∇γP3(xxx− ξξξ) (2.100)

Fig. 2.1 provides the schematic representation of the unbounded singularities
at the image pole necessary to cancel the velocity field at the plane due to the
unbounded Source Doubled at the pole in the fluid domain. Panel (a) refers to
Da1 = Da2, panel (b) to Da3. The vector plot of the bounded Source Dipole defined
by eq. (2.99) is depicted in Fig. 2.2.

In the far field, |xxx| >> h, we have

Daα′(xxx,ζζζ) = 2Jα′α

(
Daα(xxx) + S3α;3a(xxx)

)
+ o(1/|xxx|3), |xxx| ≫ |ζζζ| (2.101)

To obtain the Stokes Doublet eq. (2.22), we can apply the covariant derivative
at the pole of the Green function. The bounded solution of the Rotlet (2.28) giving
the antisymmetric part of the Stokes doublet can be found, according to eq. (2.25),
by applying the curl at the pole of the Green function to obtain

Ωaγ′(xxx,ζζζ) = Ωaγ′(xxx−ζζζ)−Ωaγ′(xxx−ξξξ)+2ϵβ′γ′3

(
Ea3β′(xxx−ξξξ)+ξ3Daβ′(xxx−ξξξ)

)
(2.102)

and the associated pressure reads

εγ′ϵ′η′∇η′Pϵ′(xxx,ζζζ)
2 = εγ′ϵ′η′∇η′ξ3Jϵ′β∇βP3(xxx−ξξξ) = εγ′ϵ′3δϵ′β∇3∇βP3(xxx−ξξξ) (2.103)

In the far field we have the asymptotic scaling

Ωaα′(xxx,ζζζ) = 2ϵβ′α′3Ta3β′(xxx)(1 − δα3) + o(1/|xxx|2), |xxx| ≫ |ζζζ| (2.104)

The vector plot of the Rotlet is depicted in Fig. 2.3.
To obtain the bounded Strainlet eq. (2.26), i.e. the symmetric part of the

Stokes Doublet, we could evaluate (∇β′Gaα′ + ∇α′Gaβ′)/2. Alternatively, it is more
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Figure 2.1. Schematic representation of the system of singularities associated with the
Source Dipole Daα′(xxx,ξξξ) confined by a planar wall, represented by the thick horizontal
lines. Singularities are centered in two points, the pole above the plane ζζζ and its imagine
below the plane ξξξ = JJJ ·ζζζ. Panel (a) refers to the image system of a Source Dipole parallel
to the plane (thus, with α′ = 1, 2), whereas panel (b) to a Source Dipole perpendicular
to the plane (thus, α′ = 3). The symbols have the following meaning: • represents an
unbounded Sourcelet, × an unbounded sink (a Sourcelet with reversed sign), the arrow
→ a concentrated force. The arrow’s direction corresponds to the direction of the force.
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Figure 2.2. Vector plot of the components (D1α′(xxx,ζζζ),D3α′(xxx,ζζζ)) of the Source Dipole
with pole in ζζζ = (0, 0, 0.25), evaluated on the plane x2 = 0.1. The color map refers to
the intensity |(D1α′(xxx,ζζζ),D3α′(xxx,ζζζ))|.
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Figure 2.3. Vector plot of the components (Ω1α′(xxx,ζζζ),Ω3α′(xxx,ζζζ)) of the Rotlet with pole
in ζζζ = (0, 0, 0.25) evaluated on the plane x2 = 0.1. The color map refers to the intensity
|(Ω1α′(xxx,ζζζ),Ω3α′(xxx,ζζζ))|.



38 2. Bitensorial formulation of the singularity method for Stokes flows

convenient to use eq. (2.27), substituting in it eq. (2.90) for the pressure, and eq.
(2.91) for the stress tensor of the bounded Green function

Eaα′β′(xxx,ζζζ) = δα′β′

2 Pa(ζζζ,xxx) − 1
2Σα′β′a(ζζζ,xxx) (2.105)

where

Pa(ζζζ,xxx) = Pa(ζζζ − xxx) − Pa(ζζζ − yyy) − 2(yyy ·nnn)Jaa′∇a′P3(ζζζ − yyy) (2.106)

and

Σα′β′a(ζζζ,xxx) = Σα′β′a(ζζζ − xxx) − Σα′β′a(ζζζ − yyy)

−2(yyy ·nnn)Jaa′ [∇a′Σα′β′3(ζζζ − yyy) − (yyy ·nnn)
2 ∆yΣα′β′a′(ζζζ − yyy)] (2.107)

Since ∆ξ = ∆ζ = ∆x = ∆y, in this particular case, where the boundary of the fluid is
a plane, it is possible to define the bounded Source Ma(xxx,ζζζ) = −Pa(ζζζ,xxx)/2 and the
bounded Stresslet Taα′β′(xxx,ζζζ) = −Σα′β′a(ζζζ,xxx)/2, that are the bounded counterparts
of the Sourcelet defined in eq. (2.38) and the Stresslet in eq. (2.39). Therefore, the
Strainlet can be expressed as

Eaα′β′(xxx,ζζζ) = −δα′β′Ma(xxx,ζζζ) + Taα′β′(xxx,ζζζ) (2.108)

By making the following transformation

yyy ·nnn = y3 = (yyy − ξξξ)3 + ξ3 (2.109)

we obtain for Ma(xxx,ζζζ) and Taα′β′(xxx,ζζζ) the following expressions

Ma(xxx,ζζζ) = Ma(xxx− ζζζ) − Ma(xxx− ξξξ) + 2
(

Ta33(xxx− ξξξ) + ξ3Da3(xxx− ξξξ)
)

(2.110)

Taα′β′(xxx,ζζζ) = Taα′β′(xxx− ζζζ) + 2δα′β′Ta33(xxx− ξξξ) − Jα′αJβ′βTaαβ(xxx− ξξξ)+

+2Jα′αJβ′βξ3

(
−ξ3Daα;β(xxx−ξξξ)−Sa3;αβ(xxx−ξξξ)−δ3βDaα(xxx−ξξξ)−δ3αDaβ(xxx−ξξξ)+δαβD3a(xxx−ξξξ)

)
(2.111)

which possess the following far-field asymptotics

Ma(xxx,ζζζ) = 2Ta33(xxx) + o(1/|xxx|2), |xxx| ≫ |ζζζ| (2.112)

Taα′β′(xxx,ζζζ) = 2Taαβ(xxx)(1−δαβ−δα1δβ2−δα2δβ1)+2Ta33(xxx)δαβ+o(1/|xxx|2), |xxx| ≫ |ζζζ|
(2.113)

Gathering eqs. (2.110) and (2.111) and substituting them into eq. (2.108), the
analytic expression for the bounded Strainlet follows

Eaα′β′(xxx,ζζζ) = Eaα′β′(xxx− ζζζ) − Jα′αJβ′βEaαβ(xxx− ξξξ)+

+ 2Jα′αJβ′βξ3

(
− ξ3Daα;β(xxx−ξξξ) − Sa3;αβ(xxx−ξξξ) − δ3βDaα(xxx−ξξξ) − δ3αDaβ(xxx−ξξξ)

)
(2.114)
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and putting ξ3 = −h, one obtains

Eaα′β′(xxx,ζζζ) = Eaα′β′(xxx− ζζζ) − Jα′αJβ′βEaαβ(xxx− ξξξ)+

− 2hJα′αJβ′β

(
hDaα;β(xxx− ξξξ) − Sa3;αβ(xxx− ξξξ) − δ3βDaα(xxx− ξξξ) − δ3αDaβ(xxx− ξξξ)

)
(2.115)

The vector plot of the bounded Strainlet is depicted in Fig. 2.4.

Appendix

2.A Biensor calculus
The development of bitensor calculus has followed two parallel pathways: an alge-
braic [211] and purely geometric approach [230, 56]. As the algebraic approach is
particularly relevant in the present hydrodynamic theory of bounded Green functions,
and moreover it is scarsely mentioned in the literature, this brief review on bitensor
calculus is mainly focused on this formulation, addressing its connection with the
geometric theory at the end of this Appendix.

In [211], Ruse defines bitensors as follows: Let xxx = (x1, ..., xn) and ξξξ = (ξ1, ..., ξm)
be two set of independent variables and let ψa′(xxx), a′ = 1, . . . , n be n functions
dependent on xxx and ϕα′(ξξξ), α′ = 1, . . . ,m, m functions dependent on ξξξ, such that
we can define the new variables

xb′ = ψb′(xxx) , b′ = 1, . . . , n , ξβ′ = ϕβ′(ξξξ) , β′ = 1, . . . ,m

Let T aα(xxx,ξξξ) denote the array of n×m functions depending on both xa and ξα T 11(xxx,ξξξ) ... T 1m(xxx,ξξξ)
... ... ...

Tn1(xxx,ξξξ) ... Tnm(xxx,ξξξ)

 (2.116)

Moreover, let T a′α(x′, ξξξ) be a set of functions depending on the variables xxx′ and ξξξ,
T aα′(xxx,ξξξ′) a set of functions depending on the variables xxx and ξξξ′, T a′α′(xxx′, ξξξ′) a set
of functions depending on the variables xxx′ and ξξξ′. If these functions are related by
the equations

T aα(xxx′, ξξξ) = T bα(xxx,ξξξ) ∂x
a′

∂xb
(2.117)

T aα′(xxx,ξξξ′) = T aβ(xxx,ξξξ) ∂ξ
α′

∂ξβ
(2.118)

T a′α′(xxx′, ξξξ′) = T bβ(xxx,ξξξ) ∂x
a′

∂xb

∂ξα′

∂ξβ
(2.119)

then they are the components of the bivector TTT expressed in the systems of coordi-
nates (xxx,ξξξ), (xxx′, ξξξ), (xxx,ξξξ′), (xxx′, ξξξ′), respectively. More generally a set of nr+s ×mp+q

functions are the components of a bitensor TTT , if they are related by the equations

T
a′

1...a′
rα1...αq

b′
1...b′

sβ1...βp
(xxx′, ξξξ) = T

c1...crα1...αq

d1...dsβ1...βp
(xxx,ξξξ) ∂x

a′
1

∂xc1
...
∂xa′

r

∂xcr

∂xd1

∂xb′
1
...
∂xds

∂xb′
s

(2.120)
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Figure 2.4. Vector plot of the components (E1α′β′(xxx,ζζζ),E3α′β′(xxx,ζζζ)) of the Strainlet with
pole in ζζζ = (0, 0, 0.25) evaluated on the plane x2 = 0.1. The color map refers to the
intensity |(E1α′β′(xxx,ζζζ),E3α′β′(xxx,ζζζ))|.
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T
a1...arα′

1...α′
q

b1...bsβ′
1...β′

p
(xxx,ξξξ′) = T

a1...arγ1...γq

b1...bsδ1...δp
(xxx,ξξξ)∂ξ

α′
1

∂ξγ1
...
∂ξα′

q

∂ξγ′
q

∂ξδ1

∂ξβ′
1
...
∂ξδp

∂ξβ′
p

(2.121)

T
a′

1...a′
rα′

1...α′
q

b′
1...b′

sβ′
1...β′

p
(xxx′, ξξξ′) =

T
c1...crγ1...γq

d1...dsδ1...δp
(xxx,ξξξ)∂x

a′
1

∂xc1
...
∂xa′

r

∂xcr

∂xd1

∂xb′
1
...
∂xds

∂xb′
s

∂ξα′
1

∂ξγ1
...
∂ξα′

q

∂ξγq

∂ξδ1

∂ξβ′
1
...
∂ξδp

∂ξβ′
p

(2.122)

If ξξξ is kept fixed, then T a1...T am are the components (a = 1, . . . , n) of m ordinary
vectors at xxx, whereas if xxx is kept fixed T 1α...Tnα are the components (α = 1, . . . ,m)
of n vectors at ξξξ. The bitensor T aα is, then, named vector-vector bitensor and, more
generally, the bitensor T a1...arα1...αq

b1...bsβ1...βp
is named (r + s)tensor-(p+ q)tensor.

Next consider two symmetric scalar-(2)tensor gab(xxx,ξξξ) and γαβ(xxx,ξξξ), and suppose
that xxx and ξξξ are two systems of coordinates of two distinct Riemannian spaces
defined respectively by the two metric forms

ds2 = gab(xxx,ξξξ) dxadxb (2.123)
dσ2 = γαβ(xxx,ξξξ) dξαdξβ (2.124)

Eqs. (2.123)-(2.124) define a multiple-infinite set of Riemannian spaces. In fact,
fixed the set of variables ξξξ, eq. (2.123) determines a Riemannian space, while fixing
xxx, a Riemannian space is determined by eq. (2.124). In the case that n = m, it is
possible to define a vector-vector bitensor ka

α(xxx,ξξξ), belonging to both spaces, so
that

gab(xxx,ξξξ) = k α
a (xxx,ξξξ) k β

b (xxx,ξξξ) γαβ(xxx,ξξξ) (2.125)

which represents a system of n(n+ 1)/2 equations for the n2 unknown components
of ka

α (due to the symmetry of gab and γαβ).
Note that, keeping either xxx or ξξξ fixed, the n ordinary vectors k1

α...k
n
α and

ka
1...k

a
n are orthogonal to each other

kc
βk

β
b = δc

b (2.126)

and similarly
kb

γk
β

b = δβ
γ (2.127)

A particular case occurs when gab(xxx,ξξξ) = gab(xxx) does not depend on ξξξ and
moreover γα,β(xxx,ξξξ) = gαβ(ξξξ). In this case, the two metric spaces defined by eqs.
(2.123)-(2.124) represent the same metric space at two different points, and eq.
(2.125) becomes

gab(xxx) = k α
a (xxx,ξξξ) k β

b (xxx,ξξξ) gαβ(ξξξ) (2.128)

In Euclidean spaces, it is always possible to express the component of the
metric tensors gab(xxx), gαβ(ξξξ) in the same Cartesian coordinate system X(i) =
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(X(1), X(2), X(3)), (i) = 1, 2, 3 being the indices for the Cartesian components. Thus,
from eq. (2.128) one has

I(ij)
∂X(i)

∂xa

∂X(j)

∂xb
= k α

a (xxx,ξξξ)k β
b (xxx,ξξξ)∂X

(i)

∂ξα

∂X(j)

∂ξβ
I(ij) (2.129)

where I(ij) = diag(1, 1, 1) from which it follows that

k α
a (xxx,ξξξ) = ∂X(i)

∂xa

∂ξα

∂X(i) (2.130)

that reduces to k α
a (xxx,ξξξ) = δa

α if we choose the same coordinate system at both
points.

If the coordinates of the two points are related by a bijective transformation

ξα = ψα(xxx); xa = gα(ξξξ) (2.131)

we can consider ξα and xa as two set of coordinates of the same point and, by
classical tensor calculus, we have

gab(xxx) = ∂ξα

∂xa

∂ξβ

∂xb
gαβ(ξξξ) (2.132)

Comparing eq. (2.132) with eq. (2.128), we find

ka
α(xa, ξα) = ∂ξα

∂xa
(2.133)

therefore, an ordinary transformation in the classical tensor calculus, can be viewed
as a transformation between two metric spaces

ds2 = gab(ga(ξξξ)) dxa dxb (2.134)
dσ2 = gαβ(ψα(xxx)) dξα dξβ (2.135)

If the two points belong to a generic Riemannian space, it is not always possible to
express the components in the same Cartesian coordinate system. However, we can
define, at one point, say xxx, a triad of vector ea

(i)(xxx), forming locally an orthonormal
basis, so that [72, 231]

gab(xxx)ea
(i)(xxx)eb

(j)(xxx) = I(ij); ea
(i)(xxx)e(i)

b (xxx) = δa
b (2.136)

Parallel transporting the vectors ea
(i)(xxx) from the point xxx to the point ξξξ, i.e., inte-

grating the differential equation

Dea
(i)(zzz)
Du

=
∂ea

(i)(zzz)
∂zk

dzk

du
+ Γa

bke
a
(i)(zzz)

dzk

du
= 0 (2.137)

along the geodetics connecting the point xxx to ξξξ, zzz(u) being a generic point on the
geodetics identified by the parameter u and such that zzz(0) = xxx, we obtain the triad
of vectors at the point ξξξ, that is still orthonormal. Thus,

gαβ(ξξξ) eα
(i)(ξξξ) e

β
(j)(ξξξ) = I(ij) , eα

(i)(ξξξ) e
(i)
β (ξξξ) = δα

β (2.138)
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Using eq. (2.136) and eq. (2.138), it is possible to express both the metric tensors
gab(xxx) and gαβ(ξξξ) in a common orthonormal basis. Eq. (2.129) thus, becomes

I(ij) e
(i)
a (xxx) e(j)

b (xxx) = k α
a (xxx,ξξξ) k β

b (xxx,ξξξ)e(i)
α (ξξξ) e(j)

β (ξξξ) I(ij) (2.139)

obtaining the more general expression for the parallel propagator

k α
a (xxx,ξξξ) = e(i)

a (xxx)eα
(i)(ξξξ) = kα

a(ξξξ,xxx) (2.140)

In the case the two points xxx and ξξξ become coincident, we have

lim
ξξξ→xxx

kkk(xxx,ξξξ) = lim
ξξξ→xxx

[k α
a (xxx,ξξξ)] = lim

ξξξ→xxx
[e(i)

a (xxx) eα
(i)(ξξξ)] = [δα

a ] = III (2.141)

where [·] indicate the whole tensorial entity. Consequently,

lim
ξξξ→xxx

kaα(xa, ξα) = lim
ξξξ→xxx

gab(xxx) kb
α(xxx,ξξξ) = gab(xxx) , lim

xxx→ξξξ
kaα(xxx,ξξξ) = gαβ(ξξξ)

(2.142)
Therefore, it is customary to use the same symbol for indicating either the parallel
propagator or the metric tensor

g α
a (xxx,ξξξ) = k α

a (xxx,ξξξ)

To make an example, consider a unit vector pa(xxx) at xxx,

gab(xxx)pa(xxx)pb(xxx) = 1 (2.143)

Using the definition of the parallel propagator eq . (2.128)

gαβ(ξξξ) k α
a (xxx,ξξξ) pa(xxx) k β

b (xxx,ξξξ) pb(xxx) = gαβ(ξξξ) pα(ξξξ) pβ(ξξξ) = 1 (2.144)

we have
pα(ξξξ) = pa(xxx) k α

a (xxx,ξξξ) (2.145)

that represents the unit vector parallel-transported from the point xxx to the point ξξξ.
In fact, since

pα(ξξξ) = pa(xxx)e α
(i)(ξξξ)e

(i)
a (xxx) (2.146)

we have in the triad basis

p(i)(ξξξ) = pα(ξα) e(i)
α(ξξξ) = pa(xxx) e(i)

a (xxx) = p(i)(xxx) (2.147)

and thus the components of the vector pα(ξξξ) in the common triad basis coincide
with those of pa(xxx). From this result, and from the property

va(xxx) pa(xxx) = va(xxx) g α
a (xxx,ξξξ) pα(ξξξ) = vα(ξξξ) pα(ξξξ) (2.148)

it follows that any vector va(xxx) can be the parallel transported from xxx to ξξξ‘ via the
relation

vα(ξξξ) = va(xxx) g α
a (xxx,ξξξ) (2.149)
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To conclude, an important bitensor is the so called Synge’s world function [230],
that is a measure of the geodetic distance between the points xxx and ξξξ, defined as

W (xxx,ξξξ) = 1
2

∫ xxx

ξξξ
ds2 (2.150)

In Euclidean spaces, it can be explicited as as

W (xxx,ξξξ) = 1
2I(ij)(x(i) − ξ(i))(x(j) − ξ(j)) (2.151)

x(i) and ξ(i) being the Cartesian coordinates of the two points. Its derivative at xxx is

Wa(xxx,ξξξ) = (x(i) − ξ(i)) I(ij)
∂X(j)

∂xa
= (xxx− ξξξ)a (2.152)

while the corresponding derivative at ξξξ reads

Wα(xxx,ξξξ) = (ξ(i) − x(i)) I(ij)
∂X(j)

∂ξα
= (ξξξ − xxx)α = −δa

α(xxx− ξξξ)a (2.153)

Let (xxx− ξξξ)α = g a
α (ξξξ,xxx)(xxx− ξξξ)a and (ξξξ − xxx)a = g α

a (xxx,ξξξ)(ξξξ − xxx)α. From eq. (2.153)
we have

(xxx− ξξξ)α1 ...(xxx− ξξξ)αn = (−1)n(ξξξ − xxx)α1 ...(ξξξ − xxx)αn

(ξξξ − xxx)a1 ...(ξξξ − xxx)an = (−1)n(xxx− ξξξ)a1 ...(xxx− ξξξ)an (2.154)

that is a useful relation in moment analysis.
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Chapter 3

Singularity and Faxén operators
and the Hinch-Kim’s dualism

3.1 Introduction

One of the most powerful mathematical tools to investigate particle-fluid interactions
is, when available, the so called Faxén operator, which is the operator that once
applied to a generic ambient flow (defined as the flow of the fluid without the
disturbance due to the particle inclusion), furnishes forces, torques, stresses and
higher-order moments on the particle, without the need of solving the specific
hydrodynamic problem. The introduction of this operator is originally due to
Hilding Faxén (hence the name, see [185] or [98]), who found that the force acting
on a sphere with no-slip boundary conditions immersed in a generic ambient flow
can be expressed in a simple way in terms of the value of the ambient field and of
its Laplacian at the center of the sphere. Moreover, the torque is proportional to
the vorticity of the ambient field at the center of the sphere. The Faxén laws for the
no-slip sphere are, essentially, an application to the solutions of the Stokes equations
[194] of the mean value theorem for biharmonic (the velocity solution of the Stokes
equations) and harmonic (the vorticity) functions, yielding, respectively, the 0-th
and the asymmetric 1-st order moments of surface traction on the surface of the
sphere.

Thereafter, many authors have obtained Faxén operators for several combinations
of surface moments, shapes of immersed bodies, boundary conditions, fluid regimes.
In the case of the stationary Stokes regime, literature results include the analytic
expressions for the Faxén operators of lower orders, specifically: the symmetric
1-st order operator for a sphere with no-slip boundary conditions [9], 0-th and 1-st
order for spheroids [101, 128] and, more generally for ellipsoids [25, 129] with no-slip
boundary conditions, 0-th and 1-st order for a spherical Newtonian drop [103, 207],
0-th and asymmetric 1-st order operators for a sphere with Navier-slip boundary
conditions [197], 0-th and asymmetric 1-st order operators for porous spheres using
the Darcy model [188], and 0-th and 1-st order using the Brinkman model [71, 187].
Faxén operators for spheres has been obtained in other flow regimes: 0-th and
asymmetric 1-st order operators for a sphere with no-slip boundary conditions in
unsteady Stokes flow [169, 167, 245] and for the linearized compressible Navier-
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Stokes flow [12], 0-th order operator for a spherical Newtonian drop [122], 0-th and
asymmetric 1-st operators for a sphere with Navier-slip boundary conditions in
unsteady Stokes flows [70, 196], 0-th and 1-st order operators for porous spheres
using the Brinkman model [121], 0-th order Faxén counterpart for a sphere in a
potential flow [233].

By definition, a Faxén operator is independent of the ambient flow and the
viscosity of the fluids, and depends solely on the geometrical structure of the body
and on the parameters specifying the boundary conditions. An explicit expression
of the Faxén operator for forces and torques has been given by Brenner [25] for
bodies with no-slip conditions and arbitrary shape in terms of an infinite series of
differential operators with polidiadic coefficients. The Brenner coefficients depend
only on the geometry of the body and correspond to: i) the moments of the surface
traction associated with the solution of the Stokes problem for the translating body
in the unbounded fluid (in the case of the Faxén operator for the force), and, ii)
the moments of the surface traction related the solution of the Stokes problem for
the rotating body in the unbounded fluid (in the case of the Faxén operator for the
torque).

Hinch [105] observed that the operator applied to the pole of the unbounded Green
function of the Stokes flow (usually referred to as the Stokeslet [130]) and returning
the disturbance field generated by a no-slip sphere in a symmetric linear flow is
exactly the 1-order symmetric Faxén operator found by Batchelor and Green [9],
thus intuitively concluding that this is not a simple coincidence but the consequence
of the Lorentz reciprocal theorem for the Stokes flows. The dualism between the
singularity representation of the flow generated by an arbitrary body immersed in a
fluid and the Faxén operators of the body have been proved in a conclusive way by
Kim [128] by means of the Lorentz reciprocal theorem. More precisely, in the case
no-slip boundary conditions at the body surface are assumed, the Faxén operator
for the force of a body with an arbitrary shape coincides (up to a multiplicative
constant 8πµ, where µ is the viscosity of the fluid) with the operator that, applied to
the pole of the Stokeslet, yields the velocity field of the fluid due to the translations
of the body. The extension of the dualism between higher-order Faxén operators
(torques, stresslet, etc.) and higher order singularity operators (giving the field for
rotations, strains, etc.) is a straightforward consequence of the Kim’s proof. In this
thesis, this correspondence is referred as the Hinch-Kim dualism.

Hinch-Kim dualism implies several important consequences of theoretical and
practical interest: i) by solving a single hydrodynamic problem (either analytically or
numerically) it is possible to obtain a Faxén operator even for particles with complex
shapes (at least for the leading order terms), ii) the flow generated by an immersed
particle can be represented in a compact way by its Faxén operator, the leading-order
terms of which can be evaluated using the Brenner polidiadic expansion even for
particles with complex shapes, iii) long range particle-particle and particle-channel
interactions can be investigated taking advantage of this symmetry in order to obtain
hydrodynamic properties of complex systems of particles [9, 8, 105, 21, 166], of active
microswimmers near walls [226, 136, 57], of microfluidic flow and separation devices
[28, 229], either applying theoretical approaches or by means of numerical methods,
such as the Stokesian dynamics [22].

The last two decades have seen a growing interest in generalizing the nature
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of the boundary conditions, going beyond the no-slip case, and in investigating
the interactions with ambient flows more complex then purely constant and linear
fields. This is mainly due to: i) the rise of microfluidics [241], where surfaces are
chemically treated and the properties of the resulting solid-liquid interfaces exploited,
hinging for a more detailed hydrodynamic description [146], ii) the development of the
hydromechanics of biological particles [145], where the assumption of rigid translating
and rotating particles equipped with no-slip boundary conditions is evidently too
simplified and limiting, and where it has been verified that the inclusion of only lower
order moments, such as forces, torques and stresslets, is not sufficient to explain
many interesting hydrodynamics behaviors of biological particles [178].

The scope of this contribution is to generalize and extend the results obtained
for the singularity and Faxén operators and their mutual relationships enforcing
no-slip at the solid boundaries to generic boundary conditions and to ambient flows
of any order. This extension yields several novel results related to: i) the analytic
expression for the singularity operator in terms of volume moments, ii) the definition
of an analytic criterion upon which the Hinch-Kim duality holds, iii) the application
of this criterion to a broad class of boundary conditions of hydrodynamic interest.
The main technical tool in the present theory is the bitensorial distributional analysis
developed in Chapter 2, in which the moments with respect to the volume forces
acting on the body - instead of the moments associated with the surface tractions
considered in the literature - are introduced and applied in order to express the
singularity expansion of a disturbance flow. Incidentally, these two hierarchies of
moments coincide in the no-slip case. The advantage of this approach is that it makes
it possible to obtain a general expression for the singularity operator of a disturbance
flow in terms of an infinite series of differential operators with the moments of the
volume forces as coefficients, independently of the boundary conditions assumed at
the fluid-body interface.

The chapter is organized as follows. Section 3.2 the problem briefly is formulated
in a suitable manner for the topic of the chapter. In Section 3.3 it is provided the
definition of the (n,m)-th order geometrical moments as the m-th order moments
on the body immersed in an n-th order ambient field, and it is shown that the
n-th order singularity operator of an arbitrary body can be expressed in series of
differential operators with the (n,m)-th order geometrical moments as coefficients. In
Section 3.4, it is investigated the Hinch-Kim dualism between n-th order singularity
operators and n-th order Faxén operator for an arbitrary body. It is shown that the
dualism is not a general property deriving from the Lorentz reciprocity theorem, as
it applies solely to a subclass of boundary conditions assumed at the surface of the
body, and defined by a parity condition that we call boundary condition reciprocity.
It is shown that, whenever this dualism holds (hence reciprocal boundary conditions
are considered), the Brenner expression for the Faxén operators can be generalized
by considering the moments of the volume forces. In addition, it is possible to
generalize also the property found in [201], namely that the hydromechanics of a
body in Stokes flows is completely described by the entire set of its Faxén operators
(or geometrical moments). A similar investigation of the Hinch-Kim dualism has
been carried out by Dolata and Zia [59] following a method, completely different
from the present approach, based on energetic considerations and expressing the
reciprocity between operators instead of fields. Although their main result (the
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conditions under which the dualism hold) can be mapped into the present theory,
these authors have reached some misleading conclusions, such as the validity of the
dualism for porous particles modeled by the Darcy law. In the present chapter, it is
shown that this is not the case. In fact, in the second part of this work (from Section
3.5 to Section 3.7) it is analyzed a broad class of typical hydrodynamic boundary
conditions, determining, case by case, whether the dualism holds or not. In Section
3.5, the boundary conditions at the solid-fluid interface are investigated, finding
that the dualism holds for rigid bodies with Navier-slip boundary conditions (even
with a non uniform slip length along the surface), but not for linear elastic bodies
in deformation. In Section 3.6, the dualism for fluid-fluid boundary conditions is
analyzed, finding that it is verified solely for Newtonian drops at the mechanical
equilibrium. In Section 3.7, it is considered the case of porous bodies, finding that
the dualism applies in the Brinkman model for porous media, but not for the Darcy
model. Finally, it is used the analytical approach developed in the previous Sections
to obtain a closed-form expression for the 0-th (already available in literature [197]),
1-st and 2-nd (to the best of our knowledge, not yet present in the literature) order
Faxén operators for a sphere with Navier-slip boundary conditions.

3.2 Formulation of the problem

Consider a body immersed in a unbounded Stokes fluid. The domain of the body
is Db ⊂ R3 with boundaries ∂Db and the domain of the fluid is Df ≡ R3/Db with
boundaries ∂Df ≡ ∂Db ∪ ∂D∞, where ∂D∞ is an ideal surface at infinity. The
ambient flow of the fluid (i.e. the flow of the fluid without the body inclusion) is
uuu(xxx) with associated pressure p(xxx) and stress tensor πππ(xxx), solution of the Stokes
equations {

−∇ · πππ(xxx) = µ∆uuu(xxx) − ∇p(xxx) = 0
∇ · uuu(xxx) = 0 xxx ∈ R3 (3.1)

The presence of the body generates a disturbance flow at the boundaries ∂Db of the
body, that we indicate as wwwS(xxx), and thus, a disturbance flow www(xxx) in the whole
domain of the fluid with associated pressure q(xxx) and stress tensor τττ(xxx) that are
solution of the Stokes equations

−∇ · τττ(xxx) = µ∆www(xxx) − ∇q(xxx) = 0
∇ ·www(xxx) = 0 xxx ∈ Df

www(xxx) = wwwS(xxx), τττ(xxx) = τττS(xxx) xxx ∈ ∂Db

(3.2)

where τττS(xxx) is the stress tensor of the disturbance flow at the surface of the body.
The total field (vvv(xxx),σσσ(xxx)) = (uuu(xxx),πππ(xxx)) + (www(xxx), τττ(xxx)) is the solution of the

Stokes equations 
−∇ · σσσ(xxx) = µ∆vvv(xxx) − ∇s(xxx) = 0
∇ · vvv(xxx) = 0 xxx ∈ Df

vvv(xxx) = vvvS(xxx), σσσ(xxx) = σσσS(xxx) xxx ∈ ∂Db

vvv(xxx) = uuu(xxx) xxx → ∞

(3.3)
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s(xxx) = p(xxx) + q(xxx) being the total pressure field, vvvS(xxx) = wwwS(xxx) + uuu(xxx) and
σσσS(xxx) = τττS(xxx) + πππ(xxx) the total velocity field and stress tensor, respectively, at the
surface of the body.

As shown in Chapter 2, it is possible to express the disturbance flow as the
solution of the non-homogeneous Stokes equations defined in the whole domain R3{

−∇ · τττ(xxx) = µ∆www(xxx) − ∇q(xxx) = −ψψψ(xxx)
∇ ·www(xxx) = 0 xxx ∈ Df

(3.4)

ψψψ(xxx) being any force field distribution, with compact support in Db, satisfying the
relation

1
8πµ

∫
Db

ψα(ξξξ)Sa α(xxx,ξξξ)dV (ξξξ) = wS
a (xxx) xxx ∈ ∂Db (3.5)

where dV (ξξξ) is the volume element at ξξξ and Sa α(xxx,ξξξ) are the entries of the Oseen
bitensor or Stokeslet and where the bitensorial formalism developed in the previous
chapter is used.

Since we are analyzing bodies immersed in a unbounded fluid and since, for
the sake of simplicity, we consider the poles of singularities located at a single
point, it is always possible to express both source and field points in the same
Cartesian coordinate system, and thus the parallel propagator [201, 190] is simply
gaα(xxx,ξξξ) = δaα. However, behind the formal correctness in distinguishing entries at
different points, the use of the bitensorial convention provides, apart from a higher
notational clearness, some practical advantages. Specifically, i) it provides a direct
extension of the results obtained in simple systems to more complex geometries, ii)
the points where operators are applied are naturally specified, iii) different properties
and symmetries between the entries are clearly highlighted.

As shown in the previous chapter, it is possible to express the disturbance velocity
field by means of a differential operator applied at the pole point of the Stokeslet

wa(xxx) = 1
8πµ

∞∑
n=0

Mααααn(ξξξ)
n! ∇αααnSa α(xxx,ξξξ) (3.6)

and similarly for the pressure

q(xxx) = 1
8π

∞∑
n=0

Mααααn(ξξξ)
n! ∇αααnPα(xxx,ξξξ) (3.7)

and for the stress field

τab(xxx) = 1
8π

∞∑
n=0

Mααααn(ξξξ)
n! ∇αααnΣa b α(xxx,ξξξ) (3.8)

where αααn = α1...αn is a multi-index, (xxx− ξξξ)αααn = (xxx− ξξξ)α1 ...(xxx− ξξξ)αn and ∇αααn =
∇α1 ...∇αn . Where the n-th order moments are

Mααααn(ξξξ) =
∫

Db

(xxx− ξξξ)αααnψα(xxx)dV (xxx) (3.9)

where, formally, ψα(xxx) = δαaψa(xxx) are the entries of the force field distribution at
the point xxx expressed in the coordinate system of the point ξξξ and where dV (xxx) is
the volume element at the point xxx.



50 3. Singularity and Faxén operators and the Hinch-Kim’s dualism

In [201, Appendix B], it is shown that the moments defined by eq. (3.9) reduce
to the surface moments defined by several authors [61, 115, 130] in the case no-slip
boundary conditions are imposed at the surface of the body ∂Db. However, the
definition of moments in eq. (3.9) does not refer to any specific boundary condition,
and therefore the expressions (3.6)-(3.8) are valid regardless of the boundary condi-
tions imposed at the surface of the body. The evaluation of the moments directly
from their definition is not an easy task since the distribution ψψψ(xxx) (in principle not
unique) is not known. In the next section, we provide the surface integral expression
valid for generic boundary conditions by resuming the same method.

3.3 Generalized geometrical moment expansion
Consider a n-th order unbounded polynomial ambient Stokes flow, singular at infinity
and centered at a point ξξξ ∈ Db (see the schematic representation in Fig. 3.1)

u(n)
a (xxx,ξξξ) = Aaaaan(xxx− ξξξ)aaan

Aaaaan∇a(xxx− ξξξ)aaan = 0, εabcAbaaan∆∇c(xxx− ξξξ)aaan = 0 (3.10)

where hereafter the superscript (n) indicates any quantity referred to a n-th order
ambient flow and εabc is the Ricci-Levi Civita symbol. The associated ambient
pressure and stress tensor are, by linearity

p(n)(xxx,ξξξ) = µAaaaan paaaan(xxx,ξξξ), π
(n)
bc (xxx,ξξξ) = µAaaaanπbcaaaan(xxx,ξξξ)

πbcaaaan(xxx,ξξξ) = [δbcpaaaan(xxx,ξξξ) − (δac∇b(xxx− ξξξ)aaan + δab∇c(xxx− ξξξ)aaan)] (3.11)

so that the Stokes equation, expressed in terms of πbcaaaan(xxx,ξξξ), becomes

µAaaaan∇bπbcaaaan(xxx,ξξξ) = 0 (3.12)

Chwang and Wu introduced in [41] an external singularity, referred to as the Stokeson,
which is a particular case of eq. (3.11) choosing Aaa1a2 = fα(δaαδa1a2 − δa1αδaa2),
fα being the intensity.

Consider a generic total velocity field for a body immersed in an ambient field
vvv(xxx) = uuu(xxx) +www(xxx) in the non-homogeneous form defined in R3

−∇ · σσσ(xxx) = µ∆vvv(xxx) − ∇s(xxx) = −ψψψ(xxx)
∇ · vvv(xxx) = 0 xxx ∈ R3

vvv(xxx) = uuu(xxx) xxx → ∞
(3.13)

The application of the Lorentz reciprocal theorem in the differential form [194] to
the fields (uuu(n)(xxx,ξξξ),πππ(n)(xxx,ξξξ)) and (vvv(xxx),σσσ(xxx)) provides

u(n)
a (xxx,ξξξ)∇bσab(xxx) − va(xxx)∇bπ

(n)
ab (xxx,ξξξ) = ∇b

[
u(n)

a (xxx,ξξξ)σab(xxx) − va(xxx)π(n)
ab (xxx,ξξξ)

]
(3.14)

From eq. (3.14), considering that ∇bπ
(n)
bc (xxx,ξξξ) = 0 and making use of (3.10)-(3.13),

it follows that

ψa(xxx)(xxx− ξξξ)aaan = ∇b [σab(xxx)(xxx− ξξξ)aaan − µvc(xxx)πbcaaaan(xxx,ξξξ)] (3.15)
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Figure 3.1. Schematic representation of a body immersed in an 0-th, 1-st and 2-nd
order polynomial ambient flow centered at the point ξξξ′ (blue arrows) as defined by eqs.
(3.10)-(3.12). Black arrows represent the position vector with respect the point ξξξ of the
force field ψψψ(xxx) (red arrows) by which geometrical moments, defined in eq. (3.18), are
evaluated.

Integrating the latter equation over the volume of the body, using the Gauss theorem
for the r.h.s of the resulting equation, and enforcing the definition eq. (3.9), the
moments on volume forces Mααααn(ξξξ) can be expressed as the surface integrals

Mααααn(ξξξ) =
∫

∂Db

[σαb(xxx)(xxx− ξξξ)αααn − µvc(xxx)πbcααααn(xxx,ξξξ)]nb(xxx)dS(xxx) (3.16)

where nb(xxx) are the entries of the outwardly oriented normal unit vector at point xxx
of ∂Db and σαb(xxx) = δαaσab(xxx). Therefore, by using the expression eq. (3.11) for
πbcaaaan(xxx,ξξξ), the functional relation connecting the moments to the values of vvv(xxx)
and σσσ(xxx) assigned at the boundary of the body follows

Mααααn(ξξξ) =
∫

∂Db

(xxx− ξξξ)αααnσαb(xxx)nb(xxx)dS(xxx) − µ

∫
∂Db

pααααn(xxx,ξξξ)vb(xxx)nb(xxx)dS(xxx)

+ µ

∫
∂Db

[vα(xxx)nb(xxx)∇b(xxx− ξξξ)αααn + nα(xxx)vc(xxx)∇c(xxx− ξξξ)αααn ] dS(xxx)(3.17)

We can introduce the geometrical moments mααααmβ′βββ′
n
(ξξξ, ξξξ′) as defined in [201]

by the relation
M

(n)
ααααm(ξξξ, ξξξ′) = 8πµAβ′βββ′

n
mααααmβ′βββ′

n
(ξξξ, ξξξ′) (3.18)

where M (n)
ααααm(ξξξ, ξξξ′) is the m-th order moments on the body with respect to the point

ξξξ immersed in the n-th order ambient flow centered at the point ξξξ′ and the index
β′βββ′

n refers to the entries at the point ξξξ′. A schematic representation of these special
hydrodynamic systems is reported in Fig. 3.1, where a generic body is immersed in
0-th, 1-st and 2-nd order ambient flows.

The n-th order disturbance field (www(n)(xxx,ξξξ′), τττ (n)(xxx,ξξξ′)) of the ambient field
(uuu(n)(xxx,ξξξ′),πππ(n)(xxx,ξξξ′)) centered at the point ξξξ′ ∈ Db is the solution of the Stokes
equations

−∇ · τττ (n)(xxx,ξξξ′) = µ∆www(n)(xxx,ξξξ′) − ∇q(n)(xxx,ξξξ′) = 0
∇ ·www(n)(xxx,ξξξ′) = 0 xxx ∈ Df

www(n)(xxx,ξξξ′) = www(S,n)(xxx,ξξξ′), τττ (n)(xxx,ξξξ′) = τττ (S,n)(xxx,ξξξ′) xxx ∈ ∂Db

(3.19)

where www(S,n)(xxx,ξξξ′) and τττ (S,n)(xxx,ξξξ′) are the n-th order disturbance velocity field
and stress tensor at the surface of the body depending on the assigned boundary
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conditions. Introducing the singularity operator Fαβ′βββ′
n

defined starting from the
hierarchy of the geometrical moments mααααmβ′βββ′

n
(ξξξ, ξξξ′)

Fαβ′βββ′
n

=
∞∑

m=0

mααααmβ′βββ′
n
(ξξξ, ξξξ′)

m! ∇αααm (3.20)

it is possible to express the n-th order disturbance field (www(n)(xxx,ξξξ′), τττ (n)(xxx,ξξξ′)) in
the form

w(n)
a (xxx,ξξξ′) = Aβ′βββ′

n
Fαβ′βββ′

n
Saα(xxx,ξξξ) (3.21)

q(n)(xxx,ξξξ′) = Aβ′βββ′
n
Fαβ′βββ′

n
Pα(xxx,ξξξ) (3.22)

τ
(n)
ab (xxx,ξξξ′) = Aβ′βββ′

n
Fαβ′βββ′

n
Σabα(xxx,ξξξ) (3.23)

The n-th order total velocity field is (vvv(n)(xxx,ξξξ′),σσσ(n)(xxx,ξξξ′)) = (uuu(n)(xxx,ξξξ′),πππ(n)(xxx,ξξξ′))+
(www(n)(xxx,ξξξ′), τττ (n)(xxx,ξξξ′)) and its entries can be expressed by enforcing the linearity
of the Stokes flow as (v(n)

a (xxx,ξξξ′), σ(n)
ab (xxx,ξξξ′)) = Aβ′βββ′

n
(vaβ′βββ′

n
(xxx,ξξξ′), µσabβ′βββ′

n
(xxx,ξξξ′)).

Therefore, from eqs. (3.17) and (3.18), the geometrical moments can be evaluated
as the following surface integrals

8πmααααmβ′βββ′
n
(ξξξ, ξξξ′) =∫

∂Db

(xxx− ξξξ)αααmσαbβ′βββ′
n
(xxx,ξξξ′)nb(xxx)dS(xxx) −

∫
∂Db

pααααm(xxx,ξξξ)vbβ′βββ′
n
(xxx,ξξξ′)nb(xxx)dS(xxx)

+
∫

∂Db

[
vαβ′βββ′

n
(xxx,ξξξ′)nb(xxx)∇b(xxx− ξξξ)αααm + nα(xxx)vcβ′βββ′

n
(xxx,ξξξ′)∇c(xxx− ξξξ)αααm

]
dS(xxx)

(3.24)

Without loss of generality, we can always consider ξξξ = ξξξ′ in all the case addressed in
the remainder since the distinction between these points is unnecessary. For example,
as regards the geometrical moments mααααmββββn

(ξξξ, ξξξ) = mααααmβ′βββ′
n
(ξξξ, ξξξ′)|ξξξ′=ξξξ.

3.4 Generalized n-th order Faxén operator and the
Hinch-Kim dualism theorem

Let us investigate the relations between the singularity operator Fαββββn
and the

n-th order Faxén operator. For the sake of compactness, we indicate with the
symbol [·, ·] the bi-linear operator acting on two generic Stokes flows v(xxx) and v′(xxx)
corresponding to the surface integral on the body

[v,v′] =
∫

∂Db

(
σσσ{v′(xxx)} · v(xxx) − σσσ{v(xxx)} · v′(xxx)

)
·nnn(xxx)dS(xxx) (3.25)

where σσσ{v(xxx)} is the stress tensor related to the field v(xxx).
It is easy to verify that

[v,v′] = −[v′,v] (3.26)
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and therefore the operator [·, ·] admits odd parity. Since the ambient fields are
regular homogeneous solutions of the Stokes equations in the domain of the body,
given two ambient fields uuu(xxx) and uuu′(xxx) we have

[uuu,uuu′] = 0 (3.27)

In the case of two disturbance fields www(xxx) and www′(xxx), applying the Lorentz reciprocal
theorem on the surface ∂Df ≡ ∂Db ∪ ∂D∞ and considering that the disturbance
fields vanish at ∂D∞ we obtain

[www,www′] =
∫

∂D∞

(
σσσ{www′(xxx)} ·www(xxx) − σσσ{www(xxx)} ·www′(xxx)

)
·nnn(xxx)dS(xxx) = 0 (3.28)

On the other hand, given two total field vvv(xxx) = uuu(xxx)+www(xxx) and vvv′(xxx) = uuu′(xxx)+www′(xxx),
the quantity [vvv,vvv′] does not vanish in general, and the following identity holds

[vvv,vvv′] = [uuu,www′] − [uuu′,www] (3.29)

We call reciprocal boundary conditions, any boundary condition for which

[vvv,vvv′] = 0, ∀ vvv(xxx), vvv′(xxx) (3.30)

Equivalently, eq. (3.30) is the mathematical definition of the property referred to as
Boundary-Condition reciprocity (BC-reciprocity, for short).

It is possible to express the generic ambient field in the domain of the body by
the Ladyzhenskaya boundary integrals [137]

uα(ξξξ) = − [SSSα(ξξξ),uuu]
8πµ = −

∫
∂Db

[
πab(xxx)Saα(xxx,ξξξ)

8πµ − ua(xxx)Σabα(xxx,ξξξ)
8π

]
nb(xxx)dS(xxx)

(3.31)
Applying the operator Aββββn

Fαββββn
at both sides of eq. (3.31), and using the relations

(3.21) one obtains

Aββββn
Fαββββn

uα(ξξξ) = −
[Aββββn

Fαββββn
SSSα(ξξξ),uuu]

8πµ = − [www(n)(ξξξ),uuu]
8πµ (3.32)

It is possible to add at the r.h.s. of eq. (3.32) the vanishing contribution [www(n)(ξξξ),www]
deriving from two disturbance fields, thus

Aββββn
Fαββββn

uα(ξξξ) = − [www(n)(ξξξ),uuu] + [www(n)(ξξξ),www]
8πµ = − [www(n)(ξξξ), vvv]

8πµ (3.33)

that can be expressed, replacing www(n)(xxx,ξξξ) = vvv(n)(xxx,ξξξ) − uuu(n)(xxx,ξξξ), in the form

Aββββn
Fαββββn

uα(ξξξ) = [uuu(n)(ξξξ), vvv] − [vvv(n)(ξξξ), vvv]
8πµ (3.34)

Comparing eq. (3.34) and eq. (3.16), we finally obtain

Mββββn
(ξξξ) = 8πµFαββββn

uα(ξξξ) + [vvv(n)
ββββn

(ξξξ), vvv] (3.35)
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Eq. (3.35) is one of the main result of this chapter, connecting the Hinch-Kim duality
to the condition of BC-reciprocity. From eq. (3.35) it is possible to state that the
Hinch-Kim dualism holds whenever reciprocal boundary conditions are imposed on
the surface of the body, i.e. whenever

[vvv(n)(ξξξ), vvv] =
∫

∂Db

[σab(xxx)v(n)
a (xxx,ξξξ) − va(xxx)σ(n)

ab (xxx,ξξξ)]nb(xxx)dS(xxx) = 0 (3.36)

This can be referred to as the Hinch-Kim dualism theorem. In the BC-reciprocal case,
the n-th order singularity operator Fαββββn

defined by eq. (3.20) furnishes either the
n-th order disturbance field if applied to the pole of the unbounded Green function
according eqs. (3.21)-(3.23) or the n-th order moment on a particle immersed in an
ambient field uuu(xxx) according to the relation

Mββββn
(ξξξ) = 8πµFαββββn

uα(ξξξ) (3.37)

Owing to the fact that the operator Fαββββn
returns the n-th order moments on the

body if applied to an ambient flow, Fαββββn
is sensu-stricto a n-th order generalized

Faxén operator.
Let us to show an interesting consequence of reciprocal boundary conditions. If

BC-reciprocity holds, by using eq. (3.6), the disturbance field due to the inclusion
of the body related to a generic ambient field uuu(xxx) can be expressed as

wa(xxx) = 1
8πµ

∞∑
n=0

[Fβααααnuβ(ξξξ)]
n! ∇αααnSa α(xxx,ξξξ) (3.38)

and, as shown in [201] and briefly reviewed in Appendix 3.A, due to the following
symmetry of the geometric moments

mααααmβ′βββ′
n
(ξξξ, ξξξ′) = mβ′βββ′

nααααm
(ξξξ′, ξξξ) (3.39)

we obtain an expansion of a generic disturbance field in terms of the Faxén operators
(i.e. in terms of the geometrical moments)

wa(xxx) =
∞∑

n=0

∇βββn
uβ(ξξξ)
n! Fαββββn

Sa α(xxx,ξξξ) (3.40)

Gathering eqs. (3.37) and (3.40) a remarkable property follows, namely if BC-
reciprocity holds, the hydromechanics (i.e. the motion of the body due to the
interaction with the fluid and the motion of the fluid due to the interaction with the
body) of a fluid-body system in the Stokes regime can be completely described by
the knowledge of the entire set of (m,n)-th order geometrical moments of the body.

In the next Sections we analize typical hydrodynamic boundary conditions at
the fluid-body interface in order to ascertain in which cases BC-reciprocity i.e. eq.
(3.30) is fulfilled and Fαββββn

is a Faxén operator.

3.5 Boundary conditions at solid-fluid interfaces
BC-reciprocity i.e. [vvv,vvv′] = 0 is straightforwardly verified for no-slip conditions
(vvv(xxx) = 0 for xxx ∈ ∂Db ) or for complete slip conditions (σσσ(xxx) ·nnn(xxx) = 0 for xxx ∈ ∂Db)
at the surface of the body.
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Indeed, this property holds for any linear relation between velocity and traction
at the boundary. In fact, consider the interfacial mobility matrix βββ(xxx) [10] defined
by the relation

βββ(xxx) · vvv(xxx) = σσσ(xxx) ·nnn(xxx), xxx ∈ ∂Db (3.41)
Due to its symmetry, βab(xxx) = βba(xxx), we have that

[vvv(n)(ξξξ), vvv] =
∫

∂Db

[σab(xxx)nb(xxx)v(n)
a (xxx,ξξξ) − va(xxx)σ(n)

ab (xxx,ξξξ)nb(xxx)]dS(xxx) =∫
∂Db

[vb(xxx)βab(xxx)v(n)
a (xxx,ξξξ) − v

(n)
b (xxx,ξξξ)βab(xxx)va(xxx)]dS(xxx) = 0(3.42)

Consistently, in this case Fαββββn
is a Faxén operator.

Next, let us focus on the case of Navier-slip boundary conditions. Thus, given
an ambient field uuu(xxx), the total field vvv(xxx) = uuu(xxx) +www(xxx) satisfies at the boundaries
of the body the relations

vvv(xxx) ·nnn(xxx) = 0

vvv(xxx) · ttt(xxx) = −λ

µ
hhh(xxx) · ttt(xxx), xxx ∈ ∂Db

(3.43)

where λ is the slip length of the interface, ttt(xxx) = III −nnn(xxx) ⊗nnn(xxx) the unit tangent
matrix, and hhh(xxx) = σσσ(xxx) ·nnn(xxx) the surface traction of the total velocity field.

Navier-slip boundary conditions eq. (3.43) represent a particular case where the
relation between velocity and traction at the boundary of the body is linear, and
from what obtained above, BC-reciprocity applies, meaning that the Hinch-Kim
dualism holds. Therefore, given a generic ambient field uuu(xxx), the moments on the
body are given by eq. (3.37), and the disturbance field is expressed by eq. (3.40).
The geometrical moments that are needed to explicit the Faxén operators can be
obtained by substituting the boundary conditions eq. (3.43) into eq. (3.24), and by
considering the geometrical surface traction of the body immersed in a n-th order
ambient field hαββββn

(xxx,ξξξ) = δαaσabββββn
(xxx,ξξξ)nb(xxx), thus

mααααmββββn
(ξξξ, ξξξ) =∫

∂Db

hγββββn
(xxx,ξξξ)

8π [δαγ(xxx− ξξξ)αααm − λ(tαγ(xxx)nb(xxx)∇b(xxx− ξξξ)αααm

+nα(xxx)tcγ(xxx)∇c(xxx− ξξξ)αααm)]dS(xxx) (3.44)

The n-th order surface traction hαββββn
(xxx,ξξξ) can be expressed as

hαββββn
(xxx,ξξξ) = fαββββn

(xxx,ξξξ)+nα(xxx)pββββn
(xxx,ξξξ)−

(
nβ(xxx)∇α(xxx− ξξξ)βββn

+ δβαnγ(xxx)∇γ(xxx− ξξξ)βββn

)
(3.45)

where fαββββn
(xxx,ξξξ) = δαaτabββββn

(xxx,ξξξ)nb(xxx) is the surface traction related to the n-th
order disturbance field.

On the other hand, it is easy to see that Fαββββn
is not a Faxén operator for a

deforming body. In fact, under the assumption that the body is a linear elastic
material solid, the governing equations for the body deformation are [140]{

∇ · σσσ[s](xxx) = −ρ[s]üuu[s](xxx)
σσσ

[s]
ab(xxx) = δab λ

[s]∇ · uuu[s](xxx) + µ[s](∇au
[s]
b (xxx) + ∇bu

[s]
a (xxx)), xxx ∈ Db

(3.46)
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where σσσ[s](xxx) is the stress tensor field in the solid, uuu[s](xxx) the displacement field of
the solid, ρ[s] the solid density, and λ[s] and µ[s] the Lamé coefficients. In eq. (3.46)
any upper “dot” indicates the derivative operation with respect to time. Enforcing
continuity conditions at the solid-fluid interface [75]{

σσσ(xxx) ·nnn(xxx) = σσσ[s](xxx) ·nnn(xxx)
vvv(xxx) = u̇uu[s](xxx) xxx ∈ ∂Db

(3.47)

and substituting eqs. (3.47) in the first integral in eq. (3.42), from the Maxwell-Betti
theorem [168, 14] it follows that

[vvv(n)(ξξξ), vvv] =
∫

∂Db

[σ[s]
ab (xxx)nb(xxx)u̇[s](n)

a (xxx,ξξξ) − u̇[s]
a (xxx)σ[s](n)

ab (xxx,ξξξ)nb(xxx)]dS(xxx)

= −ρ[s]
∫

Db

[ü[s]
a (xxx) u̇[s](n)

a (xxx,ξξξ) − u̇[s]
a (xxx) ü[s](n)

a (xxx,ξξξ)]dV (xxx) (3.48)

which does not vanish in general for any flow vvv(xxx) and vvv(n)(xxx,ξξξ). BC-reciprocity is
ensured only at the mechanical equilibrium of the body i.e. when üuu[s](xxx) = 0.

3.6 Boundary conditions at fluid-fluid interfaces
In the presence of a fluid body, the most common linear boundary conditions assumed
at the fluid-fluid interface, considered incompressible and homogeneous, are [26, 208]

vvv(xxx) = vvv[i](xxx)
vvv(xxx) ·nnn(xxx) = ṙ(xxx, t)
σσσ(xxx) ·nnn(xxx) = σσσ[i](xxx) ·nnn(xxx) + γ nnn(xxx)C(xxx), xxx ∈ ∂Db

(3.49)

where vvv[i](xxx) and σσσ[i](xxx) are the velocity field and the stress tensor in the disturbing
fluid (say a liquid drop or a gas bubble), C(xxx) the trace of the curvature tensor of
the surface and γ the surface tension.

Applying the reciprocity integral eq. (3.24) to the fields vvv(xxx) and vvv(n)(xxx), it
follows that

[vvv(n)(ξξξ), vvv] =
∫

∂Db

[σab(xxx)nb(xxx)v(n)
a (xxx,ξξξ) − va(xxx)σ(n)

ab (xxx,ξξξ)nb(xxx)]dS(xxx) =∫
∂Db

[σ[i]
ab(xxx)nb(xxx)v[i](n)

a (xxx,ξξξ) − v[i]
a (xxx)σ[i](n)

ab (xxx,ξξξ)nb(xxx)]dS(xxx) +

γ

∫
∂Db

(v[i](n)
a (xxx,ξξξ) − v[i]

a (xxx))C(xxx)na(xxx)dS(xxx) (3.50)

Since the Lorentz reciprocal theorem is a peculiarity of Newtonian fluids (and,
more generally, of continua characterized by linear relations between fluxes and
thermodynamics forces), the first integral at the r.h.s of eq. (3.50) does not vanish,
at least in principle, in the non-Newtonian case and consequently Fαββββn

cannot be
a Faxén operator. In the case the disturbing fluid is Newtonian, the first integral at
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the r.h.s of eq. (3.50) vanishes due to the Lorentz reciprocal theorem for Newtonian
fluids, but the second integral does not vanish until the interface shape does not reach
the equilibrium state. In fact, the velocity at the interface vvv(xxx)|xxx∈∂Db

is uniquely
determined by the Rallison-Acrivos integral equations once the ambient field is
assigned [209, 193]. Therefore, the second integral at the r.h.s of eq. (3.50) does not
vanishes for any ambient flows, but solely in the trivial case of uuu(xxx) = uuu(n)(xxx,ξξξ).

If the disturbing fluid is Newtonian and the shape of the body, say a drop or
a bubble, is stationary (vvv(xxx) · nnn(xxx)|xxx∈∂Db

= 0), the first integral at the r.h.s of eq.
(3.50) vanishes due to Lorentz’s reciprocity. Furthermore, since the normal velocity
is assumed to be vanishing at the surface of the body, also the second integral at
the r.h.s vanishes, independently of the shape of the body and of the surface tension.
We obtain [vvv(n)(ξξξ), vvv] = 0 and consequently Fαββββn

is, in this case, a Faxén operator.
This means that both the velocity field in the external fluid and the moments on the
drop do not depend directly on the surface tension at the surface, as surface tension
has only an indirect influence related to the geometry of the stationary shape of the
drop.

In this case, in order to evaluate the geometrical moments providing the Faxén
operator, the knowledge either of the set of n-th surface velocity fields vabbbbn

(xxx,ξξξ) or
of n-th external surface traction habbbbn

(xxx,ξξξ) = σacbbbbn
(xxx,ξξξ)nc(xxx) is required since

8πmααααmββββn
(ξξξ, ξξξ) =

∫
∂Db

(xxx− ξξξ)αααmhαββββn
(xxx,ξξξ)dS(xxx)

+
∫

∂Db

[
vαββββn

(xxx,ξξξ)nb(xxx)∇b(xxx− ξξξ)αααm + nα(xxx)vcββββn
(xxx,ξξξ)∇c(xxx− ξξξ)αααm

]
dS(xxx)(3.51)

3.7 Boundary conditions at porous body-fluid interfaces

Next, consider the case the inner flow (vvv[i](xxx), p[i](xxx)) inside a porous body is modeled
by means of the Darcy equations [50, 240]

vvv
[i](xxx) = −k

µ
∇p[i](xxx)

∇ · vvv[i](xxx) = 0, xxx ∈ Db

(3.52)

where k is the permeability of the porous medium. The boundary condition to
be imposed at the interface are the Beavers-Joseph-Saffman boundary conditions
[214, 120], i.e.,


(vvv(xxx) − vvv[i](xxx)) · (III −nnn(xxx) ⊗nnn(xxx)) =

√
k

α
σσσ(xxx) · (III −nnn(xxx) ⊗nnn(xxx))

vvv(xxx) ·nnn(xxx) = vvv[i](xxx) ·nnn(xxx)
p(xxx) = p[i](xxx), xxx ∈ ∂Db

(3.53)

where α = α0 µ and α0 is a nondimensional constant depending on the geometry and
topology of the pore structure. In this case, BC-reciprocity is not satisfied because
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[vvv,vvv′] does not vanish in general, since

[vvv(n)(ξξξξξξξξξ), vvv] =
∫

∂Db

[σab(xxx)nb(xxx)v(n)
a (xxx,ξξξ) − va(xxx)σ(n)

ab (xxx,ξξξ)nb(xxx)]dS(xxx) =

−2µ
∫

∂Db

[eab{vvv(xxx)}v[i](n)
a (xxx,ξξξ) − eab{vvv(n)(xxx,ξξξ)}v[i]

a (xxx)]nb(xxx)dS(xxx) ̸= 0

(3.54)

where
eab{vvv(x)} = 1

2(∇avb(xxx) + ∇bva(xxx))

It is possible to check this result by identifying the singularities in the solution
provided by Jones [120] for the simpler problem of a porous sphere with radius Rp in
a constant flow with components Uβ , comparing the solution with the Faxén theorem
obtained by Palaniappan [188] for a Darcy porous sphere in a generic ambient flow.
The disturbance field in the Jones solution is given by the operator applied at the
pole of the Stokeslet centered at the center of the sphere ξξξ

UβFαβ = Uβ

[
RpAD

2 +
R3

pBD

2 ∆ξ

]
δαβ (3.55)

where ∆ξ is the Laplacian operator acting on the coordinate of the center of the
sphere and where

AD = −
3R2

p

(
2
√
k + αRp

)
6k3/2 + 3αkRp + 6

√
kR2

p + 2αR3
p

BD = −
αR3

p

12k3/2 + 6αkRp + 12
√
kR2

p + 4αR3
p

while the Faxén theorem obtained by Palaniappan [188] states that the force acting
on a sphere in an ambient flow uuu(xxx) is

Fα = −Mα = −8πµ
[
RpAD

2 +
R3

pB
′
D

2 ∆ξ

]
uα(ξξξ(c)) (3.56)

where
B′

D = BD − 6k3/2 + 3αkRp

6k3/2 + 3αkRp + 6
√
kR2

p + 2αR3
p

The comparison of eqs. (3.55) an eq. (3.56) shows that the terms proportional to
the Laplacian ∆ξ are different in the two expressions (as BD ̸= B′

D), as it should be
if the Hinch-Kim dualism would not apply. This result, follows almost immediately
from the functional structure of the r.h.s. in eq. (3.54).

On the other hand, if the flow of the fluid in the porous medium is modeled by
the Brinkman equations [31]µ∆vvv[i](xxx) − ∇p[i](xxx) = µ

k
vvv[i](xxx)

∇ · vvv[i](xxx) = 0, xxx ∈ Db

(3.57)
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with continuous boundary condition (vvv(xxx),σσσ(xxx)) = (vvv[i](xxx),σσσ[i](xxx)) at the interface
xxx ∈ ∂Db, the reciprocity of the boundary conditions is fulfilled, since

[vvv(n)(ξξξ), vvv] =
∫

∂Db

[σab(xxx)nb(xxx)v(n)
a (xxx,ξξξ) − va(xxx)σ(n)

ab (xxx,ξξξ)nb(xxx)]dS(xxx) =∫
∂Db

[σ[i]
ab(xxx)nb(xxx)v[i](n)

a (xxx,ξξξ) − v[i]
a (xxx)σ[i](n)

ab (xxx,ξξξ)nb(xxx)]dS(xxx) =

−µ

k

∫
Db

[v[i]
a (xxx)v[i](n)

a (xxx,ξξξ) − v[i]
a (xxx)v[i](n)

a (xxx,ξξξ)]dV (xxx) = 0

(3.58)

thus for Brinkman porous bodies Fαββββn
is a Faxén operator.

The 0-th order Faxén operator for this case can be identified by the solutions
given by Masliyah and al. [162] or by Yu and Kaloni [248] for a traslating Brinkman
porous sphere in the Stokes flow. We observe that, in this case

UβFαβ = Uβ

[
RpAB

2 +
R3

pBB

2 ∆ξ

]
δαβ (3.59)

where

AB =
3R2

p

(
Rp cosh

(
Rp√

k

)
−

√
k sinh

(
Rp√

k

))
6k3/2 sinh

(
Rp√

k

)
− 6kRp cosh

(
Rp√

k

)
− 4R3

p cosh
(

Rp√
k

)

BB =
6kRp cosh

(
Rp√

k

)
+R3

p cosh
(

Rp√
k

)
− 6k3/2 sinh

(
Rp√

k

)
− 3

√
kR2

p sinh
(

Rp√
k

)
12k3/2 sinh

(
Rp√

k

)
− 12kRp cosh

(
Rp√

k

)
− 8R3

p cosh
(

Rp√
k

)
The same operator is identifiable in the Faxén theorem found by Padmavathi and al.
[187, 71], according to which the force on a Brinkman porous sphere with center at
ξξξ immersed in a generic ambient flow uuu(xxx) is, as expected,

Fα = −Mα = −8πµ
[
RpAB

2 +
R3

pBB

2 ∆ξ

]
uα(ξξξ) (3.60)

In this case, in order to evaluate the geometrical moments we need to determine the
surface traction and the velocity at the boundary, since

8πmααααmββββn
(ξξξ, ξξξ) =

∫
∂Db

(xxx− ξξξ)αααmhαββββn
(xxx,ξξξ)dS(xxx)

−
∫

∂Db

pααααm(xxx,ξξξ)vbββββn
(xxx,ξξξ)nb(xxx)dS(xxx)

+
∫

∂Db

[
vαββββn

(xxx,ξξξ)nb(xxx)∇b(xxx− ξξξ)αααm + nα(xxx)vcββββn
(xxx,ξξξ)∇c(xxx− ξξξ)αααm

]
dS(xxx)

(3.61)
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3.8 Faxén operator for a sphere with Navier-slip bound-
ary conditions

From eqs. (3.37), (3.40) and (3.44) it follows that the hydromechanics of a body in a
Stokes fluid with Navier-slip boundary conditions can be determined if the complete
set of surface traction is known. In this Section it is developed an analytic method,
based on the Lorentz reciprocal theorem, for determining the surface tractions eq.
(3.45) entering eq. (3.44), assuming Navier-slip boundary conditions on the surface
of a spherical object. The method, here developed for a sphere with Navier-
slip boundary conditions, can be employed systematically for obtaining analytic
expressions of n-th order Faxén operators of spheres with different BC-reciprocal
boundary conditions. To this aim consider, in the remainder, a Cartesian coordinate
system for the point xxx with the origin at the center of the sphere. Also the entries at
the source point ξξξ are expressed in the same Cartesian coordinate system, therefore
there is no substantial distinction between Greek and Latin indexes.

0-th order Faxén operator

In order to determine the 0-th order surface traction on a sphere moving in the
unbounded Stokes fluid with velocity −UUU , consider the disturbance field www(0)(xxx,ξξξ) =
www(0)(xxx) due to a sphere with Navier-slip boundary conditions in a constant field
uuu(0)(xxx,ξξξ) = UUU , which is the solution of the Stokes problem

µ∆w(0)
a (xxx) − ∇aq

(0)(xxx) = 0
∇aw

(0)
a (xxx) = 0, xxx ∈ Df

w
(0)
a (xxx) = −Ub (δab + λhbc(xxx)tac(xxx)) , xxx ∈ ∂Db

(3.62)

and the Stokeslet (SSSα(xxx,ξξξ), µΣΣΣα(xxx,ξξξ)), explicitly reported in eq. (1.13) or in the
monographs [194, 130]. Applying the Lorentz reciprocal theorem to the fields
(www(0)(xxx), q(0)(xxx)) solution of eqs. (3.62), and (SSSα(xxx,ξξξ), µΣΣΣα(xxx,ξξξ)) within the domain
of the fluid Df , bounded by the surface ∂Db ∪∂D∞, and considering that both fields
vanish at infinity i.e. on ∂D∞, we have

[www(0),SSSα(ξξξ)] = 0 (3.63)

At the surface of the sphere, a Stokeslet with pole at the center of the sphere (thus
for r = (xxx− ξξξ)a(xxx− ξξξ)a = Rp and ξξξ = (0, 0, 0)) reads

Saα(xxx,ξξξ) = δaα + naα(xxx)
Rp

Σabα(xxx,ξξξ)nb(xxx) = 6 naα(xxx)
R2

p

, r = Rp (3.64)

where naa1...an(xxx) = na(xxx)na1(xxx)...nan(xxx) and na(xxx) = (xxx− ξξξ)a/Rp.
Substituting eqs. (3.64) within eq. (3.63) and expliciting the [·, ·]-operator in eq.

(3.63) according to the definition eq. (3.25), we have the following relation between
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integrals

− 6
Rp

∫
r=Rp

naα(xxx)dS(xxx) =
∫

r=Rp

fab(xxx)(δbα + nbα(xxx))dS(xxx) (3.65)

where fab(xxx) is the surface traction related to the disturbance field introduced in
eq. (3.45). In order to satisfy eq. (3.65), the surface traction fab(xxx) should have the
generic form

fab(xxx) = a δab + b nab(xxx) (3.66)

where a and b are constant to be determined. Alternatively, expressed in terms of
normal and tangential components,

fab(xxx) = fn nab(xxx) + f t(δab − nab(xxx)) (3.67)

where fn = a+ b and f t = a.
Substituting eq. (3.67) into eq. (3.65), a first relation between fn and f t is

obtained

− 6
Rp

∫
r=Rp

naα(xxx)dS(xxx) = 2fn
∫

r=Rp

naα(xxx)dS(xxx) + f t
∫

r=Rp

(δaα − naα(xxx))dS(xxx)

(3.68)
that, solving the surface integrals, attains the simple form

fn + f t = − 3
Rp

(3.69)

To determine fn and f t, a further independent relation between f t and fn is required.
To this aim, we can consider the lowest order potential Stokes singularity, i.e. the so
called source doublet (−∆ξSSSα(xxx,ξξξ)/2,−µ∆ξΣΣΣα(xxx,ξξξ)/2). Also in this case, applying
the Lorentz reciprocal theorem, we obtain

[www(0),∆ξSSSα(ξξξ)] = 0 (3.70)

where ∆ξ is the Laplacian operator acting on the coordinates of the pole. At the
surface of the sphere, the Source Doublet with pole at the center of the sphere is

−∆ξ Saα(xxx,ξξξ)
2 = −δaα + 3naα(xxx)

R3
p

−(∆ξ Σabα(xxx,ξξξ))nb(xxx)
2 = 6 −δaα + 3naα(xxx)

R4
p

, r = Rp (3.71)

Consequently, the second relation for fn and f t stemming from eq. (3.70) is

6
Rp

∫
r=Rp

(δaα − 3naα(xxx))dS(xxx) + 6λf t

Rp

∫
r=Rp

(δaα − naα(xxx))dS(xxx) =

2fn
∫

r=Rp

naα(xxx)dS(xxx) − f t
∫

r=Rp

(δab − nab(xxx))dS(xxx) (3.72)

that, upon explicit integration, simplifies as(
6λ̂+ 1

)
f t − fn = 0, λ̂ = λ/Rp (3.73)
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The solution of the linear system eqs. (3.69) and (3.73) provides

fn = − 3(1 + 6λ̂)
2Rp(1 + 3λ̂)

, f t = − 3
2Rp(1 + 3λ̂)

(3.74)

and, thus, the total 0-th order geometrical surface traction is

hab(xxx) = fab(xxx) = − 3
2Rp

[
δab + 6λ̂nab(xxx)

1 + 3λ̂

]
(3.75)

In Appendix 3.B, we determine the analytical expression for the geometrical moments
mααααmββββn

(ξξξ, ξξξ) useful to evaluate the Faxén operators of the 0-th, 1-th and 2-nd order,
by means of the surface traction obtained in this Section. To express the 0-th order
Faxén operator according the eq. (3.20), we need the geometrical moments for n = 0.
Geometrical moments for n = 0 and m = 0, 1, 2 are obtained in eqs. (3.116)-(3.119).
Due to the symmetry of the sphere, the moments for n = 0 and m = 1 in eq. (3.117)
vanish, and equivalently also the moments for n = 0 and m = 3, 5, 7, .... It is easy to
see that the moments for n = 0 and m = 4, 6, 8, ... contribute to the Faxén operator
in eq. (3.68) by introducing terms proportional either to the divergence operators ∇β

and ∇α or to the bilaplacian operator ∆ξ∆ξ. Since Stokes fields are both divergence
free and biharmonic, their action is immaterial. Therefore, in agreement with the
result obtained in [197], the 0-th order Faxén operator for a sphere with Navier-slip
boundary conditions is

Fβα = −
(

1 + 2λ̂
1 + 3λ̂

)(
3
4Rp + 1

8
R3

p

(1 + 2λ̂)
∆ξ

)
δαβ (3.76)

where ∆ξ is the Laplacian respect to the coordinates of the center of the sphere ξξξ.
Since the force Fα exerted by the fluid on the particle is the 0-th order moment

with reverse sign, for a sphere immersed in the ambient flow uuu(xxx) we have

Fα = −Mα(ξξξ) = 8πµ
(

1 + 2λ̂
1 + 3λ̂

)(
3
4Rp + 1

8
R3

p

(1 + 2λ̂)
∆ξ

)
uα(ξξξ) (3.77)

1-st order Faxén operator

In order to evaluate the surface traction on a sphere immersed in a 1-st order ambient
field, consider the disturbance field

µ∆w(1)
a (xxx,ξξξ) − ∇aq

(1)(xxx,ξξξ) = 0
∇aw

(1)
a (xxx,ξξξ) = 0, xxx ∈ Df

w
(1)
a (xxx,ξξξ) = −Abb1 ((xxx− ξξξ)b1δab + λhcbb1(xxx,ξξξ)tac(xxx)) , xxx ∈ ∂Db

(3.78)

with ξξξ = (0, 0, 0) at the center of the sphere. From eq. (3.45) we have

habb1(xxx) = fabb1(xxx) − (nb(xxx) δab1 + δab nb1(xxx)) (3.79)

The procedure to obtain fabb1(xxx) (and thus habb1(xxx)) is equivalent to that followed
in eqs. (3.63)-(3.75). In this case, the most general form for fabb1(xxx) in order to
satisfy reciprocity relations with singularities centered at the center of the sphere is

fabb1(xxx) = a δabnb1(xxx) + b δab1nb(xxx) + c nabb1(xxx) + d δbb1na1(xxx) (3.80)
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where a, b, c and d are constant to be determined. Since, according to the definition
eq. (3.10), Abb1 = 0 due to the imcompressibility of the ambient flow, the last term
in eq. (3.80) does not contribute to the surface traction, and we can set d = 0. If
we apply the Lorentz reciprocal theorem to the solution (www(1)(xxx,ξξξ), τττ (1)(xxx,ξξξ)) of
eqs. (3.78) and to the Stokeslet or the Source doublet, as in the previous paragraph,
we obtain that all the integrals on the surface of the sphere vanish due to the
spherical symmetry. For this reason, it is necessary to consider the Stokes doublet
(∇βSSSα(xxx,ξξξ), µ∇βΣΣΣα(xxx,ξξξ)) with pole at the center of the sphere, and therefore

[www(1)(ξξξ),∇βSSSα(ξξξ)] = 0 (3.81)

from which one obtains a system of two linear equations in the coefficients a, b, c,{
−(8 + 6λ̂)a+ (2 + 24λ̂)b− 3c = 24 + 18λ̂
(2 + 24λ̂)a− (8 + 6λ̂)b− 3c = −6 + 18λ̂

(3.82)

In order to solve the system we need another linearly independent equation. To
this aim, it is possible to apply the Lorentz reciprocal theorem between the Source
Quadrupole (∆ξ∇βSSSα(xxx,ξξξ), µ∆ξ∇βΣΣΣα(xxx,ξξξ)) and (www(1)(xxx), τττ (1)(xxx)) . Thus, applying
the relation

[www(1)(ξξξ),∆ξ∇βSSSα(ξξξ)] = 0 (3.83)
one obtains another independent relation amongst a, b and c,

c− 8λ̂(a+ b) = −16λ̂ (3.84)

Solving eqs. (3.82) and (3.84) one finally gets

a = −3 − 7λ̂+ 15λ̂2

(1 + 5λ̂)(1 + 3λ̂)
, b = λ̂(8 + 15λ̂)

(1 + 5λ̂)(1 + 3λ̂)
, c = − 40λ̂

1 + 5λ̂
(3.85)

The surface tensor in eq. (3.45) is obtained by substituting the constant defined by
eq. (3.85) into eq. (3.80),

habb1(xxx) = −(4 + 15λ̂) δabnb1(xxx) + δab1nb(xxx) + 40λ̂(1 + 3λ̂)nabb1(xxx)
(1 + 5λ̂)(1 + 3λ̂)

(3.86)

To determine the Faxén operator Fαββ1 , the moments mααααmββββn
(ξξξ, ξξξ) at the center

of the sphere for n = 1 should be evaluated using the surface traction defined by
eq. (3.86). Since geometrical moments with even m = 0, 2, ... vanish due to the
symmetry of the sphere, only the geometrical moments for odd m = 1, 3, ... are
needed. Geometrical moments for m = 1 and m = 3 are given in eq. (3.120) and
eq. (3.121) respectively. Higher order geometrical moments contribute to the Faxén
operator by divergence and bilaplacian operators and thus, they can be neglected
as their action is immaterial. Thus, according to eq. (3.68), the 1-st order Faxén
operator is given by

Fαββ1 = −
R3

p

6(1 + 5λ̂)(1 + 3λ̂)

{[
(4 + 20λ̂+ 15λ̂2)δαβ∇β1 + (1 + 5λ̂+ 15λ̂2)δαβ1∇β

]
+
R2

p

10
[
(4 + 12λ̂− 15λ̂2)∆ξ∇β1δαβ + (1 + 3λ̂+ 15λ̂2)∆ξ∇βδαβ1

]}
(3.87)
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The Faxén operator Tγα, yielding the torque Tα = εαββ1Mββ1(ξξξ) on the body if an
ambient flow is applied, or the velocity field due to the body rotation if applied to
the Stokeslet, can be defined by the antisymmetric part of the first order Faxén
operator, i.e.,

Tγα = εαββ1Fγββ1 (3.88)

Considering that εγαα1∆∇α1uα(xxx) = 0 for any ambient flow, terms containing the
third order derivatives in eq. (3.87) are immaterial and may be neglected, so we
obtain

Tγα =
εαγγ1R

3
p∇γ1

2(1 + 3λ̂)
(3.89)

in agreement with [197].
Thus, the torque on the sphere in the ambient flow uα(xxx) is give by

Tα =
4πµ εαγγ1R

3
p∇γ1uγ(ξξξ)

(1 + 3λ̂)
(3.90)

The symmetric part of the 1-th order Faxén operator, useful for evaluating stresses
in suspensions, is given by

Eαββ1 = Fαββ1 + Fαβ1β

2 = −
(

5 + 10λ̂
6 + 30λ̂

+ ∆ξ

12(1 + 5λ̂)

)(∇βδαβ1 + ∇βδαβ1

2

)
(3.91)

According to eq. (3.21), the Faxén operator in eq. (3.87) determines the flow
around a sphere in the linear ambient flow ua(xxx) = δa 3 δb 1 xb = δa 3 x1. In fact, by
choosing Aββ1 = δβ 3δβ1 1 in eq. (3.21) the disturbance field reads

w(1)
a (xxx,ξξξ) = −

R3
p

6(1 + 5λ̂)(1 + 3λ̂)

{
(4 + 20λ̂+ 15λ̂2)Sa 3,1(xxx,ξξξ) + (1 + 5λ̂+ 15λ̂2)Sa 1,3(xxx,ξξξ)

R2
p

10
[
(4 + 12λ̂− 15λ̂2)∆ξSa 3,1(xxx,ξξξ) + (1 + 3λ̂+ 15λ̂2)∆ξSa 1,3(xxx,ξξξ)

]}
(3.92)

Fig. 3.2 depicts the streamlines for the total flow in the case of no-slip, complete
slip, and for two different values of λ̂ = 1, 10.

2-nd order Faxén operator

In order to evaluate the surface traction on a sphere immersed in a 2-nd order
ambient field, consider the disturbance field

µ∆w(2)
a (xxx,ξξξ) − ∇aq

(2)(xxx,ξξξ) = 0
∇aw

(2)
a (xxx,ξξξ) = 0, xxx ∈ Df

w
(2)
a (xxx,ξξξ) = −Abb1b2 ((xxx− ξξξ)b1b2δab + λhcbb1b2(xxx,ξξξ)tac(xxx)) , xxx ∈ ∂Db

(3.93)
In this case, the ambient pressure is pbb1b2(xxx,ξξξ) = (xxx− ξξξ)b∆(xxx− ξξξ)b1b2 . Therefore,
from eq. (3.45) with ξξξ = (0, 0, 0) we can set

habb1b2(xxx) = fabb1b2(xxx)−Rp (nbb1(xxx)δab2 + nbb2(xxx)δab1 + 2(δabnb1b2(xxx) − δb1b2nab(xxx)))
(3.94)
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Figure 3.2. Streamlines on the plane x2 = 0 of the fluid around a sphere in a linear ambient
flow ua(xxx) = δa 3 x1 for different values of dimensionless slip length at the surface of the
sphere.
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Considering that fabb1b2(xxx) must be symmetric with respect to the indexes b1 and
b2, and that Abb = 0, the most general form for this traction is

fabb1b2(xxx) = a δabnb1b2(xxx)+b δabδb1b2+c (δab1nbb2(xxx)+δab2nbb1(xxx))+d δb1b2nab(xxx)+e nabb1b2(xxx)
(3.95)

Following the same procedure used for the geometrical surface tractions of lower or-
ders, we consider the Stokes Quadrupole (∇γ∇βSSSα(xxx,ξξξ), µ∇γ∇βΣΣΣα(xxx,ξξξ)). Applying
the Lorentz reciprocal theorem, we have

[www(2)(ξξξ),∇γ∇βSSSα(ξξξ)] = 0 (3.96)

Solving the integrals, we obtain four linear equations for the five unknown
−2(3 + 4)a+ 2(1 + 20λ̂)c− 2e = (25 + 24λ̂)Rp

(−5 + 12λ̂)a+ 84λ̂b− 3(1 − 8λ̂)c− 14d− 4e = 3(5 + 16λ̂)Rp

(1 + 20λ̂)a− (5 − 12λ̂)c− 2e = −(3 − 52λ̂)Rp

−4(1 + 6λ̂)a+ 42λ̂b+ 6(1 − λ̂)c− 7d+ e = 6(2 − 9λ̂)Rp

(3.97)

out of which only three are linearly independent. In fact, by summing the fourth
equation multiplied by 2 to the third equation multiplied by 3, we obtain the
second equation. To obtain a further equation, we consider the Source Hexapole
(∆ξ∇γ∇βSSSα(xxx,ξξξ), µ∆ξ∇γ∇βΣΣΣα(xxx,ξξξ)). As in the previous cases, the application of
the the Lorentz reciprocal theorem provides

[www(2)(ξξξ),∆ξ∇γ∇βSSSα(ξξξ)] = 0 (3.98)

from which it follows that

−10λ̂a− 20λ̂c+ e = −40λ̂ (3.99)

We need another equation, linearly independent of eqs. (3.99) and of the three
linearly independent eqs. (3.97) that can obtained by applying the Lorentz reciprocal
theorem to the Stokeslet

[www(2)(ξξξ),SSSα(ξξξ)] = 0 (3.100)

resulting the relation
3a+ 10b+ c+ 5d+ e = −3Rp (3.101)

By solving the linear system formed by the first, third, and fourth equations in eq.
(3.97), eq. (3.99) and eq. (3.101), that possesses a non-vanishing determinant for
any λ̂ ≥ 0, the constant a, b, c, d, e entering eq. (3.95) are determined

a

Rp
= −17 − 52λ̂+ 244λ̂2

4(1 + 4λ̂)(1 + 7λ̂)
b

Rp
= 3 + 17λ̂

4(1 + 3λ̂)(1 + 4λ̂)(1 + 7λ̂)
e

Rp
= − 175λ̂

2 + 14λ̂

c

Rp
= −1 + 44λ̂+ 112λ̂2

4(1 + 4λ̂)(1 + 7λ̂)
d

Rp
= 1 + 28λ̂+ 127λ̂2 + 84λ̂3

2(1 + 3λ̂)(1 + 4λ̂)(1 + 7λ̂)
(3.102)
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and therefore, the geometrical surface traction in eq. (3.94) is given by

habb1b2(xxx) = Rp

4(1 + 4λ̂)(1 + 7λ̂)

[
−5(5 + 28λ̂)δabnb1b2(xxx)

+ 3 + 17λ̂
1 + 3λ̂

δabδb1b2 − 5 (δab1nbb2(xxx) + δab2nbb1(xxx))

+ 2(5 + 84λ+ 371λ2 + 420λ3)
1 + 3λ̂

δb1b2nab(xxx) − 350λ̂(1 + 4λ̂)nabb1b2(xxx))
]
(3.103)

through which it is possible to obtain the geometrical moments at the center of
the sphere mαββββ2(ξξξ, ξξξ), mαααα2ββββ2(ξξξ, ξξξ), mαααα4ββββ2(ξξξ, ξξξ). Their analytic expression is
reported in Appendix 3.B, eqs. (3.122), (3.123), (3.124). Using these results it is
possible to express analytically the 2-nd order Faxén operator

Fαββ1β2 = −
R3

p

4(1 + 4λ̂)(1 + 7λ̂)

{
(1 + 4λ̂)(1 + 7λ̂)

1 + 3λ̂

[
δαβδβ1β2 + λ̂(δββ1δαβ2 + δββ2δαβ1)

]
+
R2

p

6

[
− 4λ̂2

(
4 + 21λ̂
1 + 3λ̂

)
∆ξδβ1β2δαβ + 5(1 + 6λ̂)∇β1β2δαβ +

(1 + 6λ̂+ 28λ̂2)(∇ββ1δαβ2 + ∇ββ2δαβ1) + (1 + 12λ̂+ 56λ̂2)(δαβ1δββ2 + δαβ2δββ1)∆ξ

]
+
R4

p

84
[
(5 + 20λ̂− 56λ̂2)∇β1β2δαβ + (1 + 4λ̂+ 28λ̂2)(∇ββ1δαβ2 + ∇ββ2δαβ1)

]
∆ξ

}
(3.104)

The Faxén operator in eq. (3.104) can be used to obtain the flow around a sphere in
the unbounded Poiseuille ambient flow

u(2)
a (xxx) = δa 3(δa1a2 − δa1 3δa2 3) (xxx− ξξξ)a1a2 = δa 3 ((xxx− ξξξ)2

1 + (xxx− ξξξ)2
2)

ξξξ being the center of the sphere. Choosing Aββ1β2 = δβ 3(δβ1β2 − δβ1 3δβ2 3) in eq.
(3.21) the disturbance field reads

w(2)
a (xxx,ξξξ) = −

R3
p

24(1 + 7λ̂)

{
12
(

1 + 7λ̂
1 + 3λ̂

)
Sa 3(xxx,ξξξ)+

R2
p

[(
5 + 25λ̂− 42λ̂2

1 + 3λ̂

)
∆ξSa 3(xxx,ξξξ) − 7(1 + 2λ̂)Sa 3,3 3(xxx,ξξξ)

]
−R4

p

∆ξSa 3,3 3(xxx,ξξξ)
2

}
(3.105)

The streamlines obtained using eq. (3.105) in the case of no-slip, complete slip,
Navier-slip with λ̂ = 1 and λ̂ = 10 are reported in Fig. 3.3.

Appendix

3.A Symmetry of the geometrical moments
To show the symmetry in eq. (3.39), if BC-reciprocity applies, consider the moments
M

(n)
ααααm(ξξξ, ξξξ′) and their expression eq. (3.16). Using the notation developed in Section
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Figure 3.3. Streamlines on the plane x2 = 0 of the fluid around a sphere in the unbounded
Poiseuille ambient flow ua(xxx) = δa 3 (x2

1 + x2
2) for different values of dimensionless slip

length, at the surface of the sphere.
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3.4
AααααmM

(n)
ααααm(ξξξ, ξξξ′) = [uuu(m)(ξξξ), vvv(n)(ξξξ′)] (3.106)

and analogously
Aβ′βββ′

n
M

(m)
β′βββ′

n
(ξξξ′, ξξξ) = [uuu(n)(ξξξ′), vvv(m)(ξξξ)] (3.107)

Therefore, their difference can be expressed as

AααααmM
(n)
ααααm(ξξξ, ξξξ′) −Aβ′βββ′

n
M

(m)
β′βββ′

n
(ξξξ′, ξξξ) = [uuu(m)(ξξξ), vvv(n)(ξξξ′)] − [uuu(n)(ξξξ′), vvv(m)(ξξξ)]

= [uuu(m)(ξξξ),uuu(n)(ξξξ′)] + [uuu(m)(ξξξ),www(n)(ξξξ′)] − [uuu(n)(ξξξ′),uuu(m)(ξξξ)] − [uuu(n)(ξξξ′),www(m)(ξξξ)]
= [uuu(m)(ξξξ),www(n)(ξξξ′)] − [uuu(n)(ξξξ′),www(m)(ξξξ)] (3.108)

Under the hypothesis of reciprocal boundary conditions, from the identity eq. (3.29)
it follows that

[uuu(m)(ξξξ),www(n)(ξξξ′)] − [uuu(n)(ξξξ′),www(m)(ξξξ)] = [vvv(m)(ξξξ), vvv(n)(ξξξ′)] = 0 (3.109)

i.e.,
AααααmM

(n)
ααααm(ξξξ, ξξξ′) = Aβ′βββ′

n
M

(m)
β′βββ′

n
(ξξξ′, ξξξ) (3.110)

Therefore, from the definition of geometrical moments eq. (3.18), since Aβ′βββ′
n

could
be in principle arbitrary, we have

mααααmβ′βββ′
n
(ξξξ, ξξξ′) = mβ′βββ′

nααααm
(ξξξ′, ξξξ) (3.111)

corresponding to eq. (3.39). If the boundary conditions are not reciprocal, the r.h.s.
of eq. (3.108) possesses the property

[uuu(m)(ξξξ),www(n)(ξξξ′)] − [uuu(n)(ξξξ′),www(m)(ξξξ)]
{

= 0, n = m

̸= 0, n ̸= m
(3.112)

For n = m = 0 eq. (3.112) expresses the thermodynamic condition of symmetry of
the resistance matrix, mαβ = mβα, independently on the boundary conditions and
on the nature of the immersed body [138]. This result represents a purely mechanical
proof of the symmetry of the resistance matrix independently of the boundary
conditions. The thermodynamic proof has been given by Landau [139, 138], while
the mechanical proof by Brenner uses specific (no-slip) boundary conditions see [98,
p. 166] and the discussion therein.

As seen in Section 3.3, a consequence of the symmetry of the geometrical moments,
in the case the Hinch-Kim dualism holds, is the equivalence between eq. (3.6) and
eq. (3.40). This equivalence can be proved by substituting the Hinch-Kim theorem
expressed by eq. (3.37) in eq. (3.6), hence

wa(xxx) = 1
8πµ

∞∑
m=0

Mααααm(ξξξ)
m! ∇αααmSa α(xxx,ξξξ) =

∞∑
m=0

Fβ′ααααmuβ′(ξξξ′)
m! ∇αααmSa α(xxx,ξξξ)

(3.113)
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substituting the expression eq. (3.20) for the Faxén operator and using the symmetry
eq. (3.111)

wa(xxx) =
∞∑

m=0

∞∑
n=0

mβ′βββ′
nααααm

(ξξξ′, ξξξ)∇βββ′
n
uβ′(ξξξ′)

m!n! ∇αααmSa α(xxx,ξξξ)

=
∞∑

m=0

∞∑
n=0

mααααmβ′βββ′
n
(ξξξ, ξξξ′)∇βββ′

n
uβ′(ξξξ′)

m!n! ∇αααmSa α(xxx,ξξξ) (3.114)

in which a new representation of the Faxén operator acting on the point ξξξ′ is
introduced

Fαβ′βββ′
n

=
∞∑

m=0

mααααmβ′βββ′
n
(ξξξ, ξξξ′)∇αααm

m!

from which it follows that

wa(xxx) =
∞∑

n=0

∇βββ′
n
uβ′(ξξξ′)
n! Fαβ′βββ′

n
Sa α(xxx,ξξξ) (3.115)

that becomes eq. (3.40) for ξξξ′ = ξξξ.

3.B Geometrical moments for a sphere with Navier-slip
conditions

In this Appendix, we provide the analytical expression for the Cartesian entries
mααααmββββn

(ξξξ, ξξξ) of the geometrical moments, for a sphere with Navier-slip boundary
conditions, ξξξ being the center of the sphere.

(m,n)-th order geometrical moments with n = 0

In order to evaluate the geometrical moment with n = 0, eqs. (3.44)-(3.45) can be
applied using for the geometrical surface traction eq. (3.75).

In the case m = 0 we obtain the well-known Basset term [4]

mαβ = − 3
16πRp

∫
r=Rp

[
δαβ + 6λ̂nαβ(xxx)

1 + 3λ̂

]
dS(xxx) = −3

4

[
1 + 2λ̂
1 + 3λ̂

]
Rp δαβ (3.116)

For m = 1 the geometrical moments at the center of the sphere ξξξ = (0, 0, 0) vanish,
in fact

mαα1β = mβαα1 =

− 3
16π

∫
r=Rp

[
δγβ + 6λ̂nγβ(xxx)

1 + 3λ̂

] [
δαγnα1(xxx) − λ̂(tαγ(xxx)nα1(xxx) + nα(xxx)tα1γ(xxx))

]
dS(xxx) = 0

(3.117)

and, due to the symmetry of the sphere,

mααααmβ = 0, m = 1, 3, 5 ... (3.118)
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for any odd value of m. For m = 2

mαααα2β = mβαααα2 = −3Rp

16π

∫
r=Rp

[
δγβ + 6λ̂nγβ(xxx)

1 + 3λ̂

]
×

×
[
δαγnα1α2(xxx) − λ̂(2tαγnα1α2(xxx) + tα1γnαα2(xxx) + tα2γnαα1(xxx))

]
dS(xxx) =

−
R3

p

4(1 + 3λ̂)

[
δαβδα1α2 + λ̂(δαα1δβα2 + δαα2δβα1)

]
(3.119)

(m,n)-th order geometrical moments with n = 1

For the geometrical moments with n = 1, eqs. (3.44)-(3.45) can be used with the
geometrical surface traction expressed by eq. (3.103). By the symmetry expressed
by eq. (3.117), the moment with m = 0 vanishes. For m = 1,

mαα1ββ1 = mββ1αα1 = −Rp

∫
r=Rp

[
(4 + 15λ̂) δγβnβ1(xxx) + δγβ1nβ(xxx) + 40λ̂(1 + 3λ̂)nγββ1(xxx)

8π(1 + 5λ̂)(1 + 3λ̂)

]

×
[
δαγnα1(xxx) − λ̂(tαγ(xxx)nα1(xxx) + tα1γ(xxx)nα(xxx))

]
dS(xxx) =

−
R3

p

6(1 + 5λ̂)(1 + 3λ̂)

[ (
4 + 20λ̂+ 15λ̂2

)
δαβδα1β1 +

(
1 + 5λ̂+ 15λ̂2

)
δαβ1δα1β + 10λ̂(1 + 3λ̂)δαα1δββ1

]
(3.120)

Due to symmetry of the sphere, for odd n and even m the geometrical moments
vanish, therefore mαααα2ββ1 = mββ1αααα2 = 0. For m = 3,

mαααα3ββ1 = mββ1αααα3 =

− R3
p

∫
r=Rp

[
(4 + 15λ̂) δγβnβ1(xxx) + δγβ1nβ(xxx) + 40λ̂(1 + 3λ̂)nγββ1(xxx)

8π(1 + 5λ̂)(1 + 3λ̂)

]
×[

δαγnα1α2α3(xxx) − λ̂(3tαγ(xxx)nα1α2α3(xxx) + tα1γ(xxx)nαα2α3(xxx) + tα2γ(xxx)nα1αα3(xxx)

+tα3γ(xxx)nα1α2α(xxx))
]
dS(xxx)

= −
R5

p

30(1 + 5λ̂)(1 + 3λ̂)

[ (
4 + 12λ̂− 15λ̂2

)
δαβηβ1ααα3 +

(
1 + 3λ̂+ 15λ̂2

)
δαβ1ηβααα3

+5λ̂(1 + 3λ̂)(δαα1ηβα2α3 + δαα2ηβα1α3 + δαα3ηβα1α2)
]

(3.121)

where ηαβγδ = δαβδγδ + δαδδβγ + δαγδβδ.

(m,n)-th order geometrical moments with n=2

It is possible to obtain the geometrical moments for n = 2 and m = 0 by symmetry
from eq. (3.119), thus

mαββββ2 = −
R3

p

4(1 + 3λ̂)

[
δαβδβ1β2 + λ̂(δββ1δαβ2 + δββ2δαβ1)

]
(3.122)
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For m = 2

mαααα2ββββ2 = mββββ2αααα2 =

R2
p

∫
r=Rp

hαββββ2(xxx)
8π

[
δαγnα1α2(xxx) − λ̂(2tαγnα1α2(xxx) + tα1γnαα2(xxx) + tα2γnαα1(xxx))

]
dS(xxx) =

−
R5

p

24(1 + 4λ̂)(1 + 7λ̂)

{
δαβ

[
−8λ̂2

(
4 + 21λ̂
1 + 3λ̂

)
δα1α2δβ1β2 + 5(1 + 6λ̂)(δα1β2δβ1α2 + δα1β1δα2β2)

]
+(1 + 6λ̂+ 28λ̂2)(δαβ1(δα1β2δα2β + δα1βδα2β2) + δαβ2(δα1β1δα2β + δα1βδα2β1))
+(1 + 12λ̂+ 56λ̂2)(δαβ1δββ2 + δαβ2δββ1)δα1α2 + (terms giving vanishing contribution to Fαββββ2)

(3.123)

For m = 4

mαααα4ββββ2 = mββββ2αααα4 =

R4
p

∫
r=Rp

hαββββ2(xxx)
8π

[
δαγnααα4(xxx) − λ̂(4tαγnααα4(xxx) + tα1γnαα2α3α4(xxx) + tα2γnαα1α3α4(xxx)

+tα3γnαα1α2α4(xxx) + tα4γnαα1α2α3(xxx))
]
dS(xxx) =

−
R7

p

168(1 + 4λ̂)(1 + 7λ̂)

[
(5 + 20λ̂− 56λ̂2)δαβHβββ2ααα4 + (1 + 4λ̂+ 28λ̂2)(δαβ1Hββ2ααα4 + δαβ2Hββ1ααα4)

]
+(terms giving vanishing contribution to Fαββββ2) (3.124)

where

Hβββ2ααα4 = Hβ1β2α1α2α3α4 = δβ1α1ηβ2α2α3α4+δβ1α2ηβ2α1α3α4+δβ1α3ηβ2α1α2α4+δβ1α4ηβ2α1α2α3
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Chapter 4

On the theory of body motion in
confined Stokesian fluids

4.1 Introduction

The behavior of particles immersed in a viscous fluid in the low-Reynolds number
regime is inevitably affected by hydrodynamic interactions with other nearby bodies,
such as other particles, fluid interfaces and solid walls confining the fluid. These
interactions, that are the origin of fundamental phenomena as the enhanced resistance
on bodies [104], the intrinsic convection of suspensions [13], the Segre-Silberbeg effect
[218], to quote just a few of them, arise whenever the characteristic length particle ℓb
is comparable with the characteristic separation distance from the nearest boundary
ℓd. Therefore, their accurate understanding is of great relevance in several areas
of microfluidics such as separation devices [227, 114, 36], capillary transportation
[87, 192, 232], dynamics of micro-swimmers [145] and active particles [170], etc.,
where, by definition, the characteristic dimension of the flow domain can be of the
same order of magnitude of the particle size.

Microfluidics is typically characterized by low Reynolds numbers, apart from the
specific applications referred to as inertial microfluidics [58, 250], so that, in most
the cases, the fluid can be considered in the Stokes regime and, when the inertia
of the fluid becomes significant (Re ∼ 1) but not too large, it can be treated by
perturbative methods with respect to the Stokes-flow solution [48, 107]. Although
hydrodynamic problems related to particles in confined fluids can be approached
by means of typical numerical methods for solving the Stokes equation (such as
Finite Elements Method [235, 53] and Boundary Integral Method [194]), a deeper
mathematical understanding of fluid-particle interactions can be beneficial in order
to overcome, by means of explicit analytical solutions, the limits and shortcomings of
the numerical approaches, to improve current numerical methods (such as Stokesian
Dynamics [22]) and develop new ones, and to explain and predict the non-intuitive
flow and transport phenomena that may occur at the microscale.

One of the main difficulties in the analytical approaches to multibody systems
intrinsic geometric complexity induced by the presence of bodies and surfaces of
different shapes where to impose the boundary conditions. This difficulty holds
even when dealing with the most regular bodies (such as spheres or ellipsoids) and
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the simplest geometries of walls (for example planar or cylindrical), since the union
of many bodies, in most cases, breaks down the original symmetries making it
impossible to find a coordinate system that permits to express simultaneously all
the boundary conditions in a simple mathematical way. This is the reason why
the only exact solutions available in the literature concern axisymmetric systems
(where this symmetry is defined with respect to a suitable orthogonal curvilinear
coordinate system), thus enabling the definition of a stream function. This is the
case of the resistance of a rigid sphere rigid close to a plane considering either no-slip
[117, 23, 55, 183] or Navier-slip boundary conditions [90], and of the resistance of a
sphere at the center of a cylindrical channel, translating parallelly to the symmetry
axis assuming no-slip boundary conditions [94]. Whereas, for the majority of the
confined systems considered in the literature, approximate analytical solutions have
been obtained under the assumption of asymptotic approximations, by using mainly
a lubrication method for short range (ℓd ≪ ℓb), and a reflection method for long
range interactions (ℓd ≫ ℓb). In some cases, such as that of the resistance of two
rigid moving spheres with no-slip boundary conditions [118], the solution has been
approximated by matching the asymptotic solutions.

In the case of short range interaction, many specific solutions are available in
the literature, such as the resistance for a sphere near a plane by considering both
no-slip [47, 85] and Navier-slip [110] boundary conditions, and a general theory,
regardless of the shape of the surface almost in contact, has been developed by [44]
assuming no-slip boundary conditions.

On the other hand, in the case of long range interaction, the reflection method
(in its multifaceted variations) is commonly employed to obtain the leading-order
terms for the series expansion in powers of ℓb/ℓd of the particle transport parameters,
such as resistance, mobility, and diffusivity. The reflection method, developed by
[223] [98, p. 236] in order to match the boundary conditions of Stokes flows on a
system of n spheres, consists in expressing the total flow (i. e. the solution of the
Stokes equations with boundary condition assigned simultaneously on each sphere)
as a series of an infinite number of flows satisfying Stokes equations with boundary
conditions assigned separately on each body considered in a unbounded domain. For
example, a simple version of this method, to obtain the exact flow in the case of
two moving spheres, can be summarized as follows: the first term of the series is the
flow due to the motion of the first sphere considered in the unbounded fluid, which
generates in turn a flow on the domain occupied by the second sphere; the second
term of the series corrects the flow on the surface of the second sphere generating a
flow on the domain of the first sphere and so on. And a similar ping-pong correction
at the boundaries of the two spheres proceeds iteratively. Although the Stokes
equations and the boundary conditions of the global problem are formally satisfied,
this procedure is affected by two main limitations: i) the solution of the infinity of
Stokes problems involved is not an easy task even for the simplest geometries of
the bodies involved, ii) the convergence of the series can be ensured only for some
specific problems, and it is still an open question in the general case.

For example, as regards the second limitation, convergence has been proved
heuristically for two equal spheres moving with the same velocity for all the separation
distances [98, p. 259], but in the case of three equally separated spheres it has
been shown that the reflection method does not converge if the distance between
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the centers of the spheres is smaller than 2.16 times the radius of the spheres [116].
In fact, as shown by [112], if particle velocities are imposed by Dirichlet boundary
conditions, the method converges only for diluted systems enclosed in a finite volume;
whereas, as proved by [157] using a variational method, in the case of suspensions
with n particles enclosed in a finite volume, the convergence of the reflection method
is ensured regardless of the concentration of the particles if particle velocities are
not assigned, i.e. if they move under the action of an external force as in the case of
sedimentation phenomena.

Therefore, given that the convergence is ensured only for ℓd ≫ ℓb and that the
exact evaluation of the terms in the series is feasible only for the first ones, i.e. the
first corrections to the unbounded approximation, reflection methods are widely
employed to model very long range interactions between particles. The main field of
application is in the analysis of suspensions, indirectly applied in Stokesian dynamics
[61, 22] under the form of inverting the particle-particle interactions mobility matrix
[116], and in the analysis of confined systems, mainly considering the interaction
between a single particle with the walls of the confinement, such as a sphere or a
spheroid near planar [228, 229, 171] or cylindrical [86, 225, 100] walls.

However, the convergence of the method even for touching body such as in
the case of two translating spheres or in the case of Luke’s suspensions and the
relatively small breakdown gap (∼ 0.16 ℓb) computed by [116] for three translating
spheres suggest that, if all the terms of the series were exactly evaluated, reflection
method should be a valid approach to provide exact solutions not only in the
asymptotic limit ℓd ≫ ℓb, but also in a closer region ℓd ∼ ℓb, albeit external to
the lubrication range ℓd ≪ ℓb. A general theory, furnishing the reflection solution
regardless of the geometry of the bodies involved, has been developed by [24, 25]
and [46] for obtaining the resistance on an arbitrary body immersed in an arbitrarily
confined Stokesian fluid, that can be also regarded as a second fixed body. In
[24, 25] it is provided the first order correction with respect to the unbounded
approximation of the hydrodynamics resistance (force and torque) on a body rigidly
moving (translating and rotating) in terms of the resistance matrix of the body in
the unbounded fluid and the Stokes’s Green function of the domain of the confined
fluid without the body inclusion; while in [46] a formal expression for the exact
reflection resistance is derived, considering also an arbitrary ambient flow, in terms of
generic tensors depending separately on the geometry of the body and the geometry
of the confinement. The formal approach by [46] is not easily amenable to a simple
practical implementation as regards the higher-order terms in the expansion, and
for this reason, it has remained as a beautiful formal development disjoint from
practical implementation in confined flows.

In this chapter, it is furnished a novel contribution, amenable to practical
implementation, to the theory of the hydrodynamic interactions between a body
in a confined fluid and the walls of the confinement by providing exact reflection
solutions for the flow of the fluid in the system and for the grand-resistance on
the body (force, torque and higher moments). The global solution is expressed in
terms of well defined tensors depending separately on the geometry of the body
and on the geometry of the confinement: moments on the body in the unbounded
fluid (or the Faxén operators of the body) and multi-poles of the domain of the
confinement (hence derivatives of the Green function). Unlike the tensors appearing
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in the expressions for the resistance on the body provided by [46], these tensors, when
not yet available in the literature, can be directly evaluated by classical analytical or
numerical methods. Furthermore, there are considered boundary conditions on the
body different from the no-slip boundary conditions, requiring only the assumption
that these boundary conditions satisfy the principle of BC-reciprocity as defined in
the previous chapter. For instance, Navier-slip, and many other fluid-fluid boundary
conditions of common hydrodynamic practice fall in this class.

To this aim, the bitensorial formulation of the Stokes singularities developed in
Chapter 2 is enforced in dealing with the entries of the two-point dependent tensorial
field (in hydrodynamics these fields depend simultaneously on the position of fluid
element and on the position of the body in the confinement). Furthermore, the
results derived in Chapter 3 are used in order to express the hydrodynamics of a
body with arbitrary boundary conditions (requiring solely BC-reciprocity) in the
ambient flows generated by the walls of the confinement, which can be complex even
in the simplest case of translation motion.

The Chapter is organized as follows. Section 4.2 states the problem and briefly
reviews the definition of the two simpler sub-problems, the solution of which permits
obtaining the analytic expression for the global confined hydrodynamics: (i) the
Faxén operators of the body and (ii) the multi-poles in the domain of the confinement.
In Sections 4.3 the exact expression for the terms entering in the reflection expansion
is derived, showing that they can be expressed as the product of suitable tensorial
quantities depends on the moments on the body immersed in the ambient field
associated with the regular parts of the bounded multi-poles. In Section 4.4 a
generalized matrix notation is introduced for tensorial systems more compact than
the notation in terms of the entries of each individual tensor, and the compact
expression of the global velocity field is obtained. Moreover, by using the properties
of infinite matrices [43], it is shown in Appendix 4.A that the convergence of the
method is ensured for ℓd ≳ 2.65 ℓb. This does not mean that the series expansion
could not converge under more general conditions, although it is reasonable to
hypothesize that there exist a constant Γ > 0, depending on the geometry of the
problem, such that the reflection solution converges only for ℓd > Γ ℓb. In Section 4.5,
the exact reflection formulae for force, torque and higher order moments on the body
are provided. The estimate of the error resulting in truncating the exact solutions
by considering only lower order multi-pole (or Faxén operators) is addressed in
Section 4.6. It is also analyzed the truncation error made in preceding literature
works, specifically in [24, 25] and in [228, 229]. Finally, in Section 4.7.1 the reflection
solution obtained with the present theory (using Faxén operators and bounded
multi-pole available in the literature), approximated to the order O

(
(ℓb/ℓd)5), are

compared and contrasted with the exact solution of a sphere near a planar wall,
and the expressions for forces considering the more general situation of Navier-slip
boundary conditions on the body are provided.

4.2 Statement of the problem

Consider a rigid body immersed in a stationary, Newtonian fluid with viscosity
µ at vanishing Reynolds number. Let Vb ⊂ R3 be the domain representing the
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Figure 4.1. Schematic representation of geometry of the system.

space occupied by the body, Sb the boundary of the body and Vf the flow domain,
bounded by the surface Sb ∪ Sw ∪ S∞, where Sw is the surface bounding externally
the fluid, and considered in the proximity of the body, and S∞ the boundary at
infinity, infinitely far from the body. See the schematic representation of the system
geometry in Fig. 4.1.

An ambient flow in the confined fluid (uuu(xxx),πππ(xxx)) is any flow, regular at the
surface of the body Sb, and satisfying the Stokes equations with no-slip boundary
conditions on the surface of the walls Sw. Thus, representing the solution of the
system of equations 

−∇ · πππ(xxx) = µ∆uuu(xxx) − ∇p(xxx) = 0
∇ · uuu(xxx) = 0 xxx ∈ Vf ∪ Vb

uuu(xxx) = 0 xxx ∈ Sw

(4.1)

Assuming linear homogeneous boundary conditions given by a generic operator
L[ ] acting on the velocity at the surface of the body and no-slip boundary conditions
at the surface of the confinement, the total flow (or disturbed flow) in the system
(vvv(xxx), σσσ(xxx)) is 

−∇ · σσσ(xxx) = µ∆vvv(xxx) − ∇s(xxx) = 0
∇ · vvv(xxx) = 0 xxx ∈ Vf

L[vvv(xxx)] = 0 xxx ∈ Sb

vvv(xxx) = 0 xxx ∈ Sw

(4.2)

Henceforth, we require that the boundary conditions represented by by the linear
operator L[ ], satisfy the reciprocity condition defined in the Chapter 3. As it will
become clear in the remainder, the assumption of validity of BC-reciprocity, together
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with the linearity of boundary conditions given by an operator L, are necessary
prerequisites in the development of the present theory.

In the next section, the solution of the problem eq. (4.2) is expressed in terms of
the hydrodynamic solutions of two simpler problems: i) the Green function of the
Stokes equations in the domain of the confinement Vf ∪ Vb and ii) the geometrical
moments of the body in the unbounded fluid. For this reason, it is useful to define
these solutions, discuss briefly their formal properties, introducing and clarifying in
this way the notation that we use throughout this Chapter.

4.2.1 Summary of useful results obtained in the previous chapters

As discussed in Chapter 2, the Green function in the confined domain Vf ∪ Vb is
a bitensorial field, hence a field depending on two points (called field and source
points) with entries at both points expressed, in principle, in different coordinate
systems. For the sake of simplicity, we consider Cartesian entries both at field and
source points.

The Green function Gaα(xxx,ξξξ) of the confined flow is the solution of the equations
−∇bΣabα(xxx,ξξξ) = µ∆Gaα(xxx,ξξξ) − ∇aPα(xxx,ξξξ) = −8πδaαδ(xxx− ξξξ)
∇aGaα(xxx,ξξξ) = 0 xxx,ξξξ ∈ Vf ∪ Vb

Gaα(xxx,ξξξ) = 0 xxx ∈ Sw ∪ S∞

(4.3)

where Gaα(xxx,ξξξ), Pα(xxx,ξξξ), Σabα(xxx,ξξξ) are the associated velocity, pressure and stress
tensor field.

It is useful to define also the regular part of the Green function (Waα(xxx,ξξξ), Qα(xxx,ξξξ))
as the bitensorial fields solving the problem

−∇bTabα(xxx,ξξξ) = µ∆Waα(xxx,ξξξ) − ∇aQα(xxx,ξξξ) = 0
∇aWaα(xxx,ξξξ) = 0 xxx,ξξξ ∈ Vf ∪ Vb

Waα(xxx,ξξξ) = −Saα(xxx− ξξξ) xxx ∈ Sw ∪ S∞

(4.4)

where Saα(xxx − ξξξ) is the Stokeslet. Therefore, the bounded Green function can
be written as sum of a a regular field Waα(xxx,ξξξ) and a singular field given by the
Stokeslet

Gaα(xxx,ξξξ) = Saα(xxx− ξξξ) +Waα(xxx,ξξξ) (4.5)
By differentiating eq. (4.5) at the pole, higher order singularities in the domain
Vb ∪ Vf are obtained. For example, the n-th order multipole is obtained by

∇αααnGaα(xxx,ξξξ) = ∇αααnSaα(xxx− ξξξ) + ∇αααnWaα(xxx,ξξξ) (4.6)

Consider a body immersed in an ambient flow (uuu(xxx),πππ(xxx)) in the unbounded
domain. The disturbance flow (www(xxx), τττ(xxx)) generated by the body immersed in the
ambient flow is solution of

−∇ · τττ(xxx) = µ∆www(xxx) − ∇q(xxx) = 0
∇ ·www(xxx) = 0 xxx ∈ Vf

L[www(xxx)] = −L[uuu(xxx)] xxx ∈ Sb

www(xxx) = 0 xxx → ∞

(4.7)
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where www(xxx), q(xxx), τττ(xxx) are the associated disturbance velocity, pressure and stress
tensor fields representing the the velocity field at the surface of the rigid body due
to the interaction of the ambient flow uuu(xxx) with Sb.

In Chapter 3, based on the hierarchy of the geometrical moments, the operator

Fαβ′βββ′
n

=
∞∑

m=0

mααααmβ′βββ′
n
(ξξξ, ξξξ′)∇αααm

m! (4.8)

has been introduced. As shown has been shown, if BC-reciprocity holds, Fαβ′βββ′
n

represents a n-th order Faxén operator of the body. Assuming that the operator
L[vvv(xxx)] in the total Stokes system eq. (4.2) belongs to the class of linear homogeneous
reciprocal boundary conditions, the following relations for the body in the unbounded
domain hold

Mααααn(ξξξ) = 8πµFβ′ααααnuβ′(ξξξ′) (4.9)
and

wa(xxx) =
∞∑

n=0

∇βββ′
n
uβ′(ξξξ′)
n! Fαβ′βββ′

n
Saα(xxx− ξξξ) (4.10)

Furthermore, owing to the property that Fαβ′βββ′
n

is a Faxén operator, the disturbance
field can be expressed by

wa(xxx) =
∞∑

m=0

Fβ′ααααmuβ′(ξξξ′)
m! ∇αααmSaα(xxx− ξξξ)

= 1
8πµ

∞∑
m=0

Mααααm(ξξξ)
m! ∇αααmSaα(xxx− ξξξ) (4.11)

Finally, it is useful to remark that the force exerted by the fluid on the body is
Fα = −Mα(ξξξ), thus, by eq. (4.9)

Fα = −8πµFβαuβ(ξξξ) (4.12)

while the torque Tα = εαββ1Mββ1(ξξξ), is given by

Tα = 8πµTβαuβ(ξξξ) (4.13)

where Tγα = εαββ1Fγββ1 and εαββ1 the Levi-Civita symbol.

4.3 The flow due to a body in a confined fluid

4.3.1 The reflection method

Consider the problem defined by eq. (4.2) providing the total flow in the system in
the case of no-slip conditions both on the body surface and on the confinement walls,
thus considering the identity matrix as operator L[] = I. Owing to the linearity of
the equations and of the boundary conditions, we can apply the reflection method
[98, ] to express the solution (va(xxx), σab(xxx)) as the superposition of a countable
system of fields (v[k]

a (xxx), σ[k]
ab (xxx)), with k = 0, 1, 2, ...,

va(xxx) = v[0]
a (xxx) + v[1]

a (xxx) + ...+ v[k]
a (xxx) + ...

(4.14)
σab(xxx) = σ

[0]
ab (xxx) + σ

[1]
ab (xxx) + ...+ σ

[k]
ab (xxx) + ...
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where
σ

[k]
ab (xxx) = s[k](xxx)δab − µ(∇av

[k]
b (xxx) + ∇bv

[k]
a (xxx)) (4.15)

s[k](xxx) being the associated pressure, each of which is the solution of the Stokes
equations equipped with the following system of boundary conditions

v[2k+1]
a (xxx) = −v[2k]

a (xxx), xxx ∈ Sb (4.16)

v[2k+2]
a (xxx) = −v[2k+1]

a (xxx), xxx ∈ Sw

For k = 0
v[0]

a (xxx) = ua(xxx), xxx ∈ Vb ∪ Vf (4.17)

As can be sen from eqs. (4.16), for odd k the condition involves the boundary of the
body, for even k the walls of the confinement.

4.3.2 The velocity fields vvv[1] and vvv[2]

Let us start by expressing the first velocity fields v[1]
a (xxx) and v

[2]
a (xxx) in terms of the

Green function of the confinement and the Faxén operator of the body. Either the
confinement Green function or the body Faxén operator are supposed to be known.

Comparing eqs. (4.16) with eqs. (4.7) it is easy to recognize that vvv[1](xxx) is the
disturbance field of the ambient field uuu(xxx). Therefore, by using eq. (4.10), it is
possible to explicit the velocity field with k = 1 as

v[1]
a (xxx) =

∞∑
n=0

∇βββn
uβ(ξξξ)
n! Fαββββn

Saα(xxx− ξξξ) (4.18)

Alternatively, from eq. (4.11), the first velocity field can be expressed alternatively
as

v[1]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m! ∇αααmSaα(xxx− ξξξ) (4.19)

Since, by linearity, any vvv[k](xxx) is solution of the Stokes equations, equipped with the
boundary conditions eq. (4.16), the flow with k = 2 is the solution of the problem

µ∆ v
[2]
a (xxx) − ∇a s

[2](xxx) = 0

∇a v
[2]
a (xxx) = 0 xxx ∈ Vb ∪ Vf

v
[2]
a (xxx) = −v[1]

a (xxx) xxx ∈ Sw

(4.20)

By applying the operator
∞∑

n=0

∇βββn
uβ(ξξξ)
n! Fαββββn

at a source point ξξξ ∈ Vb of the regular part of the Green function defined by the eq.
(4.4), and comparing the resulting problem with eq. (4.20), it is easy to conclude,
by the uniqueness of the solution of Stokes equations, that

v[2]
a (xxx) =

∞∑
n=0

∇βββn
uβ(ξξξ)
n! Fαββββn

Waα(xxx,ξξξ) (4.21)
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or, alternatively, by applying the operator

1
8πµ

∞∑
m=0

Mααααm(ξξξ)
m! ∇αααm

we obtain the representation

v[2]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m! ∇αααmWaα(xxx,ξξξ) (4.22)

and thus

v[1]
a (xxx) + v[2]

a (xxx) =
∞∑

n=0

∇βββn
uβ(ξξξ)
n! Fαββββn

Gaα(xxx,ξξξ)

= 1
8πµ

∞∑
m=0

Mααααm(ξξξ)
m! ∇αααmGaα(xxx,ξξξ) (4.23)

4.3.3 The velocity fields vvv[3] and vvv[4]

From the boundary conditions eq. (4.16), the velocity field for k = 3 is the disturbance
field of v[2]

a (xxx) and therefore, by eq. (4.10)

v[3]
a (xxx) =

∞∑
ℓ=0

∇γγγ′
ℓ
v

[2]
γ′ (ξξξ′)
ℓ! Fβγ′γγγ′

ℓ
Saβ(xxx− ξξξ) (4.24)

Substituting eq. (4.22) into eq. (4.24) one obtains

v[3]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
ℓ=0

∇γγγ′
ℓ
∇αααmWγ′α(ξξξ′, ξξξ)

ℓ! F (ns)
βγ′γγγ′

ℓ
Saβ(xxx− ξξξ) (4.25)

By the equivalence between the two expressions eq. (4.10) and eq. (4.11)

∞∑
ℓ=0

∇γγγ′
ℓ
∇αααmWγ′α(ξξξ′, ξξξ)

ℓ! Fβγ′γγγ′
ℓ
Saβ(xxx−ξξξ) =

∞∑
n=0

Fγ′ββββn
∇αααmWγ′α(ξξξ′, ξξξ)

n! ∇βββn
Saβ(xxx−ξξξ)

(4.26)
It is useful introduce the tensor Nααααmββββn

(ξξξ) as

Nααααmββββn
(ξξξ) = F (ns)

γ′ββββn
∇αααmWγ′α(ξξξ′, ξξξ)

∣∣∣∣
ξξξ′=ξξξ

(4.27)

which corresponds to the n-th order moment on the body immersed in an ambient
field consisting in the regular part of the m-th derivative of the Green function.
Thus, using the identity eq. (4.26) and the definition eq. (4.27), eq. (4.25) can be
expressed as

v[3]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
n=0

Nααααmββββn
(ξξξ)

n! ∇βββn
Saβ(xxx− ξξξ) (4.28)
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and, enforcing the same argument applied above to obtain eqs. (4.20)-(4.22) we have

v[4]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
n=0

Nααααmββββn
(ξξξ)

n! ∇βββn
Waβ(xxx,ξξξ) (4.29)

so that

v[3]
a (xxx) + v[4]

a (xxx) = 1
8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
n=0

Nααααmββββn
(ξξξ)

n! ∇βββn
Gaβ(xxx,ξξξ) (4.30)

4.3.4 The velocity fields vvv[5] and vvv[6]

The subsequent velocity fields can be determined following the same procedure used
for vvv[3](xxx) and vvv[4](xxx). In fact, vvv[5](xxx) can be considered as the disturbance field of
vvv4(xxx), and thus

v[5]
a (xxx) =

∞∑
ℓ=0

∇βββ′
ℓ
v

[4]
β′ (ξξξ′)
ℓ! F (ns)

γβ′βββ′
ℓ
Saγ(xxx− ξξξ) (4.31)

Enforcing the same argument used above for v[3]
a (xxx) and v

[4]
a (xxx), eqs. (4.25)-(4.30)

we obtain

v[5]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
n=0

Nααααmββββn
(ξξξ)

n!

∞∑
ℓ=0

Nββββnγγγγℓ
(ξξξ)

ℓ! ∇γγγℓ
Saγ(xxx− ξξξ) (4.32)

v[6]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
n=0

Nααααmββββn
(ξξξ)

n!

∞∑
ℓ=0

Nββββnγγγγℓ
(ξξξ)

ℓ! ∇γγγℓ
Waγ(xxx,ξξξ) (4.33)

so that

v[5]
a (xxx) + v[6]

a (xxx) = 1
8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
n=0

Nααααmββββn
(ξξξ)

n!

∞∑
ℓ=0

Nββββnγγγγℓ
(ξξξ)

ℓ! ∇γγγℓ
Gaγ(xxx,ξξξ)

(4.34)

4.3.5 The total velocity field

Iterating the same procedure for any k, it is possible to generalize the above results
in the form

v[2k+1]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
m1=0

Nααααmββββm1
(ξξξ)

m1! ...
∞∑

mk=0

Nγγγγmk−1
δδδδmk

(ξξξ)
mk! ∇δδδmk

Saδ(xxx−ξξξ)

(4.35)
and

v[k+2]
a (xxx) = 1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
m1=0

Nααααmββββm1
(ξξξ)

m1! ...
∞∑

mk=0

Nγγγγmk−1
δδδδmk

(ξξξ)
mk! ∇δδδmk

Waδ(xxx,ξξξ)

(4.36)
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so that

v[2k+1]
a (xxx) + v[2k+2]

a (xxx) =
1

8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
m1=0

Nααααmββββm1
(ξξξ)

m1! ...
∞∑

mk=0

Nγγγγmk−1
δδδδmk

(ξξξ)
mk! ∇δδδmk

Gaδ(xxx,ξξξ)

(4.37)

Summing all the fields according to eq. (4.14), the total velocity field can be
expressed as

va(xxx) − ua(xxx) =
∞∑

k=0
v[2k+1]

a (xxx) + v[2k+2]
a (xxx) =

1
8πµ

∞∑
m=0

Mααααm(ξξξ)
m!

∞∑
k=0

∞∑
m1=0

Nααααmββββm1
(ξξξ)

m1! ...
∞∑

mk=0

Nγγγγmk−1
δδδδmk

(ξξξ)
mk! ∇δδδmk

Gaδ(xxx,ξξξ)

(4.38)

4.3.6 Extension to Linear and BC-reciprocal boundary conditions
on the body

The extension to more general linear homogeneous BC-reciprocal boundary conditions
is straightforward considering the total field

va(xxx) = v[0]
a (xxx) + v[1]

a (xxx) + ...+ v[k]
a (xxx) + ...

(4.39)
σab(xxx) = σ

[0]
ab (xxx) + σ

[1]
ab (xxx) + ...+ σ

[k]
ab (xxx) + ...

constituted by fields satisfying the conditions at the boundary

L[v[2k+1]
a (xxx)] = −L[v[2k]

a (xxx)], xxx ∈ Sb (4.40)

v[2k+2]
a (xxx) = −v[2k+1]

a (xxx), xxx ∈ Sw

For k = 0
v[0]

a (xxx) = ua(xxx), xxx ∈ Vb ∪ Vf (4.41)

In fact, by applying the operator L[ ] to the total field in eq. (4.39) at the surface of
the body and using the linear property, we have

L[va(xxx)] = L[v[0]
a (xxx) + v[1]

a (xxx) + v[2]
a (xxx) + v[3]

a (xxx) + ...] =

L[v[0]
a (xxx)] + L[v[1]

a (xxx)] + L[v[2]
a (xxx)] + L[v[3]

a (xxx)] + ... = 0, xxx ∈ Sb (4.42)

Since, the procedure developed in the previous paragraph eqs. (4.18)-(4.38), is
independent of the boundary conditions at the surface of the body, with the only
constraint for the use of the Faxén operators of the BC-reciprocity of L[ ], we can
conclude that eq. (4.38) is still valid considering the Faxén operators associated
with the boundary conditions assumed on the body surface.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
(αα1 α2 ... αm) (1) (2) (3) (11) (12) (13) (21) (22) (23) (31) (32) (33) (111) ...

Table 4.1. Conversion between the index i for the entries of the vector [M ]i and the
multi-index ααααm for the entries of the (m+ 1)-order tensors Mααααm(ξξξ).

4.4 Matrix representation of the velocity field

In this Section, a compact and useful matrix representation of the equations obtained
in the Section 4.3 is developed. To this aim, collect the entries of the system of
moments Mααααm(ξξξ) in an infinite-dimensional vector [43]

[M ] =



MMM (0)

MMM (1)

M̄MM (2)
2
...

MMM (m)
m!
...


(4.43)

where MMM (m) are 3m+1 dimensional vectors obtained by the vectorization of the
(m + 1)-order tensors Mααααm(ξξξ) so that any entry [M ]i corresponds to the entry
Mααααm(ξξξ) according the conversion i ↔ ααααm shown in Table 4.1. We use the notation
[M(n:m)] to indicate the part of the array (4.43) collecting the entries of the tensors
with orders going from n to m (m > n), i.e.,

[M(n:m)] =


MMM (n)
n!
...

MMM (m)
m!

 (4.44)

In the same way, the entries of the entries of ∇αααmGaα(xxx,ξξξ) can be collected in the
3m+1 × 3 matrices GGG(0),GGG(1), ...,GGG(m), ... (with row indexes corresponding to the
Latin field point index) to build the ∞ × 3 matrix [G] defined by

[G] =



GGG(0)

GGG(1)
...

GGG(m)
...


(4.45)
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By using this representation, eq. (4.23) can be compactly expressed as

vvv[1](xxx) + vvv[2](xxx) = [M ]t[G]
8πµ (4.46)

[M ]t being the transpose of [M ].
It is also possible to define the infinite matrix [43]

[N ] =



NNN (0,0) NNN (0,1) ...
NNN (0,n)
n! ...

NNN (1,0)
. . . ...

... . . . ...

NNN (m,0) ... ...
NNN (m,n)
n! ...

...
... . . .


(4.47)

where NNN (m,n) are 3m+1 × 3n+1 matrices obtained unfolding the (m+ n+ 2)-order
tensors Nααααmββββn

(ξξξ) so that the entries [N ]i,j are obtained by converting both
i ↔ ααααm and j ↔ β βββm according to Table 4.1.

Using this representation, eq. (4.30) becomes

vvv[3](xxx) + vvv[4](xxx) = [M ]t[N ][G]
8πµ (4.48)

while eq. (4.34) takes the form

vvv[5](xxx) + vvv[6](xxx) = [M ]t[N ]2[G]
8πµ (4.49)

where [N ]2 = [N ][N ]. Defining the power of [N ] by induction as [N ]3 = [N ]2[N ],
[N ]k = [N ]k−1[N ] and [N ]0 = [I], [I] being the infinite identity matrix, the total
velocity field expressed by eq. (4.38) can be compactly represented as

vvv(xxx) − uuu(xxx) = 1
8πµ

∞∑
k=0

[M ]t[N ]k[G] (4.50)

Let us consider the sum entering eq. (4.50) truncated up to k = K and multiply it
by ([I] − [N ]). It is straightforward to show that

([I] − [N ])
K∑

k=0
[N ]k = [I] − [N ]K (4.51)

as for the truncated geometric series defined over a scalar field. As shown in Appendix
4.A, for characteristic distances ℓd of the body from the nearest walls greater enough
than the characteristic length of the body itself ℓb, the series in eq. (4.51) converges,
since

lim
K→∞

[N ]K = 0, for ℓd > Γ ℓb (4.52)
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where the constant Γ > 0 depends on the geometry of the system. As a consequence

([I] − [N ])
∞∑

k=0
[N ]k = [I], ℓd > Γℓb (4.53)

and multiplying by ([I] − [N ])−1

∞∑
k=0

[N ]k = ([I] − [N ])−1, ℓd > Γ ℓb (4.54)

([I] − [N ])−1 being the inverse matrix of ([I] − [N ]) [43].
Therefore, the velocity field attains the simple expression

vvv(xxx) − uuu(xxx) = [M ]t([I] − [N ])−1[G]
8πµ , ℓd > Γ ℓb (4.55)

or alternatively,

vvv(xxx) − uuu(xxx) = [M ]t[X]
8πµ , ℓd > Γ ℓb (4.56)

where [X] is the solution of the infinite-matrix equation of

([I] − [N ])[X] = [G] (4.57)

In the remainder we consider exclusively the situation ℓd > Γ ℓb, for which eq. (4.55)
holds.

4.5 Force and torque on the particle

By linearity, the force and the torque acting on the particle due to the hydrodynamic
interactions with the fluid, are given by the summation of all the forces and torques
associated with the terms in (4.14), i.e.,

FFF = FFF [0] +FFF [1] +FFF [2] + ...

(4.58)
TTT = TTT [0] + TTT [1] + TTT [2] + ...

where

FFF [k] = −
∫

Sp

σσσ[k](xxx) ·nnndS, k = 0, 1, 2, ...

(4.59)

TTT [k] = −
∫

Sp

(xxx− ξξξ) × σσσ[k](xxx) ·nnndS, k = 0, 1, 2, ...

Since ∇ · σσσ[k](xxx) = 0, and due to the symmetry of the stress tensors σσσ[k](xxx), the
forces and torques associated to even values of k (i.e. the forces due to regular fields
on the boundary of the particle) vanish for the Gauss-Green theorem. The only
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terms contributing to the total force and torque are the terms corresponding to odd
value of k = 1, 3, 5, ...

FFF = FFF [1] +FFF [3] +FFF [5] + ...

(4.60)
TTT = TTT [1] + TTT [3] + TTT [5] + ...

The first contribution FFF [1] in the sum eq. (4.60) is the force experienced by the
body immersed in the unbounded ambient flow uuu(xxx), therefore it can be obtained
by applying the 0-th order Faxén operator according eq. (4.12)

F [1]
α = F [∞]

α = −Mα(ξξξ) = −8πµFβαuβ(ξξξ) (4.61)

where, with the notation F [∞]
α , we want to remark that the force F [1]

α is exactly that
experienced by the body if the fluid were unbounded.

The other contribution FFF [3] +FFF [5] + ... in eq. (4.60) is the force experienced by
the body immersed in the ambient flow vvv[2](xxx) + vvv[4](xxx) + .... Therefore,

F [3]
α + F [5]

α + ... = −8πµFβα(v[2]
β (ξξξ) + v

[4]
β (ξξξ) + ...) (4.62)

Indicating with [S] the ∞ × 3 dimensional matrix collecting all the derivatives of the
Stokeslet ∇αααmSaα(xxx− ξξξ) (equivalently to the definition eq. (4.45) given for [G]) and
with [W ] the ∞ × 3 dimensional matrix collecting all the derivatives of the regular
part of the Green function ∇αααmWaα(xxx,ξξξ), the matrix [G] can be decomposed as

[G] = [S] + [W ] (4.63)

and the sum of the fields v[2]
α (ξξξ) + v

[4]
α (ξξξ) + ... with even values of k, eq. (4.50), takes

the form ∞∑
k=0

vvv[2k+2](xxx) = [M ]t([I] − [N ])−1[W ]
8πµ (4.64)

while the sum of all the fields corresponding to odd values of k, associated with the
disturbance field due to the body, is given by

∞∑
k=0

vvv[2k+1](xxx) = [M ]t([I] − [N ])−1[S]
8πµ (4.65)

Substituting eqs. (4.61), (4.62) and (4.64) into eq. (4.60), we arrive to a compact
representation of the force

FFF = FFF [∞] − [M ]t([I] − [N ])−1[N(:,0)] (4.66)

where the matrix

[N(:,0)] =



NNN (0,0)
NNN (1,0)

...
NNN (m,0)

...


(4.67)
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collecting the entries Nααααmββββn
(ξξξ) for n = 0, is exactly the ∞×3 matrix corresponding

to the first three columns of the matrix [N ].
The same procedure can be applied to obtain an analogous relation for the torque

acting on the body. By eq. (4.13), the torque TTT [1] = TTT [∞] is provided by the operator
Tγα = εγββ1Fαββ1 applied at the ambient flow uuu(xxx), i.e.,

T [1]
α = T [∞]

α = εαββ1Mββ1(ξξξ) = 8πµTβαuβ(ξξξ) (4.68)

and the remaining term in eq. (4.60) is equal to

T [3]
α + T [5]

α + ... = 8πµT (ns)
βα (v[2]

β (ξξξ) + v
[4]
β (ξξξ) + ...) (4.69)

Therefore, the total torque is compactly expressed by the equation by

TTT = TTT [∞] + [M ]t([I] − [N ])−1[L] (4.70)

with

[L] =



LLL(0)
LLL(1)

...
LLL(m)

...


(4.71)

where LLL(m) are the 3m+1 × 3 dimensional matrices with entries εγββ1Nααααmββ1(ξξξ).
This result can be generalized to the moments: the n-th order moment MMM (n)(ξξξ)

on the particle in a confined fluid is given by

MMM
t
(n)(ξξξ) = MMM t

(n)(ξξξ) + [M ]t([I] − [N ])−1[N(:,n)] (4.72)

where

[N(:,n)] =



NNN (0,n)
NNN (1,n)

...
NNN (m,n)

...


(4.73)

4.6 Error estimation in truncation
The exact results obtained for velocity field, force, torque in eqs (4.55), (4.66) and
(4.70) are expressed in terms of infinite matrices. It is evident that, in practical
application, it is not possible to take all the entries of the matrices into account. In
fact, in most of the practical applications, analytical expressions for Faxén operators
and multi-poles singularities are available only for lower-order and there is no
recursive relations able to predict them even for the simplest geometries involved.
In addition, for more complex geometries, a finite set of geometrical moments of the
body and the multi-poles in the domain can be computed by only numerically, by
enforcing approximations or series truncation. It is therefore useful to determine the
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error deriving by considering only the first K-th order moments and K-th order multi-
pole in the analytical expressions derived in the previous paragraphs, substituting in
the exact expressions eqs. (4.55), (4.66) and (4.70) involving an infinite matrix [M ]
its truncated counterpart [M(0:K)], where, according the notation introduced in eq.
(4.44), [M(0:K)] is the vector collecting all the unbounded moments from the 0-th
to the K-th order, and similarly for the other infinite matrices, [N ] → [N(0:K,0:K)],
[G] → [G(0:K)]. In other words, it is important to determine the order of magnitude
of the difference between the exact result and the truncated approximation for the
velocity field,∣∣∣∣∣vvv(xxx) − uuu(xxx) −

[M(0:K)]t([I(0:K,0:K)] − [N(0:K,0:K)])−1[G(0:K)]
8πµ

∣∣∣∣∣ (4.74)

To this aim, consider the eq. (4.46) written in the form

v[1]
a (xxx) + v[2]

a (xxx) =
[M(0:K)]t[G(0:K)]

8πµ + 1
8πµ

∞∑
m=K+1

(
MMM (m)

)t
GGG(m)

m! (4.75)

Enforcing the dimensional analysis developed in the Appendix, and specifically
eqs.(4.157) and (4.159) the leading term in the series at the r.h.s of eq. (4.75) is

|MMM t
(K+1)GGG(K+1)| = µUcO

(
ℓb
ℓf

)K+2

(4.76)

Uc being the characteristic magnitude of the ambient velocity field. Therefore,
truncating the series

v[1]
a (xxx) + v[2]

a (xxx) =
[M(0:K)]t[G(0:K)]

8πµ + UcO

(
ℓb
ℓf

)K+2

(4.77)

The velocity fields due to the next reflections, hence for k = 1, can be written as

v[3]
a (xxx) + v[4]

a (xxx) =
[M(0:K)]t[N(0:K,0:K)][G(0:K)]

8πµ

+ 1
8πµ

∞∑
m=K+1

∞∑
n=K+1

(
MMM (m)

)t
NNN (m,n)GGG(n)

m! (4.78)

where the leading term in the series, estimated by using eqs. (4.157), (4.159) and
(4.164), is

|MMM t
(K+1)NNN (K+1,K+1)GGG(K+1)| = µUcO

(
ℓb
ℓf

ℓb
2ℓd

)K+2

(4.79)

since ℓb/(2ℓd) < 1, the term in eq. (4.79) is always smaller than the term in eq.
(4.76), and thus

|MMM t
(K+1)NNN (K+1,K+1)GGG(K+1)| = µUc o

(
ℓb
ℓf

)K+2

(4.80)
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The corresponding velocity fields are

v[3]
a (xxx) + v[4]

a (xxx) =
[M(0:K)]t[N(0:K,0:K)][G(0:K)]

8πµ + Uc o

(
ℓb
ℓf

)K+2

(4.81)

By reiterating the procedure for higher order reflected velocity fields, hence for
k > 1,

v[2k+1]
a (xxx)+v[2k+2]

a (xxx) =
[M(0:K)]t[N(0:K,0:K)]k[G(0:K)]

8πµ +Uc o

(
ℓb
ℓf

)K+2

, k = 1, 2, ...

(4.82)
Finally, summing all the velocity fields, the leading neglected term is that furnished
by the truncation of the first reflected fields vvv[1](xxx) + vvv[2](xxx) in eq. (4.77), and
therefore

vvv(xxx)−uuu(xxx) =
[M(0:K)]t([I(0:K,0:K)] − [N(0:K,0:K)])−1[G(0:K)]

8πµ +UcO

(
ℓb
ℓf

)K+2

(4.83)

A similar analysis can be extended to forces and torques, obtaining

FFF −FFF [∞] = −[M(0:K)]t([I(0:K,0:K)]− [N(0:K,0:K)])−1[N(0:K,0)]+FcO

(
ℓb
ℓd

)K+2
(4.84)

and

TTT − TTT [∞] = [M(0:K)]t([I(0:K,0:K)] − [N(0:K,0:K)])−1[L(0:K)] + TcO

(
ℓb
ℓd

)K+2
(4.85)

where Fc = µ ℓb Uc and Tc = µ ℓ2b Uc.
The scaling analysis of the truncation error addressed above can be applied to

the approximations of the hydromechanical properties addressed in the literature.
Therefore, let us analyze and discuss, under the point of view of the theory developed
in this thesis, the main expressions regarding body in confined Stokes flow present
in literature.

4.6.1 The approximation for K = 0 and Brenner’s formula

An explicit approximation for the force acting on an arbitrary body translating in a
confined fluid has been derived by [25] in terms of the resistance matrix of the body
in the unbounded fluid and the value of the regular part of the Green function at a
position of the body. In the present formalism this corresponds to the truncation
of the [M ], [N ] and [G] matrices to the 0-th order. In fact, for K = 0 explicating
the matrices entering eq. (4.83), according to eqs. (4.43)-(4.47), and substituting
MMM t

(0) = −FFF [∞], we have

vvv(xxx) = uuu(xxx) −
FFF [∞](I −NNN (0,0))−1GGG(0)

8πµ + UcO

(
ℓb
ℓf

)2

(4.86)

I being the 3 × 3 identity matrix.
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By eqs. (4.27) and (4.8), the entries of NNN (0,0) are

Nαβ(ξξξ) = Fγ′βWγ′α(ξξξ′, ξξξ)
∣∣∣∣
ξξξ′=ξξξ

=
∞∑

n=0

mγ′γγγ′
nβ(ξξξ′, ξξξ)∇γγγ′

n
Wγ′α(ξξξ′, ξξξ)

n!

∣∣∣∣
ξξξ′=ξξξ

(4.87)

In order to identify terms in eq. (4.87) that can be neglected in eq (4.86), let
us, briefly, perform a dimensional analysis of geometrical moments. By defining a
"geometrical" volume force field ψαβ′βββ′

n
(xxx,ξξξ′) such that

ψ(n)
α (xxx,ξξξ′) = 8πµAβ′βββ′

n
ψαβ′βββ′

n
(xxx,ξξξ′)

it is possible to express geometrical moments by the integral

mααααmββββn
(ξξξ, ξξξ′) =

∫
(xxx− ξξξ)αααmψαβ′βββ′

n
(xxx,ξξξ′)dV (xxx) ξξξ, ξξξ′ ∈ Vb (4.88)

Considering that
ψ(n)

α (xxx,ξξξ′) ∼ µUc

ℓ2b
, Aβ′βββ′

n
∼ Uc

ℓnb

and then
ψαβ′βββ′

n
(xxx,ξξξ′) = O(ℓb) n−2

it easy to estimate, by eq. (4.88), geometrical moments

mααααmββββn
(ξξξ, ξξξ) = O(ℓb)m+n+1 (4.89)

Therefore, neglecting in eq. (4.87) the order of NNN (0,0) higher than O(ℓb/ℓd), and
denoting the resistance matrix by Rαβ = −8πµmαβ, we obtain

Nαβ(ξξξ) = −RγβWγα(ξξξ, ξξξ)
8πµ +O

(
ℓb
ℓd

)2
(4.90)

and therefore

vvv(xxx) = uuu(xxx) − FFF [∞]

8πµ

(
I +

RRRWWW (0)
8πµ

)−1

GGG(0) + UcO

(
ℓb
ℓf

)2

(4.91)

Considering the force on the body approximated to K = 0, eq. (4.84) becomes

FFF −FFF [∞] = FFF [∞](I −NNN (0,0))−1NNN (0,0) + FcO

(
ℓb
ℓd

)2
(4.92)

By simple matrix manipulations, and using eq. (4.90), we obtain the approximation
furnished by [25]

FFF = FFF [∞]
(
I +

RRRWWW (0)
8πµ

)−1

+ FcO

(
ℓb
ℓd

)2
(4.93)

By assuming K = 0 in eq. (4.85), the torque is approximated as

TTT − TTT [∞] = −FFF [∞](I −NNN (0,0))−1LLL(0) + TcO

(
ℓb
ℓd

)2
(4.94)
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The entries of LLL(0) are, by definition eq. (4.71)

Lαβ = Tγ′βWγ′α(ξξξ′, ξξξ)
∣∣∣∣
ξξξ′=ξξξ

= εβδδ1Fγ′δδ1Wγ′α(ξξξ′, ξξξ)
∣∣∣∣
ξξξ′=ξξξ

= εβδδ1

∞∑
n=0

mγ′γγγ′
nδδ1(ξξξ′, ξξξ)∇γγγ′

n
Wγ′α(ξξξ′, ξξξ)

n!

∣∣∣∣
ξξξ′=ξξξ

(4.95)

By the same dimensional analysis provided in eqs. (4.88)-(4.90) and identifying the
coupling resistance matrix in the unbounded fluid as Cβγ = 8πµ εβδδ1 mγδδ1(ξξξ, ξξξ)

Lαβ = CβγWγα(ξξξ, ξξξ)
8πµ +O

(
ℓ3b
ℓ2d

)

and therefore, considering that WWW (0) is a symmetric matrix [194], we have the first
order term

TTT = TTT [∞] −FFF [∞]
(
I +

RRRWWW (0)
8πµ

)−1
WWW (0)CCC

t

8πµ + TcO

(
ℓb
ℓd

)2
(4.96)

In the case that the body translate with velocity UUU in a quiescent fluid, the velocity
field is the same of a disturbance field due to an ambient field uuu(xxx) = −UUU past the
still body. Therefore, from eq. (4.91) and considering FFF [∞] = −UUURRR, the velocity
field around the translating body is

www(xxx) = UUURRR

8πµ

(
I +

RRRWWW (0)
8πµ

)−1

GGG(0) + UcO

(
ℓb
ℓf

)2

(4.97)

By eq. (4.93), the force is

FFF = −UUURRR
(
I +

RRRWWW (0)
8πµ

)−1

+ FcO

(
ℓb
ℓd

)2
(4.98)

while, by considering TTT [∞] = −UUUCCCt, from eq. (4.102) the torque is

TTT = −UUU
(
I +

RRRWWW (0)
8πµ

)−1

CCCt + TcO

(
ℓb
ℓd

)2
(4.99)

If the particle rotate (without translating) with angular velocity ωωω, the force on the
particle in the unbounded fluid is given by FFF [∞] = −ωωωCCC [98] and therefore, following
the same procedure, the velocity field is

www(xxx) = ωωωCCC

8πµ

(
I +

RRRWWW (0)
8πµ

)−1

GGG(0) + UcO

(
ℓb
ℓf

)2

(4.100)

the force

FFF = −ωωω
(
I +

RRRWWW (0)
8πµ

)−1

CCC + FcO

(
ℓb
ℓd

)2
(4.101)
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and the torque, considering TTT [∞] = −ωωωΩΩΩ ,

TTT = −ωωω

ΩΩΩ −CCC

(
I +

RRRWWW (0)
8πµ

)−1
WWW (0)CCC

t

8πµ

+ TcO

(
ℓb
ℓd

)2
(4.102)

after some algebra

TTT = −ωωωΩΩΩ
(
I +

(RRR− ΩΩΩ−1CCCCCCt)WWW (0)
8πµ

)(
I +

RRRWWW (0)
8πµ

)−1

+ TcO

(
ℓb
ℓd

)2
(4.103)

where ΩΩΩ, having entries Ωαβ = −8πµ εαγγ1εβδδ1mγγ1δδ1(ξξξ, ξξξ), is the angular resistance
matrix.

Eqs. (4.97)-(4.103), requiring solely the Green function of the confinement and
the grand-resistance matrix of the body, provide the first order of the correction due
to the confinement to the unbounded hydrodynamics of the body. However, many
geometries of bodies of great interest (such as the sphere) have symmetries which
make it so that most of the entries of the coupling matrix CCC vanishes. This means
that eqs. (4.99)-(4.103) are not able to express any correction term for these bodies,
independently of the confinement. Therefore, in this case, to obtain first correction
terms due to the confinement, it is necessary to consider higher order terms of the
[N ]-matrix (thus K > 0), as shown for the case of a sphere near a plane wall in
Section 4.7.1. Otherwise, a convenient approach is to use the [228, 229] approximate
expressions, which are obtained and discussed according the present formalism in
the next sub-section.

4.6.2 Extended Swan and Brady’s approximation for rigid motion

In obtaining the approximate expressions eqs. (4.93) and (4.102), valid to the order
(ℓb/ℓd), we have neglected the higher order terms in the 0-th order Faxén operator
for the force and in the 1-st order Faxén operator for the torque. Supposing that
these Faxén operators are exactly known, it is possible to obtain expressions for the
force and the torque on a rigid moving body accurate to (ℓb/ℓd)2 or to (ℓb/ℓd)3 for
the axisymmetric motion of the body, by exploiting all the higher order terms in
the lower order Faxén operators. It is shown below that this procedure provides
exactly the extension to arbitrary geometries and reciprocal boundary conditions
of the relations found by [228, 229] in the case of confined spherical bodies with
no-slip boundary conditions. To begin with, let us suppose that the body translates
without rotation with velocity UUU (therefore uuu(xxx) = −UUU). By equation (4.21), the
velocity field vvv[2](xxx), of the order of magnitude O(Uℓb/ℓd), at the pole ξξξ can be
obtained exactly by the 0-th order Faxén operator

v[2]
α (ξξξ) = −UβFα′βWαα′(ξξξ, ξξξ′)

∣∣∣∣
ξξξ′=ξξξ

(4.104)

and hence the force is exactly given by

F [3]
γ = −8πµFαγv

[2]
α (ξξξ) = 8πµUβFαγFα′βWαα′(ξξξ, ξξξ′)

∣∣∣∣
ξξξ′=ξξξ

(4.105)
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while for the torque we have

T [3]
γ = 8πµTαγv

[2]
α (ξξξ) = −8πµUβTαγFα′βWαα′(ξξξ, ξξξ′)

∣∣∣∣
ξξξ′=ξξξ

(4.106)

To obtain the contributions FFF [5] and TTT [5] to the force and the torque it is necessary
to have an explicit expression for the velocity field vvv[4](xxx), which in turn implies the
knowledge of the higher order Faxén operators. From eq. (4.89) and (4.104), we
have

v[2]
α (ξξξ) = UcO

(
ℓb
ℓd

)
, ∇βββn

v
[2]
β (ξξξ) = UcO

(
ℓb

ℓ1+n
d

)
(4.107)

By which it is possible to estimate the error committed in approximating the field
v[4](ξξξ) to the 0-th order Faxén operator, thus

v[4]
α (ξξξ) =

∞∑
n=0

∇βββn
v

[2]
β (ξξξ)
n! Fα′ββββn

Wαα′(ξξξ, ξξξ′) = v
[2]
β (ξξξ)Fα′βWαα′(ξξξ, ξξξ′)

∣∣∣∣
ξξξ′=ξξξ

+O

(
ℓb
ℓd

)3

(4.108)
by which we obtain the force

F [5]
γ = −8πµFαγv

[4]
α (ξξξ) = −8πµ v[2]

β (ξξξ)FαγFα′βWαα′(ξξξ, ξξξ′)
∣∣∣∣
ξξξ′=ξξξ

+O

(
ℓb
ℓd

)3
(4.109)

and the torque

T [5]
γ = 8πµTαγv

[4]
α (ξξξ) = 8πµ v[2]

β (ξξξ)TαγFα′βWαα′(ξξξ, ξξξ′)
∣∣∣∣
ξξξ′=ξξξ

+O

(
ℓb
ℓd

)3
(4.110)

By eq. (4.105) and the definition of the resistance matrix RRR

F [3]
γ = Rγαv

[2]
α (ξξξ) +O

(
ℓb
ℓd

)2
, v[2]

α (ξξξ) = (R−1)αγF
[3]
γ +O

(
ℓb
ℓd

)2
(4.111)

while by eq. (4.106) and the definition of the coupling resistance matrix CCC

T [3]
γ = Cγαv

[2]
α (ξξξ) +O

(
ℓb
ℓd

)2
, v[2]

α (ξξξ) = (C−1)αγT
[3]
γ +O

(
ℓb
ℓd

)2
(4.112)

Let us call with XXX and YYY the matrices with entries

Xαβ = −8πµFγβFγ′αWγγ′(ξξξ, ξξξ′)
∣∣∣∣
ξξξ′=ξξξ

(4.113)

and YYY
Yαβ = 8πµTγβFα′δWγα′(ξξξ, ξξξ′)

∣∣∣∣
ξξξ′=ξξξ

(4.114)

respectively. Substituting eq. (4.111) into eq. (4.109) and eq. (4.112) into eq.
(4.110) it follows that

FFF [5] = FFF [3]RRR−1XXX +O

(
ℓb
ℓd

)3
(4.115)
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and
TTT [5] = TTT [3](CCCt)−1YYY +O

(
ℓb
ℓd

)3
(4.116)

Using the same approach, these results can be generalized for k = 2, 3, ..., obtaining

FFF [2k+3] = FFF [2k+1]RRR−1XXX + o

(
ℓb
ℓd

)3
(4.117)

TTT [2k+3] = TTT [2k+1](CCC−1)tYYY + o

(
ℓb
ℓd

)3
(4.118)

and thus

FFF = FFF [∞]+
∞∑

k=0
FFF [2k+3] = FFF [∞]

∞∑
k=0

(RRR−1XXX)k+O
(
ℓb
ℓd

)3
= FFF [∞](III−RRR−1XXX)−1+O

(
ℓb
ℓd

)3

(4.119)

TTT = TTT [∞]+
∞∑

k=0
TTT [2k+3] = TTT [∞]

∞∑
k=0

((CCCt)−1YYY )k+O
(
ℓb
ℓd

)3
= TTT [∞](III−(CCCt)−1YYY )−1+O

(
ℓb
ℓd

)3

(4.120)
Finally

FFF = −UUU RRR (III −RRR−1XXX)−1 +O

(
ℓb
ℓd

)3
(4.121)

and
TTT = −UUU CCCt (III − (CCCt)−1YYY )−1 +O

(
ℓb
ℓd

)3
(4.122)

Eqs. (4.121) and (4.122) can be expressed equivalently by

FFF = −UUU (RRR+XXX(III −RRR−1XXX)−1) +O

(
ℓb
ℓd

)3
(4.123)

TTT = −UUU (CCCt + YYY (III − (CCCt)−1YYY )−1) +O

(
ℓb
ℓd

)3
(4.124)

The same procedure (reported explicitly in Appendix 4.B for a spherical body)
can be applied to the case the body is rotating with velocity ωωω in the absence of
translation, obtaining

FFF = −ωωω (CCC + YYY t(III −RRR−1XXX)−1) +O

(
ℓb
ℓd

)3
(4.125)

TTT = −ωωω (ΩΩΩ +ZZZ(III − (CCCt)−1YYY )−1) +O

(
ℓb
ℓd

)3
(4.126)

where ZZZ is the matrix with entries

Zβα = −8πµTγβTα′δWγα′(ξξξ, ξξξ′)
∣∣∣∣
ξξξ′=ξξξ

(4.127)

As it is well known [98], the resistance coupling matrix in eq. (4.125) should be the
transpose matrix of the resistance coupling matrix in eq. (4.124). The disagreement
with the expected result is only apparent and it is due to the neglecting terms. In
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fact, approximating YYY = CCCtRRR−1XXX +O(ℓb/ℓd)2 and substituting in eq. (4.124), the
expected symmetry is returned without modifying the great order of the error in
the approximation.

If the body is a sphere, the (m,n)-th order geometrical moments mααααmββββn
(ξξξ, ξξξ)

vanish if m + n is odd, which means that m and n are neither both even or odd.
Therefore, the 1-st order Faxén operator contributes to the force FFF [5] with a term of
the order of magnitude O(ℓb/ℓd)4 smaller than the leading term in the remainder
entering eq. (4.109). Therefore, it easy to see, that the error in the estimate of the
global force is of the same order O(ℓb/ℓf )4 instead of O(ℓb/ℓf )3. Furthermore, since
the coupling resistance matrix vanishes TTT [∞] = 0, the higher order contribution is
provided by TTT [3], which can be written in term of the resistance matrix

TTT [3] = FFF [∞]RRR−1YYY (4.128)

The next contribution TTT [5] can be evaluated as in eq. (4.110) considering that the
first term in the Faxén operator for the torque vanishes, thus

TTT [5] = FFF [3]RRR−1YYY +O

(
ℓb
ℓd

)5
(4.129)

Following the same procedure of eqs. (4.117)-(4.126), we obtain for the spherical
body (or more generally problems where unbounded coupling terms vanish)

FFF = −UUU RRR (III −RRR−1XXX)−1 +O

(
ℓb
ℓd

)4
(4.130)

and

TTT = −UUU (III −RRR−1XXX)−1YYY +O

(
ℓb
ℓd

)5
(4.131)

while for rotations (see Appendix 4.B for the proof)

FFF = −ωωω (III −RRR−1XXX)−1YYY t +O

(
ℓb
ℓd

)5
(4.132)

and

TTT = −ωωω(ΩΩΩ +ZZZ + (III −RRR−1XXX)−1 (YYY tRRR−1YYY )) +O

(
ℓb
ℓd

)6
(4.133)

Relations (4.121)-(4.126) and (4.130)-(4.133) are useful because they permits to
obtain a good approximation of the resistance on bodies (especially spheres) in
confined systems by the knowledge solely of the 0-th and 1-st order (for torque)
Faxén operators. However, although these corrections improve the approximate
solution, the above scaling analysis indicates that the O(ℓb/ℓd)5 order reported by
[228, 229] cannot not obtained by these relations because the contribution of order
O(ℓb/ℓd)4 does not vanishes, as found by Faxén [98], and further derived in Section
4.7.1 by considering all the terms in the matrix [N ].
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Figure 4.2. Schematic representation of a sphere near a plane wall

4.7 A sphere near a plane wall

4.7.1 Resistance on a translating particle near a plane wall

Consider a spherical body with radius Rp translating with velocity UUU at a distance
h from a plane wall and consider the force given by eq. (4.84) assuming K = 3 in
the form

FFF = FFF [∞] − [M(0:3)]t[X(0:3,0)] +O

(
Rp

h

)5
(4.134)

where the matrix [X(0:3,0)] = [XXX(0,0),XXX(1,0),XXX(2,0),XXX(3,0)]t is given by

[X(0:3,0)] =
∞∑

k=0
[N(0:3,0:3)]k[N(0:3,0)] (4.135)

and, thus

XXX(m,0) = NNN (m,0) + [N(m,0:3)]
∞∑

k=0
[N(0:3,0:3)]k[N(0:3,0)], m = 0, 1, 2, 3 (4.136)

Since in the unbounded fluid the first and third order moments on the translating
sphere vanish, MMM (1) = 0, MMM (3) = 0, while MMM t

(0) = −FFF [∞] where,

FFF [∞] = −6πµRp

(
1 + 2λ̂
1 + 3λ̂

)
UUU (4.137)

eq. (4.134) becomes

FFF = FFF [∞] +FFF [∞]XXX(0,0) −
MMM t

(2)XXX(2,0)

2! +O

(
Rp

h

)5
(4.138)

The entries of the vector MMM t
(2) corresponds to the vectorization according Table 4.1

of the tensor

−8πµFγαα1α2Uγ = −
R2

p

3(1 + 2λ̂)

(
F [∞]

α δα1α2 + λ̂(F [∞]
α1 δαα2 + F [∞]

α2 δαα1)
)

+O(Rp)5

(4.139)



98 4. On the theory of body motion in confined Stokesian fluids

where Fγαα1α2 , evaluated in 3 eq. (3.104). Since the the second term within
parentheses at the r.h.s of eq. (4.139) yields a vanishing contribution to the total
force, the vector MMM (2) can be expressed in matrix form as

MMM t
(2) = −

R2
p

3(1 + 2λ̂)
FFF [∞]III(0,2) +O(Rp)5 (4.140)

where (III(0,2))ij , following the notation developed in Section 4.3, is the matrix
collecting the entries of the tensor δβαδα1α2 by the conversion i ↔ βα and j ↔ α1α2
according to Table 4.1, thus

III(0,2) = 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1


Therefore, eq. (4.138) becomes

FFF = FFF [∞]
(
I +XXX(0,0) +

R2
p

6(1 + 2λ̂)
III(0,2)XXX(2,0)

)
+O

(
Rp

h

)5
(4.141)

By eq. (4.136) and by the dimensional analysis explicited in eq. (4.165)

XXX(0,0) = NNN (0,0) +NNN2
(0,0) +NNN (0,1)NNN (1,0) + 1

2N
NN (0,2)NNN (2,0) +NNN3

(0,0) +

NNN (0,0)NNN (0,1)NNN (1,0) +NNN (0,1)NNN (1,0)NNN (0,0) +NNN4
(0,0) +O

(
Rp

h

)5
(4.142)

while
XXX(2,0) = NNN (2,0) +NNN (2,0)NNN (0,0) +O

(
Rp

h

)5
(4.143)

Eqs. (4.141)-(4.143), can be equivalently written as

FFF = FFF [∞]
(

(I −NNN (0,0))−1 +NNN (0,1)NNN (1,0) + 1
2N
NN (0,2)NNN (2,0) +NNN (0,0)NNN (0,1)NNN (1,0)+

NNN (0,1)NNN (1,0)NNN (0,0) +
R2

p

6(1 + 2λ̂)
III(0,2)(NNN (2,0) +NNN (2,0)NNN (0,0))

)
+O

(
Rp

h

)5
(4.144)

The entries of the matrices NNN (m,n) entering eq. (4.144) can be evaluated from
the definition of the matrix [N ] eq. (4.47), and from the expression for its entries
in eq. (4.27). For example, the entries Fγ′βWγ′α(ξξξ′, ξξξ)|ξξξ′=ξξξ of the matrix NNN (0,0) are
obtained by applying the 0-th Faxén operator in eq. (3.76) to the regular part of
the Green function in eq. (2.89). Considering a Cartesian system (ξ1, ξ2, ξ3) with ξ3
perpendicular to the plane as in Figure 4.2

NNN (0,0) =

 α∥ 0 0
0 α∥ 0
0 0 α⊥

 (4.145)
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with

α∥ = 9Rp(1 + 2λ̂)
16h(1 + 3λ̂)

− Rp
3

16h3(1 + 3λ̂)
, α⊥ = 9Rp(1 + 2λ̂)

8h(1 + 3λ̂)
− Rp3

4h3(1 + 3λ̂)
(4.146)

and thus

(I −NNN (0,0))−1 =



1
1 − α∥

0 0

0 1
1 − α∥

0

0 0 1
1 − α⊥

 (4.147)

From the application of the Faxén operators reported in Chapter 3 to the multipole
of the regular part of the Green function reported in Chapter 2 we evaluated
the significant entries of the matrix NNN (0,1), NNN (1,0), NNN (0,2), NNN (2,0) as for NNN (0,0). By
substituting all these matrices into eq. (4.141), we obtain


1

1−α∥
0 0

0 1
1−α∥

0
0 0 1

1−α⊥

−


Rp

3

16h3(1+3λ̂) 0 0

0 Rp
3

16h3(1+3λ̂) 0

0 0 Rp
3

4h3(1+3λ̂)



+


27Rp

4(1+7λ̂+20λ̂2+20λ̂3)
256h4(1+3λ̂)2(1+5λ̂) 0 0

0 27Rp
4(1+7λ̂+20λ̂2+20λ̂3)

256h4(1+3λ̂)2(1+5λ̂) 0

0 0 −9Rp
4(1+7λ̂−80λ̂2−180λ̂3)

256h4(1+3λ̂)2(1+5λ̂)



+O

(
Rp

h

)5

(4.148)

After some algebra, the latter expression can be simplified as

FFF = FFF [∞]



1
1 − β∥

0 0

0 1
1 − β∥

0

0 0 1
1 − β⊥

+O

(
Rp

h

)5
(4.149)

where

β∥ = 9Rp

16h

(
1 + 2λ̂
1 + 3λ̂

)
−

R3
p

8h3(1 + 3λ̂)
+

45R4
p

256h4

(
(1 + 2λ̂)2

(1 + 3λ̂)(1 + 5λ̂)

)
(4.150)

and

β⊥ = 9Rp

8h

(
1 + 2λ̂
1 + 3λ̂

)
−

R3
p

2h3(1 + 3λ̂)
+

135R4
p

256h4

(
(1 + 2λ̂)2

(1 + 3λ̂)(1 + 5λ̂)

)
(4.151)

For λ̂ = 0 (i.e. in the no-slip case), existing literature results can be recovered. In
fact, the force on the sphere translating perpendicularly to the wall is in perfect
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agreement with the Taylor series expansion of the exact solution obtained by [23]

F⊥
6πµRpU

= 1 + 9Rp

8h + 81Rp
2

64h2 + 473Rp
3

512h3 + 4113Rp
4

4096h4 +O

(
Rp

h

)5
(4.152)

and β∥ reduces to the same factor obtained by Faxén [98, p. 327].
Figure 4.3 and 4.4 depict the results obtained by applying eqs. (4.149)-(4.151)

compared to the exact results (such as those deriving by solving the [90] equations)
and to Finite Element Method (FEM) simulations (in those cases the exact result
are not available). Considering all the terms in β∥ and β⊥, eq. (4.149) provides
the force on a spherical body valid for gaps δ = (h − Rp) ≳ Rp or even smaller.
Further improvements of the expansion, taking into account higher order Faxén
operators, could increase tha range of validity of the theoretical expressions to smaller
values of the gap. However, apart from the specific interest of exhibiting explicit
expressions for forces in the case λ̂ ̸= 0, the strength of the theory is that it provides
a systematic procedure which does not depend on the geometrical symmetries of the
particle-confinement system and on the nature of the boundary conditions. In fact,
both the Faxén and the Brenner’s expressions, corresponding to eq. (4.150) and
(4.151) for λ̂ = 0 have been obtained enforcing specific symmetries of the problem
(in order to transform the solution in the Fourier space, or expressing it in a suitable
coordinate system, represented in this case by bispherical coordinates). Once the
matrix [N ] is known the same procedure can be applied for evaluating the force and
torque in any geometrical configuration of the particle-confinement problem.
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Figure 4.3. Force on a spherical body translating perpendicularly to a planar wall for
different slip lengths on the sphere. Solid black lines represent exact results obtained by
solving the Goren’s equation [90], dashed lines are obtained by eq. (4.149) taking into
account all the terms (red dashed line), neglecting the term O(Rp//h)4 (green dashed
line) and neglecting terms O(Rp/h)3 (blue dashed line). For complete slip (λ̂ = ∞) blue
and green dashed lines are practically coincident.
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Figure 4.4. Force on a spherical body translating parallel to aplane wall for different slip
lengths on the sphere. The solid black line represents the exact no-slip result obtained
by solving the O’Neill’s equations [184], black circles are the results of FEM simulations,
dashed lines are results obtained by eq. (4.149) taking into account all the terms (red
dashed line), neglecting the term O(Rp//h)4 (green dashed line) and neglecting terms
O(Rp/h)3 (blue dashed line). For complete slip (λ̂ = ∞), blue and green dashed lines
are practically coincident.



4.A Analysis of the convergence of series 103

Appendix

4.A Analysis of the convergence of series

In this Appendix the convergence of the series introduced in Chapters 4.3 and 4.4 is
investigated.

To begin with, let us consider the convergence of the series eq. (4.23) yielding the
first two terms vvv[1](xxx) +vvv[2](xxx) in the the reflection formula (4.14), that expressed in
compact matrix form, according to eq. (4.49), read

vvv[1](xxx) + vvv[2](xxx) = [M ]t[G]
8πµ (4.153)

It is easy to verify that the row by column multiplication [M ]t[G] corresponds to
the sum of of products between the elements MMM (m) and GGG(m), i.e.,

[M ]t[G] =
∞∑
m

(
MMM (m)

)t
GGG(m)

m! (4.154)

and using the Cauchy–Schwarz inequality we have

∣∣[M ]t[G]
∣∣ =

∣∣∣∣∣∣∣
∞∑
m

(
MMM (m)

)t
GGG(m)

m!

∣∣∣∣∣∣∣ ≤
∞∑
m

∣∣∣∣(MMM (m)
)t
GGG(m)

∣∣∣∣
m! ≤

∞∑
m

∥∥∥MMM (m)

∥∥∥ ∥∥∥GGG(m)

∥∥∥
m!

(4.155)
where ∥.∥ represents the norm of a matrix.

In order to estimate an upper bound for the rightmost term in eq. 4.155), an
estimate for the norms

∥∥∥MMM (m)

∥∥∥ and
∥∥∥GGG(m)

∥∥∥ is required. According to the reflection
procedure followed in Section 4.3, the moments Mααααm(ξξξ) refer to a body, with char-
acteristic length ℓb, immersed in an unbounded ambient flow uuu(xxx), with characteristic
velocity Uc. Therefore, by dimensional analysis, the force field distribution ψψψ(xxx) and
the position vector (xxx− ξξξ) can be normalized as follows

(x̂xx− ξ̂ξξ) = (xxx− ξξξ)
ℓb

, ψ̂ψψ(xxx) = ψψψ(xxx)
µUc

ℓ2b

(4.156)

By the definition, the entries of the moments can be normalized by

M̂ααααm(ξξξ) = Mααααm(ξξξ)
µUcℓ

m+1
b

(4.157)

so that M̂ααααm(ξξξ) ∼ O(1), and we can define the characteristic velocity Uc such that
|M̂ααααm(ξξξ)| ≤ 1, strictly. Therefore, if M̂MM (m) is the (m+ 1)-dimensional vector with
M̂ααααm(ξξξ) as its entries, we have∥∥∥MMM (m)

∥∥∥ =
∥∥∥M̂MM (m)

∥∥∥µUcℓ
m+1
b ≤ 3

m+1
2 µUcℓ

m+1
b (4.158)
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On the other hand, since the leading term in the Green function derivatives eq.
(4.6), is the derivative of the Stokeslet, we can normalize the entries of the m-th
order derivative of the Green function evaluated at the field point by a characteristic
distance ℓf between the body and the field point as

∇̂αααmĜaα(xxx,ξξξ) = ℓm+1
f ∇αααmGaα(xxx,ξξξ) (4.159)

with ℓf > ℓb defined so that

∥∥∥GGG(m)

∥∥∥ =

∥∥∥ĜGG(m)

∥∥∥
ℓm+1

f

≤ 3
m+1

2

ℓm+1
f

(4.160)

ĜGG(m) being the vector admitting ∇̂αααmĜaα(xxx,ξξξ) as its entries.
Therefore, since ℓf > ℓb, the velocity field vvv[1](xxx) + vvv[2](xxx) is bounded by

∣∣vvv[1](xxx) + vvv[2](xxx)
∣∣ =

∣∣[M ]t[G]
∣∣

8πµ ≤ Uc

8π

∞∑
m

3m+1

m!

(
ℓm+1

b

ℓm+1
f

)
= Uc

8π

(
3 ℓb
ℓf

)
e

(
3ℓb
ℓf

)
(4.161)

Next, consider the velocity field vvv[3](xxx) + vvv[4](xxx), given in matrix form by eq. (4.49)

vvv[3](xxx) + vvv[4](xxx) = [M ]t[N ][G]
8πµ (4.162)

for which, analogously to the inequalities eq. (4.155), we have

∣∣∣[M ′]t[N ][G]
∣∣∣ =

∣∣∣∣∣∣∣
∞∑
m

∞∑
n

(
MMM (m)

)t
NNN (m,n)GGG(n)

m!n!

∣∣∣∣∣∣∣ ≤
∞∑
m

∞∑
n

∣∣∣∣(MMM (m)
)t
NNN (m,n)GGG(n)

∣∣∣∣
m!n!

≤
∞∑
m

∞∑
n

∥∥∥MMM (m)

∥∥∥ ∥∥∥NNN (m,n)

∥∥∥ ∥∥∥GGG(n)

∥∥∥
m!n! (4.163)

By the definition eq. (4.27), the entries of the matrices NNN (m,n) are n-th order
moments evaluated for a body immersed in an ambient flow corresponding to the
regular part of the m-th derivative of the Green function. Since the regular part of the
Green function is a disturbance field for the Stokeslet with pole in the body generated
by the walls of the confinement, its characteristic magnitude can be considered as
that of a Stokeslet with pole at distance 2ℓd, ℓd being the characteristic distance
between the body and the nearest walls from the body. Thus, the characteristic
magnitude of its m-th order derivatives can be estimated as W (m)

c = 1/(2ℓd)m+1,
hence, by the same arguments used for Mααααm , we have

N̂ααααmββββn
(ξξξ) =

Nααααmββββn
(ξξξ)

µW
(m)
c ℓn+1

b

=
Nααααmββββn

(ξξξ)
µℓn+1

b

(2ℓd)m+1

(4.164)

Therefore, given that
∥∥∥N̂NN (m,n)

∥∥∥ ∼ O(1) is the norm of the matrix with normalized

entries N̂ααααmββββn
(ξξξ), there exists a constant C(1)

m,n ∼ O(1), such that |
∥∥∥N̂NN (m,n)

∥∥∥ | ≤
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C
(1)
m,n, and ∥∥∥NNN (m,n)

∥∥∥ =
∥∥∥N̂NN (m,n)

∥∥∥ (ℓb)n+1

(2ℓd)m+1 ≤ C(1)
m,n 3

m+n+2
2

(ℓb)n+1

(2ℓd)m+1 (4.165)

By considering the inequalities eqs. (4.158), (4.160) and (4.165), the velocity field
vvv[3](xxx) + vvv[4](xxx) is bounded by

∣∣vvv[3](xxx) + vvv[4](xxx)
∣∣ =

∣∣[M ]t[N ][G]
∣∣

8πµ

≤ C(1)
m,n

Uc

8π

(
3ℓb
ℓf

)(3ℓb
2ℓd

) ∞∑
m

∞∑
n

1
m!n!

(
3ℓb
ℓf

)m (3ℓb
2ℓd

)n

= C(1) Uc

8π

(
3ℓb
ℓf

)
e

3ℓb
ℓf

(3ℓb
2ℓd

)
e

3ℓb
2ℓd (4.166)

where C(1) = supm,nC
(1)
m,n ∼ O(1). Iterating the same procedure for all k =

0, 1, 2, 3..., we have

∣∣vvv[2k+1](xxx) + vvv[2k+2](xxx)
∣∣ =

∣∣[M ]t[N ]k[G]
∣∣

8πµ

≤ C(k)Uc

8π

(
3ℓb
ℓf

)
e

3ℓb
ℓf

[(3ℓb
2ℓd

)
e

3ℓb
2ℓd

]k

(4.167)

with C(k) ∼ O(1), and because of it, there exists a constant C > 0, such that C(k) < C
for any k. Therefore, for k → ∞, the contribution given by vvv[2k+1](xxx) + vvv[2k+2](xxx)
to the total velocity field in eq. (4.49) vanishes only if(3ℓb

2ℓd

)
e

3ℓb
2ℓd ≤ 1 (4.168)

i.e. for
ℓd ≳ 2.65 ℓb (4.169)

Therefore, if ℓd = ℓb + δ, where δ is characteristic length of the gap between the
surface of the particle and the walls of the confinement, the convergence of the
method is ensured for

δ ≳ 1.65 ℓb (4.170)

The convergence analysis developed above establishes a sufficient condition ℓd ≫ ℓb,
regardless the geometry of the system, for the convergence of the reflection method
developed in Section 4.3. However, the convergence is not excluded even for smaller
distances and eq. (4.169) suggests that it holds for ℓd ∼ ℓb. Extending this argument
we can state that there exist a constant Γ > 0, depending on the geometry of the
system and in principle smaller then the value 2.65 eq. (4.169), such that, for

ℓd > Γ ℓb (4.171)

the reflection method developed in Section (4.3) converges and the velocity field can
be represented in terms of the Faxén operator of the body and the Green function
of the confinement by eq. (4.54).



106 4. On the theory of body motion in confined Stokesian fluids

4.B Derivation of extended Swan and Brady’s approxi-
mations for rotating sphere

In this appendix, the approximate eqs. (4.132) and (4.133) for force and torque
acting on a sphere rotating with angular velocity ωωω in a bounded fluid are derived.

By considering in eq. (4.21) a purely rotational field

ua(xxx) = −εabc ωb(xxx− ξξξ′)c

we obtain the second order reflected field

v[2]
α (ξξξ) = ωβTα′βWαα′(ξξξ, ξξξ′)

∣∣∣∣
ξξξ′=ξξξ

(4.172)

exerting a force and a torque on the spherical body

FFF [3] = −ωωωYYY t (4.173)

and
TTT [3] = −ωωωZZZ (4.174)

Since, for the symmetries of the sphere, mαββ1(ξξξ, ξξξ) vanishes in the 1-st order Faxén
operator

v[2]
α (ξξξ) = UcO

(
ℓb
ℓd

)2
, ∇βββn

v
[2]
β (ξξξ) = UcO

(
ℓ2b
ℓ2+n

d

)
(4.175)

Also the leading neglected term in eq. (4.108) is smaller

v[4]
α (ξξξ) = v

[2]
β (ξξξ)Fα′βWαα′(ξξξ, ξξξ′)

∣∣∣∣
ξξξ′=ξξξ

+O

(
ℓb
ℓd

)5
(4.176)

therefore
FFF [5] = vvv[2]XXX +O

(
ℓb
ℓd

)5
(4.177)

and
TTT [5] = vvv[2]YYY +O

(
ℓb
ℓd

)5
(4.178)

By approximating the second velocity field as constant

vvv[2] = FFF [3]RRR−1 +O

(
ℓb
ℓd

)4
(4.179)

thus
FFF [5] = FFF [3]RRR−1XXX +O

(
ℓb
ℓd

)5
(4.180)

and
TTT [5] = FFF [3]RRR−1YYY +O

(
ℓb
ℓd

)5
(4.181)

while higher order reflected fields

FFF [2k+3] = FFF [2k+1]RRR−1XXX + o

(
ℓb
ℓd

)5
(4.182)



4.B Derivation of extended Swan and Brady’s approximations for rotating
sphere 107

and
TTT [2k+3] = FFF [2k+1]RRR−1YYY + o

(
ℓb
ℓd

)5
(4.183)

Summing all the reflected forces

FFF = FFF [3](I −RRR−1XXX)−1 +O

(
ℓb
ℓd

)5
(4.184)

and torques

TTT = TTT [∞] + TTT [3] +FFF [3]RRR−1YYY (1 −RRR−1XXX)−1 +O

(
ℓb
ℓd

)5
(4.185)

substituting eq. (4.173),(4.174) and TTT [∞] = −ωωωΩΩΩ we obtain the relations eqs. (4.132)
and (4.133)

FFF = ωωωYYY t(I −RRR−1XXX)−1 +O

(
ℓb
ℓd

)5
(4.186)

and torques

TTT = −ωωω(ΩΩΩ +ZZZ + YYY tRRR−1YYY (1 −RRR−1XXX)−1) +O

(
ℓb
ℓd

)5
(4.187)
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Chapter 5

Particle transport in confined
geometries

5.1 Introduction

The main legacy of the Einsteinian theory of Brownian motion to modern physics
lies in the confirmation of the atomistic nature of matter and in the equivalence
between random molecular motion at the microscopic level and the macroscopic
phenomenon of diffusion [67, 38].

Thanks also to the contributions by Langevin, Smoluchowski and many others
[141, 224, 37], it is now common knowledge in applied transport theory [236] that
any transport equation, expressed in the form of an advection-diffusion equation for
the concentration field c(xxx, t) of some solute diffusing in a fluid phase,

∂c(xxx, t)
∂t

= −∇ ·
[
uuu(p)(xxx) c(xxx, t)

]
+D∇2c(xxx, t) (5.1)

where uuu(p)(xxx) is the macroscopic velocity field experienced by the solute (coinciding
in most of the applications with the fluid phase velocity uuu(xxx)), and D its isotropic
diffusivity, can be represented in terms of the microscopic motion of the solute
particles by means of a Langevin equation of the form

dxxx(t) = uuu(p)(xxx(t)) dt+
√

2Ddwww(t) (5.2)

where dwww(t) = (dw1(t), dw2(t), dw3(t)) is the increment of a three-dimensional Wiener
process in the time interval (t, t + dt). This equivalence is also computationally
important as it enables to solve parabolic transport equations in complex geometries
by means of stochastic simulations of the Langevin equation (5.2) [91, 35, 158, 29].

The description of physical processes in terms of stochastic Langevin equations,
both in equilibrium and in out-of equilibrium conditions, has become one of the
strongest and more fruitful research lines in modern statistical physics, providing
useful insights in all the fields of physical investigation, including quantum and
particle physics [131, 42, 251].

The Langevin equation (5.2), expressed exclusively with respect to the particle
position xxx(t), can be derived from a stochastic dynamics (stochastic Newton equation)
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of the form
dxxx

dt
= vvv

m
dvvv

dt
= −η

[
vvv − uuu(p)(xxx)

]
+FFF stocha(t) (5.3)

where FFF stocha(t) dt = αdwww(t), α =
√

2 kb T η, m is the particle mass, η the friction
factor, T the absolute temperature and kB the Boltzmann constant, in the limit for
m/η ≪ 1, i.e., in the case particle inertia could be neglected. This simplification is not
only important in transport theory, but also in the thermodynamics of fluctuations
as it implies the simplest form of fluctuation-dissipation relation [133, 134],

Dη = kB T (5.4)

that, in the case of spherical particles for which η = 6π µRp is referred to as the
Stokes-Einstein relation. Equation (5.4) connects a transport parameter, related to
the intensity of fluctuations (the diffusivity D) to a hydrodynamic quantity, related
to dissipation (the friction factor η) at constant temperature T .

For timescales much larger than the dissipation time tdiss = m/η, the instanta-
neous Stokes equations (1.1), here expressed by{

µ∇2uuu(xxx) − ∇p(xxx) = −∇ · τ (xxx) = 0
∇ · uuu(xxx) = 0

(5.5)

where (uuu, p, τ ) are the velocity, the pressure and the stress tensor of the fluid
respectively, provides a good approximation for modeling fluid-particle interactions,
and the no-slip boundary conditions at the particle surface (Sp)

uuu(xxx) = vvv + (xxx− xxx0) × ω xxx ∈ Sp (5.6)

where (vvv,ω) is the velocity and the angular velocity of the particle, and xxx0 a reference
point, say the center of mass of the particle, describe with sufficient accuracy fluid-
particle interactions.

Therefore, the hydrodynamic resistance law in the more general position-dependent
and tensorial character is (

FFF
TTT

)
= −HHH(xxx)

(
vvv
ω

)
(5.7)

where HHH(xxx) is the 6 × 6 overall resistance matrix of the hydrodynamic interactions,
possessing a block structure

HHH =
(

η(xxx) CCC(1)(xxx)
CCC(2)(xxx) ηω(xxx)

)
(5.8)

where (i) η, and ηω are the translational and rotational friction matrices, respectively,
(ii) CCC(1), and CCC(2) are the roto-translational coupling matrices. As seen in Chapter 3,
by the Lorentz’s reciprocal theorem it is possible to prove (see also [98]) that η and
ηω are symmetric matrices, while CCC(1) and CCC(2) satisfy the property CCC(2) =

[
CCC(1)

]t
.
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Correspondingly, the overall resistance matrix HHH(xxx) is symmetric and positive
definite.

This automatically implies, due to the fluctuation-dissipation relation (5.4), a
tensorial and position-dependent diffusivity. The latter two properties have deep and
non trivial implications whenever a stochastic equation of motion, in the form of eq.
(5.3) is considered, due to the highly singular nature of the Wiener description of the
thermal/hydrodynamic fluctuations. For the sake of completeness, it should be also
mentioned that a position dependent effective diffusivity arises in modeling solute
transport in microchannels with undulated walls, in the case the transport problem
is referred exclusively to the channel axial coordinate [32, 15]. This is referred to as
the Fick-Jacobs approximation and it is essentially a geometrical effect within an
approximate transport model unrelated to any hydrodynamic interactions.

The scope of this chapter is to analyze in detail the problems and the peculiarities
of particle transport in microfluidic systems, originated by the confined nature of the
flow, starting from the stochastic description of the microscopic particle motion, in a
way that may also be useful for researchers in microfluidics that are not fully familiar
with stochastic differential equations. While stochastic modeling of particle transport
involving constant effective diffusivities is widely used in the analysis of microfluidic
devices, the inclusion of hydrodynamic effects, deriving from fluid confinement,
represents a completely new and unexplored field of theoretical and numerical
investigation. This chapter attempts to fill this gap, providing a methodological
bridge between hydrodynamic theory and the stochastic formulation of transport
phenomena in confined geometries, addressing also in a clear and critical way the
complexities and the difficulties of this approach. The chapter addresses also novel
original derivations as regards specific topics, such as the use of the overdamped
approximation in non-equilibrium conditions and the effect of slippage as regards
transport phenomena involving surface effects (such as surface chemical reactions).

In order to illustrate the physical concepts and the resulting analytical approaches,
the hydrodynamics of a spherical particle near an infinite planar solid surface is
explicitly considered, as a prototypical and paradigmatic case study of the hydrody-
namic problems occurring in microfluidic channels. Throughout this chapter, rigid
particles and Newtonian fluids are considered.

The chapter is organized as follows. Section 5.2 addresses the formulation of
fluctuation dissipation relations in confined systems, and the computational problems
associated with it. Section 5.3 analyzes the reduction of the equation of motion in
the form of a Langevin equation (5.3), discussing also the case of non-equilibrium
thermal conditions (thermophoresis). Section 5.4 discusses the problems arising
from the non-integrable singularity of the friction factor near a solid no-slip wall,
as regards diffusional problems in the presence of superficial phenomena (surface
chemical reactions). A way for overcoming these problems lies in relaxing the no-slip
assumption, as discussed in Section 5.5, where it is shown the necessity of considering
slippage effects both at the particle external surface and at the walls of the fluid
domain. Finally, Section 5.6 discusses in a succinct way the role of the fluid inertial
effects in the formulation of the stochastic equations for particle motion.
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5.2 Fluctuation-dissipation relations in confined geome-
tries

Consider the motion of a rigid spherical particle, of mass m and momentum of
inertia I, in a microfluidic device. Let vvv and ω be its velocity and angular velocity,
respectively. Assume that the particle is dispersed in a fluid flow, characterized by
the fluid velocity uuu(xxx) and that the particle is also subjected to the action of an
external potential field Φ(xxx). The particle equations of motion read

mdvvv = (FFF flow +FFF hydro) dt− ∇Φ dt+FFF stocha dt

I dω = (TTT flow + TTT hydro) dt+ TTT stocha dt (5.9)

where FFF flow and TTT flow are the force and the torque deriving from the action of the
external flow field uuu(xxx) (assuming that the particle velocity and angular velocity are
vanishing), FFF hydro and TTT hydro are the force and the torque due to the hydrodynamic
interactions (described by means of eq. (5.7) in the case the external flow velocity is
vanishing and the particle possesses a velocity vvv and an angular velocity ω), and
FFF stocha, TTT stocha represent the the stochastic force and the torque deriving from to
thermal fluctuations. This decomposition is made possible because the hydrodynamic
equations for the fluid are assumed to be linear. The basic problem in the statistical
physics of microparticle motion resides in the determination of the contributions of
the thermal perturbations FFF stocha and TTT stocha , since all the other terms in eq. (5.9)
stem from a classical hydrodynamic analysis.

Following the original approach due to Einstein and Langevin [134], in the case
the fluid is described by means of an instantaneous response (Stoke’s regime), it
is natural to represent FFF stocha and TTT stocha in the form of a linear superposition of
vector-valued Wiener processes, i.e. as

FFF stocha(xxx)dt = α(xxx) dwww(t) + γ(xxx) dwwwω(t)
TTT stocha(xxx)dt = ε(xxx) dwww(t) + β(xxx) dwwwω(t) (5.10)

where dwww(t) = (dw1(t), d2(t), dw3(t)) and dwwwω(t) = (dwω
1 (t), dwω

2 (t), dwω
3 (t)) are

the increments in the time interval (t, t+ dt) of two mutually independent vector-
valued Wiener processes. This observation is a consequence of the fact that Wiener
processes are also memoryless, in the meaning that if one defines ξ(t) = dwww(t)/dt =
(ξ1(t), ξ2(t), ξ3(t)), interpreted in a distributional meaning, than the correlation
function ⟨ξi(t0,+t) ξj(t0)⟩ = δ(t) δi,j is impulsive (here ⟨·⟩ indicates indifferently
either ensemble or temporal averages, and t0 > 0 is any time instant) [77].

Henceforth, in order to simplify the notation, the explicit dependence of the
matrices α, γ, ε, β on the position xxx will be omitted. While the determination of
FFF flow, FFF hydro and TTT flow, TTT hydro follows for the simple application of the Stokesian
hydrodynamics, the estimate of the matrices entering eq. (5.10) and defining
the thermal perturbations requires a statistical physical ansatz that, at constant
temperature T , the thermal fluctuations described by eq. (5.10) would provide
the known result of equilibrium statistical physics [133]. This is the essence of the
fluctuation-dissipation ansatz, and for this reason, owing to linearity, it is sufficient
to consider the statistical properties for the particle dynamics in the absence of
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external forcings, i.e. for FFF flow = ∇Φ = 0, TTT flow = 0. Under these conditions,
by substituting eqs. (5.7)-(5.8) and (5.10) into the equations of motion (5.9) one
obtains,

dvvv(t) = − η

m
vvv(t) dt− CCC(1)

m
ω(t) dt+ α

m
dwww(t) + γ

m
dwwwω(t)

dω(t) = −C
CC(2)

I
vvv(t) dt− ηω

I
ω(t) dt+ ε

I
dwww(t) + β

I
dwwwω(t) (5.11)

where also for η, CCC(1), CCC(2), ηω the explicit dependence on the position has been
omitted.

The matrices α, β, γ, ε are the stochastic amplitude matrices, and the final goal
of fluctuation-dissipation analysis is their determination from physical principles
enforcing equilibrium properties. Let ∆ be the overall 6 × 6 stochastic amplitude
matrix entering eq. (5.11),

∆ =
(

α
m

γ
m

ε
I

β
I

)
(5.12)

and define the 6 × 6 matrix σ, the entries of which are σi,j as

σi,j = 1
2

6∑
h=1

∆i,h ∆j,h (5.13)

In matrix form,

σ = 1
2 ∆ ∆T =

(
α αT +γ γT

2 m2
α εT +γ βT

2 m I
ε αT +β γT

2 m I
β βT +ε εT

2 I2

)
=
(

aaa
2 m2

ccc
2 m I

ddd
2 m I

bbb
2 I2

)
(5.14)

which is, by definition, symmetric. Expressing eq. (5.11) componentwise

dvi = −

 1
m

3∑
j=1

ηi,j vj + 1
m

3∑
j=1

C
(1)
i,j ωj

+ 1
m

3∑
j=1

αi,j dwj + 1
m

3∑
j=1

γi,j dw
ω
j

dωi = −

1
I

3∑
j=1

C
(2)
i,j vj + 1

I

3∑
j=1

ηω
i,j ωj

+ 1
I

3∑
j=1

εi,j dwj + 1
m

3∑
j=1

βi,j dw
ω
j (5.15)

so that the associated Fokker-Planck equation for the probability density function
p(vvv,ω, t) attains the form [77]

∂p

∂t
=

3∑
i=1

∂

∂vi

 1
m

3∑
j=1

ηi,j vj + 1
m

3∑
j=1

C
(1)
i,j ωj

 p


+

3∑
i=1

∂

∂ωi

1
I

3∑
j=1

C
(2)
i,j vj + 1

I

3∑
j=1

ηω
i,j ωj

 p

 (5.16)

+
3∑

i,j=1

∂2

∂vi∂vj

(
ai,j p

2m2

)
+

3∑
i,j=1

∂2

∂vi∂ωj

(
ci,j p

2mI

)

+
3∑

i,j=1

∂2

∂ωi∂vj

(
di,j p

2mI

)
+

3∑
i,j=1

∂2

∂ωi∂ωj

(
bi,j p

2 I2

)
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The statistical equilibrium properties can be ascertained from the analysis of the
lower-order (first and second) moments of p(vvv,ω, t). The first-order moments relax
to zero in the long-term regime, as a consequence of the fact that the hydrodynamic
interaction matrix HHH is positive definite. It is therefore sufficient to consider the
second-order moments for the translational/angular velocities,

Mv,v
i,j (t) =

∫
R3
dω

∫
R3
vi vj p(vvv,ω, t) dvvv

Mv,ω
i,j (t) =

∫
R3
ωjdω

∫
R3
vi p(vvv,ω, t) dvvv (5.17)

Mω,ω
i,j (t) =

∫
R3
dvvv

∫
R3
ωi ωj p(vvv,ω, t) dω

To begin with, consider MMMv,v. From the Fokker-Planck equation (5.16) one
obtains

dMv,v
h,k

dt
= − 1

m

3∑
j=1

ηh,jM
v,v
j,k − 1

m

3∑
j=1

ηk,jM
v,v
j,h − 1

m

3∑
j=1

C
(1)
h,jM

v,ω
k,j − 1

m

3∑
j=1

C
(1)
k,jM

v,ω
h,j

+ ah,k + ak,h

2m2 (5.18)

In the long-term limit (equilibrium), it follows from eq. (5.18) that

[ηMMMv,v +MMMv,v η] +
[
CCC(1) (MMMv,ω)T +MMMv,ω

(
CCC(1)

)T
]

= 1
2m

(
aaa+ aaaT

)
(5.19)

Next, consider MMMω,ω, the entries of which satisfy the equations

dMω,ω
h,k

dt
= −1

I

3∑
j=1

C
(2)
h,jM

v,ω
j,k − 1

I

3∑
j=1

C
(2)
k,jM

v,ω
j,h − 1

I

3∑
j=1

ηω
h,jM

ω,ω
j,k − 1

I

3∑
j=1

ηω
k,jM

ω,ω
j,h

+ bh,k + bk,h

2 I2 (5.20)

so that the value attained at equilibrium is

[ηωMMMω,ω +MMMω,ω ηω] +
[
CCC(2)MMMv,ω + (MMMv,ω)T

(
CCC(2)

)T
]

= 1
2 I

(
bbb+ bbbT

)
(5.21)

Finally, consider the mixed second-order roto-translational moments

dMv,ω
h,k

dt
= − 1

m

3∑
j=1

ηh,jM
v,ω
j,k − 1

m
C

(1)
h,jM

ω,ω
j,k − 1

I

3∑
j=1

ηω
k,jM

v,ω
h,j − 1

I

3∑
j=1

C
(2)
k,jM

v,v
j,h

+ ch,k + dk,h

2mI
(5.22)

admitting the equilibrium condition

1
m

[
ηMMMv,ω +CCC(1)MMMω,ω

]
+ 1
I

[
MMMv,ωηω +MMMv,v

(
CCC(2)

)T
]

= ccc+ dddT

2mI
(5.23)
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Fluctuation-dissipation conditions, and the explicit expression for the stochastic
amplitude matrices follow by enforcing the equilibrium properties [133]

MMMv,v = kB T

m
III , MMMω,ω = kB T

I
III , MMMv,ω = 0 (5.24)

where I is the moment of inertia, and III the identity matrix. These conditions
stem from the Maxwellian equilibrium velocity distribution, and from the energy
equipartition theorem applied to a rigid particle, admitting 6 degrees of freedom.
Making use of eq. (5.24) and of the equilibrium expression eq. (5.19) for MMMv,v, one
obtains that the matrix aaa should be symmetric and

aaa = 2 kB T η (5.25)

A similar analysis for MMMω,ω eq. (5.21) at equilibrium provides

bbb = 2 kB T ηω (5.26)

The equilibrium results deriving from the analysis of the mixed roto-translational
moments yield

kB T

[
CCC(1) +

(
CCC(2)

)T
]

= ccc+ dddT

2 (5.27)

a solution of which is dddT = ccc and

ccc = 2 kB T CCC
(1) , ddd = 2 kB T CCC

(2) (5.28)

Once the “diffusional" matrices aaa, bbb, ccc, ddd have been expressed in terms of the
hydrodynamic resistance matrices, the next step is to derive the expression for the
stochastic amplitude matrices α, β, γ, ε.

Because of eq. (5.28), the 6 × 6 matrix ∆ defined by eq. (5.12) is symmetric,
and satisfies the algebraic matrix equation

∆2

2 = kB T

(
η

m2
CCC(1)

m I
CCC(2)

m I
ηω

I2

)
= σ (5.29)

Mutuating this property from the symmetry of hydrodynamic matrices, the matrix
σ is symmetric and positive definite, and it is known from matrix theory [89] that
there exists a unique, symmetric, and positive definite matrix ∆ solution of eq.
(5.29), formally

∆ =
√

2 σ1/2 (5.30)

In order to determine the explicit expression for the matrix ∆, it is convenient to
normalize its entries, expressing the force/torque and the velocity/angular velocity
in the same physical dimensions. If ℓp is the characteristic particle length, ℓp = Rp

for spherical particle of radius Rp, set T̂TT = TTT/ℓp, ω̂ = ℓp ω. In this way, T̂TT has the
dimension of a force, and ω̂ the dimension of a velocity, so that eqs. (5.7)-(5.8)
become (

FFF

T̂TT

)
= −ĤHH(xxx)

(
vvv
ω̂

)
(5.31)
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where ĤHH(xxx) is the normalized overall resistance matrix possessing the block structure

ĤHH(xxx) =

 η̂(xxx) ĈCC
(1)(xxx)

ĈCC
(2)(xxx) η̂ω(xxx)

 =
(

η(xxx) CCC(1)(xxx)/ℓp
CCC(2)(xxx)/ℓp ηω(xxx)/ℓ2p

)
(5.32)

and the normalized moment of inertia is given by Î = I/ℓ2p. In this way, eq. (5.11)
attains the normalized representation

dvvv(t) = − η

m
vvv(t) dt− ĈCC

(1)

m
ω̂(t) dt+ α̂

m
dwww(t) + γ̂

m
dwwwω(t)

dω̂(t) = −Ĉ
CC

(2)

Î
vvv(t) dt− η̂ω

Î
ω̂(t) dt+ ε̂

Î
dwww(t) + β̂

Î
dwwwω(t) (5.33)

with α̂ = α, γ̂ = γ/ℓp, ε̂ = ε/ℓp, β̂ = β/ℓ2p. The normalized matrix eq. (5.29) thus
becomes

∆̂
2

2 = kB T

 η
m2

ĈCC
(1)

m Î

ĈCC
(2)

m Î

η̂
ω

Î2

 = σ̂ (5.34)

and ∆̂ =
√

2 σ̂1/2.
For symmetric and positive definite matrices σ̂, the estimate of their square

root σ̂1/2 reduces to an eigenvalue problem [89]. Let λi > 0, i = 1, . . . , 6, be the
eigenvalues of σ̂, and VVV (i) = (V (i)

1 , . . . , V
(i)

6 ) the corresponding unit eigenvectors.
The solution of eq. (5.34) can be expressed as

∆̂ =
√

2VVV diag(λ1/2
1 , . . . , λ

1/2
6 )VVV −1 (5.35)

where VVV is the eigenbasis transformation matrix, the column of which are orderly
the eigevectors of σ̂, i.e.,

VVV =

 V
(1)

1 . . . V
(6)

1
. . . . . . . . .

V
(1)

6 . . . V
(6)

6

 (5.36)

and diag(λ1/2
1 , . . . , λ

1/2
6 ) is a diagonal matrix, the diagonal entries of which are the

square roots of the eigenvalues λi, i = 1, . . . , 6.

5.2.1 An example: systems with axialsymmetric geometry

As an application of the previous analysis, consider a system with axialsymmetric
geometry. Typical axisymmetric systems in microfluidics are spherical particles
moving in a slit channel or near an infinitely extended planar wall. The symmetries of
the problem reduces the 21 independent coefficients of the hydrodynamic resistance
matrix to 5. By taking a Cartesian coordinate system (x1, x2, x3) with x3 lying on
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Figure 5.1. Schematic rapresentation of a spherical particle near an infinitely extended
planar wall.

the axis of symmetry as in Fig. 5.1, the resistance matrix takes the form [98]

HHH =



η1,1 0 0 0 C 0
0 η1,1 0 −C 0 0
0 0 η3,3 0 0 0
0 −C 0 ηω

1,1 0 0
C 0 0 0 ηω

1,1 0
0 0 0 0 0 ηω

3,3


(5.37)

Therefore, the matrix σ̂, chosing ℓp = Rp, becomes

σ̂ =



σ̂1 0 0 0 σ̂c 0
0 σ̂1 0 −σ̂c 0 0
0 0 σ̂3 0 0 0
0 −σ̂c 0 σ̂4 0 0
σ̂c 0 0 0 σ̂4 0
0 0 0 0 0 σ̂6


(5.38)

where

σ̂1 = σ̂2 = η1,1
kB T

m2 , σ̂3 = η3,3
kB T

m2 , σ̂4 = σ̂5 = ηω
1,1

kB T

I2 R2
p (5.39)

σ̂6 = ηω
3,3

kB T

I2 R2
p , σ̂c = C

kB T

mI
Rp

The eigenvalues of σ̂ are

λ1 = λ2 = σ̂1 + σ̂4 − r

2 , λ3 = σ̂3 , λ4 = λ5 = σ̂1 + σ̂4 + r

2 , λ6 = σ̂6 (5.40)
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where r =
√

(σ̂4 − σ̂1)2 + 4σ̂2
c . The eigenvector matrix VVV entering eq. (5.36) takes

in this case the expression

VVV =



−−σ̂1+σ̂4+r
2σ̂c

0 0 −−σ̂1+σ̂4−r
2σ̂c

0 0
0 − σ̂1−σ̂4−r

2σ̂c
0 0 − σ̂1−σ̂4+r

2σ̂c
0

0 0 1 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
0 0 0 0 0 1


(5.41)

By applying eqs. (5.36), (5.38), one obtains for ∆̂

∆̂ =



∆̂1 0 0 0 ∆̂c 0
0 ∆̂1 0 −∆̂c 0 0
0 0 ∆̂3 0 0 0
0 −∆̂c 0 ∆̂4 0 0

∆̂c 0 0 0 ∆̂4 0
0 0 0 0 0 ∆̂6


(5.42)

where

∆̂1 = ∆̂2 = (σ̂1 − λ1)
√
λ4 − (σ̂1 − λ4)

√
λ1

r
, ∆̂3 =

√
2 σ̂3

(5.43)

∆̂4 = ∆̂5 = (σ̂4 − λ4)
√
λ1 − (σ̂4 − λ1)

√
λ4

r
, ∆̂6 =

√
2 σ̂6 , ∆̂c = σ̂c(

√
λ4 −

√
λ1)

r

As h → ∞, i.e., far away from the wall, the coupling term σ̂c → 0, and the quantity
r take the limit form

r =
√

(σ̂4 − σ̂1)2 = π µRp kB T

m2

√(
η̄ω

1,1

Ī2 − η̄1,1

)2
(5.44)

where
η̄ω

1,1 = ηω
11

π µR3
p

= 8 , η̄1,1 = η11
π µRp

= 6, Ī = I

mR2
p

= 2
5 (5.45)

Substituting these values into eq. (5.44), the expected results in the free space are
obtained

∆̂i =
√

2 σ̂i , i = 1, . . . , 6 (5.46)

and therefore

α =
√

2kBTη∞ III , β =
√

2kBTηω
∞ III , γ = ε = 0 (5.47)

where III is the 3 × 3 identity matrix. In order to recover the Stokesian limit values
in the free space η∞, ηω

∞, the argument of the square root in eq. (5.44) should be
positive, i.e.,

η̄ω
1,1
η̄1,1

> Ī2 (5.48)

Inequality (5.48) is fulfilled in the free space as follows from eq. (5.45).
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5.3 Adiabatic elimination of the velocity variables

In this Section, the formulation of the overdamped approximation for micrometric
rigid particles in confined geometries is considered. The overdamped approximation
consists in expressing the equations of motion in the form of a kinematic equation
for the mechanical degrees of freedom associated with translational and rotational
motions. This is made possible due to the fact that velocity variables are custom-
arily characterized by a faster relaxation dynamics than position and orientational
variables. This is certainly true for micrometric particles if one considers their
transport properties at time scales much larger than the characteristic dissipation
timescale tdiss = m/η∞, the order of magnitude of which falls between 10−6-10−7

s for micrometric particles in water at room temperature. For this reason, the
overdamped approximation is often referred to as the adiabatic elimination of the
fast velocity variables, and this follows by imposing the condition

mdvvv ≃ 0 , I dω ≃ 0 (5.49)

and extracting out of eqs. (5.49) the expression for vvv and ω, entering the kinematic
equation

dxxx = vvv dt , dϕ = ω dt (5.50)

where ϕ = (ϕ1, ϕ2, ϕ3) is the vector-valued angular variable accounting for the
particle orientation.

The overdamped approximation in confined geometries presents intrinsic pecu-
liarities, just because the hydrodynamic resistance matrix depends on the position xxx,
and in general of the orientation ϕ, and this raises delicate issues when the thermal
fluctuations are expressed as linear superposition of increments of Wiener processes,
owing to their highly singular local structure [77]. This problem in the physical
literature is usually referred to as the Ito-Stratonovich dilemma [234, 161]. The most
convenient and simple approach to perform the adiabatic elimination of the fast
velocity variable is due to Sancho et al. [215]. The starting point in this derivation
is that the configurational coordinates of a particle driven by Wiener fluctuations
still represent a locally smooth, and almost everywhere differentiable continuous
stochastic process with probability 1, and this property determines the way eq.
(5.49) is interpreted. Without loss of generality, let us suppose that the particle is
subjected to an external potential Φ(xxx), and that no additional flow contribution
are present. The latter can be added at the end of the adiabatic elimination process.

In order to perform this analysis in the simplest formal way, it is convenient
to group together configurational and velocity variables, thus introducing the 6-
dimensional configurational and velocity variables, zzz and UUU , respectively, and the
overall stochastic forcing dWWW (t)

zzz =
(
xxx
ϕ

)
, UUU =

(
vvv
ω

)
, dWWW (t) =

(
dwww(t)
dwwwω(t)

)
(5.51)

so that the equations of motion can be compactly expressed as

dzzz = UUU dt , mmmmI dzzz = −HHH(zzz)UUU dt− ∇zΦ(zzz) dt+ ν(zzz) dWWW (t) (5.52)
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where mmmmI is the mass/moment-of inertial tensor, mmmmI = diag(m,m,m, I, I, I) for a
spherical particle, HHH(zzz) the hydrodynamic resistance matrix, ∇z the nabla operator
with respect to the zzz-variable and ν is the matrix of thermal fluctuation intensity
satisfying, as discussed in the previous Section, the condition at thermal equilibrium,

ν(zzz) νT (zzz) = 2 kB T HHH(zzz) (5.53)

The overdamped approximation corresponds to the limit for mass and momentum
of inertia tending to zero. In performing this limit, upon correct physical grounds,
it should be ensured that the configurational variable zzz(t) is a smooth stochastic
process. To this end, the Wong-Zakai theorem can be enforced [243, 244], implying
that the stochastic differential equation describing particle dynamics should be
interpreted in a Stratonovich way [132], Technically, this means that, in performing
the limit process, the quantity HHH(zzz)UUU dt should be interpreted as

HHH(zzz)UUU dt = HHH(zzz) ◦ dzzz = HHH(zzz + dzzz/2) dzzz (5.54)

where “◦” indicates the Stratonovich rule in the definition of stochastic integrals
and differentials. It is also convenient to recall a known result, deriving from the Ito
lemma, namely that [77]

dWi(t) dWj(t) = δi,j dt+ o(dt) (5.55)

where δi,j are the Kronecker’s symbols (entries of the identity matrix), and o(dt) is
a quantity going to zero for dt → 0 faster than dt.

The final goal of this analysis is to derive a kinematic equation for the con-
figurational particle degrees of freedom (Langevin equation) expressed in the Ito
way and, out of it, the transport equation for particle density, corresponding to
the Fokker-Planck equation for the statistical characterization of the so-obtained
Langevin equation.

Making use of the Wong-Zakai result, expressed by eq. (5.54), the overdamped
approximation of eq. (5.52) is thus given componentwise by

0 =
6∑

j=1
Hi,j

(
zzz + dddz

2

)
dzj − ∂Φ

∂zi
dt+

6∑
j=1

νi,j(zzz) dWj(t) (5.56)

Expanding the first term at the r.h.s. of eq. (5.56) in Taylor series to the leading
order,

6∑
j=1

Hi,j

(
zzz + dddz

2

)
dzj =

6∑
j=1

Hi,j(zzz) dzj + 1
2

6∑
j,k=1

∂Hi,j(zzz)
∂zk

dzj dzk + o(dt) (5.57)

The quantity dzj dzk can be evaluated from eq. (5.56), by considering for the first
term at the r.h.s. of eq. (5.56) its Ito interpretation, namely

∑6
j=1Hi,j(zzz) dzj that

provides the leading order contribution as the remainder in this approximation is
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order of o(dt). Thus, enforcing also eq. (5.55), one obtains

dzj dzk =

−
6∑

p=1
H−1

j,p

∂Φ
∂zp

dt+
6∑

p,m=1
H−1

j,p νp,m dWm(t)


×

−
6∑

q=1
H−1

k,q

∂Φ
∂zq

dt+
6∑

q,n

H−1
k,q νq,n dWn(t)


=

6∑
p,m,q,n=1

H−1
j,p H

−1
k,q νp,m νq,n dWm(t) dWn(t)

=
6∑

p,m,q,n=1
H−1

j,p H
−1
k,q νp,m νq,nδm,n dt =

6∑
p,q,m=1

H−1
j,p H

−1
k,q νp,m νq,m dt

=
6∑

p,q=1
H−1

j,p H
−1
k,q kB T Hq,p dt = 2 kB T H

−1
j,k dt+ o(dt) (5.58)

where H−1
j,p = (HHH−1)j,p, and in deriving the last relation eq. (5.53) has been used.

Substituting eqs. (5.57), (5.58) into eq. (5.56) it follows that
6∑

j=1
Hi,j dzj = −kB T

6∑
j,k=1

∂Hi,j

∂zk
H−1

k,j dt− ∂Φ
∂zi

dt+
6∑

j=1
νi,j dWj(t) (5.59)

where the o(dt)-terms have been neglected. Correspondingly, the Langevin equation
in the configuration (xxx,ϕ)-space becomes

dzi = −
6∑

j=1
H−1

i,j

∂Φ
∂zj

dt− fi dt+
6∑

j,h=1
H−1

i,j νj,h dWh(t) (5.60)

where

fi = kB T
6∑

j,h,k=1
H−1

i,j

∂Hj,h

∂zk
H−1

k,h (5.61)

The Fokker-Planck equation for the probability density p(zzz, t) associated with eq.
(5.61) is thus given by

∂p

∂t
= ∇z ·

(
HHH−1 ∇zΦ p

)
+ ∇z · (fff p) +

6∑
i,j=1

∂2

∂zi∂zj
(Di,j p) (5.62)

where fff = (fi)6
i=1 and the generalized diffusivity tensor Di,j takes the form

Di,j = 1
2

6∑
p,k,q=1

H−1
i,p νp,k H

−1
j,q νq,k = 1

2

6∑
p,q=1

H−1
i,p H

−1
j,q 2 kB T Hp,q

= kB T H
−1
i,j (5.63)

i.e., the generalized diffusivity tensorDDD(zzz) = (Di,j(zzz))6
i,j=1 is related to the resistance

matrix HHH(zzz) by the relation

DDD(zzz)HHH(zzz) = kB T (5.64)
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generalizing the fluctuation-dissipation relation eq. (5.4). Next, consider the contri-
bution of the vector field fff entering the Fokker-Planck equation (5.62). From the
identity HHH−1HHH = III, it follows componentwise, for any k = 1, . . . , 6,

6∑
j=1

∂H−1
i,j

∂zk
Hj,h +

6∑
j=1

H−1
i,j

∂Hj,h

∂zk
= 0 (5.65)

and thus,
∂H−1

j,h

∂zk
= −

6∑
m,j=1

H−1
i,m

∂Hm,j

∂zk
H−1

j,h (5.66)

The latter expression implies that the entries fi of fff defined by eq. (5.61) reduce to

fi = −kB T
6∑

h=1

∂H−1
i,h

∂zh
(5.67)

Substituting eqs. (5.63), (5.67) into eq. (5.62), the Fokker-Planck equation for p(zzz, t)
attains the simpler form

∂p

∂t
=

6∑
i,j=1

∂

∂zi

(
H−1

i,j

∂Φ
∂zj

p

)
−kB T

6∑
i=1

∂

∂zi

 6∑
j=1

∂H−1
i,j

∂zj
p

+kB T
6∑

i,j=1

∂

∂zi∂zj

(
H−1

i,j p
)

(5.68)
that can be rewritten in a more compact way as

∂p

∂t
=

6∑
i,j=1

∂

∂zi

(
H−1

i,j

∂Φ
∂zj

p

)
+

6∑
i,j=1

∂

∂zi

(
Di,j

∂p

∂zj

)
(5.69)

The latter corresponds to an advection-diffusion equation in the configuration space
in the presence of the effective velocity vvveff = HHH−1 ∇zΦ, stemming from the potential
Φ(zzz) and of the tensor diffusivity DDD. Conversely, eq. (5.68) represents the classical
formulation of the Fokker-Planck equation associated with a Langevin dynamics
interpreted in the Ito way, attaining the following expression

dzi = −
6∑

j=1
H−1

i,j

∂Φ
∂zj

dt+
6∑

j=1

∂Di,h

∂zh
dt+

√
2

6∑
j=1

(DDD1/2)i,j dWj(t) (5.70)

where (DDD1/2)i,j are the entries of the square root matrix DDD1/2 of the diffusivity tensor
DDD, DDD1/2DDD1/2 = DDD. It is also clear from the Ito representation of the Langevin eq.
(5.70) the occurrence of an additional convective contribution depending on the
divergence of the diffusivity tensor. This term admits a physical meaning as, even
for Φ(zzz) = 0, it provides a biasing average velocity U (bias)

i (zzz),

U
(bias)
i (zzz∗) = d⟨zi⟩

dt

∣∣∣∣
zzz=zzz∗

(5.71)

where d⟨zi⟩/dt|zzz=zzz∗ is the average value of the particle velocity evaluated when the
particle configuration is at zzz = zzz∗ [143, 144].
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In the case of a spherical particle, the hydrodynamic matrices depends solely
on xxx and not on ϕ. Consequently it is easy to obtain the evolution equation for
the marginal distribution px(xxx, t) =

∫
S3
p(zzz, t) dϕ, where S3 = [0, 2π)3. Assume also

that the spherical particles are immersed in a flow, and that the force exterted by
the flow onto a generic particle located at xxx is FFF flow(xxx) = η(xxx)uuu(p)(xxx). In this case,
the spatial particle density function px(xxx, t) satisfies the balance equation

∂px

∂t
=

3∑
i=1

∂

∂xi

u(p)
i −

3∑
j=1

η−1
i,j

∂Φ
∂xj

 px

+
3∑

i,j=1

∂

∂xi

(
Dx

i,j

∂px

∂xj

)
(5.72)

where Dx
i,j(xxx), is the 3 × 3 diffusivity tensor,

∑3
h=1D

x
i,h(xxx) ηh,j(xxx) = kB T δi,j .

5.3.1 An application

As a simple application of the overdamped theory, consider the vertical motion of
a spherical particle in the upper half-plane delimited by a planar wall at x3 = 0
in isothermal conditions at temperature T . Indicate with x = h the distance of
the particle from the wall, and assume that the particle is subjected to an external
potential Φ(x), as in [237, 30], where Φ(x) stems from gravity and from a local
double-layer repulsive potential near the wall. In this case the problem is spatially
one-dimensional, since η(x) = η3,3(x), and D(x) = kB T/η(x) depends solely from
the distance x from the wall. Setting Φ′(x) = dΦ(x)/dx, and similarly for D′(x),
the Fokker-Planck equation for the density function px(x, t) reads

∂px(x, t)
∂t

= ∂

∂x

(Φ′(x)
η(x) px(x, t)

)
+ ∂

∂x

(
D(x) ∂px(x, t)

∂x

)
(5.73)

and this equation corresponds to the Langevin-Ito equation

dx(t) = −η−1(x(t)) Φ′(x(t)) dt+D′(x(t)) dt+
√

2D(x(t)) dw(t) (5.74)

where dw(t) is the increment of a one-dimensional Wiener process. Assuming that the
potential is attractive towards x = 0 at large distances, so that

∫∞
0 e−Φ(x)/kB T dx <

∞, it follows from eq. (5.73) that in the limit for t → ∞, the density px(x, t)
converges towards a stationary density p∗

x(x), solution of the equation

η−1(x) Φ′(x) p∗
x(x) +D(x) dp

∗
x(x)
dx

= 0 (5.75)

corresponding, as expected, to the Boltzmann distribution

p∗
x(x) = Ae−Φ(x)/kB T (5.76)

This is a classical result, starting from which, micrometric particles may be used
as Brownian probes, upon recording their statistical properties i.e. their stationary
density function p∗

x(x), in order to investigate and measure surface properties of
materials [237, 30].

It is instructive to analyze in greater detail the mathematical properties of eq.
(5.73). This is a one-dimensional parabolic equation for px(x, t), and as the wall
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at x = 0 is impermeable to particle transport,
∫∞

0 px(x, t) dx = 1 for any t ≥ 0.
To solve eq. (5.73), it should be equipped with initial and boundary conditions.
As regards the initial condition, px(x, 0) = px,0(x), with

∫∞
0 px,0(x) dx = 1. The

boundary condition at infinity, x → ∞ is the classical regularity condition, namely

lim
x→∞

xn px(x, t) = lim
x→∞

xn∂px(x, t)
∂x

= 0 , for t > 0 , n = 0, 1, . . . (5.77)

meaning that px(x, t) and ∂px(x, t)/∂x should decay faster than any power xn of
x for x → ∞. At x = 0, the zero-flux boundary condition applies, implying in the
present case

−Φ′(x)
η(x) px(x, t) −D(x) ∂px(x, t)

∂x

∣∣∣∣
x=0

= 0 (5.78)

Two cases should be discussed. If, (i) limx→0 |Φ′(x)| < ∞, since D(0) = kB T/η(0) =
0, the wall boundary condition at x = 0 blows up, reducing eq. (5.78) to a trivial
identity that does not provide any condition on the local behavior of px(x, t) near
x = 0. Conversely, if (ii) limx→0 |Φ′(x)| = ∞, and moreover limx→0 Φ′(x)/η(x) =
C ̸= 0, where the constant C may even diverge to ∞, the boundary condition (5.78)
reduces to a homogeneous Dirichlet condition,

px(0, t) = 0 (5.79)

As in principle, the condition on the potential Φ leading to eq. (5.79) could not be
verified in a physical systems, as for the case analyzed in [237, 30], it follows from
the above analysis that the simple transport model eq. (5.73) displays a singular
behavior as regards the wall boundary conditions. This singular phenomenon is
a peculiar feature of the transport equations involving a hydrodynamic Stokesian
description of the fluid-particle interactions in confined geometries, deriving from
the singularity of some entries of the resistance matrix near a solid wall.

5.3.2 Thermophoresis from the overdamped approximation

An interesting byproduct of the overdamped analysis discussed above is the derivation
of thermophoretic effects from the stochastic equations of motion. For simplicity, let
us consider the case of a spherical particle in its translational motion, neglecting
rotational effects and in the absence of any external or fluid forcing. It has been
shown in [60] (see also [113]) that even in the presence of a non-equilibrium steady
temperature profile T (xxx) the fluctuation-dissipation relation can be applied, so that
the equations of motion in the present case read

dxxx = vvv dt

mdvvv = −η(xxx)vvv dt+
√

2 kB T (xxx) η1/2(xxx) dwww(t) (5.80)

Within the overdamped approximation, enforcing the same Stratonovich-approach
developed in Section 5.2 to the term η(xxx)vvv dt = η(xxx) ◦ dxxx, one obtains

−
3∑

j=1
ηi,j dxj − 1

2

3∑
j,k=1

∂ηi,j

∂xk
dxj dxk +

√
2 kB T (xxx) (η1/2)i,j dwj(t) = 0 (5.81)
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Since,

dxj dxk = 2 kB T (xxx)
3∑

p,q=1
(η1/2)j,p (η1/2)k,q dwp(t) dwq(t) + o(dt)

= 2 kB T (xxx)
3∑

p,q=1
(η1/2)j,p (η1/2)k,p dt+ o(dt) = 2 kB T (xxx)η−1

j,k dt+ o(dt)

(5.82)

This leads to the following Langevin equation

dxi = −kB T (xxx)
3∑

j,h,k=1
η−1

i,j

∂ηj,h

∂xk
η−1

h,k dt+
√

2 kB T (xxx) (η1/2)i,j dwj(t) (5.83)

From the fluctuation-dissipation relation extended to non-equilibrium steady thermal
conditions,

∑3
h=1Di,h ηh,j = kB T (xxx) δi,j , it follows, for any k = 1, 2, 3, that

3∑
h=1

∂Di,h

∂xk
ηh,j +

3∑
h=1

Di,h
∂ηh,j

∂xk
= kB

∂T

∂xk
δi,j

3∑
h=1

∂Di,h

∂xk
ηh,j + kB T (xxx)

3∑
h=1

η−1
i,h

∂ηh,j

∂xk
= kB

∂T

∂xk
δi,j (5.84)

which implies

−kB T (xxx)
3∑

h,j=1
η−1

i,h

∂ηh,j

∂xk
ηj,m = ∂Di,m

∂xk
− kB

∂T

∂xk
η−1

i,m (5.85)

From the latter expression it follows that

−kB T (xxx)
3∑

h,j,k=1
η−1

i,h

∂ηh,j

∂xk
ηj,k =

3∑
k=1

∂Di,k

∂xk
− 1
T (xxx)

∂T

∂xk
Di,k (5.86)

Therefore, eq. (5.82) becomes

dxi =
( 3∑

k=1

∂Di,k

∂xk

)
dt−

3∑
k=1

Di,k

T (xxx)
∂T

∂xk
dt+

3∑
k=1

√
2(DDD1/2)i,k dwk(t) (5.87)

and the corresponding Fokker-Planck equations reads

∂px

∂t
=

3∑
i,j=1

∂

∂xi

(
Di,j

T

∂T

∂xj
px

)
+

3∑
i,j=1

∂

∂xi

(
Di,j

∂px

∂xj

)
(5.88)

providing the occurrence of an additional convective contribution to the flux, de-
pending on the temperature gradient, and equal to

JJJ thermo = −D
DD

T
∇T px (5.89)

providing a thermophoretic velocity vvvthermo equal to −DDD∇T/T [54]. This result
shows that thermophoretic effects naturally follow from the accurate description of
stochastic particle motion in thermal non-equilibrium conditions.
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5.4 Wall singularities: superficial phenomena
In the previous Section, the physical problems associated with the setting of boundary
conditions for transport equations in confined geometries due to the singularities of
the entries of the resistance matrix has been outlined. The asymptotic trends of all
the entries of HHH(xxx) of two smooth no-slip surfaces almost in contact, such as the
case of a particle very close to a solid surface, has been studied by Cox [45] for any
value of the walls’ curvatures. From the Cox’s lubrication analysis, it results that
the drag force on a particle moving towards the wall is inversely proportional to gap
between the surfaces (particle and wall surfaces). To simplify the analysis, let us
focus on a spherical particle of radius Rp.

By considering a Cartesian reference system (x̂xx1, x̂xx2, x̂xx3) with the origin on the wall
and with x̂xx3 collinear to the axis passing between the two contact points of the two
surfaces, the asymptotic trend of the resistance on the particle is η3,3(xxx) ∼ O(Rp/h)
as h/Rp → 0.

For example, the drag force on a sphere moving towards a planar wall can be
expressed to the leading order by the Taylor approximation [47]

η3,3(xxx) =
6π µR2

p

h
+O(1) (5.90)

for small gaps h between sphere and planar wall. At larger distances, as seen in
Chapter 4, the Lorentz friction [156] is

η3,3(xxx) = 6π µRp

(
1 + 9

8
Rp

h

)
(5.91)

and, since 9/8 ≈ 1, a reasonable approximation over the whole range of h values is
given by

η3,3(xxx) = 6π µRp

(
1 + Rp

h

)
(5.92)

The singularity of η3,3(xxx) at the wall implies that a particle, initially at h = h0 and
moving towards the solid surface due to the action of a constant force Fg, say gravity,
reaches the surface in an infinity time tsurf , being the integral

tsurf =
∫ 0

h0

η3,3(h)
Fg

dh → ∞ (5.93)

divergent to infinity. The characteristic time tsurf is referred to as the wall touching
time. This result poses severe problems in predicting the kinetics of coalescence and
deposition of dispersed particles from hydrodynamic theories based on the Stokes
model eq. (5.5). To complete the picture, let us consider the scaling behavior of
the remaining resistance coefficients. As regards the other coefficients, they are all
logarithmically singular as O(log(h)) with the exception of the rotational resistance
around the normal axis to the surfaces attaining a finite value close to the wall,
i.e., η6,6(h) = O(1) as h → 0. Singularities at a contact point between surfaces
are typical of Stoke’s flows due to the no-slip conditions at solid boundaries. For
example, in contact line motions [64] and for flows near a corner [175] it has be
found that unphysical singularities can be eliminated or mollified by introducing
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slippage at solid boundaries [63, 238]. Before addressing the effect of slip boundary
conditions, it is useful to investigate further the pathologies arising from the classical
no-slip hydrodynamic description in dealing with surface phenomena.

5.4.1 Surface phenomena and hydrodynamic singularities

All the surface phenomena (particle coalescence, surface aggregation, adsorption,
surface chemical reactions) depending on a transfer mechanism of molecules and
particles from the fluid phase onto the surface are deeply influenced by the spatial
dependence of the entries of the hydrodynamic resistance matrix. Paradoxes arise
due to the singularities of these entries at the solid walls (for incompressible flows,
assuming no-slip boundary conditions at the solid boundaries).

In order to highlight these phenomena, it is sufficient to consider a simple
problem, namely the pure diffusional motion of solute particles (nanoparticles) in
the neighborhood of a solid wall (located at x3 = x = 0), undergoing at the solid
wall a surface chemical reaction characterized by a linear, first-order kinetics. To
simplify the analysis, let us assume that far away from the wall, say at x = L, the
particle concentration is kept fixed, and equal to c0. The problem is thus specified
by the parabolic diffusion equation for the particle concentration c(x, t),

∂c(x, t)
∂t

= ∂

∂x

(
D(x) ∂c(x, t)

∂x

)
(5.94)

equipped with the boundary conditions

D(x) ∂c(x, t)
∂x

= k c(x, t)
∣∣∣∣
x=0

, c(L, t) = c0 (5.95)

Consider the steady-state solution c∗(x) of eq. (5.94). From eq. (5.94) it follows
that,

dc∗(x)
dx

= B

D(x) (5.96)

where B is a constant, and thus

c∗(x) = A+B

∫ x

0

dξ

D(ξ) (5.97)

where A is a second constant to be determined from the boundary conditions. From
eq. (5.97) it follows that a solution exists provided that 1/D(x) is locally integrable
near x = 0. But this is not the case when the hydrodynamic modeling deriving from
incompressible Stokes equations imposing no-slip boundary conditions at the solid
walls, as 1/D(x) ∼ 1/x.

On the other hand, in the case 1/D(x) would be locally integrable near x = 0,
the steady-state solution c∗(x) would attain the expression

c∗(x) = c0
1 + kΨ(x)
1 + kΨ(L) , Ψ(x) =

∫ x

0

dξ

D(ξ) (5.98)

It is clear from the above problem that Stokes’ hydrodynamics applied to transport
phenomena coupled to any form of superficial chemical physical processes determines
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unphysical paradoxes. In the present case, the paradox can be resolved within a
classical hydrodynamic formulation by deriving, from more general hydrodynamic
conditions, a diffusion coefficient D(x) that is integrable near x = 0, i.e., such that
D(x) ≤ C/xα, with C > 0 and α < 1. Indeed, this property can be recovered by
relaxing the no-slip boundary conditions as addressed in the next Section.

5.5 Effect of slip boundary conditions
Although the no-slip assumption, uuu = 0, at the interface between a Newtonian fluid
and a solid boundary is largely accepted due to its capability of predicting mechanical
and hydrodynamical properties involving macroscopic bodies and large-scale systems,
the nature of the proper boundary conditions for the tangential velocity at a solid
interface has been a long-debated issue over more than two centuries of hydrodynamic
research [88]. As an alternative to the no-slip hypothesis, Navier [179] proposed
that the tangential stresses at any point on the solid surface should be the same
as the stresses at a neighboring internal point of the fluid, providing the boundary
condition

β (uuu− vvv) · (I −nnn⊗nnn) = −nnn · τ · (I −nnn⊗nnn) (5.99)

where I is the identity matrix, nnn, the unit normal vector to the surface of the solid,
β a friction constant and "⊗" indicates dyadic composition, (nnn⊗nnn)i,j = ni nj . Since
the isotropic pressure contribution entering τ vanishes at the r.h.s of eq. (5.99), the
Navier’s boundary condition (5.99) can be written as

(uuu− vvv) · (III −nnn⊗nnn) = λnnn · (∇uuu+ ∇uuuT ) · (III −nnn⊗nnn) (5.100)

where λ = µ/β, having the dimension of a length, is the so called slip length.
It is evident that the slip length represents a new parameter in modeling Stokes
flow. In fact, while the no-slip model describes an idealized fluid/solid interface,
the slip model introduces an additional parameter related to the chemical physical
interactions at the solid-liquid interface.

Slip phenomena can be distinguished in two main classes: intrinsic slip and
apparent slip [145]. The first one is due exclusively to the molecular dynamics at
the solid-liquid interface. The second one is due to artifacts at the surfaces that
can increase or decrease the slippage, such as the presence of gas bubbles or the
surface roughness. However, these artifacts have necessarily a characteristic length
below which no-slip conditions applies. In addition, as shown by Cox [45], the nature
of the singularity does not depend on the curvature of the approaching surfaces.
In considering very small gaps between the surfaces (h → 0), the apparent slip
vanishes. Therefore, in the remainder, solely to the intrinsic (molecular) slip will
be taking into account. The occurrence of slippage depends in principle, either
on hydrodynamic conditions or on the gap length. In fact, as shown by molecular
dynamic simulations [68], the slip length for the system (PA-6,6 oligomer)-graphene
increases by increasing the shear rate and by reducing the gap between the solid walls.
Being such behavior, due to the molecular rearrangement of the fluid, it is appreciable
solely when the gap is small enough to be comparable with the characteristic size
of the molecular structure of the fluid. However, at this lengthscale scale, it is not
possible to mark a clear distinction between the solid surface and the domain of
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the fluid used in continuous hydrodynamic models, due to solvation and diffusive
phenomena. Therefore, a constant slip length, used in hydrodynamic theories (and in
the remainder), should be considered as a parameter emerging from the complexity
of the molecular system. A review of typical slip lengths for several fluid-surface
systems obtained experimentally is given in [145]. Non vanishing values of the slip
length are in the range λ = 1 ÷ 100nm, whereas typical characteristic lengthscales
of colloids are Rp = 10 ÷ 104nm. Correspondingly, the dimensionless slip length for
a colloid attains values in the range λ̂ = 10−4 ÷ 10.

Either the problems of translating or rotating sphere in an unbounded fluid have
been solved by Basset [4] in the presence of the Navier’s slip obtaining the following
expressions for the force and the torque acting on the sphere

FFF hydro = −6πµRp

(
1 + 2λ̂
1 + 3λ̂

)
vvv (5.101)

TTT hydro = −8πµR3
p

( 1
1 + 3λ̂

)
ω (5.102)

Being λ̂ = 10−4 ÷ 10, larger spherical particles experience the force and the torque
corresponding to no-slip boundary conditions FFF hydro ≈ −6π µRp vvv and TTT hydro ≈
−8π µR3

p ω, whereas for smaller colloids the Basset’s correction becomes necessary.
For a particle in a confined geometry, the slip boundary conditions can be considered
either at the surface of the particle (Sp), with a slip length λp, or at the surface of
the walls (Sw) with a slip length λw. Therefore, the boundary conditions for the
flow become

(uuu− vvv) · (III −nnn⊗nnn) = λpnnn · (∇uuu+ ∇uuuT ) · (III −nnn⊗nnn), xxx ∈ Sp

(uuu− vvv) · (III −nnn⊗nnn) = λwnnn · (∇uuu+ ∇uuuT ) · (III −nnn⊗nnn), xxx ∈ Sw

(5.103)

5.5.1 Spherical particle moving perpendicular to a planar wall

Let us consider the problem of a spherical particle near a planar wall as depicted in
Fig. 5.1. Hocking has shown [110] that, in the presence of the same slip on both
the surfaces (λp = λw = λ), the touching time in eq. (5.93) becomes finite although
the singularity of the transversal resistance at the wall still remains [110] . The
functional dependence of the resistance to perpendicular translations on h in the
limit h → 0, derived by Hocking using lubrication methods, attains the form

η3,3(ĥ, λ̂)
η∞

= 1
3λ̂

[(
1 + ĥ

6λ̂

)
log

(
1 + 6λ̂

ĥ

)
− 1

]
+O(1) (5.104)

where ĥ = h/Rp. Consequently, the drag force is logarithmically singular at the wall,
eq. (5.91) becomes integrable and the touching time attains a finite value.

A seminalytical expression for the drag force over a sphere translating perpendic-
ularly to a plane has been obtained by Goren [90] over the entire range of positions
and for any values of λw and λp using a bispherical coordinate system. However,
the author [90] has provided only few numerical values for η̂3,3(ĥ, λ̂) corresponding
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Figure 5.2. Dimensionless hydrodynamics resistance coefficient η3,3/(6π µRp) vs h/Rp

for equal slip lengths on the particle surface and on the wall. Each color in the figure
corresponds to a different slip length as described in the inner legend. Continuous lines
represent the results of the Goren’s equations, dashed lines the values obtained by the
Hocking’s equation eq. (5.104), and symbols the results of FEM simulations.

to relatively large gaps and slip lengths, and considering solely the case λw = λp. In
point of fact, in order to obtain the numeric values for the transversal resistance from
the Goren’s solution is in principle necessary to solve an infinite dimensional linear
system of equations for any position of the sphere. On the other hand, the infinite
linear system, truncated to a finite number N of equations, provides approximate
but accurate values for the force experienced by the particle with an error that
decreases as N increases, while the number of the equations from a fixed accuracy
increases as ĥ → 0 and the slip lengths increase.

In order to obtain the values of η3,3(ĥ, λ̂p, λ̂w) for different slip lengths and at
any distance from the wall, it has been either performed FEM simulations, the detail
of which are reported in the Appendix 5.6, or solved the Goren’s equations up to
N = 500. The data depicted in Fig. 5.2 show that the Hocking asymptotic equation
(5.104) matches accurately the FEM simulations and the Goren solution in the range
of λ̂ = 0 ÷ 10−1 and that the predicted logarithmic scaling starts to appear for gaps
smaller then the slip length (ĥ ≲ λ̂), after a transition zone, where η3,3 ∼ 1/ĥ.

On the other hand, as depicted in Fig. 5.3, if the no-slip boundary condition
is imposed on solely one of the surfaces, the singular scaling η3,3 ∼ 1/ĥ remains
no matter the value of the slip length imposed on the other surface. In the latter
conditions, three different regimes can be distinguished: (i) the scaling η3,3 ∼ 1/ĥ
for λ̂ ≲ ĥ ≲ 10−1, (ii) an apparent logarithmic behavior for 10−2λ̂ ≲ ĥ ≲ λ̂ and (iii)
the asymptotic regime where η3,3 ∼ 1/ĥ for ĥ ≲ 10−2λ̂.

To complete the analysis the data in Fig. 5.4 show that, keeping fixed the slip
length at one of the surfaces (λ̂i = 10−3, i = w, p) and increasing the slip length on
the other λ̂j , j = p, w, the logarithmic scaling occurs for ĥ ≲ λ̂j . This means that
an arbirarily small slip on both the surfaces is sufficient to determine an asymptotic
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Figure 5.3. Dimensionless hydrodynamics resistance coefficient η3,3/(6π µRp) vs h/Rp in
the case no-slip boundary conditions are imposed at the surface of the sphere (panel a)
or at the wall (panel b). Each color in the panels corresponds to a different combination
of slip lengths λp, λw as described in the inner legends. Continuous lines represent the
results of the Goren’s equations, symbols the results of FEM simulations.
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Figure 5.4. Dimensionless hydrodynamics resistance coefficient η3,3/(6π µRp) vs h/Rp

obtained by keeping fixed the slip length λ̂i = λi/Rp = 10−3 on the i-th surface (i = w, p)
and varying the slip length on the other obtained by solving the Goren’s equations.
Observe that the curves corresponding to i = w and i = p practically overlap in this
range of parameter values.

logarithmic scaling of the transversal resistance and thus the occurrence of a finite
value of the touching time.
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5.6 Fluid inertial effects
So far fluid-particle interaction within the instantaneous Stokes regime has been
considered, neglecting fluid inertia. In point of fact, while the Reynolds number
is smaller that 1 in most of the microfluidic applications, this is not the case of
the product of the Reynolds number times the Strouhal number, which is order
of 1 or higher due to the high frequency of the thermal fluctuations. This means
that a more accurate description of particle motion at short time and length scales
would involve a hydrodynamic description of fluid inertia, that in the present case
corresponds to the time-dependent Stokes regime [138],

ρ
∂uuu

∂t
= µ∇2uuu− ∇p (5.105)

with ∇ · uuu = 0.
It is well known that the force FFF hydro(t) exerted by a fluid with density ρ

and viscosity µ on a spherical particle of radius Rp moving with velocity vvv in a
still fluid, can be expressed in the Laplace domain F̂FF hydro(s) = L[FFF hydro(t)] =∫∞

0 e−s tFFF hydro(t) dt as [130]

F̂FF hydro(s) = −6π µRp v̂vv(s) − 6π√
µρR2

p

1√
s

(s v̂vv(s)) − 2
3 π R

3
p ρ (s v̂vv(s)) (5.106)

The first term at the r.h.s of eq. (5.106) is the Stokesian friction factor, the second
one corresponds in the time domain to the convolutional Basset force

FFFBasset(t) = −6 √
π µ ρR2

p

∫ t

0

1√
t− τ

(
dvvv(τ)
dτ

+ vvv(0) δ(τ)
)
dτ (5.107)

and the third term is the added-mass contribution

FFF am(t) = −ma

(
dvvv(t)
dt

+ vvv(0) δ(t)
)
, ma = Vp ρ

2 (5.108)

where Vp is the particle volume, equal to half the mass of the fluid occupying the
particle volume. Physically, the added mass contribution corresponds to the back
action on the particle of the correlated motion of nearby fluid elements originated by
the particle movement within the fluid [51]. In confined geometries, the added mass
mmma(xxx) becomes a tensorial quantity dependent on particle position. For instance,
for a spherical particle near a solid planar wall,

mmma(xxx) =

 m1(h) 0 0
0 m1(h) 0
0 0 m2(h)

 (5.109)

where m1(h), and m2(h), corresponding to the parallel and transversal added masses,
are smooth functions of the particle distance from the wall, as depicted in Fig. 5.5
attaining a finite value for h = 0. Similarly, the Basset contribution attains in
confined geometries a tensorial, position-dependent character,

FFFBasset =
∫ t

0
BBB(t− τ,xxx) dv

vv(τ)
dτ

dτ (5.110)
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Figure 5.5. Ratio of the added mass ma of a sphere moving perpendicular (m2, red
line) and parallel (m1, black line) to a planar wall to that in an unbounded fluid
ma,∞ = (2/3)πρR3

p obtained by FEM simulations.

where BBB(t,xxx) = (Bi,j(t,xxx))3
i,j=1 and xxx = xxx(t). There are very few works on the

characterization of the Basset force in confined geometries [221], and the detailed
study of fluid inertial effects in microchannels and in the presence of solid walls
represents an almost virgin field of theoretical and experimental investigation.

Gathering these contributions, and considering also the action of a potential
Φ(xxx) and of a flow force FFF flow = η(xxx)uuu(p)(xxx), deriving e.g. by a (pressure-drive) flow
in the fluid, the equations of motion for a microparticle become,

dxxx

dt
= vvv

(m+mmma(xxx)) dv
vv

dt
= −η(xxx) (vvv − uuu(p)(xxx)) − ∇Φ(xxx)

−
∫ t

0
BBB(t− τ,xxx)

(
dvvv(τ)
dτ

− duuu(p)(xxx(τ))
dτ

)
+FFF stocha(xxx, t)

(5.111)

where FFF stocha(xxx, t) is the stochastic fluctuational contributions, to be determined by
enforcing fluctuation-dissipation relations. But also this aspect, owing to the explicit
dependence of FFF stocha(xxx, t) on the position xxx, represents a challenging problem
in statistical physics, especially if one is interested in determining the velocity
autocorrelation function.

Fortunately, for t ≫ tdiss, corresponding to typical conditions in microfluidic
applications, the fluid inertia can be neglected, and the stochastic description of
particle motion can be based on the theory addressed in Sections 5.2,5.3.

In the next Chapter, the Basset contribution to the dynamic of a particle in a
Newtonian and non-Newtonian fluid will be addressed in more detail, investigating the
mathematical form of the kernel in eq. (5.110) and developing a modal representation
able to simplify computation and theoretical analysis.
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Appendix - Details on the FEM simulations
The software COMSOL Multiphysics 5.4 has been used to perform FEM simulations.
To take computational advantage from the axial symmetry of the problem of a
sphere translating perpendicularly to a planar wall, for obtaining the coefficient η3,3
in eq. (5.33), cylindrical coordinates (r, ϕ, z) have been used in a two dimensional
(r, z) square domain representing the fluid domain, with an empty disk, representing
the spherical particle, possessing unit radius placed at distance h from planar wall.

The length of the sides of the square has been chosen much larger than the
characteristic length of the physical problem (L ⩾ max(103h, 10Rp)), so that their
presence does not affect the resistance on the sphere, and a no-slip boundary condition
has been imposed on these sides. Conversely, on the perimeter of the disk and on
the nearest side (representing the planar wall), Navier’s slip conditions eq. (5.103)
have been imposed to solve the Stokes’ problem eq. (5.5).

A finer mesh has been set on the perimeter of the disk representing the sphere,
and the maximal length of the elements has been imposed to be less than 0.1Rp.
A quadratic shape order has been set to model the curvature of the circle and a
double boundary layer with thickness about 0.005Rp has been built around the
circle, representing the surface of the sphere. The mesh in the square (fluid domain)
has been modeled by imposing two different zones: a nearest zone of linear size 10Rp

with a maximum growth rate of the finite elements equal to 1.1, and an exterior zone
with a higher growth rate of about 2. Both P2P1 and P3P2 finite elements have been
used depending on the position of the particle. Figure 5.6 reports the data of the
error analysis. The reference data for checking the numerical simulations are those
of a no-slip particle moving parallel to a slip plane wall reported by Kezirian [125],
obtained by the author solving the Stokes’ equations in bi-spherical coordinates.
These data, to the best of our knowledge, are the only exact results regarding this
kind of problem available in the literature. The percentage error has been evaluated
by the relation

%error = 100
∣∣∣∣ηCom

1,1 − ηKez
1,1

ηKez
1,1

∣∣∣∣ (5.112)

where ηCom
1,1 refers to numerical simulations and ηKez

1,1 to the data by [125]. Fig.
5.6 reports this comparison in three different cases. The data obtained by P2P1
element are accurate (%error < 1) for gaps larger than the radius of the particle.
For smaller gaps, the dimension of the box can be considerably reduced since the
total force depend principally on the hydrodynamic field in the gap. In this near field
zone, pressure field is the leading term in the evaluation of the stress tensor [110].
Correspondingly, an improvement of the evaluation of the pressure field, obtained
by non linear elements P3P2, yields accurate results with a percentage error less
then 1%.

The same parameters have been used for building both the geometry and the
mesh for evaluating the added mass of a sphere moving near a plane wall. In this
case, the fluid model used is a potential flow,

∇ · uuu(xxx) = 0, uuu(xxx) = ∇ϕ(xxx), xxx ∈ Df (5.113)

Therefore, for a given position of the sphere, three Laplace equations (one for each
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Cartesian axis i = 1, 2, 3)
∇2ϕ(i)(xxx) = 0 (5.114)

has been solved by using Lagrangian quadratic elements, with the impermeability
boundary conditions

nnn · ∇ϕ(i)(xxx) = nnn · vvv(i), xxx ∈ Sp (5.115)

where nnn is the normal unit vector to the sphere and vvv(i) the velocity of the particle
in the i-th direction. The entries of the added-mass matrix have been evaluated as
[80],

ma,ij

ma,∞
=
∫

Sp
ϕ(i)njdS
2
3πR

3
p

(5.116)
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Chapter 6

Complex flows and modal
representation of the intertial
kernels

6.1 Introduction

Microfluidics and the study of fluid–particle interactions at a microscale represent
not only a vast area of practical engineering applications [213, 93] as they provide
the opportunity of addressing fundamental physical questions in fluid dynamics
[27, 107, 200], such as the relevance of acoustic propagation in liquid hydrodynamics
[255, 39, 83], the nature of the boundary conditions and the occurrence of slip effects
[146, 147, 174], as well as the role of the finite propagation velocity in the evolution
of internal stresses [83, 82].

A significant role in this research is played by the study, both theoretical and
experimental, of Brownian motion, i.e., of the motion of micrometric particles in a
quiescent fluid. This is due to the fact that Brownian motion is a central problem in
statistical physics, from the early age of Einstein, Langevin, Smoluchowski, Perrin,
[67, 141, 224, 37] up to now [17, 74], providing a direct way of quantifying the
influence of thermal fluctuations and of studying the interactions between a fluid and
a particle, thus permitting the investigation of the role and the relative relevance
of different hydrodynamic effects. In this sense, Brownian motion represents an
invaluable probe to verify experimentally fundamental fluid dynamic properties at
short time and length scales [172, 174].

The last two decades have seen an increasing attention on the experimental analysis
of Brownian motion at short time scales in different fluids (gases and liquids) [206,
127, 73, 205], with different rheological properties (Newtonian, viscoelastic) [92]. The
experimental results have confirmed many predictions of the hydrodynamic theory of
Brownian motion [254, 242, 34], and in some cases have raised fundamental questions
involving basic principles of statistical mechanics [173].

The analysis of the velocity autocorrelation function of a micrometric particle in
a liquid phase has shown the importance of fluid inertial contributions, expressed
by the occurrence of the Basset force and of the added-mass term [51] in the
expression of the force exerted by a fluid on a rigid object [73, 205]. These terms
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arise in the low-Reynolds number hydrodynamics, using the time-dependent Stokes
equations, and provide a power-law decay of the particle velocity autocorrelation
function [92], to be compared with the exponential decay occurring if solely the
Stokesian drag is considered [134]. Indeed, the use of the time-dependent Stokes
equation, instead of the instantaneous Stokes formulation, is well justified and
appropriate when addressing micrometric particle motion in liquids at short time
scale, due to the high frequencies characterizing thermal fluctuations. Consequently,
while the Reynolds number is extremely small in these systems, the product of
the Reynolds number times the Strouhal numbers is order of unity, justifying the
inclusion of the inertial contribution expressed as the time derivative of the velocity
in the hydrodynamic equations. In the case of viscoelastic fluids, characterized by
time-dependent constitutive equations, this statement is a fortiori valid.

The rheological modeling of complex viscoelastic fluids is well consolidated as
regards the quantitative description of viscoelastic properties [159]. As regards
the dynamics of a microparticle, this corresponds to the formulation of a gener-
alized Langevin equation with a dissipative memory kernel [252, 177, 253]. This
class of equations has been introduced by Zwanzig in connection with the in-
teraction of a physical system with a heat bath, and the fluctuation–dissipation
theorem for this class of systems has been obtained by Kubo [133]. On the other
hand, the hydrodynamic analysis of Brownian motion and the numerical simula-
tion experiments by Alder and Wainwright [1] have clearly indicated that fluid
inertial contributions are of paramount importance in order to correctly predict
particle dynamics.

The current approach to particle motion in complex fluids is essentially based on
the direct hydrodynamic simulation of particle motion [65, 52]. What is missing is a
physically consistent and computationally tractable formulation of particle dynamics
in viscoelastic fluids, analogous to the corresponding equation of motion (which
includes Stokes friction, the Basset force and the added mass effect) that apply
for Newtonian ones. These equations can be derived into two steps: (i) via the
detailed characterization of the fluid inertial contribution to particle motion in a
complex fluid, expressing it in a computationally effective representation, and (ii) by
generalizing the Kubo fluctuation–dissipation theory in order to include fluid-inertial
contributions. In this thesis, the focus is essentially on the first issue.

Albeit the present analysis is focused on the hydrodynamic theory of parti-
cle motion, its application to microfluidic engineering for particle separation and
nanoparticle production and optimization is significant. Indeed, the obtained result
could be directly applied to the design of microfluidic systems enforcing the rheolog-
ical properties of complex fluids in the limit of Stokesian hydrodynamics. In point
of fact, the importance of inertial effects and rheological properties in separation
devices is well known, e.g., in connection with the Segré-Silberberg effect [218, 52],
although this effect involves flows at non-vanishing Reynolds numbers [107, 108].

The aim of this contribution is two-fold. A first goal involves the development of
the modal representation of the fluid inertial contributions in the expression of the
particle equation of motion in a fluid phase. This naturally leads to a simple field-
theoretical representation of these effects. The second goal involves the mathematical
structure of the inertial memory kernels entering the convolutional representation of
the Basset forces, and their basic qualitative properties derived from fundamental



6.2 Fluid–Particle Interactions and Inertial Effects 139

physical principles. Specifically, it is shown that for any viscoelastic fluid (and all
the liquids fall in this category, even if their characteristic relaxation times could be
extremely small), the inertial memory kernel accounting for the generalized Basset
contribution is bounded and non-singular near time t = 0.

The chapter is organized as follows. Section 6.2 introduces the hydrodynamic
problem, the representation of fluid inertial effects and their implications in mi-
croparticle dynamics. Section 6.3 analyzes the modal representation of the Basset
force, and its compact description in terms of a simple field equation. Moreover, it
is shown in Section 6.3.2 that the modal representation also provides an efficient
computational tool to study inertial particle motion. This is an important topic that
recently emerged in the fluid-dynamic literature [142, 189, 195] in connection with
the numerical solution of the Maxey–Riley equation [167] (see also [95] and references
therein). Specifically, the modal expansion transforms the integro-differential equa-
tions of motion into a system of ordinary differential equations. Section 6.4 addresses
the boundedness of the resulting memory kernels in the presence of viscoelastic
constitutive equations, outlining the physical and computational relevance of this
result. For a simple Maxwell fluid, the expression of this kernel is obtained in closed
form, and a general method for approximating it for generic complex viscoelastic
fluids is proposed. Finally, Section 6.4.3 describes the connection between the present
theory and the generalization of the Kubo fluctuation–dissipation theory to include
fluid inertial effects in the stochastic equations of motion for a microparticle in a
heat bath at constant temperature.

6.2 Fluid–Particle Interactions and Inertial Effects

Consider the motion of a micrometric rigid spherical particle of radius R in a
unbounded incompressible fluid. Assume that the fluid is Newtonian, and ρ and µ
represent its density and viscosity, respectively. Let Db be the domain representing
the space occupied by the particle, ∂Db its boundary and UUUp(t) its translational
velocity. Since it is considered the motion of a Brownian particle in a still liquid (the
liquid is referred to be still if its velocity field originates exclusively from thermal
motion of the immersed Brownian particle), the momentum balance equation for
the particle reads

m
dUUUp(t)
dt

= FFF f→p[UUUp(t)] +SSS(t) (6.1)

where FFF f→p[UUUp(t)] represents the force exerted by the fluid on the particle, and is a
functional of the particle velocity, expressed by the surface integral over ∂Db,

FFF f→p[UUUp(t)] = −
∫

∂Db

(τ (xxx, t) + p(xxx, t)III) ·nnn(xxx) dS (6.2)

where, in this Chapter, τ is the shear stress tensor, p the pressure, III the identity
matrix and nnn(xxx) is the unit normal vector (considering a reference system with the
origin at the center of the spherical particle) and SSS(t) is a stochastic contribution
describing the thermal force fluctuation.

Indicating with vvv(xxx, t) the fluid velocity field, in the low-Reynolds number regime



140 6. Complex flows and modal representation of the intertial kernels

it is the solution of the time-dependent Stokes equations

ρ
∂vvv(xxx, t)
∂t

= −∇ · τ − ∇p(xxx, t) , ∇ · vvv(xxx, t) = 0 , xxx ∈ R3/Db (6.3)

equipped with the no-slip boundary and initial conditions,

vvv(xxx, t)|xxx∈∂Db
= UUUp(t) , vvv(xxx, t)|t=0 = 0 (6.4)

Equation (6.4) corresponds to the no-slip assumption. For an incompressible
Newtonian fluid,

τ (xxx, t) = −µ
(
∇vvv(xxx, t) + ∇vvvt(xxx, t)

)
(6.5)

so that eq. (6.3) is a linear partial differential equation for vvv(xxx, t) (the time-dependent
Stokes equation)

ρ
∂vvv(xxx, t)
∂t

= µ∇2vvv(xxx, t) − ∇p(xxx, t) (6.6)

where, from eq. (6.3), the velocity field vvv(xxx, t) is incompressible. Owing to the
linearity of eqs. (6.5) and (6.6), the functional FFF f→p[UUUp(t)] is a linear and causal
functional of the particle velocity UUUp(t). Causality means that FFF f→p[UUUp(t)] depends
solely on the velocity history in the interval [0, t).

Under these conditions, the force exerted by the fluid onto the rigid spherical
particle can be expressed analytically. Let us indicate with F̂FF f→p(s) the Laplace
transform of FFF f→p[UUUp(t)] (henceforth, f̂(s) =

∫∞
0 e−s tf(t) dt indicates the Laplace

transform of any function f(t) of time t, and s the complex-valued Laplace variable),
F̂FF f→p(s) attains the expression [130, 98]

−F̂FF f→p(s) = 6π µRp ÛUUp(s) + 6π
√
ρµ

s
R2

p

(
s ÛUUp(s)

)
+ 2

3 ρ π R
3
p

(
s ÛUUp(s)

)
(6.7)

Transforming Equation (6.7) back into the time domain, one obtains

FFF f→p[UUUp(t)] = −6π µRpUUUp(t)

−6 √
π ρµR2

p

∫ t

0

1√
t− τ

(
dUUUp(τ)
dτ

+UUUp(0) δ(τ)
)
dτ − 2

3 ρ π R
3
p

dUUUp(t)
dt

(6.8)

where UUUp(0) is the initial condition for the particle velocity at t = 0. The first term
at the r.h.s. of eq. (6.8) is the Stokes resistance addressed in detail in the previous
Chapters of this thesis, with the factor for a sphere η = 6π µR, corresponding to the
only dissipative term occurring also in the case of the instantaneous Stokes regime.
The two other contributions at the r.h.s. stem from fluid inertial effects, and depend
on the history of particle acceleration up to time t. The first of these terms is the
convolutional integral of dUUUp(t)/dt with the kernel k(t) given by

k(t) =
6 √

π ρµR2
p√

t
(6.9)

and it is usually referred to as the Basset force. Let us observe that kernel k(t) is
singular at t = 0. This property will be thoroughly analyzed in Section 6.4. The last
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term at the r.h.s. of eq. (6.8) is an instantaneous inertial contribution proportional
to the actual value (i.e., at time t) of the acceleration dUUUp(t)/dt of the particle, and
it defines the hydrodynamic added mass ma = 2ρ π R3

p/3, equal to half of the mass
of the fluid displaced by the particle [138]. Let us observe within the Basset term
the occurrence of a contribution proportional to UUUp(0)δ(τ), in the case UUUp(0) ̸= 0.
eq. (6.8) can be compactly written as

me
dUUUp(t)
dt

= −ηUUUp(t) − k(t) ∗
(
dUp(t)
dt

+ Up(0) δ(t)
)

+SSS(t) (6.10)

where me = m + ma is the extended mass and "∗" indicates convolution. The
physical importance of the Basset contribution can be appreciated by considering
the velocity autocorrelation tensor of a Brownian particle, CCCv(t) = ⟨UUUp(t) ⊗UUUp(0)⟩,
where "⊗" indicates the dyadic tensor product and "⟨·⟩" the ensemble average over
the probability measure of the thermal fluctuations. Since ⟨SSS(t) ⊗UUUp(0)⟩ = 0, as it
is physically reasonable to assume that the thermal fluctuations SSS(t) at time t ≥ 0,
are independent of (uncorrelated to) the velocity fluctuations at any previous time
instant t = 0 [134, 133] (this principle is by some authors referred to as the principle
of causality [169], and it essentially states the non-anticipativity of the action of
thermal fluctuations as regards its effects on the particle velocity), by taking the
tensorial product of both members of eq. (6.10) and averaging over the statistics of
thermal fluctuations (the operations of time derivative and convolution commute
with ⟨·⟩), one obtains the evolution equation for CCCv(t),

m∗ dCCCv(t)
dt

= −ηCCCv(t) − k(t) ∗
(
dCCCv(t)
dt

+CCCv(0)
)

(6.11)

equipped with the isotropic initial condition

CCCv(0) = ⟨U2⟩III (6.12)

where ⟨U2⟩ is the squared variance of any entry Up,h(t), h = 1, 2, 3 of the particle
velocity vector (proportional at thermal equilibrium to the temperature of the
fluid). Therefore, due to this symmetry, the velocity autocorrelation function can be
expressed as CCCv(t) = ⟨U2⟩ cv(t)III, where the scalar function cv(t) satisfies eq. (6.11)
with cv(0) = 1. The occurrence of the Basset contribution determines a qualitative
change in the long-term scaling of cv(t) with respect to the purely dissipative case
(corresponding to considering the fluid motion in an instantaneous Stokes flow). In
the latter case, the long-term decay is exponential, i.e., cv(t) = e−η t/m while inertial
effects induce an asymptotic power-law scaling cv(t) ∼ t−γ , with γ = 3/2 in the free
space [133, 92].

The application of eq. (6.10) in the Lagrangian analysis of particle motion, in
the case the kernel k(t) attains the Basset form expressed by eq. (6.9), raises three
main issues:

• A computational issue, as the presence of a convolution in the equations of
motion implies that the entire history of UUUp(t) over the time interval [0, t)
should be stored in order to evaluate it;

• An analytical issue, associated with the singularity of the Basset kernel k(t) at
t = 0;
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• A physical issue, related to the determination of the stochastic force SSS(t), in
the case that inertial effects are accounted for.

The first problem is analyzed in the next section, in terms of modal represen-
tations. The second one is treated on physical grounds in Section 6.4. The last
point, related to the determination of SSS(t), is one of the main issues of fluctuation–
dissipation theories [134, 133]. To the best of our knowledge, a computationally
valid approach to the determination of SSS(t) in the presence of the Basset term is
lacking, although formal results have been proposed [11].

6.3 Modal Representation
The idea behind modal representations lies in the expression of the fluid inertial
memory term entering the particle equation of motion as a linear superposition
of elementary stochastic modes, susceptible of a simple evolution. The diction
"stochastic" is used in this context, to pinpoint the fact that since SSS(t) ̸= 0, the
velocity UUUp(t) is itself a stochastic process, as well as any other process functionally
dependent on UUUp(t).

Let us consider eq. (6.10), and without loss of generality let us set UUUp(0) = 0.
Since the problem of Brownian motion in the free space is isotropic, it is possible
exclusively consider a scalar formulation of it, setting Up(t) instead of UUUp(t). Let us
assume in the remainder that the stochastic representation of S(t) (replacing SSS(t)
as a scalar formulation is considered) is known.

Consider a family of stochastic processes y(t;λ) parameterized with respect to
λ ∈ [0,∞) and fulfilling the equations

dy(t;λ)
dt

= −λ y(t, λ) + q
dUp(t)
dt

(6.13)

where q is a constant to be determined. Let us suppose y(t = 0;λ) = 0 so that

y(t;λ) = q

∫ t

0
e−λ (t−τ) dUp(τ)

dτ
dτ (6.14)

The inertial memory kernel can be expressed as a linear superposition of these
processes. To this end, let p(λ) the probability density of occurrence of y(t;λ),
so that p(λ) dλ represents the infinitesimal weight factor in the representation of
the memory inertial contribution. Thus, the particle equation of motion can be
expressed as

m∗ dUp(t)
dt

= −η Up(t) − q

∫ ∞

0
p(λ) y(t;λ) dλ︸ ︷︷ ︸

I

+S(t) (6.15)

The integral I entering eq. (6.15) can be rewritten in convolutional form as

I =
∫ t

0

[
q

∫ ∞

0
p(λ) e−λ(t−τ) dλ

]
dUp(τ)
dτ

dτ = kp(t) ∗ dUp(t)
dt

(6.16)

thus defining the kernel kp(t).
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Let us assume for p(λ) the following expression

p(λ) =
{
Aλ−1/2 λ < λc

0 otherwise (6.17)

where λc > 0, and A is the normalization constant such that
∫∞

0 p(λ) dλ = 1. In this
case, setting z = λc t,

kp(t) = q A√
t

∫ λc t

0

e−z

√
z
dz (6.18)

Let us observe that kp(0) = q, while for t > 0, and for large λc, λct can be
approximated by an infinite value, and thus

kp(t) = q A√
t

∫ ∞

0

e−z

√
z
dz = q Aπ√

t
(6.19)

The constant q can be always defined in order to match the asymptotics of the
Basset kernel eq. (6.9). Therefore, the modal expansion eq. (6.15) provides an
inertial kernel that does not match the singular behavior of the Basset kernel near
t = 0, but still represents an excellent approximation of it for t large enough. The
regularity of the inertial kernel will be questioned in the next section starting from
physical arguments.

If one is interested in obtaining exactly the modal expansion for the Basset
kernel, a slightly different parameterization can be chosen by considering the modes
y(t; k), k ∈ [0,∞), still satisfying the linear relaxation dynamics eq. (6.13), with the
relaxation rates λ = λ(k) depending quadratically on the parameter k, i.e.,

λ(k) = λ0 k
2 (6.20)

with λ0 > 0, consequently,

y(t; k) = q

∫ t

0
e−k2(t−τ)dUp(τ)

dτ
dτ (6.21)

Assuming that all the modes at different ks concur uniformly in the expansion of
the inertial force, i.e., that the weight function does not have a probabilistic meaning,
the integral I in the k-representation becomes

I =
∫ ∞

0
y(t; k) dk = kk(t) ∗ dUp(t)

dt
, kk(t) = q

∫ ∞

0
e−λ0 k2t dk (6.22)

providing

kk(t) = q

2

√
π

λ0 t
(6.23)

and thus the parameters q and λ0 can be always determined in order to exactly
match the Basset kernel eq. (6.9).
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6.3.1 Diffusional Field Representation

The quadratic spectral representation based on the dispersion relation eq. (6.20)
suggests the Basset inertial term could be viewed as the consequence of the interaction
of diffusional models associated with a scalar field with the particle. It is therefore
interesting to further develop this field approach.

Let u(x, t) be a scalar field of fluctuations, evolving according to a pure diffusion
equation over the real line, perturbed by an impulsive forcing term F (x, t)

∂u(x, t)
∂t

= α
∂2u(x, t)
∂x2 + F (x, t) (6.24)

with α > 0 and
F (x, t) = δ(x− xc) f(t) (6.25)

where f(t) is a generic function of time. The forcing F (x, t) represents the action of
the particle onto the field (corresponding to the fluid continuum) while the scalar
field u(x, t) represents the fluid flow. Set u(x, t = 0) = 0, the solution of eqs. (6.24)
and (6.25) can be expressed in terms of the diffusional Green function as

u(x, t) =
∫ t

0
dτ

∫ ∞

−∞

1√
4π α (t− τ)

e−(x−x′)2/4 α (t−τ)F (x′, τ) dτ

=
∫ t

0

1√
4π α (t− τ)

e−(x−xc)2/4 α (t−τ) f(τ) dτ (6.26)

Let uc(t) = u(x = xc, t). From eq. (6.26) it follows that

uc(t) = 1√
4π α

∫ t

0

f(τ)√
t− τ

dτ (6.27)

which admits the same functional form of the Basset memory integral. This formal
result has also been obtained in [195] (see also [95]), with a different approach, and
with a purely computational motivation. Below, going beyond the pure mathemat-
ical formalism, the main interest is provide a physical interpretation of the field
representation of the Basset force.

Let us consider a one-dimensional approximation of the momentum exchange between
the fluid, with velocity v(x, t), and the particle, with velocity Up(t). This can be modeled
by considering a one-dimensional moment balance equations in the fluid of purely
diffusional nature

ρ
∂v(x, t)
∂t

= µ
∂2v(x, t)
∂x2 + f(x, t) (6.28)

where f(x, t) is the force density exerted by the particle onto the fluid which can be
written as an impulsive contribution centered at the particle center of mass xc,

f(x, t) = ρLc δ(x− xc)
dUp(t)
dt

(6.29)

where, from dimensional analysis, the parameter Lc has the dimension of a length, and
corresponds to length scale of inertial influence, in the fluid, due to the perturbation



6.3 Modal Representation 145

induced by the motion of the particle. From physical reasons, Lc is of the order of
magnitude of the particle radius, and the choice

Lc = D = 2Rp (6.30)

where D is the particle diameter, provides, as shown below, the correct value of Lc

matching the Basset force. The inertial force exerted by the fluid onto the particle
F

(i)
f→p can be viewed as a dissipative Stokesian contribution evaluated at the fluid

velocity vc(t),
F

(i)
f→p = −6π µRp vc(t) (6.31)

Comparing Equations (6.24) and (6.25) with eqs. (6.28)–(6.30), and making use of
eq. (6.27), it follows that

vc(t) =
√

ρ

4π µ D
∫ t

0

1√
t− τ

dUp(τ)
dτ

dτ (6.32)

and from eq. (6.31) one finally obtains

F
(i)
f→p = −6π µ

√
ρ

4π DRp
1√
t

∗ dUp(t)
dt

= −6 √
π ρµR2

p

1√
t

∗ dUp(t)
dt

(6.33)

that is exactly the Basset force. This result is physically interesting and requires
some interpretation. It indicates that the inertial Basset contribution can be viewed
as the inertial dissipation of the fluid elements nearby the solid particle, due to the
perturbation exerted by the particle onto the fluid itself. This physical interpretation
bears some analogies with Darwin’s description of fluid inertial effects [51]. The
fact that a scalar model correctly describes the fluid inertial effects onto particle
dynamics is a remarkable property, as the fluid hydrodynamics involves vectorial
entities, the velocity field vvv(xxx, t), subjected to constraints, in the present case the
solenoidal nature of vvv(xxx, t), stemming from the incompressibility of a liquid phase,
corresponding to the case of principal theoretical and engineering interest. Whether
this would be a purely mathematical result, or a deeper physical property is a matter
leaven open to future investigation. Interpreted on physical grounds, this result
indicates that the fluid inertial contributions to the dynamics of immersed bodies
are completely independent of the compressibility of the fluid. If this observation
would be correct, it follows that in any isotropic problems, as the particle motion is
in a unbounded fluid phase, a scalar field model would correctly describe the physics
of a fluid–particle inertial interaction. This situation is altogether similar to the
properties of the other inertial contribution, namely the added-mass term, which is
independent of the constitutive equations in the fluid, and for this reason it can be
estimated from the inviscid (Eulerian) approximation of the flow [138].

6.3.2 A Numerical Case Study

Let us consider the modal expansion in Equations (6.20)–(6.22) and its discretization
with respect to k. Let kmax be the maximum value of k considered, and ∆k the step
size in the discretization. Assuming q = 2/

√
π, for the sake of normalization, the
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Figure 6.1. Behavior of the discretized kk(t) defined by eq. (6.34) for different dis-
cretizations. Panel (a) refers to kmax = 10, lines and symbols (a) to (c) correspond to
∆k = 1, 0.1, 0.01, respectively. Line (d) represents k∞(t) = 1/

√
t. Panel (b) kmax = 100,

∆k = 0.01 (line a), while line (b) depicts k∞(t).

expression for kk(t) becomes

kk(t) = 2 ∆k√
π

N∑
i=1

e−(i ∆k)2 t (6.34)

where N = [kmax/∆k] and [x] represents the closest integer to the real-valued x.
In the limit for ∆k → 0, and kmax → ∞, kk(t) defined by eq. (6.34) converges to
k∞(t) = 1/

√
t. Figure 6.1a depicts the behavior of the discretized kk(t) at kmax = 10

for decreasing values of ∆k. As expected, as ∆k decreases to zero, the deviations of
kk(t) from k∞(t) become negligible for t > 1/k2

max.
Similarly, the value of kmax controls the convergence to k∞(t) at short time scales.

Figure 6.1b depicts the behavior of kk(t) at kmax = 100, ∆k = 0.01. An accurate
representation for k∞(t) is achieved for t > 10−4. The analysis of these data indicates
that kmax controls the behavior of kk(t) near t = 0, which reaches a finite limiting
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value k(0) ≃ kkmax. This property seems to be a basic limitation of any discretization
of the Basset force. In point of fact, as shown in the next section, the occurrence
of a bounded value of kk(0) is a physical constraint derived from the viscoelastic
nature of a liquid phase. And all the fluid, including water at room temperature,
possesses a characteristic non vanishing relaxation time.

Consider eq. (6.10) for a macroscopic particle (radius greater than a millimeter
or higher), for which the stochastic fluctuations could be neglected. Substituting on
it the modal expansion eq. (6.34), it is obtained

me
dUUUp(t)
dt

= −ηUUUp(t) − 2β∆k√
π

N∑
i=1

e−(i ∆k)2 t ∗
(
dUUUp(t)
dt

+ Up(0) δ(t)
)

= −ηUUUp(t) − 2β∆k√
π

N∑
i=1

zzzi(t) (6.35)

where β = 6 √
π ρµR2

p, as it stems from eq. (6.9), and zzzi(t), i = 1, . . . , N is a system
of N auxiliary degrees of freedom accounting for fluid inertial effects, the equations
for which read

dzzzi(t)
dt

= −µi zzzi(t) + dUUUp(t)
dt

= − (µi + η) zzzi(t) − 2β∆k√
π

N∑
i=1

zzzi(t) (6.36)

where µi = (i∆k)2, and the impulsive initial contribution has been included into
the initial condition for zzzi(0) = UUUp(0).

Eq. (6.35) represents a major advantage of the model expansion compared to
the more recent computational approaches for addressing inertial particle motion
[95], as it reduces the integro-differential particle equations of motion to a system of
ordinary differential equations that can be solved using standard numerical routines.
The analysis here presented for a quiescent fluid can be straightforwardly extended
to the presence of a macroscopic (e.g., pressure-driven) velocity field in the fluid
phase.

6.4 Regularity of Inertial Kernels

The second main issue addressed in this contribution concerns the regularity
of the inertial memory kernels k(t), once basic physical requirements (such as
the bounded propagation of any physical phenomenon, limited by the speed of
light vacuo, as a consequence of relativity theory) are taken into account. In
Section 6.2, it is shown that the Basset kernel diverges at t = 0, as seen in
eq. (6.9). As explained below, this is a consequence of the infinite propaga-
tion velocity of the internal stresses that characterize the Newtonian constitutive
eq. (6.5). This phenomenon is altogether analogous to the divergence of interfacial
fluxes in heat/mass transfer parabolic problems in the presence of a discontinuity
between the initial and the boundary conditions at a boundary. This problem can
be resolved by removing the paradox of infinite propagation velocity intrinsic to any
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Fickian/Fourier constitutive equation, simply considering the hyperbolic extension
of the transport problem [81].

In the hydrodynamic case, the corresponding hyperbolic generalization merely
consists in accounting for fluid viscoelasticity, which is a generic property of any
liquid phases. In point of fact, even water at ambient conditions (temperature
T = 300 K, pressure p = 105 Pa) behaves as a viscoelastic fluid, but its characteristic
relaxation time, θc ≃ 1 ps [49, 186], is so small that it can be neglected in the
overwhelming majority of hydrodynamic problems, since the observation time scales
in most of the practical cases of interest are widely larger than θc.

To begin with, let us consider the case of a viscoelastic fluid characterized by
a single relaxation time θc (Maxwell fluid). Neglecting the nonlinear terms in the
objective definition of the viscoelastic constitutive equation involving the Oldroyd
upper convective derivative [159] (which are small for the typical conditions of
Brownian and micrometric particles in microchannels), eq. (6.5) is replaced by the
following viscoelastic constitutive equation:

θc ∂τ

∂t
+ τ = −µ

(
∇vvv + ∇vvvT

)
(6.37)

that in the Laplace domain takes the following simple expression:

τ̂ (xxx, s) = −µ̂e(s)
[
∇v̂vv(xxx, s) + ∇v̂vv(xxx, s)T

]
(6.38)

where
µ̂e(s) = µ

θc (s+ 1/θc) (6.39)

Consequently, the Laplace transform of F̂FF f→p(s) of the force subjected by the
particle is still given by eq. (6.7), with the constant viscosity µ replaced by the
function µ̂e(s). As well known, this modifies the instantaneous dissipative Stokesian
friction FFF (d)

f→p[UUUp(t)] = −ηUUUp(t) into a memory term

FFF
(d)
f→p[UUUp(t)] = −η 1

θc

∫ t

0
e−(t−τ)/θc

UUUp(τ) dτ (6.40)

while the inertial Basset term attains in the Laplace domain the form −k̂(s) sÛUUp(s)
with

k̂(s) = β√
θc

1√
s (s+ 1/θc)

(6.41)

where β = 6π√
ρµR2

p. It is easy to see that the presence of a non-vanishing
relaxation time θc > 0 determines a finite value of k(t) for t = 0. Enforcing the
initial value theorem of Laplace transforms, it is obtained from eq. (6.41)

lim
t→0

k(t) = lim
s→∞

s k̂(s) = β√
θc

(6.42)

In point of fact, the inverse Laplace transform of k̂(s) is given by

k(t) = β√
θc
e−t/2θc

I0

(
t

2 θc

)
(6.43)



6.4 Regularity of Inertial Kernels 149

10
-1

10
1

10
3

10
5

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

a

b

c

d

k
(t

)/
β

t

Figure 6.2. Rescaled inertial kernel k(t)/β, eq. (6.41) vs t for a simple Maxwell fluid,
characterized by the relaxation time θc. Lines (a) to (c) refer to θc = 10−4, 10−6, 10−8,
respectively. Line (d) depicts the asymptotic nondimensional Basset curve, k(t)/β =
1/

√
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where I0(ξ) is the modified Bessel function of the first kind, which possesses the
following asymptotic behaviors:

I0(0) = 1 , I0(ξ) = eξ

√
2π ξ

[
1 +O

(1
ξ

)]
(6.44)

From eq. (6.44), the asymptotics of the Newtonian Basset kernel is recovered
for t ≫ θc. This phenomenon is depicted in Figure 6.2 for several values of θc. The
viscoelastic kernel practically coincides with the Basset counterpart of a Newtonian
fluid for t > 5 θc.

The occurrence of a finite value for k(0) has been observed in Newtonian fluids
once slip boundary conditions are enforced at the surface of the solid particle
[78, 198, 199]. The physical reason for this occurrence, and the eventual analogy
with the viscoelastic case, is still an open question.

6.4.1 Field-Theoretical Analysis

The result expressed by eq. (6.43) can be recovered from the field approach addressed
in the previous section. The presence of viscoelastic effects characterized by a single
relaxation time θc implies to substitute the parabolic diffusion model eq. (6.28) with
the hyperbolic Cattaneo equation

ρ θc∂
2v(x, t)
∂t2

+ ρ
∂v(x, t)
∂t

= µ
∂2v(x, t)
∂x2 + f(x, t) (6.45)
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while f(x, t) is identical to eq. (6.29). The solution of this impulsive model, with
v(x, 0) = ∂v(x, t)/∂t|t=0 = 0, takes the following form (see [191], p. 320):

v(x, t) = 1
2

√
ρ θc

µ

D

θc

∫ t

0
e−(t−τ)/2 θc

I0

( 1
2 θc

√
(t− τ)2 − (x− xc)2 ρ θc/µ

)
dUp(τ)
dτ

dτ

(6.46)
that for x = xc, and t ≥ τ reduces to

vc(t) = 1
2

√
ρ

µ θc
D

∫ t

0
e−(t−τ)/2 θc

I0

(
t− τ

2 θc

)
dUp(τ)
dτ

dτ (6.47)

providing the same expression for k(t) derived above, as seen in eq. (6.43).

6.4.2 Extension to Complex Fluids

The analysis developed above for a viscoelastic fluid possessing a single relaxation
time can be generalized to more complex and real fluids. The problem can be stated
as follows. Consider a real fluid and suppose to have obtained from rheological
experiments the functional form of the dissipation memory kernel G(t) entering
the expression of the dissipative contribution to the force exerted by the fluid on a
spherical particle

FFF
(d)
f→p[UUUp(t)] = −6π Rp

∫ t

0
G(t− τ)UUUp(τ) dτ (6.48)

Does this information provide a way to quantify the inertial contribution, and
specifically the expression for the generalized Basset force in this fluid?

This problem can be tackled as follows. The convolutional nature of eq. (6.48)
suggests that the constitutive equation for the shear stresses is of the form

Lt[τ ] = −µ
(
∇vvv + ∇vvvT

)
(6.49)

where Lt is a linear operator acting on the stress tensor τ , and containing its derivatives
of any order n, n = 0,1, . . . , with respect to time, and eventually also its fractional
time derivatives (Riemann–Liouville operators) [182]. In the Laplace domain, eq. (6.49)
becomes

ℓ̂(s) τ̂ (xxx, s) = −µ
[
∇v̂vv(xxx, s) + ∇v̂vv(xxx, s)T

]
(6.50)

where ℓ̂(s) is a function of the Laplace variable s. eq. (6.50) coincides with eq. (6.38),
and µ̂e(s), coinciding with Ĝ(s), is now expressed by

µ̂e(s) = µ

ℓ̂(s)
= Ĝ(s) (6.51)

The analysis developed above for a Maxwell fluid can be applied to this more
general problem, providing for the Laplace transform of the inertial memory kernel the
following expression:

k̂(s) = 6 √
ρR2

p

√
Ĝ(s)
s

(6.52)
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The inverse Laplace transform k(t) of k̂(s) defined by eq. (6.52) cannot be
obtained analytically for generic Ĝ(s). Nevertheless, it is always possible to derive
accurate representations for k(t) enforcing eq. (6.52).

In order to make a practical example, consider the rheological data for polydime-
thilsiloxane at T = 25 ◦C reported in [159], for which an accurate representation
involves the occurrence of N = 5 relaxation rates λh, h = 1, . . . , N ,

G(t) =
N∑

h=1
ah e

−λh t (6.53)

where λh = 1/θc
h, h = 1, . . . ,N are the relaxation rates i.e., the reciprocal of the

relaxation times θc
h. The values for λh and for the expansion coefficients ah can be

found in [159] (p. 114), and the graph of the resulting G(t) is depicted in Figure 6.3a.
Applying eq. (6.52) to this case

k̂(s) = α

√√√√1
s

N∑
h=1

ah

s+ λh
, α = 6π√

ρR2
p (6.54)

The graph of k∗(s) = k̂(s)/α is depicted in Figure 6.3b (symbols). The data can
be accurately approximated over the time scales of interest by a linear combination
of the inertial contributions obtained for the simple Maxwell fluid eq. (6.41), each of
which is characterized by a different relaxation time

k∗(s) =
Ni∑

h=1

ch√
s (s+ bh)

(6.55)

Making use of eq. (6.43), the memory inertial kernel k(t) is given in this case by
the expression

k(t) = α
Ni∑

h=1
ch e

−bh t/2 I0

(
bh t

2

)
(6.56)

For the use made above of the solutions obtained for the simple Maxwell fluid,
each term of the form (6.41) in the Laplace domain, and (6.43) in the time domain,
can be referred to as a "prototypical visco-inertial mode". In the present case,
it is sufficient to consider the combination of Ni = 2 prototypical visco-inertial
modes, and the resulting approximation is depicted in Figure 6.3b. The values of
the parameters are c1 = 125 a.u., b1 = 1.52 s−1, c2 = 420 a.u., b2 = 65 s−1. The
corresponding inertial memory kernel k(t), i.e., the graph of eq. (6.56), is depicted
in Figure 6.4.

From this practical example, it is possible draw the following conclusions:

1. Enforcing the constitutive model eq. (6.49), corresponding to the rheological
description of a complex viscoelastic fluid, it is possible to derive the functional
form of the fluid inertial kernel k(t) from rheological data, i.e., from the
functional form of G(t);

2. The fluid inertial kernel k(t) can be expressed as linear combination of a few
prototypical visco-inertial modes;
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Figure 6.3. Panel (a) G(t) vs t for polydimethilsiloxane at T = 25 ◦C. Panel (b) (symbols)
k∗(s) = k̂(s)/α vs s for the same fluid, obtained from eq. (6.54). The solid line is the
approximation of these data using Ni = 2, prototypical visco-inertial modes, as discussed
in the main text.
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3. The number Ni of modes required to provide an accurate representation of k(t)
does not necessarily coincide with the number N of dissipative (exponential)
modes adopted for reconstructing G(t).

Of course, it is possible to provide alternative representations of k(t), e.g.,
adopting the modal decomposition discussed in Section 6.3. While for an accurate
representation of the classical Basset kernel, a uncountable system of exponentially
decaying modes is required, the physical constraint of bounded k(t) permits to
achieve accurate approximation for k(t) using a finite (and relatively small) number
of exponentially decaying modes.

6.4.3 Toward a Comprehensive Theory of Brownian Motion

To conclude, it is possible frame another central issue that takes advantage of the
present theory. For a microparticle in a quiescent fluid (Brownian particle), the
equations of motions in a real complex fluid, accounting for viscoelastic dissipation,
fluid inertial effects and thermal fluctuations can be expressed in the form

me
dUUUp(t)
dt

= −h(t) ∗UUUp(t) − k(t) ∗
(
dUUUp(t)
dt

+UUUp(0) δ(t)
)

+SSS(t) (6.57)

where h(t) is the viscoelastic kernel proportional to G(t) defined by the linear
functional form eq. (6.53), and k(t) is the corresponding fluid inertial kernel, the
properties of which have been addressed in the previous section. From rheological
data, the viscoelastic kernel can be expressed as a linear combination of N modes,
where usually N < 10 for most of the fluids [159], i.e., h(t) =

∑N
j=1 hj e

−λj t. In a
similar way, the fluid inertial kernel k(t) analyzed in the previous section can also
be accurately approximated by means of a system of exponentially decaying modes,

k(t) ≃
Ni∑
i=1

ki e
−µi t (6.58)
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where the rates µi > 0, i = 1, . . . , Ni, are in general not related to the relaxation
rates λj , j = 1, . . . , N and Ni ≫ N . The property that k(0) is bounded ensures,
as discussed in the previous section, that the approximation eq. (6.58) can be
arbitrarily accurate in the metrics of continuous functions. This means that for
any ε > 0, there exist a finite Ni, and finite rates µi > 0, i = 1, . . . , Ni, such that∣∣∣k(t) −

∑Ni
i=1 ki e

−µi t
∣∣∣ < ε for any t ≥ 0. Consequently, eqs. (6.57) reduce to the

form

me
dUUUp(t)
dt

= −
N∑

j=1
hj e

−λj t ∗UUUp(t) −
Ni∑
i=1

ki e
−µi t ∗

(
dUUUp(t)
dt

+UUUp(0) δ(t)
)

+SSS(t)

(6.59)

In order to solve these stochastic differential equations, the expression for SSS(t)
should be determined, and it would constitute the generalization of the celebrated
Kubo fluctuation–dissipation theorem of the second kind [133, 134], of which the
original formulation is restricted to the pure dissipative case (i.e., to k(t) = 0). The
analysis of this problem is beyond the scope of this contribution. However, the
occurrence of a finite value of k(0), coupled with the modal expansion of the memory
kernels (h(t) and k(t)) could provide a key physical and formal ingredients toward
an elegant solution of this problem.
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Conclusions

Starting from the elaboration and re-adaptation of results and methods in the analysis
of particle motion in Stokes flows pioneered at the beginning of the 19th century
by Hilding Faxén, and subsequently formalized and improved by Howard Brenner,
Seagate Kim and many others, a new theoretical framework has been proposed in
this dissertation to investigate transport properties of colloids in microfluidics.

The main goal of this dissertation has been to provide a theoretical framework
for describing the complex hydromechanics of a particle in microfluidic systems, in
a formally consistent way, suitable to be approached/approximated by numerical
methods, accounting for the hydrodynamic effects that are involved when the
dimensions of the flow device are reduced to length scale comparable to that of the
transported particles, which is the common situation occurring in microfluidics.

Essentially the main points of the present theory are:

• a consistent bitensorial-distributional formalism of Stokesian singularities both
in unbounded and bounded flow domains;

• the identification of the role of the dualism referred to as the Hinch-Kim
dualism in the hydromechanical theory of particle motion in a Stokes flow,
and the role played by the nature of the boundary conditions at the particle
boundary;

• the use of this approach to develop a consistent theory of particle motion
in confined Stokesian flows based on two main fundamental ingredients: the
Green functions for the confinement, and the hierarchy of moments on the
particle in algebraic ambient flows.

With the aim of providing a clear and unambiguous formalism for the singular
solutions in Stokes flows, suitable to be extended to confined problems, the bitensorial
formalism has been introduced in Chapter 2. The main motivation of this formalism
is to make a clear distinction between source and field points of singular fields,
and this proves to be useful even when the fluid domain is regarded as flat space,
and it is parametrized with respect to Cartesian coordinates. A byproduct of this
formalization has been a clear definition of the singularities characterizing Stokes
flows, specifying the associated non-homogeneous equations and boundary conditions,
and obtaining the most common unbounded singularities as a particular case of
the more general bounded counterparts. Although this topic can be found in any
monograph on Stokesian hydrodynamics [130, 194], the detailed description of some
of the most common Stokesian singularities has never been, to the best of the
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author’s knowledge, addressed in the hydrodynamic literature. In addition, enforcing
the reciprocal symmetry of the Green function, it has been shown that it is possible
to apply the operators both to the source and to the field point of the Stokeslet, in
order to obtain the disturbance contribution to the flow field.

The main consequence of the latter result is that, whenever it is possible to
define a reflection operator, this operator should coincide with the operator derived
from moment theory furnishing the image system of singularity. This result, applied
to the Green function in the flow bounded by a plane provides an alternative way
for expressing the hydrodynamic singularities in a much simpler way than in the
approach used by Blake [18] involving Fourier-Hankel transforms. The same approach
has been also used to derive other non-trivial singularities, such as the Source Dipole
and the Strainlet.

In Chapter 3, the formal structure of the operators describing the hydromechanics
of an arbitrary body immersed in Stokes flow has been investigated: the singularity
operator giving the disturbance flow due to the body being immersed in the fluid
and the Faxén operator giving the moments on the body due to the fluid flowing
around it. By considering moments of the volume forces on the body, a general
expression for the singularity operator has been obtained. Specifically, a generic n-th
order singularity operator can be obtained by defining (m,n)-th order geometrical
moments as the m-th order moment of volume forces on the body immersed in
a n-th order ambient flow singular at infinity. The analysis of this problem, by
considering a vast class of boundary conditions of hydrodynamic interest, has shown
that the Hinch-Kim dualism is not an intrinsic property of the Stokes flows due
to Lorentz reciprocity of its governing equations, but it depends essentially on the
nature of the interaction with the body. This is not a trivial conclusion, since other
properties following from the reciprocity between thermodynamic forces and fluxes
of the governing equations, such as the symmetry of the resistance matrix (following
from the reciprocity of the Stokes equations and, primarily, from that of the Onsager
relations [138]), are independent on the nature of the surface interaction (boundary
conditions) between the body and the fluid.

The strength of this method is that the operators do have an explicit expression
that allows us to investigate, case by case, the dualism, and to determine the physical
conditions upon which this dualism applies. It is found that the Hinch-Kim dualism
holds only for particular boundary conditions (although of great practical interest)
such as for rigid particles, drop at the mechanical equilibrium or porous bodies
modeled by the Brinkman equations), but it does not hold for other classes, such as
elastic deforming bodies, deforming drops, non-Newtonian drops, and porous bodies
modeled by the Darcy law.

It is interesting to observe that in the case Navier-slip boundary conditions are
considered (for which it has been proved the validity of the Hinch-Kim dualism) the
n-th order Faxén operator is determined by the n-th order surface traction on the
body (i.e. the surface traction on the body immersed in a n-th order ambient flow).
Therefore, by using Lorentz’s reciprocal theorem in a suitable way, the 0-th, 1-st and
2-nd order surface tractions on a sphere with Navier-slip boundary condition have
been calculated and, using these results, the 0-th, 1-st, 2-nd Faxén operators giving
the moments up to the second order analytically derived for a rigid sphere. This
result is of practical interest as it provides the disturbance field due to a sphere in
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an ambient flow up to the 2-nd order, corresponding to the case of a Poiseuille flow.
In Chapter 4, enforcing the results obtained in the preceding chapters applied to the
classical reflection method in the study of confined flows, the exact representation
for the velocity field around a particle in confined fluids and for the hydrodynamic
force, torque and higher-order moments acting on the particle have been derived.
By means of a convergence analysis, it has been proved that these solutions are
valid also for distances between particle and interfaces of the same order of the
size of the particle. In the description of particle-fluid interactions in confined flow,
the representation in terms of infinite matrices ([N ]-matrix representing) proves to
be, not only concise and elegant, but practically useful. Since the entries of the
[N ]-matrix are expressed in terms of well defined problems involving the geometry of
the particle and of the confinement separately, it is possible to determine its entries
by solving, either analytically or numerically, a family of Stokes problems in simpler
domains, possessing, in many cases, symmetries that are missed in the confined case.

Transferring the theory to practical computational problems, the use of the
truncation error estimates, associated with the truncation of the infinite matrices
entering the theory with computationally feasible finite (truncated) counterparts
represents a useful tool to check the accuracy of the numerical estimates. This
analysis has been applied to the approximate expressions available in the literature.
The practical examples treated in this dissertation represent only the very first
application of this theory, the full strength of which, in dealing with confined
geometries and practical problems, will be developed in forthcoming works.

Many of the results obtained in this thesis are applicable in a wider multi-
scale sense and it can be viewed as part of the theory referred by Batchelor as
"Microhydrodynamics" [106], which includes also more complex systems such as
particle suspensions or particles transported in porous materials. In these systems
the global macroscopic properties (effective viscosity, permeability, sedimentation
rate, etc.) are emergent phenomena strictly related to the particle-particle and
particle-confinement interactions existing at the microscopic level, that can be
approached by means of homogenization techniques (moment analysis or multiscale
expansions).

Two other important topics have been also addressed: the description of stochastic
fluctuations in confined systems, and the extension to fluids more complex than the
purely Newtonian case.

A generalized formulation of fluctuation-dissipation relations in confined ge-
ometries has been developed, and the corresponding overdamped approximation
obtained. The influence of boundary conditions either at the particle or at the
confinement walls has been discussed in connection with the Stokesian paradox of
infinite touching time occurring for non-slip boundary conditions, showing that the
presence of a finite slip length cures this pathology.

The extension to time-dependent Stokes regimes and to more complex fluids has
been introduced in the last chapter, with the focus on showing that the occurrence
of a finite propagation velocity of the shear stresses, characteristic of viscoelastic
fluids, determines a regularization of the fluid inertial kernels with respect to the
purely Newtonian case, for which the Basset kernel displays a power-law integrable
singularity. Modal expansion of fluid inertial kernel in analogy with the classical
exponentially decaying mode representation of linear viscoelasticity is also presented.
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