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Introduction

One does not simply sum up years of research and training in one manuscript.
Especially if the research and the training concerns one of the most prolific, yet
mysterious, branches of modern Mathematics (at least in the short experience of the
author).

The word "Convexity" in the title is not supposed to be exhaustive, nor precise.
On the contrary, we tried to keep an indecisiveness which reflects the multitude of
aspects in which one can encounter this topic. Strictly speaking, a convex set in a
space (whenever is possible to define geodesic lines) is characterized by the following
property: It contains all the shortest geodesic segments between every couple of
points belonging to the set. Still, it is good practice to introduce an operative
definition of convexity, not in what it is, but on terms of what it does (even though
informally). We (the author) like to think that an object is convex when, through
some kind of dark magic, it is still possible to perform differential calculus with it:
Seeking maxima and minima, studying extremal properties, investigating geometric
phenomena that usually concerns only differential geometry. The list goes on, and
so does the amount of applications of this field.

The first question historically connected with convexity is probably the Isoperi-
metric Problem: That is, which curve in the plane minimizes its perimeter, with the
constraint of enclosing a fixed area. This problem, as well as the answer (the circle!),
was already well known by Hellenic mathematicians. If we move from the plane to
the three dimensional space, solving the same problem explains why a soap bubble
is round. These are simple instances, but, for example, contact surfaces between
soap bubbles and rigid structures to encase them are nowadays a fertile source of
questions and examples stemming new research. In general, studying the surfaces
(as well as other geometric characteristics) of classes of objects is a meaningful and
interesting task, and we try to follow in this tradition.

Since modern problems require modern solutions, it is a matter of fact that a
Mathematician (as every other scientist) cannot rely anymore only on the tools
provided by its native field. New instruments are realized on the border line between
different areas, and Convexity is certainly a branch that understood this lesson a
long time ago. We focus in particular (as the title suggests) on the interplay between
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INTRODUCTION

Geometry and Analysis. As it is fundamental and fruitful in the Physics of small
particles to understand the double nature of these objects as waves and physical
matter, when treating a convex object one must never forget its double nature of
geometric and at the same time analytic entity (algebraic and combinatorial aspects
arise too, the specialists will pardon us for the narrow treatment we can provide).
Such double nature is at the core of our work.

This thesis builds on many of the ingredients that lead to the solution of problems
like the Isoperimetric one. For example, one of the classic approaches is study how a
surface behaves under appropriate perturbations, and then use this information to
determine whether or not an adequate solution has been found. This is known as
Variational Approach, and explains why it is interesting and important to evaluate,
in practice, these variations. Such task, in the specific instance of the world of
convex functions, is the aim of Chapter 1. Already from this chapter, it is possible
to understand the meaning of the second part of the title. Indeed, our strategy
does not follow the usual route of employing hardcore calculations in order to study
complex problems related to functions (as one does). Without renouncing to the
hardcore part, we study this problem from a geometric point of view, interpreting
the geometric nature of functions.

In Chapter 2, we dig deeper into the connection with geometry, entering the
world of the Theory of Valuations. This topic saw the light of the world more than a
century ago, and builds on the following question: What are the properties that make
something a measure? Indeed, it is meaningful to understand the intrinsic nature
of objects like volume, or surface area, if one wants to tackle problems concerning
these and other quantities. Without entering on the technicalities of what is the
suitable definition of a measure (but we do not mean the classical notion here), this
field anticipated on many regards what is nowadays known as Geometric Measure
Theory, and it is with it deeply intertwined. One of the most interesting aspects is
that the tools provided by this theory are specifically aimed to study and classify
specific functionals (called valuations) starting from a bunch of properties. In this
chapter we provide an overview of the topic, with a particular emphasis on the
modern developments concerning valuations on spaces of functions. In particular,
spaces of convex functions. Again, we will show how Geometry and Analysis play
together, spacing from geometric constructions to instruments of functional analysis.
The main idea, throughout this treatment, is to show the similarities between this
modern theory and the instruments which built the classical one.

This work closes with Chapter 3, where we talk about Symmetrizations. As
the name suggests, the idea is to work on objects making them more symmetric,
with one catch: Some geometric properties must be preserved in the process. This
kind of instrument allowed one of the first formal solutions of the Isoperimetric
Problem, and has since then been a fruitful source of proofs for many of its variations
and extensions. For example, symmetrization techniques can be employed to study
functionals of the type appearing in Chapters 1 and 2. Nonetheless, we focus on
another aspect of this field. As one does in the Theory of Valuations, in the recent
years there has been a successful attempt to study symmetrizations starting only
from some fundamental properties. Surprisingly, these properties are sufficient to
identify many fundamental behaviors and classify them, shedding a light on an



INTRODUCTION

instrument which is as old as mysterious. We do not use the latter adjective lightly.
The reader will find in the last section of this chapter many examples showing some
pathological behaviors that we have not been able to explain yet, even though they
can be easily formulated.

Regarding the structure of this work, the experienced reader might read the three
chapters in the order they prefer. Chapter 1 starts with a series of preliminaries and
notations that will be kept during the whole manuscript. The other two chapters
are provided with a section introducing the further necessary background, and can
be read independently, provided that one goes through said initial preliminaries
contained in Chapter 1. The main content of all three is made of original works of
the author and collaborators, which we hope can provide a fresh perspective on this
field. We tried to keep the exposition as self contained as possible. Where this was
not feasible, we have provided suitable and extensive references.
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NorK
TK
Snfl (K7 )
epi(u)
dom (u)

ulv

List of symbols

Fuclidean norm

sup-norm

(n — i)-th elementary symmetric function of the
eigenvalues of a symmetric matrix A : R® — R"”
n-dimensional Lebesgue measure

Euclidean unit ball in R"

Fuclidean ball with center at x and radius r in R"
unit sphere in R"

open lower half-sphere in R"

n-dimensional Lebesgue measure

n-dimensional Hausdorff measure

standard scalar product

topological boundary

projection from R"*! to a copy of R™ identified as
a fixed hyperplane H

LP norm

pointwise maximum

pointwise minimum

non-empty compact convex subsets of R"
elements of #"™ with nonempty interior

compact subsets of R™

polytopes of R"

elements of C™ with nonempty interior

support function of the convex set K

indicator function of the convex set K
generalized Gauss map of K

normal bundle of K

reverse spherical image of K

surface area measure of the convex body K

i-th support measure of K

epigraph of the function u

domain of the function u

Hessian matrix of the function u

subgradient of the function u

Fenchel-Legendre transform of the function u
infimal convolution of the functions u and v
epi-multiplication of the function u by a factor ¢
lower boundary of the convex body K

function representing the lower boundary of the
convex body K

function representing the upper boundary of the
convex body K

gnomonic projection from S™ to R"
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Conv(R")
Convg.(R"™)
Conv(R"™,R)
Conveq(R™)

P¢
Crec (Rn)

/]
K
supp £
ShH
My
Fy

OH

convex and lower semi-continuous convex functions
super-coercive functions in Conv(R")

finite-valued convex functions

functions in Conv(R"™) with compact domain
recession function of the function ¢

continuous functions with bounded and continuous
recession function

Wulff shape of the function f

Waulff shape of the function hx + tf

support of the valuation Z

Schwarz symmetrization with respect to the sub-
space H

Minkowski symmetrization with respect to the sub-
space H

Fiber symmetrization with respect to the subspace
H

H-symmetrization
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CHAPTER

A general point of view

1.1 Preliminaries

The ambient space where we work is the Euclidean space R",n € N (at times, we
switch the point of view to R"*1). We start by summarizing some of the main results
from the classical theory of convex bodies and convex functions.

Definition 1.1. A set K C R" is convez if for every z,y € K,t € [0,1],

(I-tr+ty e K.

Of particular interest is the family of non-empty compact convex sets of R",
denoted by #™. The theory concerning these sets is nowadays well established. For
an exhaustive exposition, see, for example, the books of Gruber [Gru07], Hadwiger
[Had57], Hug and Weil [HW20], and Schneider [Sch14]. The latter, in particular, is

the main source for these preliminaries.

1.1.1 Convex bodies

Topological properties of #". We denote by C" the family of compact subsets of
R". Clearly, Z™ is a subfamily of C". Two further subfamilies we consider are

C] ={K € (C" : K has non-empty interior},

and 7" := " NC;. The elements in the latter family are called convex bodies.
On C™, we consider the topology of the Hausdorff metric. The corresponding

distance, for K, L € C", is given by

dy(K, L) :== max{sup d(x, K),sup d(y, L)},
z€eLl yeK

where d(x, K) == inf,c i | — z|. We summarize in the following statement the main
properties of C" when endowed with this metric (see [Sch14, Theorem 1.8.3-1.8.7]).




1.1. PRELIMINARIES

Theorem 1.2 (Blaschke’s selection Theorem). The space C" endowed with the Haus-
dorff metric is a complete metric space.
The subspace ™ is closed in C" and therefore is a complete metric space as well.

In these spaces, every bounded subset is compact, and thus every bounded sequence
admits a converging subsequence.

When the boundary K of a set K € %, is of class C2, that is, the principal
curvatures of 0K as a manifold are strictly positive, we say that K is C_%. We have
the following useful fact (for example, see [Sch14, Theorem 2.7.1]).

Proposition 1.3. The set of convexr bodies of R™ of class Ci is dense in K™ with
respect to the Hausdorff metric.

Minkowski addition.
Definition 1.4. Given two sets A, B C R", their Minkowski sum is the set
A+B={z+y:x€Ayec B}

The corresponding operation is called Minkowski addition.

This operation is closed in C™ and J#™. The same is not true for measurable sets.
See Sierpinski [Sie20].

For a set A C R™ we can define its convezr hull
conv(A) = ﬂ K.
KCR™ convex, ACK

Even though we will not use it, an important subclass of #™ is the family P™ of
polytopes, that is, the subsets of R™ obtained as convex hulls of finitely many points.
The diameter is defined as

diam(A) := sup |z —y|.
z,yeA

An interesting property of Minkowski addition is the following regularizing effect.
This result can be found, for example, in [Sch14, Theorem 3.1.6].

Theorem 1.5 (Shapley, Folkman, and Starr). Let Aq,..., Ax € C", and suppose that
x € conv(Ay + -+ Ag). Then there exists a point a € Ay + --- + Ay such that

—_al < ; )
|x —al < \/ﬁlrglagxk diam(A;),

hence

k k
dy (Z A;, conv (Z Az>> <+/n max diam(A;).
i=1 i=1 S

Theorem 1.5 will be crucial in Section 3.2.

Denote by V,, the volume corresponding to the standard n-dimensional Lebesgue
measure. A wide portion of the literature in convex geometry is concerned with
estimates of the volume of Minkowski sums. A milestone on this topic is the
Brunn-Minkowski inequality which reads as follows.
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Theorem 1.6 (Brunn-Minkowski inequality). Let A, B C R™ be bounded measurable
sets such that A + B is measurable. Then

V(A + B)Y" > Vi, (Y™ + v, (B)/™ (1.1.1)

If V,(A)V,(B) > 0, equality holds if and only if A and B are homothetic convez
sets up to removing negligible subsets. If A, B € X, equality can be alternatively
achieved if both A and B lie on parallel hyperplanes.

For a detailed survey on this inequality, its connections to convex geometry, and
its generalizations, see the survey from Gardner [Gar02].

Support functions. To every K € #™ we can associate a function to R”, called
support function, defined as

hg(z) =sup{z-y:y € K}.

This function is positively homogeneous of degree 1, that is, hx (tz) = thg(z) for
every t > 0,z € R” and K € J#™. Thus, its restriction on S*~! determines it.
Moreover, for every z,y € R"

hi(z+y) < hix(z) + hi(y),

and thus support functions are sublinear. This property completely characterizes
them (see [Sch14, Theorem 1.7.1]).

Theorem 1.7. If f : R™ — R is a sublinear function, then there exists a unique convex
set K € ™ with hiy = f.

An explicit connection between support functions and convex sets is the following:
For & € S"1, hy(€) gives the signed distance from the origin of the (unique)
hyperplane tangent to K and orthogonal to &, such that £ is an outer normal vector
of K at the contact point. The existence and uniqueness of supporting hyperplanes
for convex sets (in general Banach spaces!) is a crucial topic in functional analysis.
See, for example, the book from Brezis [Brell].

Support functions behave nicely with respect to Minkowski addition. Indeed, for
every K,L € ™, one has
hx +hr =hg4r.

Mixed volumes. The interaction between volume and Minkowski addition holds
further consequences, as the following theorem shows ( [Sch14, Theorem 5.1.7])

Theorem 1.8. There is a non-negative symmetric function V: (™))" — R, called
mixed volume, such that for m € N,

m
Va1 Ky + -+ tmK) = Y by b, V(K. K (1.1.2)
i1yeyin=1
for arbitrary convex compact sets Kq,..., Ky, and ty,...,t, > 0.
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Consider for K € #™ and t > 0 the particular case K + tB"™, known as parallel
set of K. Then (1.1.2) is known as Steiner Formula, and states that
n
V(K +tB") => " "k Vi(K), (1.1.3)
i=0
where k,,_; is the volume of the unit ball in R*~*. The functionals V; : . #" — R
are called intrinsic volumes. Notice that V,, corresponds to the volume itself. Other
notable cases are V{y, which corresponds to the Euler characteristic, 2r,—1/nk, V1,
known as mean width, and 2V,,_1, which is the surface area. The latter can be defined
a priori by the limit

lim Vo(K +tB™) — Vi, (K)
t—0+ t

and corresponds to the (n — 1)-dimensional Hausdorff measure of the boundary of
K, H"1(0K).

)

Surface area and boundary structure. Let K € J#™ and consider its boundary 0K.
When K is a Ci body, the Gauss map

Ng : 0K — S*1

that for each z € 0K gives the unit normal vector to 0K at z is well defined and
bijective. When the convex set K is clear from the context, we will omit it and write
N instead of Ng.

For every K € %™, the map N is defined H" !-almost everywhere on K. In
the points & where this is not single-valued, we consider Nk (z) as the unit normal
cone of K at x, or generalized Gauss map. This is the set of all the unit vectors &
such that K has a tangent hyperplane at x with outer normal £. Conversely, we can
define the reverse spherical image of K

SV 0K,

which pairs every vector £ € S*"! to the set of points = € OK such that &+ + z is a
supporting plane of K at x with £ as outer normal vector. Then, the surface area
measure of K is defined as

Sp_1(K,B) = H" Yrx(B)) (1.1.4)
for every Borel set B C S*1.

When K is of class C2, the measure S,_1(K,-) is absolutely continuous with
respect to the Hausdorff measure on S”~! and its density at £ € S*! is the product
of the radii of curvature at the point of z € 0K such that Ng(z) = €.

The surface area measures are finite Borel measures on S !, and they are weakly
continuous (see [Schl4, Section 4.2]), meaning that if a sequence of convex compact
sets K,,, € #™ converges to K € #™, then, for every f € C(S*™1),

[ € dSuaK 9 > [ SO dS (K8,

The determination of a convex set from its surface area measure is a problem
known as Minkowski problem. Its solution is classical (see, for example, [Schl4,
Theorem 8.2.2]), and reads as follows.



1.1. PRELIMINARIES

Theorem 1.9. Let o be a Borel measure on the sphere S*™1 with the properties

| gdote) =0

and o(s) < o(S*™1) for each great subsphere s of S*~1. Then there is a convex body
K € " for which Sp—1(K, ) =o0.

1.1.2 Convex functions

Definition 1.10. A function u : R™ — R U {400} is convex if its epigraph
epi(u) == {(x,t) € R" 1t > u(x)}

is a convex subset of R"*!. Equivalently, if u # 400 and u #Z —o0, it satisfies the
condition

u((1 = 1)z + ty) < (1~ t)u(z) + tuly)
for every x,y € R",t € [0,1].

Examples of convex functions are support functions.

The natural space to consider in this setting is
Conv(R") == {u : R" — RU{+00} s.t. u is convex, lower semi-continuous, u # +00}.
The domain of a convex function is the set

dom(u) == {z € R" : u(x) < +00}.

Notice that a convex function is always (and only) continuous in its domain. Later,

we introduce many subspaces of Conv(R") in order to obtain specialized results.

Topological properties of Conv(R™). On the space Conv(R™) we consider the
topology of epi-convergence, characterized as follows: A sequence of functions
u; € Conv(R") epi-converges to u € Conv(R") if for every z € R", the follow-
ing conditions are satisfied.

o For every sequence of points z; € R™ converging to € R", u(x) <
lim infj o0 uj ().

 There exists a sequence (x;) converging to x, such that u(x) = lim;j_ u;(z;).

We are particularly interested in the subfamily

Convg(R") := {u € Conv(R") : lim ulz) = +oo}

2|00 |2

of convex super-coercive functions. Here, a more intuitive characterization is given by
convergence of level sets. For u € Conv(R"),t € RU {400} consider the sublevel set

{u <t} ={xeR":u(x) <t}

For a sequence of functions u; € Conv(R™) we use the convention {u; <t} — 0 if
there exists jo € N such that {u; <t} =0 for every j > jo.

6
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Lemma 1.11 ( [CLM20b, Lemma 10]). A sequence of functions (u;) C Convg(R™)
epi-converges to u € Conve(R"™) if and only if {uy, <t} — {u <t} in the Hausdorff
metric for every t € R with t # mingegn u(x).

We provide a further lemma concerning the level sets of coercive convex functions.
This fact can be considered folklore, but since we could not find a suitable source,
we provide a proof for the convenience of the reader.

Lemma 1.12. For every coercive u € Conv(R"™) the family of level sets {u < t} is
continuous in t € R for every t # mingepn u(x) with respect to the Hausdorff metric.

Proof. First, notice that the hypothesis of coercivity is necessary in order for the
statement to make sense. Indeed, it is a classical fact that a convex function is
coercive if and only if all its level sets are compact.

If ¢ < mingegn u(z) then {u < t} = @ for every such ¢, and there is nothing
to prove. Suppose instead that ¢ > mingepn u(z) and the family {u < t} is not
continuous at some tg. Then, we can find a sequence t,,, m € N, converging to tg
such that {u < ¢,,} does not converge to {u < to} with respect to the Hausdorff
metric. Therefore, there exists some o > 0 fixed and independent of m such that we
have at least one of the two following scenarios: We can find a sequence of points
Tm € {u < tp} such that d(zp,, {u < to}) > «a, or there exists xg € {u < to} such
that d(zo, {u <tpn}) > a for every m € N.

Suppose the latter case is true. Choose t > mingegn u(x). Then since u is
convex we have that for every y € {u < t} the segment between (y,?) and (zo, )
is completely included in epi(u). But then this segment crosses all the level sets
between ¢ and to, that is d(xo, {u <t}) — 0 as t — to9. Ast can be arbitrarily chosen,
we have a contradiction and therefore this scenario is not possible.

Consider then the remaining case. By definition, {u <t,,} C {u < sup,,entm}

for every m € N. Thus,
(T, tm) € [;Iel]%{r}1 u(x),rélgl)\lctm] x {u < rélg)\](tm}

for every m € N, and this set is compact. Therefore, we can find a subsequence of
(T, tm) converging to some (z,tp) and since epi(u) is closed, (x,tp) € epi(u). In
particular, x € {u < tg}. By construction, d(x,,, {u < tp}) > « for every m € N,
and by the continuity of the Euclidean distance d(z,{u < t9}) > «, which is a
contradiction. The proof is therefore concluded. O

The Fenchel-Legendre transform. On Conv(R"™), we consider the following trans-
form, known as Fenchel-Legendre transform. For u € Conv(R"™), it is defined as
u*(x) = sup {z -y —u(y)}.
yeR”
Note that since it is the supremum of affine (and thus convex) functions, u* is a
convex function. Moreover, for a non-convex function f : R™ — R, it still makes sense

to define f* as above if we admit the trivial case f = 4o00. Still, when v € Conv(R™)
one has the important fact

(u*)* = u.

7
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When u € Conv(R™) N C*(R™), the supremum is now a maximum, and if 3 is the
point where the maximum is achieved, i.e. u*(z) =z -y — u(y), a quick calculation
shows that © = Vu(y). This behavior can be generalized without smoothness
assumptions: What this transform does, in practice, is creating a correspondence
between the subgradient

ou(z) = {p € R" : u(y) > u(x) + p - = for every y € R"}

and the points p of the domain of u* such that = € du*(p), and vice-versa. By
Theorem [Sch14, Theorem 1.5.3], if w is convex then it is lipschitz on compact subsets
of the interior of dom(u), and by Rademacher’s theorem (see, for example [Magl2,
Section 7.3]) the gradient of u exists almost everywhere in dom(u). That is, for
almost every x € dom(u) we have that du(z) = Vu(z).

For our purposes, note that if we consider the family of real-valued convex
functions
Conv(R",R) := {u € Conv(R") : u < +00},

one has that
L: Convg(R") — Conv(R", R)

1.1.5
u— u* ( )

is a homeomorphism (see, for example, [RW98, Theorem 11.8]). In analogy with
Lemma 1.11, the epi-convergence on Conv(R™ R) can be characterized as follows
(see, for example, [RW98, Theorem 7.17]).

Lemma 1.13. A sequence (u;) C Conv(R™,R) epi-converges to u € Conv(R",R) if
and only if u; — u uniformly on compact subsets of R™.

In the families Convs.(R™) and Conv(R",R), the transform of v € Convg.(R")
behaves as the support function of the epigraph of u (see (1.1.13) later). The opposite
is true as well with suitable precautions.

In analogy with the Minkowski addition, on Conv(R"™), we can consider two
operations: Pointwise addition and infimal convolution. For u,v € Conv(R") the
latter is defined as

uv(z) = inf{u(y) + v(z) : z + y = z},

and uOJv € Conv(R™). For u € Conv(R"™),t > 0, instead of the dilation, we have two
corresponding notions: The classical scalar multiplication and the epi-multiplication

(t-u)(z) =tu (j)
for t > 0, 0-u = Ijpy. It is easy to prove the relation
((t-w)d(s-v))* = tu* + sv* (1.1.6)
for u,v € Conv(R™) and s,t > 0. Notice that for u,v € Conv(R"™) and ¢t > 0,

epi(ubJv) is the Minkowski sum epi(u) + epi(v), while epi(¢-v) is the dilation by a
factor t of epi(v).
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Another important relationship is the one between support functions and indicator
functions of convex compact sets. Indeed, if K € ™ and K contains the origin, a
quick calculation shows that

Ig(x) =

0 ifxe K,
+o00  otherwise.

Indeed (Ix)* = hg.

1.1.3 The space Conv4(R")

In this section, we present some tools and introduce the main strategy for many results
in this work. In particular, we need to switch often the point of view between R™+!
and R”. To do so, we consider on R"*! the standard basis {e1,...,e,11}, and we
identify R™ as the subspace with basis {e1,...,e,}. When referring to a hyperplane
H in R™! when not differently stated, we use the notation H = G#Jrl = R".

Our main results concern the space
Conveq(R"™) := {u € Convg.(R") : u has compact domain},

which is a subset of Convg.(R™). We study these spaces with the topology of epi-
convergence introduced earlier. The results and notions exposed in this subsection are
from the author and Knoerr [KU23], where the family Conv.q(R") was introduced
as a tool to infer geometric properties of convex functions through the properties of
corresponding convex bodies.

These functions can be obtained from convex compact sets in R**! using the
following construction: To every K € # ™! we associate the function | K| : R* —
(—00, 400] defined by

|K|(z) :=inf{t e R: (z,t) € K}. (1.1.7)

In addition, |K |(z) = +oo if and only if (z,t) ¢ K for all t € R. Analogously, for
every z € R" and K € #"*! we can define the concave function

[K]|(z) :=sup{t e R: (z,t) € K}.

In this case [K|(z) = —o0 if (z,t) ¢ K for all ¢ € R. The following results are
proved only for the map |-] for the sake of brevity, but they also hold for the map
[-] since for K € #™ one has [K]|(z) = —| Ry K| (z) + ¢, where Ry : R*+1 — Rt
is the reflection with respect to H and c is a suitable constant.

Lemma 1.14 ( [KU23, Lemma 3.1]). For every K € K", | K| € Conveq(R").
Proof. Note first that | K | is bounded from below by
inf{t e R: (z,t) € K for some =z € R"},

which is finite due to the compactness of K. In particular, | K |(z) € (—o0, +00] for
every x € R™.
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Assume that = € R™ satisfies | K |(z) < +00. As K is compact, this implies that
the infimum in (1.1.7) is attained, so (x, | K |(z)) € K in this case. Therefore,

dom| K | = pry(K)
where pry : R"*!1 — H = R" denotes the orthogonal projection. In particular,
dom| K| is non-empty, so | K | is proper.

Let us show that | K| is lower semi-continuous. If z € dom(| K]) and (z;) is a
sequence in dom(|K |) converging to x, then (z;, | K|(z;)) € K for all j € N. In
particular, this sequence is bounded in R"*1, so ¢ := liminf; | K |(x;) exists and
is finite. Thus, (z,t) is a limit point of the sequence (z;, | K |(z;)) and therefore
belongs to K. In particular,

K J(2) < t = liminf | K (7).

J—00

On the other hand, x € R" \ dom(| K |) implies that [K | is equal to +oco0 on a
neighborhood of z, as the domain is closed. Thus |K | is lower semi-continuous
outside its domain too. It is easy to see that | K| is convex. In total, we thus obtain

| K| € Conveq(R™) for all K € K. O

Lemma 1.15 ( [KU23, Corollary 3.2]). The inclusion Convcq(R™) C Convg.(R™) is
dense.

Proof. For u € Convg(R"), set u; := |epi(u) N (B}(0) x [=4,7])]. Then u; €
Convq(R™) for all j € N large enough. As u has compact sublevel sets, given ¢ € R
we have

{u; <t} ={u <t} forall j € N large enough.

Lemma 1.11 thus implies that (u;) converges to u in Convg.(R™), which shows the
claim. O

Lemma 1.16 ([KU23, Lemma 3.3]). The map |-| : K" — Convq(R"™) is continuous.

Proof. Consider a sequence (K;) C # ™! such that K; — K € ™!, Then
Kj = K+ [0, en1]
converges to K := K + [0, e,41]. We may thus choose R > 0 such that f(j,f( C
B%(0) x [-R, R] for all j € N.
As |Kj| = |Kj|, |K| = |K] for all j € N, we obtain
{LKG] <t} = pry(K; 0 (BR(0) x [~(R+1),1])).

and a similar formula holds for the sublevel sets of | K |. Note that the sets K and
(BE(0) x [=(R+1),t])) can not be separated by a hyperplane for ¢ > min, s =
mingepn | K| (x). For t > mingern | K |(z), [Schl4, Theorem 1.8.10] thus implies
K; N (BR(0) x [~(R+1),t]) # 0 for every j € N sufficiently large and

Kj N (BR(0) x [=(R+1),1]) = K N (BR(0) x [-(R+1),))

10



1.1. PRELIMINARIES

for j — oco. Applying the natural projection onto H to both sides, we obtain for
t > mingepn | K| ()

(K] <ty = {lK] <1}

On the other hand, ¢ < min,ern | K|(x) implies that {| K| < ¢t} = (). Therefore
{|K;] <t} =0 for almost all j € N, as we may otherwise find a sequence z;, € R"
with

(0, LK) (25,)) € K 0(BR(0) x [—(R+1),1]),

from which we can construct a limit point (z,%p) € K N (BE(0) x [—(R + 1),1]).

Lemma 1.11 thus implies that | ;| — | K| in the topology of epi-convergence. As
Conveq(R™) inherits the topology from Convg(R"™), this shows that |-] is continuous.
O

Conversely, we may associate to any u € Convcq(R™) a convex set in the fol-
lowing way: Consider, for u € Conv.q(R"), its epigraph epi(u). We set M, :=
MaX,edom(u) ¥(7), which is finite since the domain of u is compact and u is convex,
and define

K" :=epi(u — M,) N Ry (epi(u — My,)) + Myent1, (1.1.8)

where Ry is the reflection with respect to H. This is a compact and convex set, so
K" e ™. We thus obtain a map
Conveq(R™) — ot

1.1.9
ur— KY. ( )

By construction v = | K] for u € Conv.q(R"™). In particular, we have the following.

Lemma 1.17. The map [-] : K" — Conveq(R") is surjective.

Consider the lower half-sphere S” := {X € §" : X - ep41 < 0}. We define the
lower boundary of K by

OK_ :={X € 0K : some unit normal to K in X belongs to S" }.

Notice that the graph of | K| coincides with the closure of 0K _.

If Kis C’i, the map that associates to X € K its unique outer normal unit vector
establishes a diffeomorphism between 0K_ and S™. More generally, if K € K" is
a convex set such that there exists an open subset U C R™! with the property that
U N OK is the graph of a convex function of class C_%, then Ng : 0K NU — S™ is
well defined and establishes a diffeomorphism onto an open subset of S™. In this
case, we can relate integrals over 9K N U to integrals with respect to the surface
area of K by

NN)ASA(K.N) = [ (Vi (X)) dH" (X), (1.1.10)

/S”mNK (OKNU) OKNU

where 7 : S"NNg (OKNU) — is a bounded Borel measurable function, compare [Sch14,
(2.61)].

11
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On the other hand, if u € Conveq(R™), then the closure of 9K C R"*! is the
graph of u, and we can parameterize it using the map

fu : dom(u) — R™H!
z = (z,u(x)).

If v : R"" — R is bounded and Borel measurable, then we obtain using the area
formula [Magl2, Theorem 8.1]

[ Aaue) = [ (@ ut@) 1+ Vule) P do, (L1.11)
oK™ dom(u)
where /1 + |Vu(z)|? is the approximate Jacobian of f,,.

If u € Conv.q(R™) is differentiable in x € dom(u), then % is the unique

unit outer normal to epi(u) in (x,u(x)). Since u is convex, it is differentiable almost
everywhere, and thus the unit normal vectors to the epigraph are defined almost
everywhere. We have the following.

Lemma 1.18 ( [KU23, Corollary 3.7]). For every u € Conveq(R™) and n € C(S™)

n(N)dS,(K* N) = /dom(u) n (%) 1+ |Vu(x)]2dz. (1.1.12)

st
Proof. If K € K™t is C_QH then u := | K| satisfies the equation by direct change
of variable. If u € Conv q(R™) is an arbitrary function, then we may approximate
K" in the Hausdorff metric by a sequence (Kj) of C2 bodies. As the surface area
measure is weakly continuous [Sch14, Theorem 4.2.1], we obtain

n(N)dSp(K",N) = n(N)dSp(K",N) = lim n(N) dSn(Kj>N)

sm sn j—o0 Jsn

—lim [ (V) dS,(K;,N)

oo Jsn
= lim 7 (VLK@ \/1 +|V|K|(z)|? dx.
=00 Jdom(|K; |) \/1+\VLK

(Vu(z),—1) \/72 _
On the other hand, the map u fdom(u) n (W) + |Vu(z)]? dz is con
tinuous with respect to epi-convergence by [CLM20b, Proposition 20]. As |-] is
continuous by Lemma 1.16, we thus obtain

K;|
/ n(N) dS, (K", N) = lim (V1 ) |1+ VLG (@) da
" 7200 Jaom((,)) \/1+yv
( (VIK"(z), -
77 u
dom(|K)) ~ \ V1 +[V[K"](z)
As | K"| = u, the claim follows. O

)¢1+v | K |(z)]2 dx.

12
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Consider the Fenchel-Legendre transform of the function | K| obtained by K €
K1, Via explicit calculations we infer

hi(y,—1) =sup{X - (y,—1): X € K} =sup{X - (y,—1): X € 0K}
=sup{(z, [K|(x)) - (y,—1): « € dom([ K|)}

—supfe -y — [K(2): & & dom(|K))} )
=sup{z -y — [K](z): z € R"} = [K]"(y).
When K = K" for some u € Conveq(R"), (1.1.13) takes the form
hicu(y, —1) = u*(y) (1.1.14)

which will be very useful in the following pages. The map
K—h K(', —1)

was already considered, for example, by Knoerr in [Kno21] to create a correspondence
between # ™1 and Conv(R",R). Equation (1.1.13) shows that the point of view
presented here and the one in [Kno21] are dual. We conclude with a remark on the
integrability of specific functions, which will be useful later.

Corollary 1.19 ( [KU23, Corollary 3.8]). If u,v € Convcq(R"), then x — v*(Vu(z))
is integrable on dom(u).

Proof. By Lemma 1.18,

v*(Vu(z))
ok /1 + |Vu(z)[?
[ hie(Va(@)
ok \/1+ |Vu(z)|?

:/Sn hico (N)dS, (K" N) < V(K"[n — 1], K°).

/ v (Vu(z)) de = dH"™((x, u(z)))
dom(u)

dH" ((z, u(x)))

Since the surface area measure of a convex set is finite, the claim follows. O

1.2 First variations for measures of epigraphs

One of the trending topics in the last years concerning convexity is marginals of
measures. The idea is pretty simple, and it is the one we are used to from the
first courses in probability. In particular, we are interested in the following cases.
Consider over R"*! a measure i such that

du(z,z) = dw(z)dn(z),z € R,z € R"

where w and n are positive Borel measures on R and R"™ respectively. The space of
interest is always some subset of the family of functions Conv(R™), and we want to
evaluate the measure of the epigraph of w through pu, that is

MWW:L@M”Fﬁmljw@W”

13
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Ignoring, for now, the various summability assumptions, if we define ®(t) =
w([t, +00)) we can write

plepiu) = [ a(u(a) dn(a)
We focus on the case where there exist ¢ € C(R) and ¢ € C(R") such that dw(z) =
¢(2)dz and dn(z) = ¥(z)dz.

For simplicity, we work in the family Conv.q(R"). For u,v € Convcq(R"), we
want to evaluate (when it exists) the first variation

iy Alepi(ubl(t-v))) — p(epi(u))
t—0+ t ’

(1.2.1)

where ulJv is the infimal convolution of u and v, while ¢- v is the epi-multiplication.
Colesanti and Fragala [CF13, Theorem 4.6] were the first to investigate this topic,
and building from that and the successive literature, in Theorem 1.32 we prove that
(1.2.1) exists and is equal to

| (Tu@)s(u(a)i) do

dom(u) (1.2.2)

L B (V) 2(u(y) () dH ().
Adom (u)

Here N(y) is the outer unit normal vector at y € ddom(u), which is well-defined
H"Lalmost everywhere since dom(u) is convex. In fact, we will prove a formula
contemplating a wider class of deformations, which we introduce in the next section.
Doing so, at the end of this chapter we show a variant of [Rot22a, Theorem 1.5]
(which for the convenience of the reader is reported later as Theorem 1.35).

1.2.1 Waulff shapes of convex functions

The concept of Wulff shape, introduced more than a century ago by Wulff [Wul01],
is nowadays a well-established scientific tool, especially in the study of the shapes of
crystals. Significant developments have been obtained throughout the 20th century
from the mathematical perspective. See, for example, the work of Fonseca [Fon91].

Definition 1.20. Consider a function f : S"~! — R. Its Wulff shape is the set

1= Hy(f(N),

NES’"‘71

where Hy(t) = {x € R": x- N <t} is the negative closed half-space with outer
normal N and distance t from the origin. Equivalently, [f] is the unique maximal
(with respect to inclusion) convex set satisfying the condition

hip(§) < f(§) for every € € S (1.2.3)

Notice that if f > ¢ > 0 then clearly [f] is non-empty. In general, if ¢, (z) =
y-x,y € R" and f — ¢, > ¢ > 0, then [f] is non-empty and y is in the interior of [f].
In particular, if [f] is non-empty,

f+ 4] =1[f1+y (1.2.4)

14
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for every y € R" (notice that £, = hy,y). Indeed, by (1.2.3), for every y € R"
hipjry = hip by < F+ 4y

If, by contradiction, h(s,, was not maximal for f + £, neither would be hjy for f,
which would contradict (1.2.3), proving (1.2.4).

We now try to extend the same concept to convex functions. To our knowledge,
this is the first time that this approach has been followed, but many of the ideas we
present are scattered around the literature. See, for example, [CEK15, Rot22a]. We
work with u € Conv.q(R™) and ¢ € C(R"™) such that its recession function

L . C(tN) n—1
)= i S wes
exists, is finite, and depends continuously on N. With this in mind, we define the
family of functions

Crec(R") = {¢ € C(R") : p¢ exists and is finite and continuous}.

Consider now the convex compact set K" associated to u as in (1.1.8), and the
function ¢ on S™ obtained as
: ¢ (g(N
C(N) = g)) =, (1.2.5)
1+ [g(N))|

where ¢ € Crec(R™). Here g : S — R™ is the gnomonic projection, which is given by

N — (enJrl : N)en+1

N —
ent1 -V

(1.2.6)

We will make use of the extension of ¢ on the whole S” obtained by reflection on
H, that is, if N = (N1,..., Npy1) € S”, ((N) = C((N1,..., No, —Nps1)). When
Npi1 =0, € is extended by continuity (which is finite since ¢ € Cree(R™)). Note that
with the identification S” N H = S*! the continuous extension of the function ¢ to
S~ is equal to the recession function of ¢. To make the notation lighter, we refer
to ¢ both for the transform (1.2.5) and the extension.

Consider on S™ the function
hut(N) = hgu(N) +t{(N)

and its classical Wulff shape [h, ¢], which we denote by K*!. The function h,; can
be extended to R™™! considering its positively homogeneous extension hy,+(X) =
[X |t (X/1X]) for X € R™L,|X] £ 0,

Notice that the Fenchel-Legendre transform behaves similarly to the Wulff shape.
Indeed by (1.1.13), for every v € Conv(R") (since the concept of support function
can be considered for unbounded sets t00)

epi(v) = () Hy (hepiy(N)) = () Hy (hepi(v)((g(N)y—l))>

Nes® Nesn L+ [g(N)[?

A (a0 o (v
- 0 () = 0 e ()

15
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In general, if f: R™ — RU {400} is proper (thus f* is proper by [RW98, Theorem
11.1]), by the definition of the Fenchel-Legendre transform the epigraph of f* is the
intersection of the epigraphs of the affine functions z — = -y — f(x),y € R™ (the
supremum of a family of functions corresponds to the intersection of their epigraphs).
These epigraphs are delimited by the affine hyperplanes with unit normal vectors

(z,—1)/+/1+ |z|? and distance f(x)/y/1+ |z|? from the origin (if f(z) = +o0, the
epigraph of the corresponding hyperplane is trivially equivalent to R"™!). Then,
equivalently

o _ f(z)
epi(f*) = H_ ., ( . (1.2.8)
IQQ” g ( ) \ 1 + ‘$|2
This relation can be tied with the definition of Wulff shape as follows.

Lemma 1.21. Let u € Conveg(R"™), ¢ € Cree(R™), and t € R. Then

M Hy(hus(N)) = epi((u* + £()").
Nes™

Proof. Notice that using (1.1.14),

() Hy(hut(N)) = () Hy(hge(N)+1t((N))
Nes™ Nes»

P R )
- ﬂ Hy o ! / 2
z€Rn 1+ [a] 1+ ||
() (219)
- iy ,
e g (z) /1 + |7x]2
Thanks to (1.2.8), the last line equals to epi((u* + t¢)*), concluding the proof.

d

Suppose now that ¢ = v*,v € Conveq(R™). By the homeomorphism (1.1.5),
v € Conveq(R™) if and only if v* is a Lipschitz convex function. In particular,
this implies v* € Cpee(R™) and convex. In this case v*, i.e. the function on S"
corresponding to v* via (1.2.5), coincides with hgv by (1.1.14). Thus, for ¢ > 0,

hut = hgw +thge = hguyiko,

that is, the Wulff shape simply gives a Minkowski addition and [h, ] = K" + tK".
By (1.2.7)

0 ey - (u” +tv")"(2) | _ -
epi((u” + tv*) )_me Hyor) < NiEarE > = NDSn Hy (hiuqire(N)),

and thus
[ K" = [K" +tK"| = (u* + tv*)* = u0(t-v). (1.2.9)

Unfortunately, it is not always the case that for a generic ¢ € Cre(R™) one has
LK™ = (u” +tQ)".

16
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A sl
% ]

Figure 1.1: On the left, the body K*. On the right, its support function hgu.

Indeed the envelope

() Hy(hgu:(N))
Nesn

might be such that its projection onto e;-, ; is not the same as dom((u* + t{)*), as
we show in the following example.

Example 1.22. Consider the function u € Convg.(R) given by
—r—V2  —V2<2<—V2/2,
u(z) = —/1—[22 —v2/2<z<1,

+00 otherwise.

Then K € 2 (on the left in Figure 1.1) is such that its support function (on
the right in Figure 1.1) is, in polar coordinates for 0 € [—m, 7],

1 —%7‘( <0< %W,
hie) =9 __va otherwise.
1+(tan )2

Notice that K" can be determined by considering only the half-spaces corresponding

to 0 € [—37w/4,3mw/4]. Indeed, if we define

K = ﬂ H(T:os&,sin@)(hKu (9))’
0ec[—3m /4,37 /4]

one has that 3
Kc H(T:osO,sin 0)(hKu (9))

for every 0 ¢ [—3m /4,37 /4]. Therefore, K = K.

17
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J

Figure 1.2: On the left, the plot of hxu + t¢ (in red, the perturbed part). On the right, the
epigraph of (u* + t().

Consider ¢ € C(S') such that it is symmetric with respect to the horizontal
azis, ((0) = 0 for 6 € [—3n/4,37/4], and is strictly positive otherwise. Then, by
construction, for everyt >0

K" C H(T:os@,sin@)(hKu (9) + tf(e)),

and therefore -
K%' = [hgu +t{] = K" (1.2.10)

for every t > 0.

Fiz g < —/2, and for t € [0,1] consider the intersection of the line x = txg
with the line y = —x — /2, which is the tangent to K* with outer unit normal vector
(_—\/5/2, —/2/2). We denote this intersection by the point (x¢,y;). We now choose
¢ such that the lines determining the half-spaces H(;ose,sine)(hKu (0) +t£(9)),0 ¢
[—37/4,3m /4], intersect x = txq in (z¢,y:), while the remaining ones are unchanged.

By explicit calculations, this corresponds to the choice (see Figure 1.2 on the left)

) 0 —%7? <0< %ﬂ—a
¢(0) = Mjﬁﬁﬁ"fgfl‘”‘ otherwise.

If we consider the envelope

M Hy(hie(0) +t((6)),

fe(—m,0)

by construction we obtain an epigraph whose corresponding function agrees with u in
[—\@, 1], with an additional part corresponding to the epigraph of y = —x — V2 +
Lo =3 (x) (see Figure 1.2 on the right). Considering

C(z) =g~ @)/ 1+ (971 (=))?,
by Lemma 1.21 and (1.2.10) we just proved that, in this example,

LK™ ] # (u” + t0)".
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Nonetheless, considering the relation highlighted in Lemma 1.21 and in order to
provide a wider treatment, we introduce the following definition.

Definition 1.23. Fix ¢ € Crec(R") and consider ¢t € R. Then, for v € Conv(R"),
ur(x) = (u* + )" (x)

is the functional Wulff shape of u at t with respect to (.

In order to work with a well-behaved family of Wulff shapes, from now on we
require the following property.

Definition 1.24. We say that the functional Wulff shape u; has the property (P) in
an interval I if for every t €
up = [ K™ (P)

This is always satisfied, as we mentioned before, if ( = v*,v € Convq(R"™) and
t > 0. Other examples can be obtained by small non-convex perturbations of the
previous case. Another sufficient condition is the following.

Lemma 1.25. Consider u € Conveq(R"™) and ( € Crec(R™). If for every t in an
interval I we have that u* + t{ is convez, then (P) is satisfied for u, ¢, and t € I.

Proof. If u+ t¢ is convex, then since ¢ € Cree(R™) we have u + t{ € Conv(R"™), and
therefore there exist bodies K; € ™ such that hg, (z, —1) = u(z) + t{(x) for every
t € I. Then, by (1.1.13) u; = | K. Since

K; = [hg,] = [hgu + 1] = K,
we infer u; = | K“!|, which is precisely the required property. O

Let us provide a practical example (communicated to us by Mussnig [Mus]) where
¢ is non-convex, but u* + ¢ is.

Example 1.26. Fiz ¢ > 0 and consider the function u(x) = clx| + Ipn(x). Its
Fenchel-Legendre transform is given by

() = 0 lz] <e¢,
|z| — ¢ |z| > e

Now, take ¢ € Crec(R™) defined as

C(l’):{’x‘_c ’x‘gq

0 2| > ¢,

and consider the functional Wulff shape of u at time t with respect to (, taking
t € [0,1]. Notice that if we take the function v(x) = (|| — ¢) + I, (o) (), then

u* 4+t = u* Ato,
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and by the properties of the Fenchel-Legendre transform

up = (U +10)" = (u* Atv)* =uV (t-0v").

Therefore,
ct lz| <t,
u(x) = | clz| t<lz[ <1,
+oo |z| > 1.

In practice, the perturbation cuts the cone which is the graph of u orthogonally with
respect to its axis, creating a plateau. Ast increases, so do the height and width of
the plateau.

When (P) is satisfied, we have the following consequence, which will be funda-
mental in the proof of our main result.

Lemma 1.27. Let u € Conveq(R"™), and ¢ € Cree(R™) such that they satisfy (P) for
t €[0,e],e > 0. Consider the segment £; = {seny1: s € [0,7]},7 > 0. Then

[hicuqe, +tC] = [hxu + ] + £,

Proof. Consider K, = [hguye, +t(], K%' = [hgu +t(]. Notice that hy (N) = 0 for
every N € S" such that N - e,11 <0 and therefore in these directions

hicuye, (N) +tC(N) = b (N) + he (N) + t((N) = hgeu(N) + t{(N).
In particular, by property (P) this is sufficient to grant that
[[Arcure, +1C1) = [[hrcn + ],
and as a consequence we obtain
[ K] = (u” +10)" = uy.

Notice that, by construction, K%' is symmetric with respect to eﬂ; 1 up to a suitable
vertical translation. With the notation @i; = [K™“!], this implies that u; and —; are
equal up to a constant. Now, if e, 1 - N > 0, we have

hicute, (N) + t{(N) = hgu(N) + he, (N) + t{(N) =
hicu(N) 4 Teny1 - N +t{(N) = hgu(N) + hire, .3 (N) +t(N).

By (1.2.4),
[hKu =+ h’{Ten-H} —+ tC_] = [hKu —+ t&] + T€n+1 = Ku’t + T€n+1.
Therefore,

[hcute, + €11 = [Thcn + hire, ) +C]1 = [Thice +8C]] +7 =G + 7.
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By definition,

Kr,tz( N HN(thT(N)Hc(N)))

N-en+1<0

N-en+120

a ( | Hy(hruse, (N) + tg‘(N)))
=epi(u) Nepi(iy +7) = K" + £,
concluding the proof. -

The core ideas for the proof of our main result are encoded in the following
properties of Wulff shapes proved by Willson [Wil80]. Consider K € #™",t > 0 and
f € C(S™1); we use the notation FyK for the Wulff shape of hy +tf, that is

FK = [hg +tf]. (1.2.11)
Theorems 5.1 and 5.6 from [Wil80] read as follows.

Theorem 1.28. If K,, — K in ™", t,, = to in R and Fy, K has non-empty interior,
then Fy, Ky, has non-empty interior for m large and Fy, K, — F;, K in 2.

In particular, Theorem 1.28 implies that F;K is continuous in ¢.

Theorem 1.29. Let s and t be nonnegative real numbers. Let K € ", f € C(S*™1)
and assume FyK has non-empty interior. Then

F,FK = F, K

In the functional notation, Theorem 1.29 reads as

[[hi +tf] +sf] =[hx +tf +sf].

This will be very useful later to obtain differentiability in ¢ for the measure of some
FK.

A consequence of Theorem 1.28 and Lemma 1.21 is the following.

Corollary 1.30. Consider ( € Crec(R™). If a sequence of functions u,, € Conveq(R™)
epi-converges to u € Conveq(R"™), t,, — to, epi(uy,) has non-empty interior, and
(P) is satisfied for m sufficiently large and for t sufficiently close to ty, then vy, =
(ur, + tmC)* has full-dimensional domain for m large and vy, epi-converges to uy,.

Proof. Since epi(uy,) has non-empty interior in R"™!, then dom(uy,), which coincides
with the projection of epi(us,) on R™, has non-empty interior on R".

If w, is constant on its domain, say uy,, = ¢ € R on dom(uy,), then K"%o is
contained in the hyperplane {z € R"*': x.e,,1 = ¢} and K%o has empty interior.
Assume that u, is not constant on its domain. In this case K"* has non-empty
interior.
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Let us use the notation introduced in (1.2.11), with f = ¢. Since K™ — K", by
the continuity of the map

Conveq(R™) 3 v K¥ € "

and t,, — to then Fy (K%m) — Fy (K"), by Theorem 1.28. Moreover, the domain
of | F},, Kp,] has non-empty interior for m sufficiently large. Since property (P) is
satisfied for ¢ sufficiently close to ty and m sufficiently large, for these values of m we
have | Fy, K| = (u), + tm()* = vy, and by Lemma 1.16 | Fy K | = w,, completing
the proof in this case.

It remains to deal with the case when uy, is constant on its domain. In this case
we can prove, arguing as above, that

By, (K" +6) = Fio (K* +0),
where ¢ = {se,+1: s € [0,1]}. This fact and property (P) imply that
(tm + tmC)" = | Fy, K™ | = [F,, (K" +0)]

converges to

Uty = lFtoKuJ = I_Ft0<Ku+£)J'

1.2.2 Measure-theoretic Brunn-Minkowski theory

The measure-theoretic Brunn-Minkowski theory is a relatively recent development in
the world of convex geometry. See, for example, Livshyts [Liv19], Alonso-Gutierrez,
Hernandez, Roysdon, Yepes Nicolas, and Zvavitch [AGHCR*21], Rotem [Rot22b],
and Kryvonos and Langharst [KL22] and the references therein. Consider a measure
p on R such that is has continuous density ¥ with respect to the Lebesgue
measure (milder hypotheses can be considered, but continuity will suffice for an
exhaustive picture). Then it is possible to generalize the notion of surface area
measure in (1.1.4) considering its weighted version

S, x(B) = / W(X) dH(X)
7K (B)
for every K € ™ and Borel set B C S™.

Many achievements, which can be found in the works listed above and the
references therein, have been accomplished starting from this notion. We are mainly
interested in Lemma 2.7 from [KL22], which generalizes Aleksandrov’s Lemma [Sch14,
Lemma 7.5.3].

Lemma 1.31. Let p be a Borel measure on R™T with continuous density ¥ with
respect to the Lebesque measure. Then for f € C(S™) and K € Jigfll, we have

o 1l + 7)) = ()

t—0+ t

= [ FOV) dSux(N) = [ FNK(X)) W) dHE ().
Sn oK
(1.2.12)
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Lemma 1.31 was originally formulated asking for the origin to be in the interior
of K. This is not necessary, since the boundary structure of a convex compact set is
invariant under translations, and thus both the set and the measure can be suitably
translated so that the Lemma holds in the form we proposed. Indeed, suppose that
the origin is not contained in K. For every point Y in the interior of K, hx — ¥y > 0,
where fy(X) =Y - X, X € R""! and K — Y has the origin in its interior. Then, by
(1.2.4), we can consider the Wulff shape [hx — fy + tf] to infer by Lemma 1.31

i~y 1) -
t—0+ t

MR [ FNi o (X)) a7 (X),
AK-Y)

Consider ¥(-) = ¥(- + Y) and the measure ji which has ¥ as density. By Lemma
1.31, the translation invariance of the Hausdorff measure, and since Ng_y (X) =
Ng(X+Y),

ulhi + 1)) — p(K) Al — by + ) — A(K ~Y) _

lim = lim

t—0+ t t—0+ t
Lo TNy (X)FO R (X) = [ f(Ni(2)8(2 =) a7 (2)
K -Y)

:/ F(NK(2))(Z) dH™(Z),
oK

proving that in Lemma 1.31 we do not need the origin to belong to the interior of K.

1.2.3 Proof of the variational formula

We are finally ready to prove the main result of this chapter. It reads as follows. We
recall that if v € S"™1 ¢ H ¢ R™"1| then (((v,0)) = p¢(v).

Theorem 1.32. Let u € Conveq(R"™), and ¢ € Crec(R™) such that they satisfy (P) for
every t > 0 sufficiently small. Consider, moreover, a measure p on R™1 such that
du(z,x) = ¢(2)9(x)dz dr with positive functions ¢ € C(R) N L'([a, +00)) for some
a € R and ¢ € C(R™) such that ¢(z) — 0 as z — +oo. Then, if 0 < p(epi(u)) < oo,

plepi((u* +t¢)*)) — p(epi(u))
1t—>0Jr t

p(u, ) =

= C(Vu(z))p(u(z))(x) de + p¢(Ntom(uy (1)) @ (u(y)) v (x) dH" " (y),
dom(u) ddom(u)
exists and is finite, where ®(t) = [;7° ¢(2)dz.

In particular, if { = v*,v € Conveq(R™), we recover (1.2.2).

As anticipated, our strategy is to work between convex sets and convex functions.
In order to perform this passage formally, we introduce the family

+1 .
HT =
{K c R""!: K is convex, closed, with nonempty interior, and pry(K) € A

Notice that this family includes precisely f%/anll and the epigraphs of the functions in
Conveq(R") with n-dimensional domain, where R” = H = e;; ;. It is good practice,
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even though we will not use this in the proofs, to present a topology for this space.
Let K,L € " and let i be a measure on R"*1. The u-symmetric-difference
between K and L is

G, L) = w(KAL) = [ car(@) duf),

where for a measurable set A we denote by x4 is characteristic function. In particular,
if we use the Gaussian measure 7,1 on R"*!  defined by its density

1
/f2ﬂ_n+1

then d., ., defines a metric on Ji/fﬂ. This follows from the convexity of the involved
sets and the sets being of dimension n 4 1. Notice that d., ., (K, L) € [0, 1] for every
K, L € Jiﬂf“. This kind of metrics were studied in a wider generality by Li and
Mussnig [LM22]. Here we provide a proof that d,, , induces an appropriate metric
on Ji/f“, that is, we can approximate functions in Conv.q(R"™) by convex bodies in

n+1
AT

dyns1(z) = e t*/2 dg,

Lemma 1.33. Let vn41 be the Gaussian measure on R"™'. The function d, . :
AT x T —00,1] ds a distance. Moreover, its restrictions to "' and the
family of epigraphs of functions in Conveq(R™) induce the topology of the Hausdorff
metric and epi-convergence, respectively.

Proof. The equivalence of epi-convergence and convergence with respect to d
be proved analogously to Theorem 1.2 in [LM22].

V41 CAIL

To prove that d,,,, induces the Hausdorff metric on %{fll, we use the first part
of the proof as follows: by Lemma 1.11, the Hausdorff convergence of a sequence
Hom € %{fll to some J# € f/“i/?{fll is equivalent to the epi-convergence of I, to Ik
as functions on R”*!. But as we just proved, this is equivalent to the convergence of
epi(Ik,,) to epi({x) with respect to d Direct calculations show that

Yn+2°
d'Yn+1 (epi(IKm)v epi(IK)) = Cd’yn+1 (Kmv K)

for some absolute constant C' > 0, concluding the proof. O

For the convenience of the reader, we recall the following classical result (see, for
example, [Rud76, Theorem 7.17]).

Lemma 1.34. Suppose fp, : [a,b] = R, m € N is a sequence of functions, differentiable
on [a,b] and such that fn,(xg) converges for some zg € [a,b]. If the derivatives f],
converge uniformly on [a,b], then f,, converges uniformly on |a,b], to a function f,
and

fi(@) = lim_f, ()
for every x € [a,b].
In the following proof it is convenient to consider

iy Aepi((w” +¢€)")) — plepi(u))
t—0+ t
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as the right derivative of p(epi((u* +¢¢)*) at t = 0. With these instruments at hand,
we can start the proof of the main result of this chapter.

Proof of Theorem 1.32. Let us first sketch the outline of the proof. We start by
appropriately re-writing the variational formula (1.2.12) with K = KV for some
v € Conveg(R™), ¥(z, 2) = ¢(2)1(x), and f = ¢ as defined in (1.2.5). For & = [K"],
direct computations using (1.1.11) show

im ARy +1C]) = p(K?) C(Nieo (2, 2))g(2) ¢ () dH" ((, 2))

t—0t t OKv

= [ (Vu@)o)i@) da
dom(v)

(1.2.13)
+ ((Vo(z))o(0(2))(x) do

dom(v)

_ ()
+ C((Naom(v) (2),0)) (/U (s) dé’) (@) dH" (z).

ddom(v) (z)

In particular, notice that ¢ restricted to the equator is by definition pc- We have
used the following fact: Since v and ¢ are one a suitable reflection of the other,
Vu(z) = —Vi(z) for every = where the gradient exists. For v, the normal to the
epigraph expressed through the gradient is (Vv, —1)/1/1 + [Vv|?, while for © we have

(—=V,1)/4/1+ |Vo|?. Moreover, by construction ¢ (Ngv(z,2)) = ( (Rg(Ngv(z, 2))).
Since

C (0, 2) = ¢ (kL ) ¢ T — o,

we have the integral on the third line of (1.2.13).

From here, for a fixed u € Conv.q(R™) the idea is to approximate epi(u;) with
a suitable sequence of convex bodies, in order to obtain our claim as a limit of the
integrals of the form (1.2.13). Then, we conclude checking the hypotheses required
to apply Lemma 1.34. The proof is structured in three steps, after introducing the
sequence approximating epi(uy).

Fix u € Convcg(R™) such that 0 < p(epi(u)). Clearly, dim(epi(u)) = n + 1.
Consider now the segment ¢,,, = {sep+1: s € [0,m]} for m € N. We remark that
K" 4 {,, = epi(u) in the symmetric-difference distance d,, ,, as m — oco. Consider
the sequence of Wulff shapes K, ; = Fy (K" + {5,) = [hgute,, + tf] Notice that
K, is monotonic with respect to inclusion, and thus the sequence p(K, o) is
increasing. By the properties of the sequence K, o and the measure p it follows from
the monotone convergence theorem that

lim i(Km0) = p(epi(uo)) = p(epi(u)).

m—00

Moreover, notice that the sequence of sets K, ; converges to epi(u;) in the symmetric-
difference distance topology monotonically. In particular since (P) is satisfied by u

and ¢, Lemma 1.27 implies that K, ; = K%' +£,,, where K%' = F;(K") = [hgu +1t(].

Step 1(Limit as t — 01). Define now uy,, == | K" + {,,,| and @, = [K" + £, ].
Notice that w,, = u and 4,, = @ + m, where @ = [K"]. Then, replacing K" with
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K" + ¢, in (1.2.13), we infer

:U’(Km,t) B N(KU + gm)

t£%1+ t - /8(Ku+em) f(Nguie, ((z,2))(2)0(x) dH" ((z, 2))
= Jiomu V@)@ (z) dr
T Siom $VHENSE) +m) (@) do
a(x)+m o
T Jodomu) P¢(Naom(w) (7)) ( /u " ¢(s) ds) () dH ().

(1.2.14)

Notice that for m fixed the integrals in the last three lines of (1.2.14) are all
finite, since they are just a suitable decomposition of the right-hand side of the first
line. We claim that the right-hand side of (1.2.14) converges to

/ C(Vu(z))p(u(z))y(x) dz +/ P¢(Naom(u) (1)) @ (u(y))i(x) dH " (y)
dom(u) ddom (u)

as m — oco. The first integral is determined by the graph of  and thus is fixed by
the sequence we are considering. Concerning the second one, since @, = 4 + m is
the parametrization of the upper part of O(K" + £,,), we infer lim,, o0 U (z) = 400
for every = € dom(u). Therefore limy,—,o0 ¢(Um(x)) = 0 for every x € dom(u) since
¢ converges to 0 by hypothesis. Then,

<

| (Vu@)o(i@) + mpv(@) da
dom(u)

max o(i(z) +m) [ (C(Vu(@))d()] da.

z€dom(u) dom(u)

Since the integral on the right-hand side of the inequality is finite (it is part of the
weighted surface area measure of K* when in Lemma 1.31 we consider ¥(z, z) = 9(x))
and

max ¢(u(x) +m) < sup P(y) =0
z€dom(u) y€[inf G+m,+o0]

as m — 00, the integral on the third line of (1.2.14) converges to 0.

We conclude this step observing that

/ pe(N(x)) </ﬂm(m) o(s) ds) Y(z) dH ()
Odom (u) u(z)
converges to

Lo N @)@ (@)@ i @)
Adom (u)

as m — oo. Indeed @y, () — 0o as m — oo, thus

/ ?”;(x) #(s) ds — jo)o o(s) ds = B(u(z))
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increasingly, and the limit is finite by hypothesis. Then since

< |pe(N(2))(2)| 2 (u(x)),

Um ()
pe(V (z) ( Lo e ds) v(@)

the desired convergence is granted by the dominated convergence theorem.

Step 2(The derivative exists). We now prove that p(K,, ;) is differentiable with
respect to ¢ for each t in [0, ] for every m € N and ¢ suitably small, and its derivative
converges uniformly as m — oo on [0, €] to

/dom(w) C(Vue(z))p(ue(x))(x) do + pe(N () (ug () (z) dH™(x).

Odom (u)

For m fixed, the differentiability of ;1(Kp,+) follows from Theorem 1.29. Indeed this
theorem implies

f(Fpag (K" + b)) — p(F3 (K" + €n))  p(FuF3 (K + €n)) — p(Fyg (K + b))
t t ’

and as long as K, s, has non-empty interior we can apply Lemma 1.31 and have, for
to € [07 5]7
dp(Km,t)

dt ‘t:ta' - Sn C(N) dSl%Km,tO (N) (1.2.15)

Notice that K* + ¢, has non-empty interior for every m since K* + {1 C K“ + £,,.
Thus, we can choose ¢ such that (1.2.15) remains true for every m and for every
to € [0,¢]. Since Ky, is continuous in ¢ by Theorem 1.28 and dS, k,, , is weakly
continuous (see Livshyts [Liv19, Proposition A.3]), the right derivative of (K, ) is
continuous in ¢ on [0, ]. Since if the right derivative of a function is continuous then
the function itself is differentiable (see Bruckner [Bru94, Theorem 1.3, p. 40]), the
function p(K, ) is differentiable in (0,¢€), as desired.

Step 3(Uniform convergence). To prove the uniform convergence of the derivatives
(1.2.15), we start by repeating the procedure for the limits of (1.2.14) for ¢ € [0, ¢],
e > 0 as chosen in the previous step. Consider the decomposition in (1.2.14) applied
to K, for a general ¢ € [0,¢]. The first integral is independent of m. Indeed
| K.t | = u; for every m since Ky, ; = K%'+ {,,,. Furthermore, dom (uy, ) = dom(uy)
for every m. For the second integral, notice that since for ¢ — 07 one has [K;, ;| =
Ut — Um = U+ m, we can find a sequence of values M,,, — +oo as m — oo such
that for every t € [0,¢] we have M, < minggm(y,) @m,t- Moreover, notice that for
every x € dom(u;) we have Vuy(z) = —Viy, ¢(x) since Uy, is the reflection of u; up
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to a constant. Then, for the second integral in (1.2.14) we have

Lo T2

C(Vug(2))p(x)| dz

:< sup ) C(Vug(x)(x)| de
€[Mm,,+0] dom (ut)

97 (Vur(2))) ¢ (z) dH" ((, 2))

< n
_( o)) s KOV ([ (o) a(2.2))).

where g was defined in (1.2.6), and therefore the first line converges to 0 independently
of t. In the last inequality we have used that ¢ > 0 and OK™" c dK%t. Notice
that the maximum in ¢ is bounded since K% is continuous in ¢. Finally, for the last
integral, the convergence is granted again by the dominated convergence theorem
and making use of the fact that dom(u¢) = dom(uyy, ). Indeed, we get

Lo peNaomun (@) (un(a)b () a1 (2) -

e n—1

/8dom(um,t) pC(Ndom(“mvf) (1‘)) </Ut(1‘) ¢(5) dS) w(x) dH (x)
N e d denfl

/(9d0m(ut) pc(N(@)) </am,t(a:) ¢(s) 3) Y(2) (z)

fmy @) ([ o),
om(uy) C4+m/2

where C' = maxy¢(g c] MaXycdom(u,) Ut (). Notice that the maximum on [0, ¢] is finite

< ma ma.
&Sﬂxll pc(€ )‘te[o,’é]

since the integral is continuous in ¢, as dom(u;) is the projection on e, 1 of K ut,
which is continuous in ¢. Then, as m — oo the last integral converges to 0 uniformly
on .

Conclusion. Having concluded all the steps, we can now safely apply Lemma
1.34 with f,,(t) = p(Km,), concluding the proof. O

1.2.4 An application: Moment measures

Consider the case ¢(z) = e~ %, ¢ = 1. This point of view has been initially investigated
by Colesanti and Fragala [CF13] and Cordero-Erausquin and Klartag [CEK15].
The two interpretations stem from independent perspectives. The former aims to
generalize some classical concepts from the Brunn-Minkowski theory. The latter
originates from the interest in the KLS conjecture and solutions of differential
equations in Kéhler-Einstein manifolds; see, for example, Klartag [Klal4]. The first
approach required C? regularity on the interior of the domain, while the second was
restricted to essentially continuous convex functions (see [CEK15, Definition 2]).
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Recently Rotem, in [Rot22a, Rot22c], significantly improved these results, dropping
all regularity assumptions.

Theorem 1.35 (Rotem). Let u,v € Conv(R™). If 0 < [ e %) dx < +o0, then

plu, v%) = / v (Vu(z))e ™) do + haom() (N (y))e W dH" ! (y).
dom(u) ddom (u)

Theorem 1.32 immediately implies the following variant of Theorem 1.35.

Corollary 1.36. For every u € Conveq(R™) and ¢ € Crec(R™) satisfying (P) fort >0
sufficiently small, and u the measure in R such that du(x, z) = e *dzdx, the first
variation u(u, () exists and is finite. Moreover, it has the same form as in Theorem
1.532.
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The truth is too simple: One must
always get there by a complicated route.

Aurore Dupin (a.k.a. George Sand)



CHAPTER

Valuations: Old and new

The theory of valuations has been for decades a powerful tool and a fascinating
subject, connecting analysis, algebra, and geometry. Consider a family £ of subsets
of R™ and a commutative semigroup §. Our focus will be in particular on real-valued
valuations, that is, S = (R, +).

Definition 2.1. A functional Y : £ — S is a valuation if
Y(AUB)+Y(ANB)=Y(A)+Y(B)

for every A, B € £ such that AUB,ANB €.

These instruments were introduced by Dehn to solve Hilbert’s third problem a
few months after it was stated. In fact, it was the first problem from Hilbert’s list to
be solved . There the choice for the family of sets was & = P, the polytopes of R™.
More on this can be found, for example, in [Sah79]. It developed as an accessible
and fruitful tool, especially in integral geometry (see [SWO08]).

Consider now a real-valued valuation Y. Suppose that on £ we have a binary
associative operation (let us denote it by the symbol "+"), and that £ is closed under
multiplication for positive real numbers. That is, £ is a cone. Our case studies
are " with the Minkowski addition and the dilation, and Convg.(R™) and its
subfamilies with infimal convolution and epi-multiplication. For Aq,..., A, € £ and
ti,...,tm € [0,400) we can consider the polarization of Y

Y(tlAl + -+ thm)

One of the central concepts in the theory of valuations is that, under appropriate
assumptions, this polarization exhibits a polynomial behavior in the coefficients
t1,...,tm. We have seen an example of this in Theorem 1.8. In particular, a crucial
role is taken by the coefficients of these polynomials.

We start by giving a summary of the main results and techniques in this field.
The reader can find in [Sch14, Chapter 6] an exhaustive introduction to the topic.

'Tn a recent historical research, Ciesielska and Ciesielski [CC18] have traced back a proof of this
result by Ludwik Antoni Birkenmajer. It was written for a mathematical competition in 1882.
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2.1. PRELIMINARIES

2.1 Preliminaries

2.1.1 Valuations on ™

The main direction in which the theory is developed is for the choice £ = Z™. The
aim is to classify and characterize valuations that satisfy suitable properties. Let us
define some of those playing a role in this chapter. Let Y : #™ — R be a valuation.

1. Continuity: We say that Y is continuous if for every sequence K,, — K in the
Hausdorfl metric, then Y (K,,) — Y (K).

2. G-Invariance: Let G be a group acting on J£". We say that Y is G-invariant
if Y(gK) = Y(K) for every g € G and K € #™". The main choices are the
group of translations and the group of rotations.

3. a-Homogeneity: If there exists a € R such that Y (tK) = t*Y (K) for every
t>0,K € %™ we say that Y is a-homogeneous.

We have introduced in Chapter 1 the concept of intrinsic volumes, and it is
quite easy to check that, for example, the functionals V; for ¢ = 0,...,n — 1,n are
valuations. Moreover, they are invariant under rigid motions (that is, the group
generated by rotations and translations), continuous, and i-homogeneous. A bit more
work shows that they are for every ¢. Something stronger is true for intrinsic volumes,
as the content of the celebrated Hadwiger’s characterization theorem (see [Had57])
shows.

Theorem 2.2. A functional Y : ™ — R is a continuous, translation, and rotation
tnwariant valuation if and only if there are constants cg, ..., c, € R™ such that

Y(K) = coVo(K) + - + enVin(K)

for every K € ™.

The main applications of this result consist of integral formulas in stochastic
geometry. Consider, for example, the group of rotations SO(n) and the corresponding
Haar probability measure o on this group. For an hyperplane H C R"™ consider
the orthogonal projection prg : R® — H. Then it is easy to prove that, for a fixed
hyperplane H, the functional on J£™

KH/ Vi1 (prog K) do(6)
SO(n)

is a valuation, and is (n — 1)-homogeneous, continuous and invariant under rigid
motions. Thus, up to a multiplicative constant, this functional is the surface area.
This kind of formula can be generalized to projections on lower-dimensional subspaces,
and it is known as Cauchy-Kubota formula (see, for example, [HW20, Theorem 5.6]).

What happens if we remove the hypothesis of invariance under SO(n)? Again,
even though less explicitly, it is possible to describe the space of these valuations,
which possess a graded algebra structure. It is known as McMullen’s homogeneous
decomposition theorem [McMT77] and reads as follows.
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Theorem 2.3. Let Y : ™ — R be a continuous, translation invariant valuation.
Then there are continuous, translation invariant valuations Yy, ..., Y, on Z™ such
that Y; is homogeneous of degree i, for every i =0,1,...,n, and

Y(K) =Yo(K) + -+ + Yu(K),
for every K € ™.

If we consider
Val(R") :=={Y : #™ — R :Y is a continuous and translation invariant valuation}
and its subfamilies
Val’(R") := {Y € Val(R") : Y is i-homogeneous},
for 0 < i < n, then Theorem 2.3 reads as
n
Val(R") = P Val’(R™).
i=0
In other words, continuous and translation invariant valuations form a graded algebra,

where the degree is set by homogeneity.

These functionals can be described more explicitly in four cases, namely ¢ =
0,1,n — 1,n. For i = 0, Yj is proportional to the Euler characteristic. For i = n,
Hadwiger [Had57, p. 79] proved the following.

Theorem 2.4. Let Y : P — R be a translation invariant valuation on P". If Y is
homogeneous of degree n, then Y = cV,, with a real constant c. If Y is continuous,
the result is extended by continuity to ™.

The case i = n — 1 was treated by McMullen [McM80].

Theorem 2.5. For a functional Y : #™ — R, Y € Val* 1 (R") if and only if there
exists a continuous function n: S*' — R such that

Y(K) = /SH () dSn_1 (K, v) (2.1.1)

for every K € Z™. The function 1 is uniquely determined up to the addition of the
restriction of a linear function to S*~!.

Finally, for i = 1, Goodey and Weil [GW84] gave the following characterization.

Theorem 2.6. For a functional Y : #™ — R, Y € Val'(R") if and only if there are
two sequences of convex compact sets (Lj;), (W;) in ™ such that

Y(K) = thIgo [V(K, Lj, cee ,Lj) - V(K, Wj, ceey WJ)] (212)

holds uniformly on compact subsets of #™. That is, for R > 0 fized, for every
K C BRr(0) the limit in (2.1.2) converges depending only on R.

Later, we prove functional generalizations of Theorems 2.6 and 2.5. To conclude
the picture, McMullen conjectured that all translation invariant and continuous
valuations are approximated by combinations of mixed volumes. This was positively
solved by Alesker [Ale01] through his remarkable Irreducibility theorem.
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2.1.2 Parallel sets and support measures.

We now present some instruments for the local study of the geometry of convex
sets. These instruments play a vital role in the theory of valuations, and we will use
them to recover functional versions of valuations. In Section 1.1, we introduced the
concept of parallel set and the Steiner formula (1.1.3) describing intrinsic volumes.
This section aims to show the local behavior of these objects. In this chapter, when
referring to measurable sets, we always refer to Borel measurable sets. For the
exposition, we follow [Sch14, Chapter 4].

Consider K € Z",t > 0. The Minkowski sum K; = K + tB™ can be considered
as the set of points € R™ such that 0 < d(z, K) < t. It is then natural to consider,
for a subset 5 C K, the set of points = € R™ for which d(K,x) <t and for which the
nearest point p(z, K) = argmin ¢ g d(z,y) (also known as metric projection) is in
B. Notice that from the uniqueness of the projection on closed convex sets (see, for
example, [Brell, Theorem 5.2]), p(z, K) is unique for every = € R™. Alternatively,
we can consider 3 C S?! and ask for the set of all z € R” such that 0 < d(K,z) <t
and the unit vector u(K, ) from p(K,x) pointing towards x is in f.

Let us now be more precise. Consider ¥ = R" x S*~!. For a fixed K € #™", a
pair (z,§) € X is called a support element of K if z € 0K and £ is an outer unit
normal vector of K at x. Note that for every z € R", the pair (p(K, z),u(K,z)) is a
support element of K. We define the normal bundle of K as the set

NorK = {(z,§) € ¥ : (z,€) is a support element of K}.
Consider, moreover, the map

ft : Kt\K—> by
z— (p(K,z),u(K,z)),

which is continuous and measurable. Thus we can consider on X the image measure
ue(K,-) under f; of the Lebesgue measure on R™. The map (-, -) is a valuation
on the semigroup (with the operation of addition) of the Borel measures on 3
(where we consider the product topology between the classical ones on R™ and S"~!
respectively), and for each Borel set 5 C X, u(+, 8) is measurable (considering the
Borel sigma algebra on J#™) by [Sch14, Theorems 4.1.2 and 4.1.3].

A useful feature of py (K, -) is that it admits a polynomial expansion analogous
to (1.1.3). The main properties of this measure are summarized by the following
statement (see [Sch14, Theorem 4.2.1]).

Theorem 2.7. For every convex set K € ™ there exist finite positive measures
©;(K,-),0 <i<n—1, on the Borel sigma-algebra of ¥ such that for every t > 0 the
measure (K, ) satisfies the polynomial expansion

n—1
(K, B) = Z £ (?) 0;(K, )

i=0
for every Borel set § C X.

The mapping K — O;(K,-) is weakly continuous and is a measure-valued valua-
tion. Moreover, for each Borel set 3 C X, the function ©;(-, 3) is measurable. The
coefficients ©; are called support measures.
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We have the following immediate consequence, which gives us a large class of
continuous valuations on ™.

Corollary 2.8. Consider f € C(X). Then, for every 0 < i < n — 1, the functional
Z X" — R defined by

K [ £(,6)des (K, (2,) (2.13)
18 a continuous valuation.

Proof. The statement follows at once from Theorem 2.7: Indeed since f is continuous,
the weak continuity of the support measures implies the continuity of Z. The valuation
property for Z descends from the same property of the measures ©;. O

Note that by [Sch14, Lemma 4.2.2] if K is a convex body with boundary of class
C? (strict convexity is not required), (2.1.3) becomes

flz,u(K,x))dC; (K, x),
RN

while if K is strictly convex (0K contains no segments) it reads as

[ 10(.€),€)dS,(K.©) (21.4)
where the measures C; are S; are the marginals of the support measure ©;, and are
respectively known as i-th curvature measure and i-th surface area measure. Notice
that S,,—1 corresponds to (1.1.4).

2.1.3 Valuations on convex functions

The theory we briefly presented in J£™ has a functional counterpart. This process
started with the works of Ludwig [Lud11la,Lud11b,Lud12] and Tsang [Tsal0a,TsalOb],
with a focus on LP and Sobolev spaces. The idea is pretty simple: We still consider
unions and intersections of sets, but since these sets are epigraphs, these operations
can be replaced by pointwise minimum and maximum of functions, respectively.

Definition 2.9. If £ is a family of real-valued functions, a functional Z : £ — R is a
(real-valued) valuation if

Zuhw)+ Z(uVw)=Z(u)+ Z(w)

for every u,w € &£ such that u A w,u Vw € £, where V and A are the pointwise
minimum and maximum, respectively.

More recently, Colesanti, Ludwig, and Mussnig wrote a series of papers [CLM17,
CLM20a, CLM20b, CLM20c, CLM21,CLM22a, CLM22b] focusing on convex functions.
In this section, we survey the main advances in this direction, upon which we
build the remainder of this chapter. A different approach was followed by Knoerr
[Kno21, Kno22, Kno], who studied this topic from the points of view of functional
analysis and differential geometry.
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As in Section 2.1.1, the main results concern the classification and characterization
of these functionals under certain conditions. The family where this process appeared
to be more successful is Convg.(R™). The topology we consider on this space is again
the one induced by epi-convergence. The reason behind this fact is that, as proved
in [CLM20b|, the only meaningful valuation on the family Conv(R") satisfying
suitable hypothesis is the constant one, which motivates the choice of a smaller
(even though still dense) family of functions. As mentioned in the preliminaries,
Convg.(R™) is equivalent to the other family Conv(R™, R) through duality. Indeed,
by the homeomorphism (1.1.5), u € Convg.(R") if and only if u* € Conv(R",R). We
remark that the results obtained by this theory are not just functional versions of
the classical theory, but they properly generalize those since ™ can be embedded
in Convg.(R™) via the map

K Ig.

The properties we require for these functionals are exactly the same ones we
require in £, but now we can formulate them from a functional point of view. Let
Z : Convg(R™) — R be a valuation.

1. Epi-continuity: We say that Z is epi-continuous if for every sequence u,,
converging to u under epi-convergence, then Z(u,,) — Z(u).

2. G-invariance: Let G be a group acting on Convg.(R™). We say that Z is
G-invariant if Z(gu) = Z(u) for every g € G and u € Convg.(R™). We consider
rotations of the domain, that is Z(u o 6~1') = Z(u) for every § € SO(n), and
epi-translations, that is Z(uo T +t) = Z(u) for every translation 7 on R™ and
teR.

3. Epi-homogeneity: If there exists a € R such that Z(t-u) = t*Z(u) for every
t >0 and u € Convg.(R™), we say that Z is epi-homogeneous of degree a.

By the Fenchel-Legendre transform, all these properties have a dual expression in
Conv(R"™,R). We discuss this in Section 2.2.2.

As a consequence of these properties, the functional

Y: " R
K s Z(Ix)

is a valuation that inherits respectively continuity with respect to the Hausdorff
metric, G-invariance (when G-acts on R™ only), and homogeneity, respectively.

But what do these valuations on convex functions look like? For #™, we
mentioned in Section 2.1.1 that mixed volumes are examples of translation invariant
and continuous valuations, and one gains rotation invariance in the particular case
of intrinsic volumes. In general, Corollary 2.8 describes a wide class of continuous
valuations. A similar process was followed in [CLM20a|, where Hessian measures
were used, instead of support measures.

To define Hessian measures, we first need to introduce an alternative notion of
parallel set: For u € Conv(R"™), ¢t > 0, and g € B(R™ x R"), consider the set

Pi(u,B) :={z+ty : (x,y) € B,y € u(z)}.
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Here the subgradient substitutes the notion of normal cone, and instead of the normal
bundle, for u € Conv(R"™) we consider the graph of the subgradient

Iy :={(z,y) e R" xR" : y € du(z)}.

If we evaluate the n-dimensional Hausdorff measure of P;(u, 3), we obtain a Steiner-
type formula as proved in [CLM20a, Theorem 7.1] (note the analogy with Theorem
2.7).

Theorem 2.10. For u € Conv(R") and t > 0, there are non-negative Borel measures
Zi(u,-),0 <i<mn onR"xR" such that

M (P, B)) = 3 (”) i, )

1=0

for every 5 € B(R™ x R"™) and t > 0. We call these measures Hessian measures.

By [CLM20a, Theorem 7.3], Hessian measures are weakly-continuous with respect
to epi-convergence. Moreover, if u € Conv(R") N C?(R"), for 8 € B(R") they take
the form

Z(u, B x R™) = /ﬁ (det D2u(z)]n_s d,

where for a diagonalizable matrix A, [A],—_; is the (n — i)-th elementary symmetric
function of the eigenvalues of A, and D? is the Hessian matrix.

For the family Conv(R"™), Colesanti, Ludwig, and Mussnig in [CLM20a, Theorem
1.1] proved the following result.

Theorem 2.11. Let ( € C(R x R™ x R™) have compact support with respect to the
second and third variables. For every 1 <1i < n, the functional F; ¢ : Conv(R") — R,
defined by

Fetw= [ c(ula).z.y) d=i(u, (@.0),

is a continuous valuation on Conv(R"). If u € Conv(R™) N C?(R"™), then

Fi¢(u) = e C(u(x),z, Vu(x))[DQU(a:)]idx.

The proof of Theorem 2.11 uses the crucial fact that Hessian measures are measure-
valued valuations on Conv(R™), as proved in [CLM20a, Theorem 9.2]. With a better
idea of what to expect, we can start requiring something else on top of epi-continuity.
Consider, for example, epi-translation invariance. As we mentioned earlier, Conv(R")
is "too big" to obtain meaningful valuation under invariance hypotheses, and, from
now on, the results we present have Convg.(R") (or its subfamily Conv.q(R")) as
ambient space. In [CLM20b, Theorem 1] the following extension of Theorem 2.3 was
proved. This result was also obtained by different methods in [Kno21, Theorem 1.1].

Theorem 2.12. If Z : Convg.(R") — R is a continuous and epi-translation invari-
ant valuation, then there are continuous and epi-translation invariant valuations
20y« Zp : Convg (R™) — R such that Z; is epi-homogeneous of degree i and

Z=1Zg+ -+ Zn.
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By Theorem 2.11, some examples of continuous, epi-translation invariant, and
epi-homogeneous of degree i valuations have the form

In—ic(u) = | ¢ (Vu(z))[D*u(2)]n—; dz

for ¢ € Co(R™) if u € Convg.(R™) N C2(R").
As for Theorem 2.3, Theorem 2.12 can be expressed in the language of graded
algebras. Consider the family of valuations
VConvg(R") := {Z: Conve.(R") - R : Z is
a continuous and translation invariant valuation}.

As before, we can then consider splitting this family into its homogeneous components,
that is, for 0 < i <mn,

VConv’ (R") := {Z € VConvy(R") : Z is epi-homogeneous of degree i},

and therefore Theorem 2.12 reads as

VConvg(R") = @ VConv’, (R").
1=0

The extension of Theorem 2.2 is instead more delicate and requires the intro-
duction of specific families of functions. We briefly report the following result for
completeness. Let C((0,00)) be the set of continuous functions on (0,00) with
bounded support. For 0 < j <n —1, let

D} = {C € Cy((0,00)) : lim s"77¢(s) =0, lim t"I1¢(t)dt exists and is ﬁnite} .

s—0t s—0t Jg

Here we use the notation D! = C.([0,00)). The characterization of continuous,
epi-translation invariant, and rotation invariant valuations [CLM20c, Theorems 1.2
and 1.3] reads as follows. The first part regards the well-posedness of the integral
form of the valuations, while the second one extends Theorem 2.2.

Theorem 2.13. For i € {0,...,n} and ( € D, there exists a unique, continuous,
epi-translation and rotation invariant valuation V; ¢ : Conve(R™) — R such that

View = [ C(Vu@D[D?u(a))u-i do
for every u € Convg.(R") N C%(R").
Consider now a functional Z : Convg.(R") — R. Then, Z is a continuous, epi-

translation and rotation invariant valuation if and only if there exist functions
G eDyi=0,...,n, such that

Z:‘/(]7<0+"‘+Vn><n'

Other descriptions and further discussions on these functionals can be found
in [CLM21, CLM22a, CLM22b).
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As for continuous and translation invariant valuations on J£™ with a fixed degree
of homogeneity, the investigation can be brought further in some cases. In particular,
continuous and epi-translation invariant valuations with homogeneity of degree i = n
or ¢ = 1 have more detailed descriptions. The case i = n was investigated for the
first time in [CLM20b, Theorem 2].

Theorem 2.14. For a functional Z : Convg.(R™) — R, Z € VConvl. (R") if and only
if there exists ( € C.(R™) such that

for every u € Convg.(R™).

As we show in Section 2.2.1, not only does this result acts as a functional version
of Theorem 2.5, it can be deduced from the latter result in # ™!, This was proved
in [KU23, Section 4].

For i = 1, we have the counterpart of Theorem 2.6. This result is in [KU23,
Theorem 1.5].

Theorem 2.15. Every Z € VConvic(R") can be approximated uniformly on compact
subsets of Convg(R™) by a sequence (Z;) of valuations on Conve(R™) with the
following properties:

1. Z; is a continuous, epi-translation invariant valuation for each j € N.

2. For every j € N there exist two functions {j,w; € Conveq(R™) such that
Z;(u) = / 0 (Ve (2)) do — / o (Vw;(2)) de
dom(¥;) dom(wj)
for all u € Conveq(R™).

In particular, for every compact set C C Convg.(R™), Z;(u) — Z(u) uniformly for
every u € C. That is, the convergence behavior depends only on C.

Identifying compact subsets in Convg.(R™) is not as easy as in £ ™. A character-
ization of relatively compact subsets of Convs.(R™) is given by [Kno21, Proposition
2.4], and reads as follows.

Proposition 2.16. A subset U C Convy.(R™) is relatively compact if and only if it
s bounded on compact subsets of R™, that is, for any compact subset A C R™ there
exists a constant ¢(A) > 0 such that

sup u* (x) < c(A)
T€EA

for every u € U.
In the following sections, we present one of our contributions to this field. In
particular, our approach is to exploit the relation between Conv.q(R") and #"+!,

as shown in Section 1.1.3. We investigate the relation between the valuations on
these two spaces and use them to prove Theorems 2.14 and 2.15.

39



2.2. INDUCING VALUATIONS FROM # "1 10 Conv.q(R"™)

2.2 Inducing valuations from 7" to Conv.q(R")

The content of this section is from [KU23]. We will use the map |-| : # " —
Conveq(R™) to interpret valuations on Conv.q(R™) as valuations on convex sets in
R"™*1. This is precisely the content of the following Lemma.

Lemma 2.17. If K, L € # ™" are such that K UL € ™, then
(KAL)= |K]V[L], (K UL = K] AL
Proof. By definition

|KNL|(x)=inf{t e R:
>inf{t e R: (=,

tye KNL}
t)
=|K](z) v [L](2),
t)
t)
)-

e K}vinf{t e R: (z,t) e KNL}

)

(z
(z

|KUL|(x) =inf{t e R: (z,t) € KUL}
<inf{t e R: (z,t) e K} ANinf{t e R: (z,t) € KN L}
=K |(z) A L)(x
On the other hand,
dom(|K NL|)=dom(|K]|)Ndom(|L]),
dom(|K UL|)=dom(|K])Udom(|L]),

as the domains are just the image of the corresponding convex set under the natural
projection onto H = R"™. In particular, both sides of each of the inequalities are
finite if and only if one of the two sides is finite. We thus only have to consider
points belonging to the corresponding domains. Assume that |[K N L](z) < +oo. As
|[K](z) v [L](z) < [K N L|(z) < +oo,

{(z,t) eR"™ :t € [|K|(z),[KNL|(2)]} C K,
{(z,t) e R"" .t e [|L](z), [ KNL|(z)]} C L

by convexity, as the points corresponding to the boundary points belong to these
sets. Thus (z, | K|(x) V |L](x)) € K N L, which implies

[KNL|(z) < [K](z) v [L](2).

Now assume that | K U L]|(x) < +o00. Then (z,|K U L|(z)) € K U L. Without loss
of generality, we may assume that (z, | K U L](x)) € K. Then

LK (2) A [L](2) < [K](z) < [KUL(2)
by the definition of | K|(x). O

With Lemma 2.17 at hand, we can now formally show how a valuation on
Conveq(R™) induces a valuation on J# "1,
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Theorem 2.18. For Z : Conveq(R") — R consider Y : # "1 — R defined by
Y(K) = Z(|K]).
Then Y has the following properties:

1. If Z is a valuation, then so is Y.
2. If Z is continuous, then Y is continuous with respect to the Hausdorff metric.

3. If Z is epi-translation invariant, then Y is translation invariant, that is

Y(K+X)=Y(K) foral K e #"™ X ecR"

4. If Z is epi-homogeneous of degree j, then Y is j-homogeneous, that is,

Y(tK)=tY(K) forall K € #" t>0.

Proof. 1. If K, L € ™! satisfy K U L € "1 then
|KNL|=|K|V|L], |KUL|=|K|AN|L|.
by Lemma 2.17. Thus
Y(KUL)+Y(KNL)=Z(|[KUL|)+ Z(|[KNLJ)
=Z(IK] AL+ Z(LK] v [L])
=Z(IK|)+ Z([L]) = Y(K) + Y(L).

2. If Z is continuous, then Y = Z o |-] is continuous due to the continuity of |- |,
compare Lemma 1.16.

3. For X = (v,¢) € R" x R and K € "' the definition of |K | implies for
z e R"

|K+ X|(z) =inf{seR:(z,s) e K+ X} =inf{seR: (v —v,s—¢) € K}
=inf{s+c:seR,(z—v,s) € K+ X}
=|K|(x —v)+ec.
If Z is epi-translation invariant, we obtain
V(K +X)=Z(|K+X]|) = Z(K](- —v) + ¢) = Z([K]) = Y(K).
Thus Y is translation invariant.

4. For t > 0 we calculate for z € R"

[tK|(2) =int{s € R : (z,5) € tK} :inf{s ER: (fj) eK}
:inf{tszseR, <::,s> GK}

—t| K| (f) .

Thus [tK | =t-|[K |, which implies
Y(tK) = Z([tK|) = Z(t- | K|) = Z(|K]) = VY (K)

if Z is epi-homogeneous of degree j.

41



2.2. INDUCING VALUATIONS FROM # "1 10 Conv.q(R"™)

2.2.1 New proof of Theorem 2.14

We will deduce the representation formula established in Theorem 2.14 from Mc-
Mullen’s Theorem 2.5. More precisely, we will show that the same representation
holds for continuous, epi-translation invariant valuations on Conv.q(R™) that are
epi-homogeneous of degree n. As Conv.q(R"™) C Convg.(R") is dense, we will prove in
Corollary 2.20 that this establishes the representation formula for the corresponding
space of valuations on Convg(R™) by continuity.

Theorem 2.19. Let Z : Conveg(R™) — R be a valuation that is continuous, epi-
translation invariant, and epi-homogeneous of degree n. Then there exists a unique
function ¢ € C.(R™) such that

Z(u) = /d o ST (2.2.1)
for every u € Conveq(R™).

Proof. Given a functional Z with the properties stated above, Y(K) := Z(|K])
defines a valuation on .# ™! which is continuous, translation invariant, and n-
homogeneous by Theorem 2.18. By McMullen’s Theorem 2.5 there exists n € C(S™)
such that
V(K) = [ (V) dSu (K )
for every K € ™+, If we define (N) := [n(N) + n(RyN)]/2, then the valuation
Y(K):= A N(N)dS,(K,N)

thus satisfies

Z(u) =Y (K")=Y(K").
We will work with ¥ and the function 7 € C'(S™).

For K € #™ a convex set in H and ¢ > 0, consider the cylinder C(K,¢) =
K x [0,€] € ™. Then by definition I = |C(K,¢)], and therefore we infer

Z(IK) :Y/(C(Kv 6)) = Qﬁ(_en-i-l)vn(K) +¢ - ﬁ(N) dSn(C(Kv E)v N)

=27(—ent+1) Vo (K) + ¢ s N(v)dSn—1(K,v),

where we identify S*~! and S® N H. As the left-hand side of this equation is
independent of ¢ > 0 (see Figure 2.1), we infer that

/S i) dS, (K.v) =0 (2.2.2)

for every K € #". We may consider the left-hand side of (2.2.2) as a valuation on
convex sets in ™ that is continuous, translation invariant, and (n — 1)-homogeneous.
As it vanishes identically, McMullen’s Theorem 2.5 implies that 7|snqy is the restric-
tion of a linear function to S" N H.
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Figure 2.1: If we make the cylinder taller, it does not affect the portion of the boundary
perceived by the valuation.

In particular, there exists a linear function / : R®*! — R such that 741 =0 on
the equator S* N H, and we set j = 7+ %[l + 1o Ry]. Then 7 vanishes on the equator
S™N H. Using Theorem 1.18 and the fact that linear functions belong to the kernel
of the surface area measure, we thus obtain for u € Conveq(R")

Z(w) =Y(K") = | A(N)dSa(K",N) =2 | 4(N)dSa (K", N)
_ o[ _(Vu(z),-1) e
_/dom(u) 21 ( 1+ ]Vu(x)P) Lt |v ( )|y a,

which for ((y) := 27 <\(/yl;|72)2) 1+ |y|? gives the desired representation in equation

(2.2.1). Here we used that 7 vanishes on the equator S™ N H and is symmetric with
respect to H.

To prove that ¢ has compact support, one can use the same argument given by
Colesanti, Ludwig, and Mussnig in the proof of [CLM20b, Proposition 27], which we
include for completeness. Suppose by contradiction that the support is not compact.
Then we can find a sequence y; € R™ such that |y;| — oo, ((y;) # 0 for every j € N
and

Consider the sets
. 1. L 1.,
Bj:={zey; :|z[| <1}, Bo:={rev :|z[<1}

and define the cylinders

Y 1
Ci={az+t2 :xzeB;, te|0,—| .
! { |yj ’ [ \C(w)l”

For y € R" let [, denote the linear function x +— x - y. Consider the sequence

U; = lyj + ch
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in Convq(R™). By construction, mingeqom(u,) %j(z) = 0. For ¢ > 0, the sublevel sets
are given by

. =<z sy— T s min t ;
{u; <t} {+ 5 € B, elO {!y;! !(yj)\H}’

so {uj <t} — By in this case. Obviously, the sublevel sets are empty for ¢ < 0.
Lemma 1.11 thus implies that the sequence (u;) converges to Ip__.

Now note that S, (K") is concentrated on (H NS"™) U {\}ylj-:y?lw \/(fjj—,\ZIQ }, S0

Z(uj) :/Snﬁ (K N)
7_1 ~ 9 1
= [ ) ) i ((%)2) V 1+ ly;[*vol,(Cj)
1+\yy V14 y;l
:C(yj)vo = Knp-—1,

because 1) is symmetric with respect to H and vanishes on S N H. By continuity we
obtain
Z(Ip,) = lim Z(uj) = kp—1.

]—}OO

On the other hand, Z is n-homogeneous and B, is a convex set of dimension n — 1,
so Z(Ip., ) =0, which is a contradiction. Thus ¢ has compact support.

Therefore, obtain

where ¢ has compact support.

Finally, let us show how one can use McMullen’s Theorem 2.5 to see that ( is
uniquely determined by the valuation Z. Let us thus assume that ¢, (" € C.(R") are
such that for all u € Convq(R")

Z(u) = /d oy STl o = / ¢ (Vu(x)) da.

dom(u)

Consider the functions 7,1’ € C(S™) given for (y,—/1—|y[?) € S", y € {y € R":

ly| <1}, by
n (y —\/1- Iylz) i=( (W) V31— lyl
' (y —y/1- Iyl2> =(’ <\/13W> V1= Iyl

As the support of these functions is strictly contained in S™, we extend them trivially
to S". Using Theorem 1.18, we obtain

Y(K) = Z(K) = [ ndSu(K) = [ o dS,(K)
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for all K € #™*!. By McMullen’s Theorem 2.5, iy and 7’ thus differ by the restriction
of a linear function to S”. However, they are both equal to 0 on the complement of

S™, so n — 1 vanishes on an open subset. As this difference is linear, it thus has to

vanish identically. In particular, n = 7'. O

Let us add the following observation.

Corollary 2.20. Let Z : Conveq(R™) — R be a continuous, epi-translation invari-
ant valuation that is epi-homogeneous of degree n. Then Z extends uniquely to a
continuous valuation on Convg,(R™).

Proof. By Theorem 2.19, any such valuation Z : Conv.q(R") — R is given by

Z(u) = /dom(u) ((Vu(x))dz for u € Conveq(R"™)

for some ¢ € C.(R™). The right-hand side of this equation defines a continuous
valuation on Convg.(R™) by [CLM20b, Proposition 20|, which yields the desired
continuous extension. As Conv.q(R"™) C Conve(R"™) is dense, this extension is
unique. O

2.2.2 Proof of Theorem 2.15

For the proof of Theorem 2.15, we will switch to the dual setting: For any functional
Z : Convg.(R™) — R, we may define a functional Z* : Conv(R",R) — R by

Z*(u) = Z(u*) for u € Conv(R",R),

where u* denotes the Fenchel-Legendre transform. In Conv(R",R), by the duality
induced by the Fenchel-Legendre transform, we replace epi-translation with dual
epi-translation, i.e., for a linear functional L : R™ — R™ and ¢ € R, the map

Conv(R",R) — Conv(R",R)
v—v+L+c
is the dual epi-translation corresponding to the affine function L+c¢. Again by duality,

we consider the following properties (see also the discussion in [CLM20a, Section
3.1]).

Z is a valuation if and only if Z* is a valuation.

Z is continuous if and only if Z* is continuous.

Z is epi-translation invariant if and only if Z* is dually epi-translation invariant,
that is,

Z*(u) =Z*(u+ L+c)

for every linear functional L : R” — R and c € R.

Z is epi-homogeneous of degree i if and only if Z* is i-homogeneous in the
classical sense, that is,

Z*(tu) = t'Z*(u) for all u € Conv(R™ R),t > 0.
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Now assume that Z is epi-homogeneous of degree 1. It is a general fact that
1-homogeneous valuations are additive, that is

Z*(u+v)=Z"(u)+ Z*(v) for all u,v € Conv(R",R). (2.2.3)

This can be directly proved by studying the polarization of the valuation. See
[CLM20b, Corollary 24] for a proof.

Goodey-Weil distributions. Before proving Theorem 2.15, let us briefly introduce
some preliminary notions concerning the theory of distributions. As reference, we use
the book by Rudin [Rud91]. Consider the space of infinitely differentiable functions
with compact support on R”, denoted by C2°(R™). On this space, we consider the
usual topology (see [Rud91, Definition 6.3] for the details).

A continuous linear functional on Cg°(R™) is called a distribution, and the space
of distributions is denoted by D'(R™). A characterization for distributions is the
following (see, for example, [Rud91, Theorem 6.8]): a linear functional T on CZ°(R™)
is continuous if and only if, for every compact subset A C R™ there exists a constant
¢(A) and k € N such that for every ¢ € C°(R") with support contained in A,

T < (Al fllr

where
[fller == sup{|0® f(z)|: v € R", |o| < k}. (2.2.4)
Here a = (aq,...,0p),a; € N;1 < i < n, is a multi-index, |a| = a1 + -+ + ay, and
Hlel
0“f =

8a1x1 .. .aanl'n :

When a distribution T" has compact support, that is, there exists a compact set
A C R” such that

T(f)=1T(h)

for every f,h € C°°(R™) such that f(x) = h(z) for every z in a neighborhood of A, we
can consider T" as a functional on C*°(R") instead of C°(R™) (see [Rud91, Theorem
6.24]). Indeed, we can consider a function h € C2°(R") such that h =1 on A, and
for T'€ D' (R™) supported on A we can define

T(f) =T(hf)

for every f € C*°(R"™). By the definition of support, this extension is independent of
the choice of h.

In [Kno21], property (2.2.3) was used to lift dually epi-translation invariant
valuations to distributions on R".

Theorem 2.21 ([Kno21| Theorem 2). For every 1-homogeneous, dually epi-translation
invariant, continuous valuation Z : Conv(R"™ R) — R there ezists a unique GW(Z) €
D' (R™) with compact support which satisfies

GW(Z)[u] = Z(u) for all u € Conv(R",R) N C*(R").
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A similar construction is possible for homogeneous valuations of arbitrary degree
of homogeneity. It is based on ideas of Goodey and Weil [GW84] for translation
invariant valuations on convex sets. For the convenience of the reader we report the
sketch of the proof in the 1-homogeneous case since it is very instructive and gives a
powerful insight on the machinery at hand.

Sketch of the proof of Theorem 2.21. The proof consists of two main parts: Existence
and compactness of the support.

FEzistence. The main idea is to define GW(Z) by evaluating Z on differences of
convex functions. By [Kno21, Lemma 5.1], if we consider the space CZ(R") of twice
differentiable functions such that

I8llcz = 9l + IVSlloo +  sup  (D*¢(2)€) - &

z€R? £eSn—1

is bounded, for every ¢ € CZ(R") there exist f,h € Conv(R" R) N C*°(R") such
that f — h = ¢ and for every compact set A C R" the restrictions of f and h to A
are bounded by c(A)HéHCg, where c¢(A) = sup,e 4 |2|?/2 + 1.

Now, if Z is a 1-homogeneous, dually epi-translation invariant, continuous valua-
tion, for ¢ € CZ(R™) and f,h as above we can define the functional

GW(2)[¢] = 2(f) — Z(n).

By (2.2.3), this definition is independent on the choice of f and h, and the functional
is unique.

Consider the set F' of convex functions bounded by ¢(A) for every compact set
A in the sense of Proposition 2.16. Then, by that proposition (since I is closed),
F' is a compact subset of Conv(R™,R). Note that the functions f = f/||¢|| cz and

h = h/HqﬁHcg are in F'. Then,

IGW(Z)[l < 1Z(h) = Z())| < 1Z(h) = Z(DlIgllcz < 2igg|Z(v)lll¢HCg- (2.2.5)

The space of twice differentiable continuous functions with compact support
C?(R") is contained in the space of differences of elements of Conv(R",R) (for a
proof, see, for example, [Kno21, Lemma 5.1]). Therefore, we can consider GW(Z)
as a functional defined on this space. Since C2°(R™) C C%(R™) and the norm ”gf)”c«g
in the last term of the inequality (2.2.5) can be majorized by the norms (2.2.4) for
every k > 2, we have that GW(Z) € D' (R").

Compactness of the support. We will argue by contradiction and assume the
support of Z is not compact. Then we can find a sequence (z;, ¢;) € R™ x C(R")
with the following properties:

1. lim |z;| = oo,
j—00

2. supp ¢; Nsupp ¢; = 0 for every i # j,
3. supp ¢j C (R"\ Bjg;41(0)) for all j € N,
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4. GW(Z)[¢,] = 1.

We may further assume that (|z;|); is strictly increasing, by passing to a suitable
subsequence.

Consider ¢ = Z?’;l ¢;. Since the supports of the functions ¢; are disjoint, ¢ is
locally finite and in C*°(R"™). By [Kno21, Lemma 5.6] since

sup  (D?¢j(x)€)- €< sup  (D*p(x)) - €

2€Bm (0),/¢]=1 z€Bm(0),/¢|=1

for every m € N, there exists h € Conv(R",R) such that for each j € N one has
h+ ¢; € Conv(R",R). Thus for all j € N.

L =GW(2)[¢;] = Z(h+ ¢;) — Z(h).

Note that h + ¢; converges pointwise to h. In particular the convergence is uniform
on every compact subset of R” since for every compact set A there exists j such that
h+ ¢; = h on A for every j > j. Therefore, by Lemma 1.13 h + ¢; epi-converges to
h, and the continuity of Z implies

1= lim GW(Z)[¢;] =0,

Jj—o0

which is the desired contradiction. Thus the support of GW(Z) is compact.

It remains to see that GW(Z)[u] = Z(u) for u € Conv(R",R) N C*>°(R™). Take
¢ € CX(R") with ¢ =1 on B1(0), supp ¢ C B2(0) and set ¢j(z) :== ¢ (%) Then

D?(¢ju)[z] = uD?¢;(x) + V() - Vu(x)” + Vu(z) - Vo] () + ¢;(x) D*u(x)

= Su@ D% (%) + 296 (5) - Vu@) + Vu- v (j)T +6 (%) PPute)

SO

1 2
sup [D*(¢ju)la]| < [ = sup |u(x)|+ = sup [Vu(z)|+ sup [D*u(z)| | ¢llc2gn)-
zER™ J% |e|<2j D |z|<2j x<2j b

Therefore, we can apply [Kno21l, Lemma 5.6] to find h € Conv(R",R) such that
h+ ¢;u € Conv(R"™,R) for j € N. As GW(Z) has compact support,

GW(Z)[u] = lim GW(2)[(¢ju)] = lim Z(¢;ju) = lim (Z(h + dju) — Z(h)).

j—00 Jj—00

But h + ¢ju converges uniformly on compact sets to h + v and thus epi-converges.
Thus the continuity and linearity of Z imply

CW(2D)[u] = Z(h +u) — Z(u) = Z(u) + Z(h) — Z(h) = Z(u),

which yields the desired formula. ]
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For a 1-homogeneous, dually epi-translation invariant, continuous valuation Z on
Conv(R™, R), we define the support supp Z := supp GW(Z). Then this is a compact
subset of R™ which has the property that

Z(u) = Z(v) for all u,v € Conv(R",R) s.t. u = v on a neighborhood of supp Z,

compare [Kno21, Proposition 6.3].

If T is a distribution with compact support and ¢ € C*°(R™), we define their
convolution (see [Rud91, Definition 6.34]) as

which is a function in C°°(R™). For ¢ € C°°(R") consider its reflection ¢(z) = ¢(—x).
If T is a distribution, then 7" is again a distribution characterized by
Txd=Tx¢.
Lemma 2.22. If T is a distribution with compact support, and ¢ € C°(R™), 1) €
C>°(R™), then
T(W+0) = [ v@T@(-a)de= [ $@T@(-a)dz.
Proof. Notice that, in general,

T(¢) = [T+ ¢)(0)

for every ¢ € C*°(R™). Moreover, since T" has compact support, by [Rud91, Theorems
6.35 and 6.37] the convolution and its standard properties are well defined even
though ¢ ¢ C2°(R™). Then, by the commutativity of the convolution and swapping
the roles of ¢ and 1, we infer

T(y % ¢) = [T % (¥ % $)(0) = [T+ (¢ % $)](0) =
[T %1 % ¢](0) = [+ T+ ¢](0) = [ = (T * ¢)](0) =
0 (TN0) = [ $@)T(( ) do.

n

The second equality in the statement follows swapping the roles of ¢ and ¥ in
the same calculations. O

Proof of theorem 2.15. The following Lemma can also be deduced from [Kno,
Theorem 1] in combination with Lemma 5.3 of the same article. The proof we give
here is self-contained and does not rely on the machinery developed in [Kno]. It uses
a standard approximation argument, which we include for the convenience of the
reader.

Lemma 2.23. Let Z : Conv(R",R) — R be a valuation that is continuous, dually
epi-translation invariant, and homogeneous of degree 1. If supp Z C Bgr(0), then
there exists a sequence () in C°(R™) such that
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1. supp ©; C Bry1(0) for all j € N,
2. Jgn ¥j(x)dax = [gn zitpj(x)de =0 for all1 <i<n forall j €N,

and such that the valuations Z; given by

2(v) = [ v@ysy(e)do

are continuous on Conv(R™ R), dually epi-translation invariant and converge uni-
formly to Z on compact subsets of Conv(R™, R).

Proof. First, notice that the continuity of the Z; is immediate by construction, by
Lemma 1.13. Let T := GW(Z) denote the Goodey-Weil distribution of Z. Fix a non-
negative function ¢ € C°(R") with [zn ¢(z) dz = 1, supp ¢ C B;(0) and consider the

sequence ¢; == j"¢(j-),j € N. Then, the functlons drj(x) =T(pj(- —x)) =T * gz;j
define a sequence in C°(R™). Every ¢r ; is supported in Br41(0) for every j € N
(since the support of the convolution is included in the Minkowski sum of the
supports; see, for example, [Rud91, Theorem 6.37]). To these functions we associate
the distributions

= [ é@or,@da for v e C(R").

Notice that, equivalently,
Ti () = T (Y * ¢y),
by Lemma 2.22.

If [ is an affine function, then the usual convolution of functions

EXHRC /l —x)pj(z)dx

is affine as well. Indeed, if [(z) =z -b+c¢,b e R" c € R,

o)) = [ [=a)-b+da@yde=y-b [ o,@)da+ [ (c=a-b)o;@)da

By Lemma 2.22 with ¢ = [ and ¢ = ¢;, we obtain

[ @@y de =T (156

Since [ is affine, by the definition of Goodey-Weil distribution, and noticing that
Z vanishes on affine functions since it is homogeneous and dually epi-translation
invariant,

/Rn l(x)¢ij(x) dr = Z(l * ¢J) =0
Indeed,
| t@ors@da = [ (@ vory@dzte | orw)da

and b € R"™ and ¢ € R are arbitrary. Therefore, we have that condition 2 in the
statement, with ¢; = 7 ;, holds.
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Now, we define Z; : Conv(R",R) — R by

2j(0) = [ v(@)éry(w) do.

For every u,v € Conv(R",R) such that u V v,u A v € Conv(R",R), we have u(z) +
v(z) = (uVwo)(x)+ (uAv)(x), and therefore since Z; is linear

Zi(uVvu)+ Zj(uhv) =ZjuVv+uAv)=Zj(u+v) = Zj(u) + Z;(v)

for every j. Thus Z; is a valuation. Since epi-convergence in Conv(R",R) is
equivalent to uniform convergence on compact sets of R” and since the support of
¢r,; is compact, Z; is continuous. Property 2 of the statement implies that Z; is
dually epi-translation invariant. It is straightforward to check that GW(Z;) = T}. It
remains to check that (Z;) converges to Z uniformly on compact subsets. To see
this, notice that for v € Conv(R",R) N C*°(R™) the function

o @) = [ (= 2)ss(a) do.
is convex as ¢; is non-negative. Moreover, by Lemma 2.22

T(0sy) = [ T(—2)6;(x) da.

Then, for any v € Conv(R",R) N C*°(R")
Zi(v) =GW(Zj)l] = T3 (v) = | T(( = 2))¢;(x)dz

— [ Z(u(- - 2))¢; () da

Rn

We want to prove that the previous identity remains valid for every v € Conv(R™ R).
On Conv(R™, R), the topology induced by epi-convergence coincides with the topology
of uniform convergence on compact subsets of R", see [RW98, Theorem 7.17]. Using
this fact, it is easy to see that the map

Conv(R",R) x R" — Conv(R",R)
(v, 2) = v(- — z)

is jointly continuous. In particular,

v [ Z(0( - 2))g;(x) du
]Rn

defines a continuous valuation on Conv(R"™, R). By continuity, we thus obtain
Zj(v) = Z((-—x))¢;j(x)dx for all v € Conv(R",R).
Rn

Let € > 0 be given. Our previous discussion implies
L. 20 —a)ssayde = [ Z@)o,@)da
< [ 120 = @) = 2(0)] ¢5(2) da.

|1Z(v) = Z(v)] =
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As the map
Conv(R",R) x R" — Conv(R",R)
(v,2) = v(- —x)

is continuous, it is uniformly continuous on compact subsets. Given a compact subset
C C Conv(R™ R), we can thus find § > 0 such that

|Z(v(-—z)) — Z(v)| < e forallve C andall x € R" with |z| < 4.

As ¢ is supported on B1(0), supp ¢; C Bs(0) for all j > %, SO

2,(0) = )| < [ |Z(( = 2)) = Z(0)| 7" () do < ¢
for all v € K and j > %. Thus (Z;) converges uniformly to Z on the compact subset
C C Conv(R™ R), which concludes the proof. O

Proof of Theorem 2.15. Let Z : Convg.(R™) — R be a continuous, epi-translation
invariant valuation that is epi-homogeneous of degree 1. Applying Theorem 2.21 to Z*,
we deduce that it has compact support. Thus, we can assume that supp Z* C Bg(0)
for R > 0 large enough. By Lemma 2.23 applied to Z*, there exists a sequence
¢j € CX(R™) with supp ¢; C Br11(0) such that

Qi) = [ v(@)s;(a) do

defines a sequence of continuous, dually epi-translation invariant, and homoge-
neous valuations of degree 1 that converge uniformly to Z* on compact subsets of
Conv(R™,R). If we consider the sequence of valuations Z; on Convy.(R™) defined by

Z)(w) = Q) = | u'(@)y(@)da,

its elements are continuous, epi-translation invariant, and epi-homogeneous of degree
1. Moreover, they converge uniformly to Z on compact subsets of Convg.(R") since
the Fenchel-Legendre transform establishes a homeomorphism between Convg.(R™)
and Conv(R"™,R) (see [RW98, Theorem 11.8], here (1.1.5)), so the preimage of any
compact subset of Conv(R"™,R) under this map is compact.

It remains to see that Z; has the desired representation on Conveq(R™). Consider
the function b = | B"*1(0)] € Conveq(R"), that is,

R

+o0 |z| > 1.

Then b*(z) = /1 + [z[? — 1. From a direct calculation one infers that det D?b*(z) =
(1 + |z|?)~ /241 and using (1.1.11) we can thus write for u € Conveq(R™)

Zj(w = [ w @@ de= [ o (@)oy@)(1+[af) det DU (@) da

Y. | st gy [ W)
—/dom(b) (Vb(y)) i (Vb(y))(1 + |Vb(y)[2)* T dy = . 1+‘g(N)|2f](N)dN,
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where fj(N) := ¢;(g(N))(1 + |g(N)[>)™/?*! is a function whose support is strictly
contained in the lower half sphere (in particular, f; vanishes in a neighborhood of the
equator), and the change of variable from the first to the second line is z — Vb(y).
We trivially extend f; to a smooth function on S".

By equation (1.1.14), we thus obtain the representation

T CIL ) PN
z) = [ M )N =

(g(IV), —1))> /
hgo | —————22 ] fi(N)dN = hiu(N)fi(N)dN.
In fact, Z;(u) = Jgo hix (N) fj(N)dN for any K € 2! with hx = hgu on S™. As
Zj is epi-translation invariant and epi-homogeneous of degree 1, we thus obtain, for
every z € R", c € R,

0=2; (0' (I{o})) = Zj (I{o}) = Zj (I{z} + C) = /S hi(z.3(N) fj(N)dN.

In the last equality we have used that Iy,y + ¢ = [{(z,¢)}] since {(z,¢)} € AL
As hi(z03(N) = (2,¢)7 - N, we conclude that

| NS (N)AN =0,

The non-negative measure
wi(B) == / (1+ || fjlloo + fj)dN  for a Borel subset B C S"
B
is thus not concentrated on a great sphere and satisfies

N dy;(N) = 0.
N

By Minkowski’s existence theorem (Theorem 1.9 earlier), there thus exists a convex
set L; € ™! such that pj = S,(L;). In particular,

Ziw = [ hae iN)AN = [ b dSu(Ly) = [ hace dSu(§/1+ 1410 Ba(0))

Here we have used that the surface area measure on R"*! is n-homogeneous and

that S, (B1(0)) is the spherical Lebesgue measure. Set W; := {/1+ || fj|looB1(0).
By construction, S, (L;) and S,,(W;) are absolutely continuous with respect to the
spherical Lebesgue measure, and their densities only differ on the support of f;, that
is, on a compact subset contained in the lower half sphere. Therefore

Zj(u) = - hKu dSn(Lj) — o hKu dSn(Wj).

Set ¢; = |Lj|,w;j = |[W;|. By construction, the measures S,(L;) and S,,(K%) agree
on S, and the same is true for W; and K*/. We now apply Lemma 1.18 with
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1N = hgu,u € Convg(R™), and using that support functions are 1-homogeneous, we
thus obtain

Zj(w) = | hice(N)dSu(K5,N) = | hice(N) dSu (K", N)

_ (V@(x), _1> ]
= dom(zj)hKu ( |2) 1+ |VEi(2)|? de

1 + |V£J($)

_/ hcu (Vw;(), ~1) 1+ [Vw;(z)[2 da.
dom(wj) 14+ ‘ij(x)|2

Finally, by (1.1.14)
Z;(u) = / 0 (V8 (2)) do — / o (Vwj(2)) de,
dom(¢;) dom(w;)

and thus Z; has the desired representation. In particular, Z can be approximated
uniformly on compact subsets of Conv.q(R™) by valuations of this type. O
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CHAPTER

Symmetrization processes

Tracing back the origin of a mathematical concept is always a difficult task. Leaving
these technicalities to the historians, one of the first attempts at Convex Geometry
goes back to the work of Steiner on the isoperimetric inequality, tha