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Introduction

One does not simply sum up years of research and training in one manuscript.
Especially if the research and the training concerns one of the most prolific, yet
mysterious, branches of modern Mathematics (at least in the short experience of the
author).

The word "Convexity" in the title is not supposed to be exhaustive, nor precise.
On the contrary, we tried to keep an indecisiveness which reflects the multitude of
aspects in which one can encounter this topic. Strictly speaking, a convex set in a
space (whenever is possible to define geodesic lines) is characterized by the following
property: It contains all the shortest geodesic segments between every couple of
points belonging to the set. Still, it is good practice to introduce an operative
definition of convexity, not in what it is, but on terms of what it does (even though
informally). We (the author) like to think that an object is convex when, through
some kind of dark magic, it is still possible to perform differential calculus with it:
Seeking maxima and minima, studying extremal properties, investigating geometric
phenomena that usually concerns only differential geometry. The list goes on, and
so does the amount of applications of this field.

The first question historically connected with convexity is probably the Isoperi-
metric Problem: That is, which curve in the plane minimizes its perimeter, with the
constraint of enclosing a fixed area. This problem, as well as the answer (the circle!),
was already well known by Hellenic mathematicians. If we move from the plane to
the three dimensional space, solving the same problem explains why a soap bubble
is round. These are simple instances, but, for example, contact surfaces between
soap bubbles and rigid structures to encase them are nowadays a fertile source of
questions and examples stemming new research. In general, studying the surfaces
(as well as other geometric characteristics) of classes of objects is a meaningful and
interesting task, and we try to follow in this tradition.

Since modern problems require modern solutions, it is a matter of fact that a
Mathematician (as every other scientist) cannot rely anymore only on the tools
provided by its native field. New instruments are realized on the border line between
different areas, and Convexity is certainly a branch that understood this lesson a
long time ago. We focus in particular (as the title suggests) on the interplay between
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Introduction

Geometry and Analysis. As it is fundamental and fruitful in the Physics of small
particles to understand the double nature of these objects as waves and physical
matter, when treating a convex object one must never forget its double nature of
geometric and at the same time analytic entity (algebraic and combinatorial aspects
arise too, the specialists will pardon us for the narrow treatment we can provide).
Such double nature is at the core of our work.

This thesis builds on many of the ingredients that lead to the solution of problems
like the Isoperimetric one. For example, one of the classic approaches is study how a
surface behaves under appropriate perturbations, and then use this information to
determine whether or not an adequate solution has been found. This is known as
Variational Approach, and explains why it is interesting and important to evaluate,
in practice, these variations. Such task, in the specific instance of the world of
convex functions, is the aim of Chapter 1. Already from this chapter, it is possible
to understand the meaning of the second part of the title. Indeed, our strategy
does not follow the usual route of employing hardcore calculations in order to study
complex problems related to functions (as one does). Without renouncing to the
hardcore part, we study this problem from a geometric point of view, interpreting
the geometric nature of functions.

In Chapter 2, we dig deeper into the connection with geometry, entering the
world of the Theory of Valuations. This topic saw the light of the world more than a
century ago, and builds on the following question: What are the properties that make
something a measure? Indeed, it is meaningful to understand the intrinsic nature
of objects like volume, or surface area, if one wants to tackle problems concerning
these and other quantities. Without entering on the technicalities of what is the
suitable definition of a measure (but we do not mean the classical notion here), this
field anticipated on many regards what is nowadays known as Geometric Measure
Theory, and it is with it deeply intertwined. One of the most interesting aspects is
that the tools provided by this theory are specifically aimed to study and classify
specific functionals (called valuations) starting from a bunch of properties. In this
chapter we provide an overview of the topic, with a particular emphasis on the
modern developments concerning valuations on spaces of functions. In particular,
spaces of convex functions. Again, we will show how Geometry and Analysis play
together, spacing from geometric constructions to instruments of functional analysis.
The main idea, throughout this treatment, is to show the similarities between this
modern theory and the instruments which built the classical one.

This work closes with Chapter 3, where we talk about Symmetrizations. As
the name suggests, the idea is to work on objects making them more symmetric,
with one catch: Some geometric properties must be preserved in the process. This
kind of instrument allowed one of the first formal solutions of the Isoperimetric
Problem, and has since then been a fruitful source of proofs for many of its variations
and extensions. For example, symmetrization techniques can be employed to study
functionals of the type appearing in Chapters 1 and 2. Nonetheless, we focus on
another aspect of this field. As one does in the Theory of Valuations, in the recent
years there has been a successful attempt to study symmetrizations starting only
from some fundamental properties. Surprisingly, these properties are sufficient to
identify many fundamental behaviors and classify them, shedding a light on an
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Introduction

instrument which is as old as mysterious. We do not use the latter adjective lightly.
The reader will find in the last section of this chapter many examples showing some
pathological behaviors that we have not been able to explain yet, even though they
can be easily formulated.

Regarding the structure of this work, the experienced reader might read the three
chapters in the order they prefer. Chapter 1 starts with a series of preliminaries and
notations that will be kept during the whole manuscript. The other two chapters
are provided with a section introducing the further necessary background, and can
be read independently, provided that one goes through said initial preliminaries
contained in Chapter 1. The main content of all three is made of original works of
the author and collaborators, which we hope can provide a fresh perspective on this
field. We tried to keep the exposition as self contained as possible. Where this was
not feasible, we have provided suitable and extensive references.
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List of symbols

| · | Euclidean norm
∥·∥∞ sup-norm

[A]n−i (n − i)-th elementary symmetric function of the
eigenvalues of a symmetric matrix A : Rn → Rn

λn n-dimensional Lebesgue measure
Bn Euclidean unit ball in Rn

Bn
r (x) Euclidean ball with center at x and radius r in Rn

Sn−1 unit sphere in Rn

Sn−1
− open lower half-sphere in Rn

λn n-dimensional Lebesgue measure
Hn n-dimensional Hausdorff measure
x · y standard scalar product
∂ topological boundary

prH projection from Rn+1 to a copy of Rn identified as
a fixed hyperplane H

∥·∥p Lp norm
∧ pointwise maximum
∨ pointwise minimum

K n non-empty compact convex subsets of Rn

K n
n elements of K n with nonempty interior

Cn compact subsets of Rn

Pn polytopes of Rn

Cn
n elements of Cn with nonempty interior
hK support function of the convex set K
IK indicator function of the convex set K
NK generalized Gauss map of K

NorK normal bundle of K
τK reverse spherical image of K

Sn−1(K, ·) surface area measure of the convex body K
Θi(K, ·) i-th support measure of K
epi(u) epigraph of the function u

dom(u) domain of the function u
D2 Hessian matrix of the function u
∂u subgradient of the function u
u∗ Fenchel-Legendre transform of the function u
u□v infimal convolution of the functions u and v
t u epi-multiplication of the function u by a factor t
∂K− lower boundary of the convex body K
⌊K⌋ function representing the lower boundary of the

convex body K
⌈K⌉ function representing the upper boundary of the

convex body K
g gnomonic projection from Sn

− to Rn
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Conv(Rn) convex and lower semi-continuous convex functions
Convsc(Rn) super-coercive functions in Conv(Rn)
Conv(Rn,R) finite-valued convex functions
Convcd(Rn) functions in Conv(Rn) with compact domain

ρζ recession function of the function ζ
Crec(Rn) continuous functions with bounded and continuous

recession function
[f ] Wulff shape of the function f
FtK Wulff shape of the function hK + tf

supp Z support of the valuation Z
SH Schwarz symmetrization with respect to the sub-

space H
MH Minkowski symmetrization with respect to the sub-

space H
FH Fiber symmetrization with respect to the subspace

H
♢H H-symmetrization
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Chapter 1
A general point of view

1.1 Preliminaries
The ambient space where we work is the Euclidean space Rn, n ∈ N (at times, we
switch the point of view to Rn+1). We start by summarizing some of the main results
from the classical theory of convex bodies and convex functions.

Definition 1.1. A set K ⊂ Rn is convex if for every x, y ∈ K, t ∈ [0, 1],

(1 − t)x+ ty ∈ K.

Of particular interest is the family of non-empty compact convex sets of Rn,
denoted by K n. The theory concerning these sets is nowadays well established. For
an exhaustive exposition, see, for example, the books of Gruber [Gru07], Hadwiger
[Had57], Hug and Weil [HW20], and Schneider [Sch14]. The latter, in particular, is
the main source for these preliminaries.

1.1.1 Convex bodies
Topological properties of K n. We denote by Cn the family of compact subsets of
Rn. Clearly, K n is a subfamily of Cn. Two further subfamilies we consider are

Cn
n := {K ∈ Cn : K has non-empty interior},

and K n
n := K n ∩ Cn

n . The elements in the latter family are called convex bodies.
On Cn, we consider the topology of the Hausdorff metric. The corresponding

distance, for K,L ∈ Cn, is given by

dH(K,L) := max{sup
x∈L

d(x,K), sup
y∈K

d(y, L)},

where d(x,K) := infz∈K |x− z|. We summarize in the following statement the main
properties of Cn when endowed with this metric (see [Sch14, Theorem 1.8.3-1.8.7]).
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1.1. Preliminaries

Theorem 1.2 (Blaschke’s selection Theorem). The space Cn endowed with the Haus-
dorff metric is a complete metric space.
The subspace K n is closed in Cn and therefore is a complete metric space as well.

In these spaces, every bounded subset is compact, and thus every bounded sequence
admits a converging subsequence.

When the boundary ∂K of a set K ∈ K n
n is of class C2

+, that is, the principal
curvatures of ∂K as a manifold are strictly positive, we say that K is C2

+. We have
the following useful fact (for example, see [Sch14, Theorem 2.7.1]).

Proposition 1.3. The set of convex bodies of Rn of class C2
+ is dense in K n with

respect to the Hausdorff metric.

Minkowski addition.

Definition 1.4. Given two sets A,B ⊂ Rn, their Minkowski sum is the set

A+B := {x+ y : x ∈ A, y ∈ B}.

The corresponding operation is called Minkowski addition.

This operation is closed in Cn and K n. The same is not true for measurable sets.
See Sierpinski [Sie20].

For a set A ⊂ Rn we can define its convex hull

conv(A) :=
⋂

K⊂Rn convex, A⊂K

K.

Even though we will not use it, an important subclass of K n is the family Pn of
polytopes, that is, the subsets of Rn obtained as convex hulls of finitely many points.
The diameter is defined as

diam(A) := sup
x,y∈A

|x− y|.

An interesting property of Minkowski addition is the following regularizing effect.
This result can be found, for example, in [Sch14, Theorem 3.1.6].

Theorem 1.5 (Shapley, Folkman, and Starr). Let A1, . . . , Ak ∈ Cn, and suppose that
x ∈ conv(A1 + · · · +Ak). Then there exists a point a ∈ A1 + · · · +Ak such that

|x− a| ≤
√
n max

1≤i≤k
diam(Ai),

hence

dH

(
k∑

i=1
Ai, conv

(
k∑

i=1
Ai

))
≤

√
n max

1≤i≤k
diam(Ai).

Theorem 1.5 will be crucial in Section 3.2.
Denote by Vn the volume corresponding to the standard n-dimensional Lebesgue

measure. A wide portion of the literature in convex geometry is concerned with
estimates of the volume of Minkowski sums. A milestone on this topic is the
Brunn-Minkowski inequality which reads as follows.
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1.1. Preliminaries

Theorem 1.6 (Brunn-Minkowski inequality). Let A,B ⊂ Rn be bounded measurable
sets such that A+B is measurable. Then

Vn(A+B)1/n ≥ Vn(A)1/n + Vn(B)1/n. (1.1.1)

If Vn(A)Vn(B) > 0, equality holds if and only if A and B are homothetic convex
sets up to removing negligible subsets. If A,B ∈ K n, equality can be alternatively
achieved if both A and B lie on parallel hyperplanes.

For a detailed survey on this inequality, its connections to convex geometry, and
its generalizations, see the survey from Gardner [Gar02].

Support functions. To every K ∈ K n we can associate a function to Rn, called
support function, defined as

hK(x) := sup{x · y : y ∈ K}.

This function is positively homogeneous of degree 1, that is, hK(tx) = thK(x) for
every t ≥ 0, x ∈ Rn and K ∈ K n. Thus, its restriction on Sn−1 determines it.
Moreover, for every x, y ∈ Rn

hK(x+ y) ≤ hK(x) + hK(y),

and thus support functions are sublinear. This property completely characterizes
them (see [Sch14, Theorem 1.7.1]).

Theorem 1.7. If f : Rn → R is a sublinear function, then there exists a unique convex
set K ∈ K n with hK = f .

An explicit connection between support functions and convex sets is the following:
For ξ ∈ Sn−1, hK(ξ) gives the signed distance from the origin of the (unique)
hyperplane tangent to K and orthogonal to ξ, such that ξ is an outer normal vector
of K at the contact point. The existence and uniqueness of supporting hyperplanes
for convex sets (in general Banach spaces!) is a crucial topic in functional analysis.
See, for example, the book from Brezis [Bre11].

Support functions behave nicely with respect to Minkowski addition. Indeed, for
every K,L ∈ K n, one has

hK + hL = hK+L.

Mixed volumes. The interaction between volume and Minkowski addition holds
further consequences, as the following theorem shows ( [Sch14, Theorem 5.1.7])

Theorem 1.8. There is a non-negative symmetric function V : (K n)n → R, called
mixed volume, such that for m ∈ N,

Vn(t1K1 + · · · + tmKm) =
m∑

i1,...,in=1
ti1 · · · tinV (Ki1 , . . . ,Kin) (1.1.2)

for arbitrary convex compact sets K1, . . . ,Km and t1, . . . , tm ≥ 0.
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1.1. Preliminaries

Consider for K ∈ K n and t ≥ 0 the particular case K + tBn, known as parallel
set of K. Then (1.1.2) is known as Steiner Formula, and states that

Vn(K + tBn) =
n∑

i=0
tn−iκn−iVi(K), (1.1.3)

where κn−i is the volume of the unit ball in Rn−i. The functionals Vi : K n → R
are called intrinsic volumes. Notice that Vn corresponds to the volume itself. Other
notable cases are V0, which corresponds to the Euler characteristic, 2κn−1/nκnV1,
known as mean width, and 2Vn−1, which is the surface area. The latter can be defined
a priori by the limit

lim
t→0+

Vn(K + tBn) − Vn(K)
t

,

and corresponds to the (n− 1)-dimensional Hausdorff measure of the boundary of
K, Hn−1(∂K).

Surface area and boundary structure. Let K ∈ K n and consider its boundary ∂K.
When K is a C2

+ body, the Gauss map

NK : ∂K → Sn−1

that for each x ∈ ∂K gives the unit normal vector to ∂K at x is well defined and
bijective. When the convex set K is clear from the context, we will omit it and write
N instead of NK .

For every K ∈ K n, the map NK is defined Hn−1-almost everywhere on ∂K. In
the points x where this is not single-valued, we consider NK(x) as the unit normal
cone of K at x, or generalized Gauss map. This is the set of all the unit vectors ξ
such that K has a tangent hyperplane at x with outer normal ξ. Conversely, we can
define the reverse spherical image of K

τK : Sn−1 → ∂K,

which pairs every vector ξ ∈ Sn−1 to the set of points x ∈ ∂K such that ξ⊥ + x is a
supporting plane of K at x with ξ as outer normal vector. Then, the surface area
measure of K is defined as

Sn−1(K,B) = Hn−1(τK(B)) (1.1.4)

for every Borel set B ⊂ Sn−1.
When K is of class C2

+, the measure Sn−1(K, ·) is absolutely continuous with
respect to the Hausdorff measure on Sn−1 and its density at ξ ∈ Sn−1 is the product
of the radii of curvature at the point of x ∈ ∂K such that NK(x) = ξ.

The surface area measures are finite Borel measures on Sn−1, and they are weakly
continuous (see [Sch14, Section 4.2]), meaning that if a sequence of convex compact
sets Km ∈ K n converges to K ∈ K n, then, for every f ∈ C(Sn−1),∫

Sn−1
f(ξ) dSn−1(Kj , ξ) →

∫
Sn−1

f(ξ) dSn−1(K, ξ).

The determination of a convex set from its surface area measure is a problem
known as Minkowski problem. Its solution is classical (see, for example, [Sch14,
Theorem 8.2.2]), and reads as follows.
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1.1. Preliminaries

Theorem 1.9. Let σ be a Borel measure on the sphere Sn−1 with the properties∫
Sn−1

ξ dσ(ξ) = 0

and σ(s) < σ(Sn−1) for each great subsphere s of Sn−1. Then there is a convex body
K ∈ K n

n for which Sn−1(K, ·) = σ.

1.1.2 Convex functions

Definition 1.10. A function u : Rn → R ∪ {+∞} is convex if its epigraph

epi(u) := {(x, t) ∈ Rn+1 : t ≥ u(x)}

is a convex subset of Rn+1. Equivalently, if u ̸≡ +∞ and u ̸≡ −∞, it satisfies the
condition

u((1 − t)x+ ty) ≤ (1 − t)u(x) + tu(y)
for every x, y ∈ Rn, t ∈ [0, 1].

Examples of convex functions are support functions.
The natural space to consider in this setting is

Conv(Rn) := {u : Rn → R∪{+∞} s.t. u is convex, lower semi-continuous, u ̸≡ +∞}.

The domain of a convex function is the set

dom(u) := {x ∈ Rn : u(x) < +∞}.

Notice that a convex function is always (and only) continuous in its domain. Later,
we introduce many subspaces of Conv(Rn) in order to obtain specialized results.

Topological properties of Conv(Rn). On the space Conv(Rn) we consider the
topology of epi-convergence, characterized as follows: A sequence of functions
uj ∈ Conv(Rn) epi-converges to u ∈ Conv(Rn) if for every x ∈ Rn, the follow-
ing conditions are satisfied.

• For every sequence of points xj ∈ Rn converging to x ∈ Rn, u(x) ≤
lim infj→∞ uj(xj).

• There exists a sequence (xj) converging to x, such that u(x) = limj→∞ uj(xj).

We are particularly interested in the subfamily

Convsc(Rn) := {u ∈ Conv(Rn) : lim
|x|→∞

u(x)
|x|

= +∞}

of convex super-coercive functions. Here, a more intuitive characterization is given by
convergence of level sets. For u ∈ Conv(Rn), t ∈ R ∪ {+∞} consider the sublevel set

{u ≤ t} := {x ∈ Rn : u(x) ≤ t}.

For a sequence of functions uj ∈ Conv(Rn) we use the convention {uj ≤ t} → ∅ if
there exists j0 ∈ N such that {uj ≤ t} = ∅ for every j ≥ j0.
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1.1. Preliminaries

Lemma 1.11 ( [CLM20b, Lemma 10]). A sequence of functions (uj) ⊂ Convsc(Rn)
epi-converges to u ∈ Convsc(Rn) if and only if {uk ≤ t} → {u ≤ t} in the Hausdorff
metric for every t ∈ R with t ̸= minx∈Rn u(x).

We provide a further lemma concerning the level sets of coercive convex functions.
This fact can be considered folklore, but since we could not find a suitable source,
we provide a proof for the convenience of the reader.

Lemma 1.12. For every coercive u ∈ Conv(Rn) the family of level sets {u ≤ t} is
continuous in t ∈ R for every t ̸= minx∈Rn u(x) with respect to the Hausdorff metric.

Proof. First, notice that the hypothesis of coercivity is necessary in order for the
statement to make sense. Indeed, it is a classical fact that a convex function is
coercive if and only if all its level sets are compact.

If t < minx∈Rn u(x) then {u ≤ t} = ∅ for every such t, and there is nothing
to prove. Suppose instead that t > minx∈Rn u(x) and the family {u ≤ t} is not
continuous at some t0. Then, we can find a sequence tm,m ∈ N, converging to t0
such that {u ≤ tm} does not converge to {u ≤ t0} with respect to the Hausdorff
metric. Therefore, there exists some α > 0 fixed and independent of m such that we
have at least one of the two following scenarios: We can find a sequence of points
xm ∈ {u ≤ tm} such that d(xm, {u ≤ t0}) > α, or there exists x0 ∈ {u ≤ t0} such
that d(x0, {u ≤ tm}) > α for every m ∈ N.

Suppose the latter case is true. Choose t > minx∈Rn u(x). Then since u is
convex we have that for every y ∈ {u ≤ t} the segment between (y, t) and (x0, t0)
is completely included in epi(u). But then this segment crosses all the level sets
between t and t0, that is d(x0, {u ≤ t}) → 0 as t → t0. As t can be arbitrarily chosen,
we have a contradiction and therefore this scenario is not possible.

Consider then the remaining case. By definition, {u ≤ tm} ⊆ {u ≤ supm∈N tm}
for every m ∈ N. Thus,

(xm, tm) ∈ [ min
x∈Rn

u(x),max
m∈N

tm] × {u ≤ max
m∈N

tm}

for every m ∈ N, and this set is compact. Therefore, we can find a subsequence of
(xm, tm) converging to some (x, t0) and since epi(u) is closed, (x, t0) ∈ epi(u). In
particular, x ∈ {u ≤ t0}. By construction, d(xm, {u ≤ t0}) > α for every m ∈ N,
and by the continuity of the Euclidean distance d(x, {u ≤ t0}) > α, which is a
contradiction. The proof is therefore concluded.

The Fenchel-Legendre transform. On Conv(Rn), we consider the following trans-
form, known as Fenchel-Legendre transform. For u ∈ Conv(Rn), it is defined as

u∗(x) := sup
y∈Rn

{x · y − u(y)}.

Note that since it is the supremum of affine (and thus convex) functions, u∗ is a
convex function. Moreover, for a non-convex function f : Rn → R, it still makes sense
to define f∗ as above if we admit the trivial case f ≡ +∞. Still, when u ∈ Conv(Rn)
one has the important fact

(u∗)∗ = u.

7
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When u ∈ Conv(Rn) ∩C1(Rn), the supremum is now a maximum, and if ȳ is the
point where the maximum is achieved, i.e. u∗(x) = x · ȳ − u(ȳ), a quick calculation
shows that x = ∇u(ȳ). This behavior can be generalized without smoothness
assumptions: What this transform does, in practice, is creating a correspondence
between the subgradient

∂u(x) := {p ∈ Rn : u(y) ≥ u(x) + p · x for every y ∈ Rn}

and the points p of the domain of u∗ such that x ∈ ∂u∗(p), and vice-versa. By
Theorem [Sch14, Theorem 1.5.3], if u is convex then it is lipschitz on compact subsets
of the interior of dom(u), and by Rademacher’s theorem (see, for example [Mag12,
Section 7.3]) the gradient of u exists almost everywhere in dom(u). That is, for
almost every x ∈ dom(u) we have that ∂u(x) = ∇u(x).

For our purposes, note that if we consider the family of real-valued convex
functions

Conv(Rn,R) := {u ∈ Conv(Rn) : u < +∞},

one has that
L : Convsc(Rn) → Conv(Rn,R)

u 7→ u∗ (1.1.5)

is a homeomorphism (see, for example, [RW98, Theorem 11.8]). In analogy with
Lemma 1.11, the epi-convergence on Conv(Rn,R) can be characterized as follows
(see, for example, [RW98, Theorem 7.17]).

Lemma 1.13. A sequence (uj) ⊂ Conv(Rn,R) epi-converges to u ∈ Conv(Rn,R) if
and only if uj → u uniformly on compact subsets of Rn.

In the families Convsc(Rn) and Conv(Rn,R), the transform of u ∈ Convsc(Rn)
behaves as the support function of the epigraph of u (see (1.1.13) later). The opposite
is true as well with suitable precautions.

In analogy with the Minkowski addition, on Conv(Rn), we can consider two
operations: Pointwise addition and infimal convolution. For u, v ∈ Conv(Rn) the
latter is defined as

u□v(x) := inf{u(y) + v(z) : z + y = x},

and u□v ∈ Conv(Rn). For u ∈ Conv(Rn), t ≥ 0, instead of the dilation, we have two
corresponding notions: The classical scalar multiplication and the epi-multiplication

(t u)(x) := tu

(
x

t

)
for t > 0, 0 u = I{0}. It is easy to prove the relation

((t u)□(s v))∗ = tu∗ + sv∗ (1.1.6)

for u, v ∈ Conv(Rn) and s, t ≥ 0. Notice that for u, v ∈ Conv(Rn) and t > 0,
epi(u□v) is the Minkowski sum epi(u) + epi(v), while epi(t v) is the dilation by a
factor t of epi(v).
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Another important relationship is the one between support functions and indicator
functions of convex compact sets. Indeed, if K ∈ K n and K contains the origin, a
quick calculation shows that

IK(x) :=
{

0 if x ∈ K,

+∞ otherwise.

Indeed (IK)∗ = hK .

1.1.3 The space Convcd(Rn)
In this section, we present some tools and introduce the main strategy for many results
in this work. In particular, we need to switch often the point of view between Rn+1

and Rn. To do so, we consider on Rn+1 the standard basis {e1, . . . , en+1}, and we
identify Rn as the subspace with basis {e1, . . . , en}. When referring to a hyperplane
H in Rn+1, when not differently stated, we use the notation H := e⊥

n+1 ≡ Rn.
Our main results concern the space

Convcd(Rn) := {u ∈ Convsc(Rn) : u has compact domain},

which is a subset of Convsc(Rn). We study these spaces with the topology of epi-
convergence introduced earlier. The results and notions exposed in this subsection are
from the author and Knoerr [KU23], where the family Convcd(Rn) was introduced
as a tool to infer geometric properties of convex functions through the properties of
corresponding convex bodies.

These functions can be obtained from convex compact sets in Rn+1 using the
following construction: To every K ∈ K n+1 we associate the function ⌊K⌋ : Rn →
(−∞,+∞] defined by

⌊K⌋(x) := inf{t ∈ R : (x, t) ∈ K}. (1.1.7)

In addition, ⌊K⌋(x) = +∞ if and only if (x, t) /∈ K for all t ∈ R. Analogously, for
every x ∈ Rn and K ∈ K n+1 we can define the concave function

⌈K⌉(x) := sup{t ∈ R : (x, t) ∈ K}.

In this case ⌈K⌉(x) = −∞ if (x, t) /∈ K for all t ∈ R. The following results are
proved only for the map ⌊·⌋ for the sake of brevity, but they also hold for the map
⌈·⌉ since for K ∈ K n one has ⌈K⌉(x) = −⌊RHK⌋(x) + c, where RH : Rn+1 → Rn+1

is the reflection with respect to H and c is a suitable constant.

Lemma 1.14 ( [KU23, Lemma 3.1]). For every K ∈ Kn+1, ⌊K⌋ ∈ Convcd(Rn).

Proof. Note first that ⌊K⌋ is bounded from below by

inf{t ∈ R : (x, t) ∈ K for some x ∈ Rn},

which is finite due to the compactness of K. In particular, ⌊K⌋(x) ∈ (−∞,+∞] for
every x ∈ Rn.

9
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Assume that x ∈ Rn satisfies ⌊K⌋(x) < +∞. As K is compact, this implies that
the infimum in (1.1.7) is attained, so (x, ⌊K⌋(x)) ∈ K in this case. Therefore,

dom⌊K⌋ = prH(K)

where prH : Rn+1 → H ∼= Rn denotes the orthogonal projection. In particular,
dom⌊K⌋ is non-empty, so ⌊K⌋ is proper.

Let us show that ⌊K⌋ is lower semi-continuous. If x ∈ dom(⌊K⌋) and (xj) is a
sequence in dom(⌊K⌋) converging to x, then (xj , ⌊K⌋(xj)) ∈ K for all j ∈ N. In
particular, this sequence is bounded in Rn+1, so t := lim infj→∞⌊K⌋(xj) exists and
is finite. Thus, (x, t) is a limit point of the sequence (xj , ⌊K⌋(xj)) and therefore
belongs to K. In particular,

⌊K⌋(x) ≤ t = lim inf
j→∞

⌊K⌋(xj).

On the other hand, x ∈ Rn \ dom(⌊K⌋) implies that ⌊K⌋ is equal to +∞ on a
neighborhood of x, as the domain is closed. Thus ⌊K⌋ is lower semi-continuous
outside its domain too. It is easy to see that ⌊K⌋ is convex. In total, we thus obtain
⌊K⌋ ∈ Convcd(Rn) for all K ∈ Kn+1.

Lemma 1.15 ( [KU23, Corollary 3.2]). The inclusion Convcd(Rn) ⊂ Convsc(Rn) is
dense.

Proof. For u ∈ Convsc(Rn), set uj := ⌊epi(u) ∩ (Bn
j (0) × [−j, j])⌋. Then uj ∈

Convcd(Rn) for all j ∈ N large enough. As u has compact sublevel sets, given t ∈ R
we have

{uj ≤ t} = {u ≤ t} for all j ∈ N large enough.

Lemma 1.11 thus implies that (uj) converges to u in Convsc(Rn), which shows the
claim.

Lemma 1.16 ( [KU23, Lemma 3.3]). The map ⌊·⌋ : Kn+1 → Convcd(Rn) is continuous.

Proof. Consider a sequence (Kj) ⊂ K n+1 such that Kj → K ∈ K n+1. Then

K̃j := Kj + [0, en+1]

converges to K̃ := K + [0, en+1]. We may thus choose R > 0 such that K̃j , K̃ ⊂
Bn

R(0) × [−R,R] for all j ∈ N.

As ⌊K̃j⌋ = ⌊Kj⌋, ⌊K̃⌋ = ⌊K⌋ for all j ∈ N, we obtain

{⌊Kj⌋ ≤ t} = prH(K̃j ∩ (Bn
R(0) × [−(R+ 1), t])).

and a similar formula holds for the sublevel sets of ⌊K⌋. Note that the sets K̃ and
(Bn

R(0) × [−(R+ 1), t])) can not be separated by a hyperplane for t > min(x,s)∈K̃ s =
minx∈Rn⌊K⌋(x). For t > minx∈Rn⌊K⌋(x), [Sch14, Theorem 1.8.10] thus implies
K̃j ∩ (Bn

R(0) × [−(R+ 1), t]) ̸= ∅ for every j ∈ N sufficiently large and

K̃j ∩ (Bn
R(0) × [−(R+ 1), t]) → K̃ ∩ (Bn

R(0) × [−(R+ 1), t])

10
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for j → ∞. Applying the natural projection onto H to both sides, we obtain for
t > minx∈Rn⌊K⌋(x)

{⌊Kj⌋ ≤ t} → {⌊K⌋ ≤ t}.

On the other hand, t < minx∈Rn⌊K⌋(x) implies that {⌊K⌋ ≤ t} = ∅. Therefore
{⌊Kj⌋ ≤ t} = ∅ for almost all j ∈ N, as we may otherwise find a sequence xjk

∈ Rn

with

(xjk
, ⌊Kjk

⌋(xjk
)) ∈ K̃jk

∩ (Bn
R(0) × [−(R+ 1), t]),

from which we can construct a limit point (x, t0) ∈ K̃ ∩ (Bn
R(0) × [−(R+ 1), t]).

Lemma 1.11 thus implies that ⌊Kj⌋ → ⌊K⌋ in the topology of epi-convergence. As
Convcd(Rn) inherits the topology from Convsc(Rn), this shows that ⌊·⌋ is continuous.

Conversely, we may associate to any u ∈ Convcd(Rn) a convex set in the fol-
lowing way: Consider, for u ∈ Convcd(Rn), its epigraph epi(u). We set Mu :=
maxx∈dom(u) u(x), which is finite since the domain of u is compact and u is convex,
and define

Ku := epi(u−Mu) ∩RH(epi(u−Mu)) +Muen+1, (1.1.8)

where RH is the reflection with respect to H. This is a compact and convex set, so
Ku ∈ K n+1. We thus obtain a map

Convcd(Rn) → K n+1

u 7→ Ku.
(1.1.9)

By construction u = ⌊Ku⌋ for u ∈ Convcd(Rn). In particular, we have the following.

Lemma 1.17. The map ⌊·⌋ : Kn+1 → Convcd(Rn) is surjective.

Consider the lower half-sphere Sn
− := {X ∈ Sn : X · en+1 < 0}. We define the

lower boundary of K by

∂K− := {X ∈ ∂K : some unit normal to K in X belongs to Sn
−}.

Notice that the graph of ⌊K⌋ coincides with the closure of ∂K−.
If K is C2

+, the map that associates to X ∈ ∂K its unique outer normal unit vector
establishes a diffeomorphism between ∂K− and Sn

−. More generally, if K ∈ Kn+1 is
a convex set such that there exists an open subset U ⊂ Rn+1 with the property that
U ∩ ∂K is the graph of a convex function of class C2

+, then NK : ∂K ∩ U → Sn is
well defined and establishes a diffeomorphism onto an open subset of Sn. In this
case, we can relate integrals over ∂K ∩ U to integrals with respect to the surface
area of K by∫

Sn∩NK(∂K∩U)
η(N) dSn(K,N) =

∫
∂K∩U

η(NK(X)) dHn(X), (1.1.10)

where η : Sn∩NK(∂K∩U) → is a bounded Borel measurable function, compare [Sch14,
(2.61)].
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On the other hand, if u ∈ Convcd(Rn), then the closure of ∂Ku
− ⊂ Rn+1 is the

graph of u, and we can parameterize it using the map

fu : dom(u) → Rn+1

x 7→ (x, u(x)).

If γ : Rn+1 → R is bounded and Borel measurable, then we obtain using the area
formula [Mag12, Theorem 8.1]∫

∂Ku
−

γ(X) dH(X) =
∫

dom(u)
γ ((x, u(x)))

√
1 + |∇u(x)|2 dx, (1.1.11)

where
√

1 + |∇u(x)|2 is the approximate Jacobian of fu.

If u ∈ Convcd(Rn) is differentiable in x ∈ dom(u), then (∇u(x),−1)√
1+|∇u(x)|2

is the unique
unit outer normal to epi(u) in (x, u(x)). Since u is convex, it is differentiable almost
everywhere, and thus the unit normal vectors to the epigraph are defined almost
everywhere. We have the following.

Lemma 1.18 ( [KU23, Corollary 3.7]). For every u ∈ Convcd(Rn) and η ∈ C(Sn
−)

∫
Sn

−

η(N) dSn(Ku, N) =
∫

dom(u)
η

(
(∇u(x),−1)√
1 + |∇u(x)|2

)√
1 + |∇u(x)|2 dx. (1.1.12)

Proof. If K ∈ Kn+1 is C2
+, then u := ⌊K⌋ satisfies the equation by direct change

of variable. If u ∈ Convcd(Rn) is an arbitrary function, then we may approximate
Ku in the Hausdorff metric by a sequence (Kj) of C2

+ bodies. As the surface area
measure is weakly continuous [Sch14, Theorem 4.2.1], we obtain∫
Sn

−

η(N) dSn(Ku, N) =
∫
Sn
η(N) dSn(Ku, N) = lim

j→∞

∫
Sn
η(N) dSn(Kj , N)

= lim
j→∞

∫
Sn

−

η(N) dSn(Kj , N)

= lim
j→∞

∫
dom(⌊Kj⌋)

η

 (∇⌊Kj⌋(x),−1)√
1 + |∇⌊Kj⌋(x)|2

√1 + |∇⌊Kj⌋(x)|2 dx.

On the other hand, the map u 7→
∫

dom(u) η

(
(∇u(x),−1)√

1+|∇u(x)|2

)√
1 + |∇u(x)|2 dx is con-

tinuous with respect to epi-convergence by [CLM20b, Proposition 20]. As ⌊·⌋ is
continuous by Lemma 1.16, we thus obtain

∫
Sn

−

η(N) dSn(Ku, N) = lim
j→∞

∫
dom(⌊Kj⌋)

η

 (∇⌊Kj⌋(x),−1)√
1 + |∇⌊Kj⌋(x)|2

√1 + |∇⌊Kj⌋(x)|2 dx

=
∫

dom(⌊Ku⌋)
η

(
(∇⌊Ku⌋(x),−1)√
1 + |∇⌊Ku⌋(x)|2

)√
1 + |∇⌊Ku⌋(x)|2 dx.

As ⌊Ku⌋ = u, the claim follows.
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Consider the Fenchel-Legendre transform of the function ⌊K⌋ obtained by K ∈
Kn+1. Via explicit calculations we infer

hK(y,−1) = sup{X · (y,−1) : X ∈ K} = sup{X · (y,−1) : X ∈ ∂K}
= sup{(x, ⌊K⌋(x)) · (y,−1) : x ∈ dom(⌊K⌋)}
= sup{x · y − ⌊K⌋(x) : x ∈ dom(⌊K⌋)}
= sup{x · y − ⌊K⌋(x) : x ∈ Rn} = ⌊K⌋∗(y).

(1.1.13)

When K = Ku for some u ∈ Convcd(Rn), (1.1.13) takes the form

hKu(y,−1) = u∗(y) (1.1.14)

which will be very useful in the following pages. The map

K 7→ hK(·,−1)

was already considered, for example, by Knoerr in [Kno21] to create a correspondence
between K n+1 and Conv(Rn,R). Equation (1.1.13) shows that the point of view
presented here and the one in [Kno21] are dual. We conclude with a remark on the
integrability of specific functions, which will be useful later.

Corollary 1.19 ( [KU23, Corollary 3.8]). If u, v ∈ Convcd(Rn), then x 7→ v∗(∇u(x))
is integrable on dom(u).

Proof. By Lemma 1.18,∫
dom(u)

v∗(∇u(x)) dx =
∫

∂Ku
−

v∗(∇u(x))√
1 + |∇u(x)|2

dHn((x, u(x)))

=
∫

∂Ku
−

h∗
Kv (∇u(x))√
1 + |∇u(x)|2

dHn((x, u(x)))

=
∫
Sn

−

hKv (N)dSn(Ku, N) ≤ V (Ku[n− 1],Kv).

Since the surface area measure of a convex set is finite, the claim follows.

1.2 First variations for measures of epigraphs
One of the trending topics in the last years concerning convexity is marginals of
measures. The idea is pretty simple, and it is the one we are used to from the
first courses in probability. In particular, we are interested in the following cases.
Consider over Rn+1 a measure µ such that

dµ(z, x) = dω(z)dη(x), z ∈ R, x ∈ Rn

where ω and η are positive Borel measures on R and Rn respectively. The space of
interest is always some subset of the family of functions Conv(Rn), and we want to
evaluate the measure of the epigraph of u through µ, that is

µ(epi(u)) =
∫

epi(u)
dµ(z, x) =

∫
dom(u)

∫ +∞

u(x)
dω(z)dη(x).
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Ignoring, for now, the various summability assumptions, if we define Φ(t) =
ω([t,+∞)) we can write

µ(epi(u)) =
∫

dom(u)
Φ(u(x)) dη(x).

We focus on the case where there exist ϕ ∈ C(R) and ψ ∈ C(Rn) such that dω(z) =
ϕ(z)dz and dη(x) = ψ(x)dx.

For simplicity, we work in the family Convcd(Rn). For u, v ∈ Convcd(Rn), we
want to evaluate (when it exists) the first variation

lim
t→0+

µ(epi(u□(t v))) − µ(epi(u))
t

, (1.2.1)

where u□v is the infimal convolution of u and v, while t v is the epi-multiplication.
Colesanti and Fragalà [CF13, Theorem 4.6] were the first to investigate this topic,
and building from that and the successive literature, in Theorem 1.32 we prove that
(1.2.1) exists and is equal to∫

dom(u)
v∗(∇u(x))ϕ(u(x))ψ(x) dx

+
∫

∂dom(u)
hdom(v)(N(y))Φ(u(y))ψ(x) dHn−1(y).

(1.2.2)

Here N(y) is the outer unit normal vector at y ∈ ∂dom(u), which is well-defined
Hn−1-almost everywhere since dom(u) is convex. In fact, we will prove a formula
contemplating a wider class of deformations, which we introduce in the next section.
Doing so, at the end of this chapter we show a variant of [Rot22a, Theorem 1.5]
(which for the convenience of the reader is reported later as Theorem 1.35).

1.2.1 Wulff shapes of convex functions
The concept of Wulff shape, introduced more than a century ago by Wulff [Wul01],
is nowadays a well-established scientific tool, especially in the study of the shapes of
crystals. Significant developments have been obtained throughout the 20th century
from the mathematical perspective. See, for example, the work of Fonseca [Fon91].

Definition 1.20. Consider a function f : Sn−1 → R. Its Wulff shape is the set

[f ] :=
⋂

N∈Sn−1

H−
N (f(N)),

where H−
N (t) := {x ∈ Rn : x · N ≤ t} is the negative closed half-space with outer

normal N and distance t from the origin. Equivalently, [f ] is the unique maximal
(with respect to inclusion) convex set satisfying the condition

h[f ](ξ) ≤ f(ξ) for every ξ ∈ Sn−1. (1.2.3)

Notice that if f > c > 0 then clearly [f ] is non-empty. In general, if ℓy(x) :=
y · x, y ∈ Rn and f − ℓy > c > 0, then [f ] is non-empty and y is in the interior of [f ].
In particular, if [f ] is non-empty,

[f + ℓy] = [f ] + y, (1.2.4)
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for every y ∈ Rn (notice that ℓy = h{y}). Indeed, by (1.2.3), for every y ∈ Rn

h[f ]+y = h[f ] + ℓy ≤ f + ℓy.

If, by contradiction, h[f ]+y was not maximal for f + ℓy, neither would be h[f ] for f ,
which would contradict (1.2.3), proving (1.2.4).

We now try to extend the same concept to convex functions. To our knowledge,
this is the first time that this approach has been followed, but many of the ideas we
present are scattered around the literature. See, for example, [CEK15,Rot22a]. We
work with u ∈ Convcd(Rn) and ζ ∈ C(Rn) such that its recession function

ρζ(N) := lim
t→+∞

ζ(tN)
t

, N ∈ Sn−1

exists, is finite, and depends continuously on N . With this in mind, we define the
family of functions

Crec(Rn) := {ζ ∈ C(Rn) : ρζ exists and is finite and continuous}.

Consider now the convex compact set Ku associated to u as in (1.1.8), and the
function ζ̄ on Sn

− obtained as

ζ̄(N) := ζ (g(N))√
1 + |g(N)|2

, (1.2.5)

where ζ ∈ Crec(Rn). Here g : Sn
− → Rn is the gnomonic projection, which is given by

N 7→ N − (en+1 ·N)en+1
en+1 ·N

. (1.2.6)

We will make use of the extension of ζ̄ on the whole Sn obtained by reflection on
H, that is, if N = (N1, . . . , Nn+1) ∈ Sn

−, ζ̄(N) = ζ̄((N1, . . . , Nn,−Nn+1)). When
Nn+1 = 0, ζ̄ is extended by continuity (which is finite since ζ ∈ Crec(Rn)). Note that
with the identification Sn ∩H ≡ Sn−1 the continuous extension of the function ζ̄ to
Sn−1 is equal to the recession function of ζ. To make the notation lighter, we refer
to ζ̄ both for the transform (1.2.5) and the extension.

Consider on Sn the function

hu,t(N) := hKu(N) + tζ̄(N)

and its classical Wulff shape [hu,t], which we denote by Ku,t. The function hu,t can
be extended to Rn+1 considering its positively homogeneous extension hu,t(X) =
|X|hu,t(X/|X|) for X ∈ Rn+1, |X| ≠ 0.

Notice that the Fenchel-Legendre transform behaves similarly to the Wulff shape.
Indeed by (1.1.13), for every v ∈ Conv(Rn) (since the concept of support function
can be considered for unbounded sets too)

epi(v) =
⋂

N∈Sn
−

H−
N

(
hepi(v)(N)

)
=

⋂
N∈Sn

−

H−
N

(
hepi(v)((g(N),−1))√

1 + |g(N)|2

)

=
⋂

x∈Rn

H−
g−1(x)

(
hepi(v)((x,−1))√

1 + |x|2

)
=

⋂
x∈Rn

H−
g−1(x)

(
v∗(x)√
1 + |x|2

)
.

(1.2.7)
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In general, if f : Rn → R ∪ {+∞} is proper (thus f∗ is proper by [RW98, Theorem
11.1]), by the definition of the Fenchel-Legendre transform the epigraph of f∗ is the
intersection of the epigraphs of the affine functions x 7→ x · y − f(x), y ∈ Rn (the
supremum of a family of functions corresponds to the intersection of their epigraphs).
These epigraphs are delimited by the affine hyperplanes with unit normal vectors
(x,−1)/

√
1 + |x|2 and distance f(x)/

√
1 + |x|2 from the origin (if f(x) = +∞, the

epigraph of the corresponding hyperplane is trivially equivalent to Rn+1). Then,
equivalently

epi(f∗) =
⋂

x∈Rn

H−
g−1(x)

(
f(x)√
1 + |x|2

)
. (1.2.8)

This relation can be tied with the definition of Wulff shape as follows.

Lemma 1.21. Let u ∈ Convcd(Rn), ζ ∈ Crec(Rn), and t ∈ R. Then⋂
N∈Sn

−

H−
N (hu,t(N)) = epi((u∗ + tζ)∗).

Proof. Notice that using (1.1.14),⋂
N∈Sn

−

H−
N (hu,t(N)) =

⋂
N∈Sn

−

H−
N (hKu(N) + tζ̄(N))

=
⋂

x∈Rn

H−
N

(
hKu(x,−1)√

1 + |x|2
+ t

ζ(g−1(x))√
1 + |x|2

)

=
⋂

x∈Rn

H−
g−1(x)

(
(u∗ + tζ)(x)√

1 + |x|2

)
.

Thanks to (1.2.8), the last line equals to epi((u∗ + tζ)∗), concluding the proof.

Suppose now that ζ = v∗, v ∈ Convcd(Rn). By the homeomorphism (1.1.5),
v ∈ Convcd(Rn) if and only if v∗ is a Lipschitz convex function. In particular,
this implies v∗ ∈ Crec(Rn) and convex. In this case v∗, i.e. the function on Sn

corresponding to v∗ via (1.2.5), coincides with hKv by (1.1.14). Thus, for t ≥ 0,

hu,t = hKu + thKv = hKu+tKv ,

that is, the Wulff shape simply gives a Minkowski addition and [hu,t] = Ku + tKv.
By (1.2.7)

epi((u∗ + tv∗)∗) =
⋂

x∈Rn

H−
g−1(x)

(
(u∗ + tv∗)∗(x)√

1 + |x|2

)
=

⋂
N∈Sn

−

H−
N (hKu+tKv (N)) ,

and thus
⌊Ku,t⌋ = ⌊Ku + tKv⌋ = (u∗ + tv∗)∗ = u□(t v). (1.2.9)

Unfortunately, it is not always the case that for a generic ζ ∈ Crec(Rn) one has

⌊Ku,t⌋ = (u∗ + tζ)∗.
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1.2. First variations for measures of epigraphs

x

y

x

y

Figure 1.1: On the left, the body Ku. On the right, its support function hKu .

Indeed the envelope ⋂
N∈Sn

−

H−
N (hKu,t(N))

might be such that its projection onto e⊥
n+1 is not the same as dom((u∗ + tζ)∗), as

we show in the following example.

Example 1.22. Consider the function u ∈ Convsc(R) given by

u(x) =


−x−

√
2 −

√
2 ≤ x ≤ −

√
2/2,

−
√

1 − |x|2 −
√

2/2 ≤ x ≤ 1,
+∞ otherwise.

Then Ku ∈ K 2 (on the left in Figure 1.1) is such that its support function (on
the right in Figure 1.1) is, in polar coordinates for θ ∈ [−π, π],

hKu(θ) =

 1 −3
4π ≤ θ ≤ 3

4π,√
2√

1+(tan θ)2 otherwise.

Notice that Ku can be determined by considering only the half-spaces corresponding
to θ ∈ [−3π/4, 3π/4]. Indeed, if we define

K̃ :=
⋂

θ∈[−3π/4,3π/4]
H−

(cos θ,sin θ)(hKu(θ)),

one has that
K̃ ⊆ H−

(cos θ,sin θ)(hKu(θ))

for every θ /∈ [−3π/4, 3π/4]. Therefore, K̃ = Ku.

17



1.2. First variations for measures of epigraphs

x

y

x

y

Figure 1.2: On the left, the plot of hKu + tζ̄ (in red, the perturbed part). On the right, the
epigraph of (u∗ + tζ).

Consider ξ ∈ C(S1) such that it is symmetric with respect to the horizontal
axis, ζ(θ) ≡ 0 for θ ∈ [−3π/4, 3π/4], and is strictly positive otherwise. Then, by
construction, for every t ≥ 0

Ku ⊂ H−
(cos θ,sin θ)(hKu(θ) + tξ(θ)),

and therefore
Ku,t = [hKu + tζ̄] = Ku (1.2.10)

for every t ≥ 0.
Fix x0 < −

√
2, and for t ∈ [0, 1] consider the intersection of the line x = tx0

with the line y = −x−
√

2, which is the tangent to Ku with outer unit normal vector
(−

√
2/2,−

√
2/2). We denote this intersection by the point (xt, yt). We now choose

ζ̄ such that the lines determining the half-spaces H−
(cos θ,sin θ)(hKu(θ) + tξ(θ)), θ /∈

[−3π/4, 3π/4], intersect x = tx0 in (xt, yt), while the remaining ones are unchanged.
By explicit calculations, this corresponds to the choice (see Figure 1.2 on the left)

ζ̄(θ) =

 0 −3
4π ≤ θ ≤ 3

4π,
|(

√
2+x0)(| cot θ|−1)|√

1+(cot θ)2 otherwise.

If we consider the envelope⋂
θ∈(−π,0)

H−
N (hKu(θ) + tζ̄(θ)),

by construction we obtain an epigraph whose corresponding function agrees with u in
[−

√
2, 1], with an additional part corresponding to the epigraph of y = −x −

√
2 +

I[x0,−
√

2](x) (see Figure 1.2 on the right). Considering

ζ(x) = ζ̄(g−1(x))
√

1 + (g−1(x))2,

by Lemma 1.21 and (1.2.10) we just proved that, in this example,

⌊Ku,t⌋ ≠ (u∗ + tζ)∗.

18



1.2. First variations for measures of epigraphs

Nonetheless, considering the relation highlighted in Lemma 1.21 and in order to
provide a wider treatment, we introduce the following definition.

Definition 1.23. Fix ζ ∈ Crec(Rn) and consider t ∈ R. Then, for u ∈ Conv(Rn),

ut(x) := (u∗ + tζ)∗(x)

is the functional Wulff shape of u at t with respect to ζ.

In order to work with a well-behaved family of Wulff shapes, from now on we
require the following property.

Definition 1.24. We say that the functional Wulff shape ut has the property (P) in
an interval I if for every t ∈ I

ut = ⌊Ku,t⌋. (P)

This is always satisfied, as we mentioned before, if ζ = v∗, v ∈ Convcd(Rn) and
t ≥ 0. Other examples can be obtained by small non-convex perturbations of the
previous case. Another sufficient condition is the following.

Lemma 1.25. Consider u ∈ Convcd(Rn) and ζ ∈ Crec(Rn). If for every t in an
interval I we have that u∗ + tζ is convex, then (P) is satisfied for u, ζ, and t ∈ I.

Proof. If u+ tζ is convex, then since ζ ∈ Crec(Rn) we have u+ tζ ∈ Conv(Rn), and
therefore there exist bodies Kt ∈ K n such that hKt(x,−1) = u(x) + tζ(x) for every
t ∈ I. Then, by (1.1.13) ut = ⌊Kt⌋. Since

Kt = [hKt ] = [hKu + tζ̄] = Ku,t,

we infer ut = ⌊Ku,t⌋, which is precisely the required property.

Let us provide a practical example (communicated to us by Mussnig [Mus]) where
ζ is non-convex, but u∗ + tζ is.

Example 1.26. Fix c > 0 and consider the function u(x) = c|x| + IBn(x). Its
Fenchel-Legendre transform is given by

u∗(x) =
{

0 |x| ≤ c,

|x| − c |x| ≥ c.

Now, take ζ ∈ Crec(Rn) defined as

ζ(x) =
{

|x| − c |x| ≤ c,

0 |x| ≥ c,

and consider the functional Wulff shape of u at time t with respect to ζ, taking
t ∈ [0, 1]. Notice that if we take the function v(x) = (|x| − c) + IBc(0)(x), then

u∗ + tζ = u∗ ∧ tv,
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1.2. First variations for measures of epigraphs

and by the properties of the Fenchel-Legendre transform

ut = (u∗ + tζ)∗ = (u∗ ∧ tv)∗ = u ∨ (t v∗).

Therefore,

ut(x) =


ct |x| ≤ t,

c|x| t ≤ |x| ≤ 1,
+∞ |x| > 1.

In practice, the perturbation cuts the cone which is the graph of u orthogonally with
respect to its axis, creating a plateau. As t increases, so do the height and width of
the plateau.

When (P) is satisfied, we have the following consequence, which will be funda-
mental in the proof of our main result.

Lemma 1.27. Let u ∈ Convcd(Rn), and ζ ∈ Crec(Rn) such that they satisfy (P) for
t ∈ [0, ε], ε > 0. Consider the segment ℓτ = {sen+1 : s ∈ [0, τ ]}, τ > 0. Then

[hKu+ℓτ + tζ̄] = [hKu + tζ̄] + ℓτ .

Proof. Consider Kτ,t := [hKu+ℓτ + tζ̄],Ku,t = [hKu + tζ̄]. Notice that hℓτ (N) = 0 for
every N ∈ Sn such that N · en+1 ≤ 0 and therefore in these directions

hKu+ℓτ (N) + tζ̄(N) = hKu(N) + hℓτ (N) + tζ̄(N) = hKu(N) + tζ̄(N).

In particular, by property (P) this is sufficient to grant that

⌊[hKu+ℓτ + tζ̄]⌋ = ⌊[hKu + tζ̄]⌋,

and as a consequence we obtain

⌊Kτ,t⌋ = (u∗ + tζ)∗ = ut.

Notice that, by construction, Ku,t is symmetric with respect to e⊥
n+1 up to a suitable

vertical translation. With the notation ũt = ⌈Ku,t⌉, this implies that ut and −ũt are
equal up to a constant. Now, if en+1 ·N ≥ 0, we have

hKu+ℓτ (N) + tζ̄(N) = hKu(N) + hℓτ (N) + tζ̄(N) =
hKu(N) + τen+1 ·N + tζ̄(N) = hKu(N) + h{τen+1}(N) + tζ̄(N).

By (1.2.4),

[hKu + h{τen+1} + tζ̄] = [hKu + tζ̄] + τen+1 = Ku,t + τen+1.

Therefore,

⌈[hKu+ℓτ + tζ̄]⌉ = ⌈[hKu + h{τen+1} + tζ̄]⌉ = ⌈[hKu + tζ̄]⌉ + τ = ũt + τ.
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1.2. First variations for measures of epigraphs

By definition,

Kτ,t =

 ⋂
N ·en+1≤0

H−
N (hKu+ℓτ (N) + tζ̄(N))


∩

 ⋂
N ·en+1≥0

H−
N (hKu+ℓτ (N) + tζ̄(N))


=epi(ut) ∩ epi(ũt + τ) = Ku,t + ℓτ ,

concluding the proof.

The core ideas for the proof of our main result are encoded in the following
properties of Wulff shapes proved by Willson [Wil80]. Consider K ∈ K n, t ≥ 0 and
f ∈ C(Sn−1); we use the notation FtK for the Wulff shape of hK + tf , that is

FtK = [hK + tf ]. (1.2.11)

Theorems 5.1 and 5.6 from [Wil80] read as follows.

Theorem 1.28. If Km → K in K n, tm → t0 in R and Ft0K has non-empty interior,
then FtmKm has non-empty interior for m large and FtmKm → Ft0K in K n.

In particular, Theorem 1.28 implies that FtK is continuous in t.

Theorem 1.29. Let s and t be nonnegative real numbers. Let K ∈ K n
n , f ∈ C(Sn−1)

and assume FtK has non-empty interior. Then

FsFtK = Fs+tK

In the functional notation, Theorem 1.29 reads as

[[hK + tf ] + sf ] = [hK + tf + sf ].

This will be very useful later to obtain differentiability in t for the measure of some
FtK.

A consequence of Theorem 1.28 and Lemma 1.21 is the following.

Corollary 1.30. Consider ζ ∈ Crec(Rn). If a sequence of functions um ∈ Convcd(Rn)
epi-converges to u ∈ Convcd(Rn), tm → t0, epi(ut0) has non-empty interior, and
(P) is satisfied for m sufficiently large and for t sufficiently close to t0, then vm :=
(u∗

m + tmζ)∗ has full-dimensional domain for m large and vm epi-converges to ut0.

Proof. Since epi(ut0) has non-empty interior in Rn+1, then dom(ut0), which coincides
with the projection of epi(ut0) on Rn, has non-empty interior on Rn.

If ut0 is constant on its domain, say ut0 ≡ c ∈ R on dom(ut0), then Kut0 is
contained in the hyperplane {x ∈ Rn+1 : x · en+1 = c} and Kut0 has empty interior.
Assume that ut0 is not constant on its domain. In this case Kut0 has non-empty
interior.
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1.2. First variations for measures of epigraphs

Let us use the notation introduced in (1.2.11), with f = ζ̄. Since Kum → Ku, by
the continuity of the map

Convcd(Rn) ∋ v 7→ Kv ∈ K n+1,

and tm → t0 then Ftm(Kum) → Ft0(Ku), by Theorem 1.28. Moreover, the domain
of ⌊FtmKm⌋ has non-empty interior for m sufficiently large. Since property (P) is
satisfied for t sufficiently close to t0 and m sufficiently large, for these values of m we
have ⌊FtmKm⌋ = (u∗

m + tmζ)∗ = vm and by Lemma 1.16 ⌊Ft0K⌋ = ut0 , completing
the proof in this case.

It remains to deal with the case when ut0 is constant on its domain. In this case
we can prove, arguing as above, that

Ftm(Kum + ℓ) → Ft0(Ku + ℓ),

where ℓ1 = {sen+1 : s ∈ [0, 1]}. This fact and property (P) imply that

(u∗
m + tmζ)∗ = ⌊FtmK

um⌋ = ⌊Ftm(Kum + ℓ)⌋

converges to
ut0 = ⌊Ft0K

u⌋ = ⌊Ft0(Ku + ℓ)⌋.

1.2.2 Measure-theoretic Brunn-Minkowski theory
The measure-theoretic Brunn-Minkowski theory is a relatively recent development in
the world of convex geometry. See, for example, Livshyts [Liv19], Alonso-Gutierrez,
Hernandez, Roysdon, Yepes Nicolàs, and Zvavitch [AGHCR+21], Rotem [Rot22b],
and Kryvonos and Langharst [KL22] and the references therein. Consider a measure
µ on Rn+1 such that is has continuous density Ψ with respect to the Lebesgue
measure (milder hypotheses can be considered, but continuity will suffice for an
exhaustive picture). Then it is possible to generalize the notion of surface area
measure in (1.1.4) considering its weighted version

Sµ,K(B) =
∫

τK(B)
Ψ(X) dHn(X)

for every K ∈ K n and Borel set B ⊂ Sn.
Many achievements, which can be found in the works listed above and the

references therein, have been accomplished starting from this notion. We are mainly
interested in Lemma 2.7 from [KL22], which generalizes Aleksandrov’s Lemma [Sch14,
Lemma 7.5.3].

Lemma 1.31. Let µ be a Borel measure on Rn+1 with continuous density Ψ with
respect to the Lebesgue measure. Then for f ∈ C(Sn) and K ∈ K n+1

n+1 , we have

lim
t→0+

µ([hK + tf ]) − µ(K)
t

=
∫
Sn
f(N) dSµ,K(N) =

∫
∂K

f(NK(X))Ψ(X) dHn(X).
(1.2.12)
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1.2. First variations for measures of epigraphs

Lemma 1.31 was originally formulated asking for the origin to be in the interior
of K. This is not necessary, since the boundary structure of a convex compact set is
invariant under translations, and thus both the set and the measure can be suitably
translated so that the Lemma holds in the form we proposed. Indeed, suppose that
the origin is not contained in K. For every point Y in the interior of K, hK − ℓY > 0,
where ℓY (X) = Y ·X,X ∈ Rn+1, and K − Y has the origin in its interior. Then, by
(1.2.4), we can consider the Wulff shape [hK − ℓY + tf ] to infer by Lemma 1.31

lim
t→0+

µ([hK − ℓY + tf ]) − µ(K − Y )
t

=
∫

∂(K−Y )
f(NK−Y (X))Ψ(X) dHn(X).

Consider Ψ̃(·) = Ψ(· + Y ) and the measure µ̃ which has Ψ̃ as density. By Lemma
1.31, the translation invariance of the Hausdorff measure, and since NK−Y (X) =
NK(X + Y ),

lim
t→0+

µ([hK + tf ]) − µ(K)
t

= lim
t→0+

µ̃([hK − ℓY + tf ]) − µ̃(K − Y )
t

=∫
∂(K−Y )

f(NK−Y (X))Ψ̃(X) dHn(X) =
∫

∂K
f(NK(Z))Ψ̃(Z − Y ) dHn(Z)

=
∫

∂K
f(NK(Z))Ψ(Z) dHn(Z),

proving that in Lemma 1.31 we do not need the origin to belong to the interior of K.

1.2.3 Proof of the variational formula
We are finally ready to prove the main result of this chapter. It reads as follows. We
recall that if ν ∈ Sn−1 ⊂ H ⊂ Rn+1, then ζ̄((ν, 0)) = ρζ(ν).

Theorem 1.32. Let u ∈ Convcd(Rn), and ζ ∈ Crec(Rn) such that they satisfy (P) for
every t ≥ 0 sufficiently small. Consider, moreover, a measure µ on Rn+1 such that
dµ(z, x) = ϕ(z)ψ(x)dz dx with positive functions ϕ ∈ C(R) ∩ L1([a,+∞)) for some
a ∈ R and ψ ∈ C(Rn) such that ϕ(z) → 0 as z → +∞. Then, if 0 < µ(epi(u)) < ∞,

µ(u, ζ) := lim
t→0+

µ(epi((u∗ + tζ)∗)) − µ(epi(u))
t

=
∫

dom(u)
ζ(∇u(x))ϕ(u(x))ψ(x) dx+

∫
∂dom(u)

ρζ(Ndom(u)(y))Φ(u(y))ψ(x) dHn−1(y),

exists and is finite, where Φ(t) =
∫+∞

t ϕ(z)dz.

In particular, if ζ = v∗, v ∈ Convcd(Rn), we recover (1.2.2).
As anticipated, our strategy is to work between convex sets and convex functions.

In order to perform this passage formally, we introduce the family

K n+1
+ :=

{K ⊂ Rn+1 : K is convex, closed, with nonempty interior, and prH(K) ∈ K n
n }.

Notice that this family includes precisely K n+1
n+1 and the epigraphs of the functions in

Convcd(Rn) with n-dimensional domain, where Rn ≡ H = e⊥
n+1. It is good practice,
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1.2. First variations for measures of epigraphs

even though we will not use this in the proofs, to present a topology for this space.
Let K,L ∈ K n+1

+ and let µ be a measure on Rn+1. The µ-symmetric-difference
between K and L is

dµ(K,L) := µ(K∆L) =
∫
Rn+1

χK∆L(x) dµ(x),

where for a measurable set A we denote by χA is characteristic function. In particular,
if we use the Gaussian measure γn+1 on Rn+1, defined by its density

dγn+1(x) = 1
√

2πn+1 e
−|x|2/2 dx,

then dγn+1 defines a metric on K n+1
+ . This follows from the convexity of the involved

sets and the sets being of dimension n+ 1. Notice that dγn+1(K,L) ∈ [0, 1] for every
K,L ∈ K n+1

+ . This kind of metrics were studied in a wider generality by Li and
Mussnig [LM22]. Here we provide a proof that dγn+1 induces an appropriate metric
on K n+1

+ , that is, we can approximate functions in Convcd(Rn) by convex bodies in
K n+1

n+1 .

Lemma 1.33. Let γn+1 be the Gaussian measure on Rn+1. The function dγn+1 :
K n+1

+ × K n+1
+ → [0, 1] is a distance. Moreover, its restrictions to K n+1

n+1 and the
family of epigraphs of functions in Convcd(Rn) induce the topology of the Hausdorff
metric and epi-convergence, respectively.

Proof. The equivalence of epi-convergence and convergence with respect to dγn+1 can
be proved analogously to Theorem 1.2 in [LM22].

To prove that dγn+1 induces the Hausdorff metric on K n+1
n+1 , we use the first part

of the proof as follows: by Lemma 1.11, the Hausdorff convergence of a sequence
Km ∈ K n+1

n+1 to some K ∈ K n+1
n+1 is equivalent to the epi-convergence of IKm to IK

as functions on Rn+1. But as we just proved, this is equivalent to the convergence of
epi(IKm) to epi(IK) with respect to dγn+2 . Direct calculations show that

dγn+1(epi(IKm), epi(IK)) = Cdγn+1(Km,K)

for some absolute constant C > 0, concluding the proof.

For the convenience of the reader, we recall the following classical result (see, for
example, [Rud76, Theorem 7.17]).

Lemma 1.34. Suppose fm : [a, b] → R,m ∈ N is a sequence of functions, differentiable
on [a, b] and such that fm(x0) converges for some x0 ∈ [a, b]. If the derivatives f ′

m

converge uniformly on [a, b], then fm converges uniformly on [a, b], to a function f ,
and

f ′(x) = lim
m→∞

f ′
m(x)

for every x ∈ [a, b].

In the following proof it is convenient to consider

lim
t→0+

µ(epi((u∗ + tζ)∗)) − µ(epi(u))
t
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as the right derivative of µ(epi((u∗ + tζ)∗) at t = 0. With these instruments at hand,
we can start the proof of the main result of this chapter.

Proof of Theorem 1.32. Let us first sketch the outline of the proof. We start by
appropriately re-writing the variational formula (1.2.12) with K = Kv for some
v ∈ Convcd(Rn), Ψ(x, z) = ϕ(z)ψ(x), and f = ζ̄ as defined in (1.2.5). For ṽ = ⌈Kv⌉,
direct computations using (1.1.11) show

lim
t→0+

µ([hKv + tζ̄]) − µ(Kv)
t

=
∫

∂Kv
ζ̄(NKv ((x, z)))ϕ(z)ψ(x) dHn((x, z))

=
∫

dom(v)
ζ(∇v(x))ϕ(v(x))ψ(x) dx

+
∫

dom(v)
ζ(∇v(x))ϕ(ṽ(x))ψ(x) dx

+
∫

∂dom(v)
ζ̄((Ndom(v)(x), 0))

(∫ ṽ(x)

v(x)
ϕ(s) ds

)
ψ(x) dHn−1(x).

(1.2.13)

In particular, notice that ζ̄ restricted to the equator is by definition ρζ . We have
used the following fact: Since v and ṽ are one a suitable reflection of the other,
∇v(x) = −∇ṽ(x) for every x where the gradient exists. For v, the normal to the
epigraph expressed through the gradient is (∇v,−1)/

√
1 + |∇v|2, while for ṽ we have

(−∇ṽ, 1)/
√

1 + |∇ṽ|2. Moreover, by construction ζ̄ (NKv (x, z)) = ζ̄ (RH(NKv (x, z))).
Since

ζ̄ (RH(NKv (x, z))) = ζ̄

(
−∇ṽ(x), 1√
1 + |∇ṽ(x)|2

)
= ζ̄

(
∇v(x), 1√

1 + |∇v(x)|2

)
= ζ(∇v(x)),

we have the integral on the third line of (1.2.13).
From here, for a fixed u ∈ Convcd(Rn) the idea is to approximate epi(ut) with

a suitable sequence of convex bodies, in order to obtain our claim as a limit of the
integrals of the form (1.2.13). Then, we conclude checking the hypotheses required
to apply Lemma 1.34. The proof is structured in three steps, after introducing the
sequence approximating epi(ut).

Fix u ∈ Convcd(Rn) such that 0 < µ(epi(u)). Clearly, dim(epi(u)) = n + 1.
Consider now the segment ℓm = {sen+1 : s ∈ [0,m]} for m ∈ N. We remark that
Ku + ℓm → epi(u) in the symmetric-difference distance dγn+1 as m → ∞. Consider
the sequence of Wulff shapes Km,t := Ft(Ku + ℓm) = [hKu+ℓm + tζ̄]. Notice that
Km,0 is monotonic with respect to inclusion, and thus the sequence µ(Km,0) is
increasing. By the properties of the sequence Km,0 and the measure µ it follows from
the monotone convergence theorem that

lim
m→∞

µ(Km,0) = µ(epi(u0)) = µ(epi(u)).

Moreover, notice that the sequence of sets Km,t converges to epi(ut) in the symmetric-
difference distance topology monotonically. In particular since (P) is satisfied by u
and ζ, Lemma 1.27 implies that Km,t = Ku,t +ℓm, where Ku,t = Ft(Ku) = [hKu +tζ̄].

Step 1 (Limit as t → 0+). Define now um := ⌊Ku + ℓm⌋ and ũm = ⌈Ku + ℓm⌉.
Notice that um = u and ũm = ũ + m, where ũ = ⌈Ku⌉. Then, replacing Kv with
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Ku + ℓm in (1.2.13), we infer

lim
t→0+

µ(Km,t) − µ(Ku + ℓm)
t

=
∫

∂(Ku+ℓm)
f(NKu+ℓm((x, z)))ϕ(z)ψ(x) dHn((x, z))

=
∫

dom(u)
ζ(∇u(x))ϕ(u(x))ψ(x) dx

+
∫

dom(u)
ζ(∇u(x))ϕ(ũ(x) +m)ψ(x) dx

+
∫

∂dom(u)
ρζ((Ndom(u)(x))

(∫ ũ(x)+m

u(x)
ϕ(s) ds

)
ψ(x) dHn−1(x).

(1.2.14)

Notice that for m fixed the integrals in the last three lines of (1.2.14) are all
finite, since they are just a suitable decomposition of the right-hand side of the first
line. We claim that the right-hand side of (1.2.14) converges to∫

dom(u)
ζ(∇u(x))ϕ(u(x))ψ(x) dx+

∫
∂dom(u)

ρζ(Ndom(u)(y))Φ(u(y))ψ(x) dHn−1(y)

as m → ∞. The first integral is determined by the graph of u and thus is fixed by
the sequence we are considering. Concerning the second one, since ũm = ũ+m is
the parametrization of the upper part of ∂(Ku + ℓm), we infer limm→∞ ũm(x) = +∞
for every x ∈ dom(u). Therefore limm→∞ ϕ(ũm(x)) = 0 for every x ∈ dom(u) since
ϕ converges to 0 by hypothesis. Then,∣∣∣∣∣

∫
dom(u)

ζ(∇u(x))ϕ(ũ(x) +m)ψ(x) dx
∣∣∣∣∣ ≤

max
x∈dom(u)

ϕ(ũ(x) +m)
∫

dom(u)
|ζ(∇u(x))ψ(x)| dx.

Since the integral on the right-hand side of the inequality is finite (it is part of the
weighted surface area measure of Ku when in Lemma 1.31 we consider Ψ(x, z) = ψ(x))
and

max
x∈dom(u)

ϕ(ũ(x) +m) ≤ sup
y∈[inf ũ+m,+∞]

ϕ(y) → 0

as m → ∞, the integral on the third line of (1.2.14) converges to 0.
We conclude this step observing that∫

∂dom(u)
ρζ(N(x))

(∫ ũm(x)

u(x)
ϕ(s) ds

)
ψ(x) dHn−1(x)

converges to ∫
∂dom(u)

ρζ(N(x))Φ(u(x))ψ(x) dHn−1(x)

as m → ∞. Indeed ũm(x) → ∞ as m → ∞, thus∫ ũm(x)

u(x)
ϕ(s) ds →

∫ +∞

u(x)
ϕ(s) ds = Φ(u(x))
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increasingly, and the limit is finite by hypothesis. Then since∣∣∣∣∣ρζ(N(x))
(∫ ũm(x)

u(x)
ϕ(s) ds

)
ψ(x)

∣∣∣∣∣ ≤ |ρζ(N(x))ψ(x)| Φ(u(x)),

the desired convergence is granted by the dominated convergence theorem.
Step 2 (The derivative exists). We now prove that µ(Km,t) is differentiable with

respect to t for each t in [0, ε] for every m ∈ N and ε suitably small, and its derivative
converges uniformly as m → ∞ on [0, ε] to∫

dom(ut)
ζ(∇ut(x))ϕ(ut(x))ψ(x) dx+

∫
∂dom(ut)

ρζ(N(x))Φ(ut(x))ψ(x) dHn−1(x).

For m fixed, the differentiability of µ(Km,t) follows from Theorem 1.29. Indeed this
theorem implies

µ(Ft+t0(Ku + ℓm)) − µ(Ft0(Ku + ℓm))
t

= µ(FtFt0(Ku + ℓm)) − µ(Ft0(Ku + ℓm))
t

,

and as long as Km,t0 has non-empty interior we can apply Lemma 1.31 and have, for
t0 ∈ [0, ε],

dµ(Km,t)
dt

∣∣∣
t=t+

0
=
∫
Sn
ζ̄(N) dSµ,Km,t0

(N). (1.2.15)

Notice that Ku + ℓm has non-empty interior for every m since Ku + ℓ1 ⊂ Ku + ℓm.
Thus, we can choose ε such that (1.2.15) remains true for every m and for every
t0 ∈ [0, ε]. Since Km,t is continuous in t by Theorem 1.28 and dSµ,Km,t is weakly
continuous (see Livshyts [Liv19, Proposition A.3]), the right derivative of µ(Km,t) is
continuous in t on [0, ε]. Since if the right derivative of a function is continuous then
the function itself is differentiable (see Bruckner [Bru94, Theorem 1.3, p. 40]), the
function µ(Km,t) is differentiable in (0, ε), as desired.

Step 3 (Uniform convergence). To prove the uniform convergence of the derivatives
(1.2.15), we start by repeating the procedure for the limits of (1.2.14) for t ∈ [0, ε],
ε > 0 as chosen in the previous step. Consider the decomposition in (1.2.14) applied
to Km,t for a general t ∈ [0, ε]. The first integral is independent of m. Indeed
⌊Km,t⌋ = ut for every m since Km,t = Ku,t + ℓm. Furthermore, dom(um,t) = dom(ut)
for every m. For the second integral, notice that since for t → 0+ one has ⌈Km,t⌉ =:
ũm,t → ũm = ũ+m, we can find a sequence of values Mm → +∞ as m → ∞ such
that for every t ∈ [0, ε] we have Mm ≤ mindom(ut) ũm,t. Moreover, notice that for
every x ∈ dom(ut) we have ∇ut(x) = −∇ũm,t(x) since ũm,t is the reflection of ut up
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to a constant. Then, for the second integral in (1.2.14) we have∣∣∣∣∣
∫

dom(ut)
ζ(∇ut(x))ϕ(ũm,t(x))ψ(x) dx

∣∣∣∣∣
≤
(

sup
t∈[Mm,+∞]

ϕ(t)
)∫

dom(ut)
|ζ(∇ut(x))ψ(x)| dx

=
(

sup
t∈[Mm,+∞]

ϕ(t)
)∫

dom(ut)
|ζ(∇ut(x))ψ(x)| dx

=
(

sup
t∈[Mm,+∞]

ϕ(t)
)∫

∂Ku,t
−

|ζ̄(g−1(∇ut(x)))|ψ(x) dHn((x, z))

≤
(

sup
t∈[Mm,+∞]

ϕ(t)
)

max
N∈Sn

|ζ̄(N)| max
t∈[0,ε]

(∫
∂Ku,t

ψ(x) dHn((x, z))
)
,

where g was defined in (1.2.6), and therefore the first line converges to 0 independently
of t. In the last inequality we have used that ϕ ≥ 0 and ∂Ku,t

− ⊂ ∂Ku,t. Notice
that the maximum in t is bounded since Ku,t is continuous in t. Finally, for the last
integral, the convergence is granted again by the dominated convergence theorem
and making use of the fact that dom(ut) = dom(um,t). Indeed, we get∣∣∣∣∣

∫
∂dom(ut)

ρζ(Ndom(ut)(x))Φ(ut(x))ψ(x) dHn−1(x)−

∫
∂dom(um,t)

ρζ(Ndom(um,t)(x))
(∫ ũm,t

ut(x)
ϕ(s) ds

)
ψ(x) dHn−1(x)

∣∣∣∣∣
=
∣∣∣∣∣
∫

∂dom(ut)
ρζ(N(x))

(∫ +∞

ũm,t(x)
ϕ(s) ds

)
ψ(x) dHn−1(x)

∣∣∣∣∣
≤ max

ξ∈Sn−1
|ρζ(ξ)| max

t∈[0,ε]

∣∣∣∣∣
∫

∂dom(ut)
ψ(x) dHn−1(x)

∣∣∣∣∣
(∫ +∞

C+m/2
ϕ(s) ds

)
,

where C = maxt∈[0,ε] maxx∈dom(ut) ut(x). Notice that the maximum on [0, ε] is finite
since the integral is continuous in t, as dom(ut) is the projection on e⊥

n+1 of Ku,t,
which is continuous in t. Then, as m → ∞ the last integral converges to 0 uniformly
on t.

Conclusion. Having concluded all the steps, we can now safely apply Lemma
1.34 with fm(t) = µ(Km,t), concluding the proof.

1.2.4 An application: Moment measures
Consider the case ϕ(z) = e−z, ψ ≡ 1. This point of view has been initially investigated
by Colesanti and Fragalà [CF13] and Cordero-Erausquin and Klartag [CEK15].
The two interpretations stem from independent perspectives. The former aims to
generalize some classical concepts from the Brunn-Minkowski theory. The latter
originates from the interest in the KLS conjecture and solutions of differential
equations in Kähler-Einstein manifolds; see, for example, Klartag [Kla14]. The first
approach required C2 regularity on the interior of the domain, while the second was
restricted to essentially continuous convex functions (see [CEK15, Definition 2]).
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Recently Rotem, in [Rot22a,Rot22c], significantly improved these results, dropping
all regularity assumptions.

Theorem 1.35 (Rotem). Let u, v ∈ Conv(Rn). If 0 <
∫
Rn e−u(x) dx < +∞, then

µ(u, v∗) =
∫

dom(u)
v∗(∇u(x))e−u(x) dx+

∫
∂dom(u)

hdom(v)(N(y))e−u(y) dHn−1(y).

Theorem 1.32 immediately implies the following variant of Theorem 1.35.

Corollary 1.36. For every u ∈ Convcd(Rn) and ζ ∈ Crec(Rn) satisfying (P) for t ≥ 0
sufficiently small, and µ the measure in Rn+1 such that dµ(x, z) = e−zdzdx, the first
variation µ(u, ζ) exists and is finite. Moreover, it has the same form as in Theorem
1.32.
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The truth is too simple: One must
always get there by a complicated route.

Aurore Dupin (a.k.a. George Sand)



Chapter 2
Valuations: Old and new

The theory of valuations has been for decades a powerful tool and a fascinating
subject, connecting analysis, algebra, and geometry. Consider a family E of subsets
of Rn and a commutative semigroup S. Our focus will be in particular on real-valued
valuations, that is, S = (R,+).

Definition 2.1. A functional Y : E → S is a valuation if

Y (A ∪B) + Y (A ∩B) = Y (A) + Y (B)

for every A,B ∈ E such that A ∪B,A ∩B ∈ E .

These instruments were introduced by Dehn to solve Hilbert’s third problem a
few months after it was stated. In fact, it was the first problem from Hilbert’s list to
be solved 1. There the choice for the family of sets was E = Pn, the polytopes of Rn.
More on this can be found, for example, in [Sah79]. It developed as an accessible
and fruitful tool, especially in integral geometry (see [SW08]).

Consider now a real-valued valuation Y . Suppose that on E we have a binary
associative operation (let us denote it by the symbol "+"), and that E is closed under
multiplication for positive real numbers. That is, E is a cone. Our case studies
are K n with the Minkowski addition and the dilation, and Convsc(Rn) and its
subfamilies with infimal convolution and epi-multiplication. For A1, . . . , Am ∈ E and
t1, . . . , tm ∈ [0,+∞) we can consider the polarization of Y

Y (t1A1 + · · · + tmAm).

One of the central concepts in the theory of valuations is that, under appropriate
assumptions, this polarization exhibits a polynomial behavior in the coefficients
t1, . . . , tm. We have seen an example of this in Theorem 1.8. In particular, a crucial
role is taken by the coefficients of these polynomials.

We start by giving a summary of the main results and techniques in this field.
The reader can find in [Sch14, Chapter 6] an exhaustive introduction to the topic.

1In a recent historical research, Ciesielska and Ciesielski [CC18] have traced back a proof of this
result by Ludwik Antoni Birkenmajer. It was written for a mathematical competition in 1882.
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2.1 Preliminaries

2.1.1 Valuations on K n

The main direction in which the theory is developed is for the choice E = K n. The
aim is to classify and characterize valuations that satisfy suitable properties. Let us
define some of those playing a role in this chapter. Let Y : K n → R be a valuation.

1. Continuity: We say that Y is continuous if for every sequence Km → K in the
Hausdorff metric, then Y (Km) → Y (K).

2. G-Invariance: Let G be a group acting on K n. We say that Y is G-invariant
if Y (gK) = Y (K) for every g ∈ G and K ∈ K n. The main choices are the
group of translations and the group of rotations.

3. a-Homogeneity: If there exists a ∈ R such that Y (tK) = taY (K) for every
t ≥ 0,K ∈ K n, we say that Y is a-homogeneous.

We have introduced in Chapter 1 the concept of intrinsic volumes, and it is
quite easy to check that, for example, the functionals Vi for i = 0, . . . , n− 1, n are
valuations. Moreover, they are invariant under rigid motions (that is, the group
generated by rotations and translations), continuous, and i-homogeneous. A bit more
work shows that they are for every i. Something stronger is true for intrinsic volumes,
as the content of the celebrated Hadwiger’s characterization theorem (see [Had57])
shows.

Theorem 2.2. A functional Y : K n → R is a continuous, translation, and rotation
invariant valuation if and only if there are constants c0, . . . , cn ∈ Rn such that

Y (K) = c0V0(K) + · · · + cnVn(K)

for every K ∈ K n.

The main applications of this result consist of integral formulas in stochastic
geometry. Consider, for example, the group of rotations SO(n) and the corresponding
Haar probability measure σ on this group. For an hyperplane H ⊂ Rn consider
the orthogonal projection prH : Rn → H. Then it is easy to prove that, for a fixed
hyperplane H, the functional on K n

K 7→
∫

SO(n)
Vn−1(prθHK) dσ(θ)

is a valuation, and is (n − 1)-homogeneous, continuous and invariant under rigid
motions. Thus, up to a multiplicative constant, this functional is the surface area.
This kind of formula can be generalized to projections on lower-dimensional subspaces,
and it is known as Cauchy-Kubota formula (see, for example, [HW20, Theorem 5.6]).

What happens if we remove the hypothesis of invariance under SO(n)? Again,
even though less explicitly, it is possible to describe the space of these valuations,
which possess a graded algebra structure. It is known as McMullen’s homogeneous
decomposition theorem [McM77] and reads as follows.
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Theorem 2.3. Let Y : K n → R be a continuous, translation invariant valuation.
Then there are continuous, translation invariant valuations Y0, . . . , Yn on K n such
that Yi is homogeneous of degree i, for every i = 0, 1, . . . , n, and

Y (K) = Y0(K) + · · · + Yn(K),

for every K ∈ K n.

If we consider

Val(Rn) := {Y : K n → R : Y is a continuous and translation invariant valuation}

and its subfamilies

Vali(Rn) := {Y ∈ Val(Rn) : Y is i-homogeneous},

for 0 ≤ i ≤ n, then Theorem 2.3 reads as

Val(Rn) =
n⊕

i=0
Vali(Rn).

In other words, continuous and translation invariant valuations form a graded algebra,
where the degree is set by homogeneity.

These functionals can be described more explicitly in four cases, namely i =
0, 1, n − 1, n. For i = 0, Y0 is proportional to the Euler characteristic. For i = n,
Hadwiger [Had57, p. 79] proved the following.

Theorem 2.4. Let Y : Pn → R be a translation invariant valuation on Pn. If Y is
homogeneous of degree n, then Y = cVn with a real constant c. If Y is continuous,
the result is extended by continuity to K n.

The case i = n− 1 was treated by McMullen [McM80].

Theorem 2.5. For a functional Y : K n → R, Y ∈ Valn−1(Rn) if and only if there
exists a continuous function η : Sn−1 → R such that

Y (K) =
∫
Sn−1

η(ν) dSn−1(K, ν) (2.1.1)

for every K ∈ K n. The function η is uniquely determined up to the addition of the
restriction of a linear function to Sn−1.

Finally, for i = 1, Goodey and Weil [GW84] gave the following characterization.

Theorem 2.6. For a functional Y : K n → R, Y ∈ Val1(Rn) if and only if there are
two sequences of convex compact sets (Lj), (Wj) in K n such that

Y (K) = lim
j→∞

[V (K,Lj , . . . , Lj) − V (K,Wj , . . . ,Wj)] (2.1.2)

holds uniformly on compact subsets of K n. That is, for R > 0 fixed, for every
K ⊂ BR(0) the limit in (2.1.2) converges depending only on R.

Later, we prove functional generalizations of Theorems 2.6 and 2.5. To conclude
the picture, McMullen conjectured that all translation invariant and continuous
valuations are approximated by combinations of mixed volumes. This was positively
solved by Alesker [Ale01] through his remarkable Irreducibility theorem.
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2.1.2 Parallel sets and support measures.
We now present some instruments for the local study of the geometry of convex
sets. These instruments play a vital role in the theory of valuations, and we will use
them to recover functional versions of valuations. In Section 1.1, we introduced the
concept of parallel set and the Steiner formula (1.1.3) describing intrinsic volumes.
This section aims to show the local behavior of these objects. In this chapter, when
referring to measurable sets, we always refer to Borel measurable sets. For the
exposition, we follow [Sch14, Chapter 4].

Consider K ∈ K n, t > 0. The Minkowski sum Kt = K + tBn can be considered
as the set of points x ∈ Rn such that 0 ≤ d(x,K) ≤ t. It is then natural to consider,
for a subset β ⊂ K, the set of points x ∈ Rn for which d(K,x) ≤ t and for which the
nearest point p(x,K) := argminy∈Kd(x, y) (also known as metric projection) is in
β. Notice that from the uniqueness of the projection on closed convex sets (see, for
example, [Bre11, Theorem 5.2]), p(x,K) is unique for every x ∈ Rn. Alternatively,
we can consider β ⊂ Sn−1 and ask for the set of all x ∈ Rn such that 0 < d(K,x) ≤ t
and the unit vector u(K,x) from p(K,x) pointing towards x is in β.

Let us now be more precise. Consider Σ = Rn × Sn−1. For a fixed K ∈ K n, a
pair (x, ξ) ∈ Σ is called a support element of K if x ∈ ∂K and ξ is an outer unit
normal vector of K at x. Note that for every x ∈ Rn, the pair (p(K,x), u(K,x)) is a
support element of K. We define the normal bundle of K as the set

NorK = {(x, ξ) ∈ Σ : (x, ξ) is a support element of K}.

Consider, moreover, the map

ft : Kt \K → Σ
x 7→ (p(K,x), u(K,x)),

which is continuous and measurable. Thus we can consider on Σ the image measure
µt(K, ·) under ft of the Lebesgue measure on Rn. The map µt(·, ·) is a valuation
on the semigroup (with the operation of addition) of the Borel measures on Σ
(where we consider the product topology between the classical ones on Rn and Sn−1

respectively), and for each Borel set β ⊂ Σ, µt(·, β) is measurable (considering the
Borel sigma algebra on K n) by [Sch14, Theorems 4.1.2 and 4.1.3].

A useful feature of µt(K, ·) is that it admits a polynomial expansion analogous
to (1.1.3). The main properties of this measure are summarized by the following
statement (see [Sch14, Theorem 4.2.1]).

Theorem 2.7. For every convex set K ∈ K n there exist finite positive measures
Θi(K, ·), 0 ≤ i ≤ n− 1, on the Borel sigma-algebra of Σ such that for every t > 0 the
measure µt(K, ·) satisfies the polynomial expansion

µt(K,β) =
n−1∑
i=0

tn−i

(
n

i

)
Θi(K,β)

for every Borel set β ⊂ Σ.
The mapping K 7→ Θi(K, ·) is weakly continuous and is a measure-valued valua-

tion. Moreover, for each Borel set β ⊂ Σ, the function Θi(·, β) is measurable. The
coefficients Θi are called support measures.
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We have the following immediate consequence, which gives us a large class of
continuous valuations on K n.

Corollary 2.8. Consider f ∈ C(Σ). Then, for every 0 ≤ i ≤ n − 1, the functional
Z : K n → R defined by

K 7→
∫

Σ
f(x, ξ) dΘi (K, (x, ξ)) (2.1.3)

is a continuous valuation.

Proof. The statement follows at once from Theorem 2.7: Indeed since f is continuous,
the weak continuity of the support measures implies the continuity of Z. The valuation
property for Z descends from the same property of the measures Θi.

Note that by [Sch14, Lemma 4.2.2] if K is a convex body with boundary of class
C2 (strict convexity is not required), (2.1.3) becomes∫

Rn
f(x, u(K,x)) dCi(K,x),

while if K is strictly convex (∂K contains no segments) it reads as∫
Sn−1

f(p(K, ξ), ξ) dSi(K, ξ), (2.1.4)

where the measures Ci are Si are the marginals of the support measure Θi, and are
respectively known as i-th curvature measure and i-th surface area measure. Notice
that Sn−1 corresponds to (1.1.4).

2.1.3 Valuations on convex functions
The theory we briefly presented in K n has a functional counterpart. This process
started with the works of Ludwig [Lud11a,Lud11b,Lud12] and Tsang [Tsa10a,Tsa10b],
with a focus on Lp and Sobolev spaces. The idea is pretty simple: We still consider
unions and intersections of sets, but since these sets are epigraphs, these operations
can be replaced by pointwise minimum and maximum of functions, respectively.

Definition 2.9. If E is a family of real-valued functions, a functional Z : E → R is a
(real-valued) valuation if

Z(u ∧ w) + Z(u ∨ w) = Z(u) + Z(w)

for every u,w ∈ E such that u ∧ w, u ∨ w ∈ E , where ∨ and ∧ are the pointwise
minimum and maximum, respectively.

More recently, Colesanti, Ludwig, and Mussnig wrote a series of papers [CLM17,
CLM20a,CLM20b,CLM20c,CLM21,CLM22a,CLM22b] focusing on convex functions.
In this section, we survey the main advances in this direction, upon which we
build the remainder of this chapter. A different approach was followed by Knoerr
[Kno21,Kno22,Kno], who studied this topic from the points of view of functional
analysis and differential geometry.
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As in Section 2.1.1, the main results concern the classification and characterization
of these functionals under certain conditions. The family where this process appeared
to be more successful is Convsc(Rn). The topology we consider on this space is again
the one induced by epi-convergence. The reason behind this fact is that, as proved
in [CLM20b], the only meaningful valuation on the family Conv(Rn) satisfying
suitable hypothesis is the constant one, which motivates the choice of a smaller
(even though still dense) family of functions. As mentioned in the preliminaries,
Convsc(Rn) is equivalent to the other family Conv(Rn,R) through duality. Indeed,
by the homeomorphism (1.1.5), u ∈ Convsc(Rn) if and only if u∗ ∈ Conv(Rn,R). We
remark that the results obtained by this theory are not just functional versions of
the classical theory, but they properly generalize those since K n can be embedded
in Convsc(Rn) via the map

K 7→ IK .

The properties we require for these functionals are exactly the same ones we
require in K n, but now we can formulate them from a functional point of view. Let
Z : Convsc(Rn) → R be a valuation.

1. Epi-continuity: We say that Z is epi-continuous if for every sequence um

converging to u under epi-convergence, then Z(um) → Z(u).

2. G-invariance: Let G be a group acting on Convsc(Rn). We say that Z is
G-invariant if Z(gu) = Z(u) for every g ∈ G and u ∈ Convsc(Rn). We consider
rotations of the domain, that is Z(u ◦ θ−1) = Z(u) for every θ ∈ SO(n), and
epi-translations, that is Z(u ◦ τ + t) = Z(u) for every translation τ on Rn and
t ∈ R.

3. Epi-homogeneity: If there exists a ∈ R such that Z(t u) = taZ(u) for every
t ≥ 0 and u ∈ Convsc(Rn), we say that Z is epi-homogeneous of degree a.

By the Fenchel-Legendre transform, all these properties have a dual expression in
Conv(Rn,R). We discuss this in Section 2.2.2.

As a consequence of these properties, the functional

Y : K n → R
K 7→ Z(IK)

is a valuation that inherits respectively continuity with respect to the Hausdorff
metric, G-invariance (when G-acts on Rn only), and homogeneity, respectively.

But what do these valuations on convex functions look like? For K n, we
mentioned in Section 2.1.1 that mixed volumes are examples of translation invariant
and continuous valuations, and one gains rotation invariance in the particular case
of intrinsic volumes. In general, Corollary 2.8 describes a wide class of continuous
valuations. A similar process was followed in [CLM20a], where Hessian measures
were used, instead of support measures.

To define Hessian measures, we first need to introduce an alternative notion of
parallel set: For u ∈ Conv(Rn), t > 0, and β ∈ B(Rn × Rn), consider the set

Pt(u, β) := {x+ ty : (x, y) ∈ β, y ∈ ∂u(x)}.
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Here the subgradient substitutes the notion of normal cone, and instead of the normal
bundle, for u ∈ Conv(Rn) we consider the graph of the subgradient

Γu := {(x, y) ∈ Rn × Rn : y ∈ ∂u(x)}.

If we evaluate the n-dimensional Hausdorff measure of Pt(u, β), we obtain a Steiner-
type formula as proved in [CLM20a, Theorem 7.1] (note the analogy with Theorem
2.7).

Theorem 2.10. For u ∈ Conv(Rn) and t > 0, there are non-negative Borel measures
Ξi(u, ·), 0 ≤ i ≤ n on Rn × Rn such that

Hn(Pt(u, β)) =
n∑

i=0

(
n

i

)
tiΞn−i(u, β)

for every β ∈ B(Rn × Rn) and t > 0. We call these measures Hessian measures.

By [CLM20a, Theorem 7.3], Hessian measures are weakly-continuous with respect
to epi-convergence. Moreover, if u ∈ Conv(Rn) ∩ C2(Rn), for β ∈ B(Rn) they take
the form

Ξi(u, β × Rn) =
∫

β
[detD2u(x)]n−i dx,

where for a diagonalizable matrix A, [A]n−i is the (n− i)-th elementary symmetric
function of the eigenvalues of A, and D2 is the Hessian matrix.

For the family Conv(Rn), Colesanti, Ludwig, and Mussnig in [CLM20a, Theorem
1.1] proved the following result.

Theorem 2.11. Let ζ ∈ C(R × Rn × Rn) have compact support with respect to the
second and third variables. For every 1 ≤ i ≤ n, the functional Fi,ζ : Conv(Rn) → R,
defined by

Fi,ζ(u) =
∫
Rn×Rn

ζ(u(x), x, y) dΞi(u, (x, y)),

is a continuous valuation on Conv(Rn). If u ∈ Conv(Rn) ∩ C2(Rn), then

Fi,ζ(u) =
∫
Rn
ζ(u(x), x,∇u(x))[D2u(x)]i dx.

The proof of Theorem 2.11 uses the crucial fact that Hessian measures are measure-
valued valuations on Conv(Rn), as proved in [CLM20a, Theorem 9.2]. With a better
idea of what to expect, we can start requiring something else on top of epi-continuity.
Consider, for example, epi-translation invariance. As we mentioned earlier, Conv(Rn)
is "too big" to obtain meaningful valuation under invariance hypotheses, and, from
now on, the results we present have Convsc(Rn) (or its subfamily Convcd(Rn)) as
ambient space. In [CLM20b, Theorem 1] the following extension of Theorem 2.3 was
proved. This result was also obtained by different methods in [Kno21, Theorem 1.1].

Theorem 2.12. If Z : Convsc(Rn) → R is a continuous and epi-translation invari-
ant valuation, then there are continuous and epi-translation invariant valuations
Z0, . . . , Zn : Convsc(Rn) → R such that Zi is epi-homogeneous of degree i and

Z = Z0 + · · · + Zn.
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By Theorem 2.11, some examples of continuous, epi-translation invariant, and
epi-homogeneous of degree i valuations have the form

Zn−i,ζ(u) =
∫
Rn
ζ(∇u(x))[D2u(x)]n−i dx

for ζ ∈ Cc(Rn) if u ∈ Convsc(Rn) ∩ C2
+(Rn).

As for Theorem 2.3, Theorem 2.12 can be expressed in the language of graded
algebras. Consider the family of valuations

VConvsc(Rn) := {Z : Convsc(Rn) → R : Z is
a continuous and translation invariant valuation}.

As before, we can then consider splitting this family into its homogeneous components,
that is, for 0 ≤ i ≤ n,

VConvi
sc(Rn) := {Z ∈ VConvsc(Rn) : Z is epi-homogeneous of degree i},

and therefore Theorem 2.12 reads as

VConvsc(Rn) =
n⊕

i=0
VConvi

sc(Rn).

The extension of Theorem 2.2 is instead more delicate and requires the intro-
duction of specific families of functions. We briefly report the following result for
completeness. Let Cb((0,∞)) be the set of continuous functions on (0,∞) with
bounded support. For 0 ≤ j ≤ n− 1, let

Dn
j :=

{
ζ ∈ Cb((0,∞)) : lim

s→0+
sn−jζ(s) = 0, lim

s→0+

∫ ∞

s
tn−j−1ζ(t)dt exists and is finite

}
.

Here we use the notation Dn
n = Cc([0,∞)). The characterization of continuous,

epi-translation invariant, and rotation invariant valuations [CLM20c, Theorems 1.2
and 1.3] reads as follows. The first part regards the well-posedness of the integral
form of the valuations, while the second one extends Theorem 2.2.

Theorem 2.13. For i ∈ {0, . . . , n} and ζ ∈ Dn
i , there exists a unique, continuous,

epi-translation and rotation invariant valuation Vi,ζ : Convsc(Rn) → R such that

Vi,ζ(u) =
∫
Rn
ζ(|∇u(x)|)[D2u(x)]n−i dx

for every u ∈ Convsc(Rn) ∩ C2
+(Rn).

Consider now a functional Z : Convsc(Rn) → R. Then, Z is a continuous, epi-
translation and rotation invariant valuation if and only if there exist functions
ζi ∈ Dn

i , i = 0, . . . , n, such that

Z = V0,ζ0 + · · · + Vn,ζn .

Other descriptions and further discussions on these functionals can be found
in [CLM21,CLM22a,CLM22b].
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As for continuous and translation invariant valuations on K n with a fixed degree
of homogeneity, the investigation can be brought further in some cases. In particular,
continuous and epi-translation invariant valuations with homogeneity of degree i = n
or i = 1 have more detailed descriptions. The case i = n was investigated for the
first time in [CLM20b, Theorem 2].

Theorem 2.14. For a functional Z : Convsc(Rn) → R, Z ∈ VConvn
sc(Rn) if and only

if there exists ζ ∈ Cc(Rn) such that

Z(u) =
∫

dom(u)
ζ(∇u(x)) dx

for every u ∈ Convsc(Rn).

As we show in Section 2.2.1, not only does this result acts as a functional version
of Theorem 2.5, it can be deduced from the latter result in K n+1. This was proved
in [KU23, Section 4].

For i = 1, we have the counterpart of Theorem 2.6. This result is in [KU23,
Theorem 1.5].

Theorem 2.15. Every Z ∈ VConv1
sc(Rn) can be approximated uniformly on compact

subsets of Convsc(Rn) by a sequence (Zj) of valuations on Convsc(Rn) with the
following properties:

1. Zj is a continuous, epi-translation invariant valuation for each j ∈ N.

2. For every j ∈ N there exist two functions ℓj , wj ∈ Convcd(Rn) such that

Zj(u) =
∫

dom(ℓj)
u∗(∇ℓj(x)) dx−

∫
dom(wj)

u∗(∇wj(x)) dx

for all u ∈ Convcd(Rn).

In particular, for every compact set C ⊂ Convsc(Rn), Zj(u) → Z(u) uniformly for
every u ∈ C. That is, the convergence behavior depends only on C.

Identifying compact subsets in Convsc(Rn) is not as easy as in K n. A character-
ization of relatively compact subsets of Convsc(Rn) is given by [Kno21, Proposition
2.4], and reads as follows.

Proposition 2.16. A subset U ⊂ Convsc(Rn) is relatively compact if and only if it
is bounded on compact subsets of Rn, that is, for any compact subset A ⊂ Rn there
exists a constant c(A) > 0 such that

sup
x∈A

u∗(x) ≤ c(A)

for every u ∈ U .

In the following sections, we present one of our contributions to this field. In
particular, our approach is to exploit the relation between Convcd(Rn) and K n+1,
as shown in Section 1.1.3. We investigate the relation between the valuations on
these two spaces and use them to prove Theorems 2.14 and 2.15.
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2.2 Inducing valuations from K n+1 to Convcd(Rn)
The content of this section is from [KU23]. We will use the map ⌊·⌋ : K n+1 →
Convcd(Rn) to interpret valuations on Convcd(Rn) as valuations on convex sets in
Rn+1. This is precisely the content of the following Lemma.

Lemma 2.17. If K,L ∈ K n+1 are such that K ∪ L ∈ K n+1, then

⌊K ∩ L⌋ = ⌊K⌋ ∨ ⌊L⌋, ⌊K ∪ L⌋ = ⌊K⌋ ∧ ⌊L⌋.

Proof. By definition

⌊K ∩ L⌋(x) = inf{t ∈ R : (x, t) ∈ K ∩ L}
≥ inf{t ∈ R : (x, t) ∈ K} ∨ inf{t ∈ R : (x, t) ∈ K ∩ L}
=⌊K⌋(x) ∨ ⌊L⌋(x),

⌊K ∪ L⌋(x) = inf{t ∈ R : (x, t) ∈ K ∪ L}
≤ inf{t ∈ R : (x, t) ∈ K} ∧ inf{t ∈ R : (x, t) ∈ K ∩ L}
=⌊K⌋(x) ∧ ⌊L⌋(x).

On the other hand,

dom(⌊K ∩ L⌋) = dom(⌊K⌋) ∩ dom(⌊L⌋),
dom(⌊K ∪ L⌋) = dom(⌊K⌋) ∪ dom(⌊L⌋),

as the domains are just the image of the corresponding convex set under the natural
projection onto H ∼= Rn. In particular, both sides of each of the inequalities are
finite if and only if one of the two sides is finite. We thus only have to consider
points belonging to the corresponding domains. Assume that ⌊K ∩L⌋(x) < +∞. As
⌊K⌋(x) ∨ ⌊L⌋(x) ≤ ⌊K ∩ L⌋(x) < +∞,

{(x, t) ∈ Rn+1 : t ∈ [⌊K⌋(x), ⌊K ∩ L⌋(x)]} ⊂ K,

{(x, t) ∈ Rn+1 : t ∈ [⌊L⌋(x), ⌊K ∩ L⌋(x)]} ⊂ L

by convexity, as the points corresponding to the boundary points belong to these
sets. Thus (x, ⌊K⌋(x) ∨ ⌊L⌋(x)) ∈ K ∩ L, which implies

⌊K ∩ L⌋(x) ≤ ⌊K⌋(x) ∨ ⌊L⌋(x).

Now assume that ⌊K ∪ L⌋(x) < +∞. Then (x, ⌊K ∪ L⌋(x)) ∈ K ∪ L. Without loss
of generality, we may assume that (x, ⌊K ∪ L⌋(x)) ∈ K. Then

⌊K⌋(x) ∧ ⌊L⌋(x) ≤ ⌊K⌋(x) ≤ ⌊K ∪ L⌋(x)

by the definition of ⌊K⌋(x).

With Lemma 2.17 at hand, we can now formally show how a valuation on
Convcd(Rn) induces a valuation on K n+1.
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Theorem 2.18. For Z : Convcd(Rn) → R consider Y : K n+1 → R defined by

Y (K) = Z(⌊K⌋).
Then Y has the following properties:

1. If Z is a valuation, then so is Y .

2. If Z is continuous, then Y is continuous with respect to the Hausdorff metric.

3. If Z is epi-translation invariant, then Y is translation invariant, that is

Y (K +X) = Y (K) for all K ∈ K n+1, X ∈ Rn+1.

4. If Z is epi-homogeneous of degree j, then Y is j-homogeneous, that is,

Y (tK) = tjY (K) for all K ∈ K n+1, t > 0.

Proof. 1. If K,L ∈ K n+1 satisfy K ∪ L ∈ K n+1, then
⌊K ∩ L⌋ = ⌊K⌋ ∨ ⌊L⌋, ⌊K ∪ L⌋ = ⌊K⌋ ∧ ⌊L⌋.

by Lemma 2.17. Thus
Y (K ∪ L) + Y (K ∩ L) =Z(⌊K ∪ L⌋) + Z(⌊K ∩ L⌋)

=Z(⌊K⌋ ∧ ⌊L⌋) + Z(⌊K⌋ ∨ ⌊L⌋)
=Z(⌊K⌋) + Z(⌊L⌋) = Y (K) + Y (L).

2. If Z is continuous, then Y = Z ◦ ⌊·⌋ is continuous due to the continuity of ⌊·⌋,
compare Lemma 1.16.

3. For X = (v, c) ∈ Rn × R and K ∈ K n+1, the definition of ⌊K⌋ implies for
x ∈ Rn

⌊K +X⌋(x) = inf{s ∈ R : (x, s) ∈ K +X} = inf{s ∈ R : (x− v, s− c) ∈ K}
= inf{s+ c : s ∈ R, (x− v, s) ∈ K +X}
=⌊K⌋(x− v) + c.

If Z is epi-translation invariant, we obtain
Y (K +X) =Z(⌊K +X⌋) = Z(⌊K⌋(· − v) + c) = Z(⌊K⌋) = Y (K).

Thus Y is translation invariant.

4. For t > 0 we calculate for x ∈ Rn

⌊tK⌋(x) = inf{s ∈ R : (x, s) ∈ tK} = inf
{
s ∈ R :

(
x

t
,
s

t

)
∈ K

}
= inf

{
ts : s ∈ R,

(
x

t
, s

)
∈ K

}
=t⌊K⌋

(
x

t

)
.

Thus ⌊tK⌋ = t ⌊K⌋, which implies
Y (tK) = Z(⌊tK⌋) = Z(t ⌊K⌋) = tjZ(⌊K⌋) = tjY (K)

if Z is epi-homogeneous of degree j.
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2.2.1 New proof of Theorem 2.14
We will deduce the representation formula established in Theorem 2.14 from Mc-
Mullen’s Theorem 2.5. More precisely, we will show that the same representation
holds for continuous, epi-translation invariant valuations on Convcd(Rn) that are
epi-homogeneous of degree n. As Convcd(Rn) ⊂ Convsc(Rn) is dense, we will prove in
Corollary 2.20 that this establishes the representation formula for the corresponding
space of valuations on Convsc(Rn) by continuity.

Theorem 2.19. Let Z : Convcd(Rn) → R be a valuation that is continuous, epi-
translation invariant, and epi-homogeneous of degree n. Then there exists a unique
function ζ ∈ Cc(Rn) such that

Z(u) =
∫

dom(u)
ζ(∇u(x)) dx (2.2.1)

for every u ∈ Convcd(Rn).

Proof. Given a functional Z with the properties stated above, Y (K) := Z(⌊K⌋)
defines a valuation on K n+1 which is continuous, translation invariant, and n-
homogeneous by Theorem 2.18. By McMullen’s Theorem 2.5 there exists η ∈ C(Sn)
such that

Y (K) =
∫
Sn
η(N) dSn(K,N)

for every K ∈ K n+1. If we define η̃(N) := [η(N) + η(RHN)]/2, then the valuation

Ỹ (K) :=
∫
Sn
η̃(N) dSn(K,N)

thus satisfies
Z(u) = Y (Ku) = Ỹ (Ku).

We will work with Ỹ and the function η̃ ∈ C(Sn).

For K ∈ K n a convex set in H and ℓ > 0, consider the cylinder C(K, ℓ) =
K × [0, ℓ] ∈ K n+1. Then by definition IK = ⌊C(K, ℓ)⌋, and therefore we infer

Z(IK) =Ỹ (C(K, ℓ)) = 2η̃(−en+1)Vn(K) + ℓ

∫
Sn∩H

η̃(N) dSn(C(K, ℓ), N)

=2η̃(−en+1)Vn(K) + ℓ

∫
Sn−1

η̃(ν) dSn−1(K, ν),

where we identify Sn−1 and Sn ∩ H. As the left-hand side of this equation is
independent of ℓ > 0 (see Figure 2.1), we infer that∫

Sn−1
η̃(ν) dSn−1(K, ν) = 0 (2.2.2)

for every K ∈ K n. We may consider the left-hand side of (2.2.2) as a valuation on
convex sets in K n that is continuous, translation invariant, and (n−1)-homogeneous.
As it vanishes identically, McMullen’s Theorem 2.5 implies that η̃|Sn∩H is the restric-
tion of a linear function to Sn ∩H.
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e1

e3

e2
L e1
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Figure 2.1: If we make the cylinder taller, it does not affect the portion of the boundary
perceived by the valuation.

In particular, there exists a linear function l : Rn+1 → R such that η̃ + l ≡ 0 on
the equator Sn ∩H, and we set η̂ = η̃+ 1

2 [l+ l ◦RH ]. Then η̂ vanishes on the equator
Sn ∩H. Using Theorem 1.18 and the fact that linear functions belong to the kernel
of the surface area measure, we thus obtain for u ∈ Convcd(Rn)

Z(u) =Ỹ (Ku) =
∫
Sn
η̂(N) dSn(Ku, N) = 2

∫
Sn

−

η̂(N) dSn(Ku, N)

=
∫

dom(u)
2η̂
(

(∇u(x),−1)√
1 + |∇u(x)|2

)√
1 + |∇u(x)|y dx,

which for ζ(y) := 2η̂
(

(y,−1)√
1+|y|2

)√
1 + |y|2 gives the desired representation in equation

(2.2.1). Here we used that η̂ vanishes on the equator Sn ∩H and is symmetric with
respect to H.

To prove that ζ has compact support, one can use the same argument given by
Colesanti, Ludwig, and Mussnig in the proof of [CLM20b, Proposition 27], which we
include for completeness. Suppose by contradiction that the support is not compact.
Then we can find a sequence yj ∈ Rn such that |yj | → ∞, ζ(yj) ̸= 0 for every j ∈ N
and

lim
j→∞

yj

|yj |
= ν.

Consider the sets

Bj := {x ∈ y⊥
j : |x| ≤ 1}, B∞ := {x ∈ ν⊥ : |x| ≤ 1}

and define the cylinders

Cj :=
{
x+ t

yj

|yj |
: x ∈ Bj , t ∈

[
0, 1

|ζ(yj)|

]}
.

For y ∈ Rn let ly denote the linear function x 7→ x · y. Consider the sequence

uj = lyj + ICj
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in Convcd(Rn). By construction, minx∈dom(uj) uj(x) = 0. For t > 0, the sublevel sets
are given by

{uj ≤ t} =
{
x+ s

yj

|yj |
: x ∈ Bj , s ∈

[
0,min

{
t

|yj |
,

1
|ζ(yj)|

}]}
,

so {uj ≤ t} → B∞ in this case. Obviously, the sublevel sets are empty for t < 0.
Lemma 1.11 thus implies that the sequence (uj) converges to IB∞ .

Now note that Sn(Kuj ) is concentrated on (H ∩ Sn) ∪
{

(yj ,−1)√
1+|yj |2

,
(yj ,1)√
1+|yj |2

}
, so

Z(uj) =
∫
Sn
η̂(N) dSn(Kuj , N)

=

η̂
 (yj ,−1)√

1 + |yj |2

+ η̂

 (yj , 1)√
1 + |yj |2

√1 + |yj |2voln(Cj)

=ζ(yj)voln(Cj) = κn−1,

because η̂ is symmetric with respect to H and vanishes on Sn ∩H. By continuity we
obtain

Z(IB∞) = lim
j→∞

Z(uj) = κn−1.

On the other hand, Z is n-homogeneous and B∞ is a convex set of dimension n− 1,
so Z(IB∞) = 0, which is a contradiction. Thus ζ has compact support.

Therefore, obtain

Z(u) =
∫

dom(u)
ζ(∇u(x)) dx,

where ζ has compact support.

Finally, let us show how one can use McMullen’s Theorem 2.5 to see that ζ is
uniquely determined by the valuation Z. Let us thus assume that ζ, ζ ′ ∈ Cc(Rn) are
such that for all u ∈ Convcd(Rn)

Z(u) =
∫

dom(u)
ζ(∇u(x)) dx =

∫
dom(u)

ζ ′(∇u(x)) dx.

Consider the functions η, η′ ∈ C(Sn
−) given for (y,−

√
1 − |y|2) ∈ Sn

−, y ∈ {y ∈ Rn :
|y| < 1}, by

η

(
y,−

√
1 − |y|2

)
:=ζ

(
y√

1 − |y|2

)√
1 − |y|2,

η′
(
y,−

√
1 − |y|2

)
:=ζ ′

(
y√

1 − |y|2

)√
1 − |y|2.

As the support of these functions is strictly contained in Sn
−, we extend them trivially

to Sn. Using Theorem 1.18, we obtain

Y (K) = Z(⌊K⌋) =
∫
Sn
η dSn(K) =

∫
Sn
η′ dSn(K)
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for all K ∈ K n+1. By McMullen’s Theorem 2.5, η and η′ thus differ by the restriction
of a linear function to Sn. However, they are both equal to 0 on the complement of
Sn

−, so η − η′ vanishes on an open subset. As this difference is linear, it thus has to
vanish identically. In particular, η = η′.

Let us add the following observation.

Corollary 2.20. Let Z : Convcd(Rn) → R be a continuous, epi-translation invari-
ant valuation that is epi-homogeneous of degree n. Then Z extends uniquely to a
continuous valuation on Convsc(Rn).

Proof. By Theorem 2.19, any such valuation Z : Convcd(Rn) → R is given by

Z(u) =
∫

dom(u)
ζ(∇u(x)) dx for u ∈ Convcd(Rn)

for some ζ ∈ Cc(Rn). The right-hand side of this equation defines a continuous
valuation on Convsc(Rn) by [CLM20b, Proposition 20], which yields the desired
continuous extension. As Convcd(Rn) ⊂ Convsc(Rn) is dense, this extension is
unique.

2.2.2 Proof of Theorem 2.15
For the proof of Theorem 2.15, we will switch to the dual setting: For any functional
Z : Convsc(Rn) → R, we may define a functional Z∗ : Conv(Rn,R) → R by

Z∗(u) := Z(u∗) for u ∈ Conv(Rn,R),

where u∗ denotes the Fenchel-Legendre transform. In Conv(Rn,R), by the duality
induced by the Fenchel-Legendre transform, we replace epi-translation with dual
epi-translation, i.e., for a linear functional L : Rn → Rn and c ∈ R, the map

Conv(Rn,R) → Conv(Rn,R)
v 7→ v + L+ c

is the dual epi-translation corresponding to the affine function L+c. Again by duality,
we consider the following properties (see also the discussion in [CLM20a, Section
3.1]).

• Z is a valuation if and only if Z∗ is a valuation.

• Z is continuous if and only if Z∗ is continuous.

• Z is epi-translation invariant if and only if Z∗ is dually epi-translation invariant,
that is,

Z∗(u) = Z∗(u+ L+ c)
for every linear functional L : Rn → R and c ∈ R.

• Z is epi-homogeneous of degree i if and only if Z∗ is i-homogeneous in the
classical sense, that is,

Z∗(tu) = tiZ∗(u) for all u ∈ Conv(Rn,R), t ≥ 0.
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Now assume that Z is epi-homogeneous of degree 1. It is a general fact that
1-homogeneous valuations are additive, that is

Z∗(u+ v) = Z∗(u) + Z∗(v) for all u, v ∈ Conv(Rn,R). (2.2.3)

This can be directly proved by studying the polarization of the valuation. See
[CLM20b, Corollary 24] for a proof.

Goodey-Weil distributions. Before proving Theorem 2.15, let us briefly introduce
some preliminary notions concerning the theory of distributions. As reference, we use
the book by Rudin [Rud91]. Consider the space of infinitely differentiable functions
with compact support on Rn, denoted by C∞

c (Rn). On this space, we consider the
usual topology (see [Rud91, Definition 6.3] for the details).

A continuous linear functional on C∞
c (Rn) is called a distribution, and the space

of distributions is denoted by D′(Rn). A characterization for distributions is the
following (see, for example, [Rud91, Theorem 6.8]): a linear functional T on C∞

c (Rn)
is continuous if and only if, for every compact subset A ⊂ Rn there exists a constant
c(A) and k ∈ N such that for every ϕ ∈ C∞

c (Rn) with support contained in A,

|T (f)| ≤ c(A)∥f∥Ck ,

where
∥f∥Ck := sup{|∂αf(x)| : x ∈ Rn, |α| ≤ k}. (2.2.4)

Here α = (α1, . . . , αn), αi ∈ N, 1 ≤ i ≤ n, is a multi-index, |α| = α1 + · · · + αn, and

∂αf = ∂|α|

∂α1x1 · · · ∂αnxn
f.

When a distribution T has compact support, that is, there exists a compact set
A ⊂ Rn such that

T (f) = T (h)

for every f, h ∈ C∞(Rn) such that f(x) = h(x) for every x in a neighborhood of A, we
can consider T as a functional on C∞(Rn) instead of C∞

c (Rn) (see [Rud91, Theorem
6.24]). Indeed, we can consider a function h ∈ C∞

c (Rn) such that h ≡ 1 on A, and
for T ∈ D′(Rn) supported on A we can define

T (f) := T (hf)

for every f ∈ C∞(Rn). By the definition of support, this extension is independent of
the choice of h.

In [Kno21], property (2.2.3) was used to lift dually epi-translation invariant
valuations to distributions on Rn.

Theorem 2.21 ( [Kno21] Theorem 2). For every 1-homogeneous, dually epi-translation
invariant, continuous valuation Z : Conv(Rn,R) → R there exists a unique GW(Z) ∈
D′(Rn) with compact support which satisfies

GW(Z)[u] = Z(u) for all u ∈ Conv(Rn,R) ∩ C∞(Rn).
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A similar construction is possible for homogeneous valuations of arbitrary degree
of homogeneity. It is based on ideas of Goodey and Weil [GW84] for translation
invariant valuations on convex sets. For the convenience of the reader we report the
sketch of the proof in the 1-homogeneous case since it is very instructive and gives a
powerful insight on the machinery at hand.

Sketch of the proof of Theorem 2.21. The proof consists of two main parts: Existence
and compactness of the support.

Existence. The main idea is to define GW(Z) by evaluating Z on differences of
convex functions. By [Kno21, Lemma 5.1], if we consider the space C2

b (Rn) of twice
differentiable functions such that

∥ϕ∥C2
b

:= ∥ϕ∥∞ + ∥∇ϕ∥∞ + sup
x∈Rn,ξ∈Sn−1

(D2ϕ(x)ξ) · ξ

is bounded, for every ϕ ∈ C2
b (Rn) there exist f, h ∈ Conv(Rn,R) ∩ C∞(Rn) such

that f − h = ϕ and for every compact set A ⊂ Rn the restrictions of f and h to A
are bounded by c(A)∥ϕ∥C2

b
, where c(A) := supx∈A |x|2/2 + 1.

Now, if Z is a 1-homogeneous, dually epi-translation invariant, continuous valua-
tion, for ϕ ∈ C2

b (Rn) and f, h as above we can define the functional

GW(Z)[ϕ] := Z(f) − Z(h).

By (2.2.3), this definition is independent on the choice of f and h, and the functional
is unique.

Consider the set F of convex functions bounded by c(A) for every compact set
A in the sense of Proposition 2.16. Then, by that proposition (since F is closed),
F is a compact subset of Conv(Rn,R). Note that the functions f̄ := f/∥ϕ∥C2

b
and

h̄ := h/∥ϕ∥C2
b

are in F . Then,

|GW(Z)[ϕ]| ≤ |Z(h) − Z(f)| ≤ |Z(h̄) − Z(f̄)|∥ϕ∥C2
b

≤ 2 sup
v∈F

|Z(v)|∥ϕ∥C2
b
. (2.2.5)

The space of twice differentiable continuous functions with compact support
C2

c (Rn) is contained in the space of differences of elements of Conv(Rn,R) (for a
proof, see, for example, [Kno21, Lemma 5.1]). Therefore, we can consider GW(Z)
as a functional defined on this space. Since C∞

c (Rn) ⊂ C2
c (Rn) and the norm ∥ϕ∥C2

b

in the last term of the inequality (2.2.5) can be majorized by the norms (2.2.4) for
every k ≥ 2, we have that GW(Z) ∈ D′(Rn).

Compactness of the support. We will argue by contradiction and assume the
support of Z is not compact. Then we can find a sequence (xj , ϕj) ∈ Rn × C∞

c (Rn)
with the following properties:

1. lim
j→∞

|xj | = ∞,

2. supp ϕj ∩ supp ϕi = ∅ for every i ̸= j,

3. supp ϕj ⊂ (Rn \B|xj |+1(0)) for all j ∈ N,
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4. GW(Z)[ϕj ] = 1.

We may further assume that (|xj |)j is strictly increasing, by passing to a suitable
subsequence.

Consider ϕ̄ = ∑∞
j=1 ϕj . Since the supports of the functions ϕj are disjoint, ϕ is

locally finite and in C∞(Rn). By [Kno21, Lemma 5.6] since

sup
x∈Bm(0),|ξ|=1

(D2ϕj(x)ξ) · ξ ≤ sup
x∈Bm(0),|ξ|=1

(D2ϕ̄(x)ξ) · ξ

for every m ∈ N, there exists h ∈ Conv(Rn,R) such that for each j ∈ N one has
h+ ϕj ∈ Conv(Rn,R). Thus for all j ∈ N.

1 =GW(Z)[ϕj ] = Z(h+ ϕj) − Z(h).

Note that h+ ϕj converges pointwise to h. In particular the convergence is uniform
on every compact subset of Rn since for every compact set A there exists j̄ such that
h+ ϕj = h on A for every j ≥ j̄. Therefore, by Lemma 1.13 h+ ϕj epi-converges to
h, and the continuity of Z implies

1 = lim
j→∞

GW(Z)[ϕj ] = 0,

which is the desired contradiction. Thus the support of GW(Z) is compact.

It remains to see that GW(Z)[u] = Z(u) for u ∈ Conv(Rn,R) ∩ C∞(Rn). Take
ϕ ∈ C∞

c (Rn) with ϕ ≡ 1 on B1(0), supp ϕ ⊂ B2(0) and set ϕj(x) := ϕ
(

x
j

)
. Then

D2(ϕju)[x] = uD2ϕj(x) + ∇ϕj(x) · ∇u(x)T + ∇u(x) · ∇ϕT
j (x) + ϕj(x)D2u(x)

= 1
j2u(x)D2ϕ

(
x

j

)
+ 1
j

∇ϕ
(
x

j

)
· ∇u(x)T + ∇u · 1

j
∇ϕ

(
x

j

)T

+ ϕ

(
x

j

)
D2u(x)

so

sup
x∈Rn

|D2(ϕju)[x]| ≤
(

1
j2 sup

|x|≤2j
|u(x)| + 2

j
sup

|x|≤2j
|∇u(x)| + sup

x≤2j
|D2u(x)|

)
∥ϕ∥C2

b
(Rn).

Therefore, we can apply [Kno21, Lemma 5.6] to find h ∈ Conv(Rn,R) such that
h+ ϕju ∈ Conv(Rn,R) for j ∈ N. As GW(Z) has compact support,

GW(Z)[u] = lim
j→∞

GW(Z)[(ϕju)] = lim
j→∞

Z(ϕju) = lim
j→∞

(Z(h+ ϕju) − Z(h)).

But h+ ϕju converges uniformly on compact sets to h+ u and thus epi-converges.
Thus the continuity and linearity of Z imply

GW(Z)[u] = Z(h+ u) − Z(u) = Z(u) + Z(h) − Z(h) = Z(u),

which yields the desired formula.
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For a 1-homogeneous, dually epi-translation invariant, continuous valuation Z on
Conv(Rn,R), we define the support supp Z := supp GW(Z). Then this is a compact
subset of Rn which has the property that

Z(u) = Z(v) for all u, v ∈ Conv(Rn,R) s.t. u ≡ v on a neighborhood of supp Z,

compare [Kno21, Proposition 6.3].
If T is a distribution with compact support and ϕ ∈ C∞(Rn), we define their

convolution (see [Rud91, Definition 6.34]) as

T ∗ ϕ(x) = T (ϕ(x− ·)),

which is a function in C∞(Rn). For ϕ ∈ C∞(Rn) consider its reflection ϕ̌(x) = ϕ(−x).
If T is a distribution, then Ť is again a distribution characterized by

T ∗ ϕ̌ =

̂

Ť ∗ ϕ.

Lemma 2.22. If T is a distribution with compact support, and ϕ ∈ C∞
c (Rn), ψ ∈

C∞(Rn), then

T (ψ ∗ ϕ) =
∫
Rn
ψ(x)T (ϕ(· − x)) dx =

∫
Rn
ϕ(x)T (ψ(· − x)) dx.

Proof. Notice that, in general,

T (ζ) = [T ∗ ζ̌](0)

for every ζ ∈ C∞(Rn). Moreover, since T has compact support, by [Rud91, Theorems
6.35 and 6.37] the convolution and its standard properties are well defined even
though ψ /∈ C∞

c (Rn). Then, by the commutativity of the convolution and swapping
the roles of ϕ and ψ, we infer

T (ψ ∗ ϕ) = [T ∗
̂

(ψ ∗ ϕ)](0) = [Ť ∗ (ψ ∗ ϕ)](0) =

[Ť ∗ ψ ∗ ϕ](0) = [ψ ∗ Ť ∗ ϕ](0) = [ψ ∗ (Ť ∗ ϕ)](0) =

[ψ ∗

̂

(T ∗ ϕ̌)](0) =
∫
Rn
ψ(x)T (ϕ(· − x)) dx.

The second equality in the statement follows swapping the roles of ϕ and ψ in
the same calculations.

Proof of theorem 2.15. The following Lemma can also be deduced from [Kno,
Theorem 1] in combination with Lemma 5.3 of the same article. The proof we give
here is self-contained and does not rely on the machinery developed in [Kno]. It uses
a standard approximation argument, which we include for the convenience of the
reader.

Lemma 2.23. Let Z : Conv(Rn,R) → R be a valuation that is continuous, dually
epi-translation invariant, and homogeneous of degree 1. If supp Z ⊂ BR(0), then
there exists a sequence (ψj) in C∞

c (Rn) such that
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1. supp ψj ⊂ BR+1(0) for all j ∈ N,

2.
∫
Rn ψj(x) dx =

∫
Rn xiψj(x) dx = 0 for all 1 ≤ i ≤ n for all j ∈ N,

and such that the valuations Zj given by

Zj(v) :=
∫
Rn
v(x)ψj(x) dx

are continuous on Conv(Rn,R), dually epi-translation invariant and converge uni-
formly to Z on compact subsets of Conv(Rn,R).

Proof. First, notice that the continuity of the Zj is immediate by construction, by
Lemma 1.13. Let T := GW(Z) denote the Goodey-Weil distribution of Z. Fix a non-
negative function ϕ ∈ C∞

c (Rn) with
∫
Rn ϕ(x) dx = 1, supp ϕ ⊂ B1(0) and consider the

sequence ϕj := jnϕ(j·), j ∈ N. Then, the functions ϕT,j(x) := T (ϕj(· − x)) = T ∗ ϕ̌j

define a sequence in C∞
c (Rn). Every ϕT,j is supported in BR+1(0) for every j ∈ N

(since the support of the convolution is included in the Minkowski sum of the
supports; see, for example, [Rud91, Theorem 6.37]). To these functions we associate
the distributions

Tj(ψ) :=
∫
Rn
ψ(x)ϕT,j(x) dx for ψ ∈ C∞

c (Rn).

Notice that, equivalently,
Tj(ψ) = T (ψ ∗ ϕj),

by Lemma 2.22.
If l is an affine function, then the usual convolution of functions

[l ∗ ϕj ] (y) =
∫
Rn
l(y − x)ϕj(x) dx

is affine as well. Indeed, if l(x) = x · b+ c, b ∈ Rn, c ∈ R,

[l ∗ ϕj ] (y) =
∫
Rn

[(y − x) · b+ c]ϕj(x) dx = y · b
∫
Rn
ϕj(x) dx+

∫
Rn

(c− x · b)ϕj(x) dx.

By Lemma 2.22 with ψ = l and ϕ = ϕj , we obtain∫
Rn
l(x)ϕT,j(x) dx = T (l ∗ ϕj) .

Since l is affine, by the definition of Goodey-Weil distribution, and noticing that
Z vanishes on affine functions since it is homogeneous and dually epi-translation
invariant, ∫

Rn
l(x)ϕT,j(x) dx = Z(l ∗ ϕj) = 0.

Indeed, ∫
Rn
l(x)ϕT,j(x) dx =

∫
Rn

(x · b)ϕT,j(x) dx+ c

∫
Rn
ϕT,j(x) dx,

and b ∈ Rn and c ∈ R are arbitrary. Therefore, we have that condition 2 in the
statement, with ϕj = ψT,j , holds.
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Now, we define Zj : Conv(Rn,R) → R by

Zj(v) :=
∫
Rn
v(x)ϕT,j(x) dx.

For every u, v ∈ Conv(Rn,R) such that u ∨ v, u ∧ v ∈ Conv(Rn,R), we have u(x) +
v(x) = (u ∨ v)(x) + (u ∧ v)(x), and therefore since Zj is linear

Zj(u ∨ v) + Zj(u ∧ v) = Zj(u ∨ v + u ∧ v) = Zj(u+ v) = Zj(u) + Zj(v)

for every j. Thus Zj is a valuation. Since epi-convergence in Conv(Rn,R) is
equivalent to uniform convergence on compact sets of Rn and since the support of
ϕT,j is compact, Zj is continuous. Property 2 of the statement implies that Zj is
dually epi-translation invariant. It is straightforward to check that GW(Zj) = Tj . It
remains to check that (Zj) converges to Z uniformly on compact subsets. To see
this, notice that for v ∈ Conv(Rn,R) ∩ C∞(Rn) the function

[v ∗ ϕj ] (y) =
∫
Rn
v(y − x)ϕj(x) dx,

is convex as ϕj is non-negative. Moreover, by Lemma 2.22

T (v ∗ ϕj) =
∫
Rn
T (v(· − x))ϕj(x) dx.

Then, for any v ∈ Conv(Rn,R) ∩ C∞(Rn)

Zj(v) =GW(Zj)[v] = Tj(v) =
∫
Rn
T (v(· − x))ϕj(x) dx

=
∫
Rn
Z(v(· − x))ϕj(x) dx.

We want to prove that the previous identity remains valid for every v ∈ Conv(Rn,R).
On Conv(Rn,R), the topology induced by epi-convergence coincides with the topology
of uniform convergence on compact subsets of Rn, see [RW98, Theorem 7.17]. Using
this fact, it is easy to see that the map

Conv(Rn,R) × Rn → Conv(Rn,R)
(v, x) 7→ v(· − x)

is jointly continuous. In particular,

v 7→
∫
Rn
Z(v(· − x))ϕj(x) dx

defines a continuous valuation on Conv(Rn,R). By continuity, we thus obtain

Zj(v) =
∫
Rn
Z(v(· − x))ϕj(x) dx for all v ∈ Conv(Rn,R).

Let ϵ > 0 be given. Our previous discussion implies

|Zj(v) − Z(v)| =
∣∣∣∣∫

Rn
Z(v(· − x))ϕj(x) dx−

∫
Rn
Z(v)ϕj(x) dx

∣∣∣∣
≤
∫
Rn

|Z(v(· − x)) − Z(v)|ϕj(x) dx.
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As the map

Conv(Rn,R) × Rn → Conv(Rn,R)
(v, x) 7→ v(· − x)

is continuous, it is uniformly continuous on compact subsets. Given a compact subset
C ⊂ Conv(Rn,R), we can thus find δ > 0 such that

|Z(v(· − x)) − Z(v)| ≤ ϵ for all v ∈ C and all x ∈ Rn with |x| < δ.

As ϕ is supported on B1(0), supp ϕj ⊂ Bδ(0) for all j ≥ 1
δ , so

|Zj(v) − Z(v)| ≤
∫
Rn

|Z(v(· − x)) − Z(v)| jnϕ (jx) dx ≤ ϵ

for all v ∈ K and j ≥ 1
δ . Thus (Zj) converges uniformly to Z on the compact subset

C ⊂ Conv(Rn,R), which concludes the proof.

Proof of Theorem 2.15. Let Z : Convsc(Rn) → R be a continuous, epi-translation
invariant valuation that is epi-homogeneous of degree 1. Applying Theorem 2.21 to Z∗,
we deduce that it has compact support. Thus, we can assume that supp Z∗ ⊂ BR(0)
for R > 0 large enough. By Lemma 2.23 applied to Z∗, there exists a sequence
ϕj ∈ C∞

c (Rn) with supp ϕj ⊂ BR+1(0) such that

Qj(v) :=
∫
Rn
v(x)ϕj(x) dx

defines a sequence of continuous, dually epi-translation invariant, and homoge-
neous valuations of degree 1 that converge uniformly to Z∗ on compact subsets of
Conv(Rn,R). If we consider the sequence of valuations Zj on Convsc(Rn) defined by

Zj(u) := Qj(u) =
∫
Rn
u∗(x)ϕj(x) dx,

its elements are continuous, epi-translation invariant, and epi-homogeneous of degree
1. Moreover, they converge uniformly to Z on compact subsets of Convsc(Rn) since
the Fenchel-Legendre transform establishes a homeomorphism between Convsc(Rn)
and Conv(Rn,R) (see [RW98, Theorem 11.8], here (1.1.5)), so the preimage of any
compact subset of Conv(Rn,R) under this map is compact.

It remains to see that Zj has the desired representation on Convcd(Rn). Consider
the function b = ⌊Bn+1(0)⌋ ∈ Convcd(Rn), that is,

b(x) =
{

−
√

1 − |x|2 |x| ≤ 1,
+∞ |x| > 1.

Then b∗(x) =
√

1 + |x|2 − 1. From a direct calculation one infers that detD2b∗(x) =
(1 + |x|2)−(n/2+1), and using (1.1.11) we can thus write for u ∈ Convcd(Rn)

Zj(u) =
∫
Rn
u∗(x)ϕj(x) dx =

∫
Rn
u∗(x)ϕj(x)(1 + |x|2)n/2+1 detD2b∗(x) dx

=
∫

dom(b)
u∗(∇b(y))ϕj(∇b(y))(1 + |∇b(y)|2)n/2+1 dy =

∫
Sn

−

u∗(g(N))√
1 + |g(N)|2

fj(N)dN,
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where fj(N) := ϕj(g(N))(1 + |g(N)|2)n/2+1 is a function whose support is strictly
contained in the lower half sphere (in particular, fj vanishes in a neighborhood of the
equator), and the change of variable from the first to the second line is x 7→ ∇b(y).
We trivially extend fj to a smooth function on Sn.

By equation (1.1.14), we thus obtain the representation

Zj(u) =
∫
Sn

hKu((g(N),−1))
1 + |g(N)|2 fj(N)dN =∫

Sn
hKu

((g(N),−1))
1 + |g(N)|2

)
fj(N)dN =

∫
Sn
hKu(N)fj(N)dN.

In fact, Zj(u) =
∫
Sn hK(N)fj(N)dN for any K ∈ K n+1 with hK = hKu on Sn

−. As
Zj is epi-translation invariant and epi-homogeneous of degree 1, we thus obtain, for
every z ∈ Rn, c ∈ R,

0 = Zj

(
0 (I{0})

)
= Zj

(
I{0}

)
= Zj

(
I{z} + c

)
=
∫
Sn
h{(z,c)}(N)fj(N)dN.

In the last equality we have used that I{z} + c = ⌊{(z, c)}⌋ since {(z, c)} ∈ K n+1.
As h{(z,c)}(N) = (z, c)T ·N , we conclude that∫

Sn
Nfj(N)dN = 0.

The non-negative measure

µj(B) :=
∫

B
(1 + ∥fj∥∞ + fj)dN for a Borel subset B ⊂ Sn

is thus not concentrated on a great sphere and satisfies∫
Sn
N dµj(N) = 0.

By Minkowski’s existence theorem (Theorem 1.9 earlier), there thus exists a convex
set Lj ∈ K n+1 such that µj = Sn(Lj). In particular,

Zj(u) =
∫
Sn
hKufj(N)dN =

∫
Sn
hKu dSn(Lj) −

∫
Sn
hKu dSn( n

√
1 + ∥fj∥∞B1(0)).

Here we have used that the surface area measure on Rn+1 is n-homogeneous and
that Sn(B1(0)) is the spherical Lebesgue measure. Set Wj := n

√
1 + ∥fj∥∞B1(0).

By construction, Sn(Lj) and Sn(Wj) are absolutely continuous with respect to the
spherical Lebesgue measure, and their densities only differ on the support of fj , that
is, on a compact subset contained in the lower half sphere. Therefore

Zj(u) =
∫
Sn

−

hKu dSn(Lj) −
∫
Sn

−

hKu dSn(Wj).

Set ℓj = ⌊Lj⌋, wj = ⌊Wj⌋. By construction, the measures Sn(Lj) and Sn(Kℓj ) agree
on Sn

−, and the same is true for Wj and Kwj . We now apply Lemma 1.18 with
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η = hKu , u ∈ Convcd(Rn), and using that support functions are 1-homogeneous, we
thus obtain

Zj(u) =
∫
Sn

−

hKu(N) dSn(Kℓj , N) −
∫
Sn

−

hKu(N) dSn(Kwj , N)

=
∫

dom(ℓj)
hKu

 (∇ℓj(x),−1)√
1 + |∇ℓj(x)|2

√1 + |∇ℓj(x)|2 dx

−
∫

dom(wj)
hKu

 (∇wj(x),−1)√
1 + |∇wj(x)|2

√1 + |∇wj(x)|2 dx.

Finally, by (1.1.14)

Zj(u) =
∫

dom(ℓj)
u∗(∇ℓj(x)) dx−

∫
dom(wj)

u∗(∇wj(x)) dx,

and thus Zj has the desired representation. In particular, Z can be approximated
uniformly on compact subsets of Convcd(Rn) by valuations of this type.
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Chapter 3
Symmetrization processes

Tracing back the origin of a mathematical concept is always a difficult task. Leaving
these technicalities to the historians, one of the first attempts at Convex Geometry
goes back to the work of Steiner on the isoperimetric inequality, that for convex
bodies of Rn states (

Vn−1(K)
Vn−1(Bn)

)1/(n−1)
≥
(
Vn(K)
Vn(Bn)

)1/n

,

with K ∈ K n
n and Bn the unit ball in Rn. In particular, around 1836, he introduced

a technique nowadays known as Steiner symmetrization. In this chapter, λn is the
n-dimensional Lebesgue measure.

Definition 3.1. Consider K ∈ K n
n and a hyperplane H of Rn. The Steiner symmetral

of K is the set
SHK :=

⋃
x∈H

ℓx,

where ℓx is the segment orthogonal to H with length λ1(K ∩ (H⊥ + x)) and centered
at x.

This operation clearly preserves the volume, by the Cavalieri principle, but also
has another relevant property: The surface area decreases under this transformation.
From here, the idea is that an iteration of symmetrizations with different hyperplanes
could transform K ∈ K n

n into a ball, which is invariant under this symmetrization for
every choice of H. The latter fact shows that balls are minimizers in the isoperimetric
inequality. Even though Steiner’s original proof lacked the topological details,
that is, the lower semi-continuity for the surface area, this proof was completed
later by Blaschke [Bla56]. An exhaustive treatment can be found, for example,
in [Gru07, Chapter 9]. This instrument has been since then a huge success, especially
thanks to the pioneering work of Pólya and Szegö [PS51], with many applications
in the world of PDEs and Mathematical Physics. Even nowadays, many geometric
inequalities for variational functionals are still proved through these methods, called
rearrangements in the functional setting.

56



3.1. Preliminaries

Our focus is on a different direction. As mentioned earlier, one of the crucial
properties of Steiner symmetrization is the following (see, for example, [Sch14,
Theorem 10.3.2]).

Theorem 3.2. If K ∈ K n
n , then there exists a sequence of hyperplanes (Hm) such

that the iterated symmetrals
SHm · · ·SH1K

converge to a ball in the Hausdorff metric.

This result can be refined, for example, through results like Theorem 3.4, proving
that these sequences can be chosen independently on K. In R2, Steiner achieved
this by considering two lines forming an angle that is an irrational multiple of π.
Alternating these two subspaces in the sequence guarantees the convergence to a
disk.

In the next chapter, we present a general definition of the concept of symmetriza-
tion, bringing many examples and case studies. What are the main properties that
characterize a "well-behaved" symmetrization with respect to these limit processes?
And how pathological can the counterexamples that arise be, even for the harmless
Steiner symmetrization? These are the questions that we try to answer in this
chapter. Building on the works of Bianchi, Gardner, and Gronchi [BGG17,BGG22a],
who introduced this perspective on the topic, in this chapter we exhibit original
results from [Uli21,Uli23], where we investigated these and other questions.

3.1 Preliminaries
Steiner symmetrization is just an example of how one can improve the symmetry of
an object while trying at the same time to preserve some of its intrinsic properties.
Recently, Bianchi, Gardner, and Gronchi in [BGG17,BGG22a] introduced a language
and several tools for the study of mappings that can be more widely referred to as
symmetrizations. The domain of these maps is usually a family E of subsets of Rn.
For us, the relevant families are Cn, Cn

n ,K
n, and K n

n . We note that, in this section,
the letter H is now used to refer to generic subspaces.

Definition 3.3. Given a family E of sets and a subspace H of Rn, an H-symmetrization
is a map

♢H : E → EH

with EH = {E ∈ E |RHE = E}, where RH is the reflection with respect to H

x 7→ x− 2projH⊥{x}.

A symmetrization is a map that satisfies this property for every subspace H.

For example, Steiner symmetrization is an H-symmetrization for every hyperplane
H, but in Definition 3.3, we consider lower-dimensional subspaces too. Clearly, the
information given in this definition is not enough to provide meaningful results, and
one needs further properties.

1. (Monotonicity): For every K,L ∈ E if K ⊆ L, then ♢HK ⊆ ♢HL.
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2. (Idempotence): For every K ∈ E , we have ♢HK = ♢H♢HK.

3. (H⊥-translation invariance for H-symmetric sets): If K ∈ E and RHK = K,
then for every x ∈ H⊥ we have ♢H(K + x) = ♢HK.

4. (Invariance for H-symmetric sets): If K ∈ E and RHK = K, then ♢HK = K.

5. (F -invariance): There exist a function F : E → R such that F (K) = F (♢HK)
for every K ∈ E .

Here are some relevant examples of symmetrizations, which are the focus of this
chapter.

Schwarz Symmetrization Let K ∈ Cn, for a fixed H ∈ G(n, i), 1 ≤ i ≤ n− 1. The
Schwarz symmetral of K is the set

SHK =
⋃

x∈H

B(x, rx),

where rx is such that λn−i(K∩(H⊥ +x)) = λn−i(B(x, rx)) if λn−i(K∩(H⊥ +x)) > 0.
If the measure of the section at x ∈ H is zero, but the section is non-empty, we replace
it with x. Otherwise, we replace this section with the empty set. From Fubini’s
Theorem, it follows that this symmetrization preserves the volume, thus satisfying
Property 5 for F (·) = λn(·). When i = n− 1 this is the Steiner symmetrization from
Definition 3.1, and, in general, it decreases intrinsic volumes (see [Had57, Satz XI,
p. 260] or [Sch14, Theorem 10.4.1]). Both in Cn and Kn Schwarz symmetrization
satisfies Properties 1, 2, 5, while 3, 4 hold only for convex sets in the case i = n− 1.

Minkowski Symmetrization Let K ∈ Cn and let H ∈ G(n, i), 1 ≤ i ≤ n. The
Minkowski symmetral of K is the set

MHK = K +RHK

2 .

It preserves the mean width V1(K) when K is convex, thus Property 5 holds for
F = V1. From the Brunn-Minkowski inequality (1.1.1) it follows that

λn(MHK) ≥ λn(K).

It may be useful to consider the central Minkowski symmetral, i.e.,

△K = K −K

2 ,

which is origin symmetric. If K lies in an affine subspace H + x, x ∈ H⊥, then we
write △xK for the central Minkowski symmetral of K in H + x, i.e.

△xK = K +RH⊥K

2 .

In Kn Minkowski symmetrization satisfies all the listed properties, but in Cn only
Property 1 holds.
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Fiber Symmetrization Let K ∈ Cn and let H ∈ G(n, i), 1 ≤ i ≤ n. Then the fiber
symmetral of K is the set

FHK =
⋃

x∈H

△x(K ∩ (H⊥ + x)).

This symmetrization can be seen as a hybrid between Schwarz and Minkowski
symmetrization, and the underlying operation was introduced by McMullen [McM99].
Like Minkowski symmetrization, it increases the volume, and in Kn it satisfies
Properties 1, 2, 3, 4, while 2, 3, 4 fail to hold in Cn. See Section 3.2 for some specific
examples.

3.1.1 Symmetrization processes
Given a sequence of subspaces (Hm), a symmetrization ♢ on E , and K ∈ E , the
corresponding symmetrization process is the sequence

♢Hm · · · ♢H1K.

Theorem 3.2 tells us that, when ♢ = S, for a fixed K ∈ K n
n we can always find

a sequence (Hm) of hyperplanes such that SHm · · ·SH1K converges to a ball. This
phenomenon is actually quite likely, probabilistically speaking. In 1986 Mani-Levitska
[ML86] showed that for Steiner symmetrization, a randomly chosen symmetrization
process for a convex body converges almost surely to a ball. Later, Van Schaftingen
in [VS06]extended this result to compact sets, then Volčič pushed it to measurable
sets [Vol13]. Coupier and Davydov [CD14] later proved, thanks to the inclusion
between Steiner and Minkowski symmetrals, that analogous probabilistic properties
hold for Minkowski symmetrization.

We do not focus on these probabilistic aspects, but they do certainly serve as
a motivation for the study of these processes in the deterministic setting. As we
mentioned, for Steiner symmetrization in R2, we can pick a sequence independently
on the choice of K and have convergence to a ball. In general dimension, this property
of Steiner symmetrization was proved by Klain in [Kla12], as a consequence of the
following Theorem ( [Kla12, Theorem 5.1]).

Theorem 3.4. Given K ∈ K n and a finite family Q = {Q1, ..., Ql}) of hyperplanes,
consider a sequence (Hm) of subspaces such that for every m ∈ N, Hm = Qj for
some 1 ≤ j ≤ l. Then the sequence

Km := SHm ...SH1K

converges to a set L ∈ K n in the Hausdorff metric. Moreover, L is symmetric with
respect to Qj for every Qj appearing infinitely often in the sequence.

If we choose l = n and unit vectors N1, . . . , Nn normal to Q1, . . . , Qn such that
the angles between them are irrational multiples of π, the limit of the symmetrization
process is a ball. Less restrictive conditions are sufficient in the choice of the family
Q, as we will see later in Theorem 3.42.

This behavior of Steiner symmetrization extends as well to fiber, Minkowski, and
Schwarz symmetrizations as well, as proved in [BGG22a, Theorem 5.6, 5.7, and 5.11].
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Theorem 3.5. Klain’s Theorem holds if fiber, Minkowski, or Schwarz replace Steiner
symmetrization. Moreover, the subspaces in Q can have different dimensions.

Theorem 3.4 and its variations show two relevant facts: First, there exist, in
general, sequences of subspaces that guarantee the convergence of the associated
symmetrization process for every K ∈ K n

n . Secondly, the convergence to balls can be
deduced consequence of a more delicate phenomenon, that is, the iteration of suitable
hyperplanes in the sequence. These remarks justify the following two definitions.

Definition 3.6. If ♢ is a symmetrization on E , a sequence (Hm) of subspaces of Rn is
said to be weakly ♢-universal if for every k ∈ N, the sequence of sets

Km,k = ♢Hm · · · ♢Hk
K

converges for every K ∈ E with non-empty interior to a ball of radius r(K, k). This
quantity can change with respect to k, but if r(K, k) is independent of k, then (Hm)
is said to be universal for ♢.

Universal sequences were introduced in [CD14] and weakly-universal sequences in
[BGG17]. The latter notion was needed since Steiner and Minkowski symmetrizations
preserve Vn and V1, respectively. Therefore for a fixed K, the volume of the limit
ball is prescribed. For fiber symmetrization, for example, this is no longer the case.

The first relevant result concerning universal sequences was achieved in [CD14,
Theorem 3.1] and reads as follows.

Theorem 3.7. A sequence (Hm) of hyperplanes in Rn is universal for Steiner sym-
metrization in K n

n if and only if it is universal for Minkowski symmetrization in
K n

n .

As we remarked earlier, Theorem 3.7 was instrumental in extending the results
on convergence in probability from Steiner to Minkowski symmetrizations.

The next natural step was to extend these results in the family of compact sets
of Rn. In [BGG22a, Theorem 7.3 and 7.4], the following was achieved for Schwarz
and Minkowski symmetrizations.

Theorem 3.8. If a sequence (Hm) of subspaces is S- or M - universal in K n
n , then it

is respectively S- or M -universal in Cn
n .

Since if a sequence (Hm) is universal in Cn
n it is trivially universal in K n

n , as
observed in [Uli23] Theorem 3.8 together with Theorem 3.7 implies that the latter
holds in Cn

n .

3.2 Averages of Minkowski sums and combinations
It is reasonable to ask whether extensions like the ones in Theorem 3.8 can be achieved
for Theorem 3.4. For Schwarz symmetrization, one has the following [BGG22a,
Theorem 7.1]
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H KK

H⊥

H FHKFHK

Figure 3.1

Theorem 3.9. Klain’s Theorem holds for Schwarz symmetrization in the family Cn.
Moreover, the limits of these processes are rotationally symmetric with respect to
every H ∈ Q.

This section is devoted to obtaining an analog of Theorem 3.9 for Minkowski sym-
metrization, following [Uli21]. In doing so, we unravel the role of the convexification
effect of the Minkowski addition, obtaining stronger results.

The first step is observing which properties fail to hold in this frame. We have
the following simple example.

Example 3.10. Consider in R2 the compact set C = {(−1, 0), (1, 0)}. This set is
obviously symmetric with respect to the vertical axis, which we can identify with a
subspace H. Then we have

MHC = {(−1, 0), (0, 0), (1, 0)},

and thus the invariance for symmetric sets no longer holds. If we apply again the
same symmetrization,

MH(MHC) = {(−1, 0), (−1/2, 0), (0, 0), (1/2, 0), (1, 0)},

showing that the same happens to idempotence. In Figures 3.1 and 3.2, we see an
example concerning the fiber symmetrization of a compact set in the plane.

Iterating this process for C = {(−1, 0), (1, 0)}, we see that in this case, there is
no finite degree of idempotence, i.e., there does not exist an index ℓ ∈ N such that

M ℓ
HC = Mk+ℓ

H C

for every k ∈ N, where in general

MH . . .MH︸ ︷︷ ︸
ℓ-times

:= M ℓ
H .

Moreover, the iterated symmetrals converge to the set given by conv(C).

The following lemma shows on which properties we can still count on.

Lemma 3.11. Let K ∈ Cn, H a subspace of Rn. Then
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i) for every v ∈ Rn

MH(K + v) = MH(K) + v|H,

ii) if K is H-symmetric, then K ⊆ MHK,
iii) K = MHK if and only if K is convex and H-symmetric.

Proof. The first statement follows from the explicit calculations

MH(K + v) = K + v +RH(K + v)
2 = K +RH(K)

2 +

v|H⊥ + v|H − v|H⊥ + v|H
2 = MH(K) + v|H,

where we used the linearity of the reflections and the decomposition v = v|H + v|H⊥.
For the second statement, by hypothesis, we have that RHK = K, i.e., RH(x) ∈ K

for every x ∈ K. Then, taking x ∈ K, (x+RH(RH(x)))/2 = x ∈ MHK, concluding
the proof.

Consider now K such that K = MHK. Then obviously K must be H-symmetric,
and K = RHK. Then, for every x, y ∈ K, we have that (x+y)/2 ∈ K, thus for every
point z in the segment [x, y] := {(1 − t)x+ ty : t ∈ [0, 1]}, we can build a sequence by
bisection such that it converges to z. K is compact. Henceforth it contains z. The
other implication is trivial.

Consider the iterated symmetral

Km := Mm
HK = MH ...MH︸ ︷︷ ︸

m-times

K. (3.2.1)

Then, (ii) in Lemma 3.11 implies that Km ⊆ Km+1 for every m ∈ N. We now
provide a first convergence result. In fact, it will be an immediate corollary of the
results we will prove later in Section 3.2.1, but we present it for its self-contained
proof. Moreover, it helps in understanding the underlying structure of Minkowski
symmetrization.

Theorem 3.12. Let K ∈ Cn, H ∈ G(n, i), 1 ≤ i ≤ n − 1. Then the sequence Km in
(3.2.1) converges in the Hausdorff metric to the H-symmetric convex compact set

L = conv(MHK).
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Proof. In this proof, ⌊·⌋ : R → Z denotes the usual floor function, instead of the
lower-boundary map of the previous chapter.

We observe preliminarily that for the properties of the convex envelope and
Minkowski sum, we have Km ⊆ L for every m ∈ N. Then we only need to prove
that for every x ∈ L, we can find a sequence xm ∈ Km such that xm → x. We
can represent K as K̄ + v, v ∈ K, where K̄ contains the origin. Since Minkowski
symmetrization is invariant under H-orthogonal translations, we can take v ∈ H.

For every m we have RHKm = Km, and thus we can write

Km+1 = MHKm = Km +Km

2 =

2m−times︷ ︸︸ ︷
K1 + ...+K1

2m
.

Considering the aforementioned representation of K, RHK = RHK̄+ v, and we have

Km = K̄m + v, where K̄m := Mm
H K̄,

thus we can write every point y ∈ Km as y = ȳ + v, ȳ ∈ K̄m.
Given x ∈ L, by Carathéodory’s Theorem [Sch14, 1.1.4] there exist xk ∈ K1, tk ∈

(0, 1), k = 1, ..., n+ 1 such that ∑n+1
k=1 ti = 1 and

x =
n+1∑
k=1

tkxk =
n+1∑
k=1

tkx̄k + v,

where xk = x̄k + v, x̄k ∈ K̄1 . For every tk we consider its binary representation

tk =
+∞∑
ℓ=1

aℓ,k

2ℓ
, aℓ,k ∈ {0, 1}

(we do not consider ℓ = 0 because ti < 1), and its m-th approximation given by the
partial sum

tm,k :=
m∑

ℓ=1

aℓ,k

2ℓ
= 1

2m

m∑
ℓ=1

aℓ,k2m−ℓ.

We note for later use that |tk − tm,k| ≤ 1/2m.
Calling qs := ⌊2s/(n+ 1)⌋ we now build the sequence

xs :=
n+1∑
k=1

tqs,kx̄k + v = 1
2qs

n+1∑
k=1

( qs∑
ℓ=1

aℓ,k2qs−ℓ

)
x̄k + v,

where the 2s − qs(n+ 1) spare terms in K̄1 can be taken as the origin in the sum
representing K̄s.

Then we have that every xs belongs to Ks, and

|x− xs| = |x̄+ v − (x̄s + v)| ≤
n+1∑
k=1

|x̄k||tk − tqs,k| ≤

1
2qs

n+1∑
k=1

|x̄k| ≤ (n+ 1)maxy∈K1 |y − v|
2qs

.

Clearly |x− xs| → 0 as s → +∞, which concludes our proof.
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As an immediate consequence, we have the following result.

Corollary 3.13. Let K ∈ Cn, H ∈ G(n, i), 1 ≤ i ≤ n − 1. Then we have that the
sequence

Km := Fm
H K = FH ...FH︸ ︷︷ ︸

m-times

K

converges in Hausdorff distance to the H-symmetric compact set

L =
⋃

x∈H

conv(FHK ∩ (x+H⊥)).

Proof. Recalling the definition of fiber symmetrization

FHK =
⋃

x∈H

1
2((K ∩ (x+H⊥)) + (RHK ∩ (x+H⊥))) =

⋃
x∈H

MH⊥,x(K ∩ (x+H⊥)).

The result is a straightforward application of Theorem 3.12 to the sections of K.

3.2.1 Compact generalization of Klain’s Theorem for Minkowski
symmetrization

From Theorem 3.12, we already saw how the convexification effect of Minkowski
addition works when we iterate the same symmetrization. Now, we generalize the
former result using the estimate in the Theorem of Shapley, Folkman, and Starr
(Theorem 1.5).

Theorem 3.14. Consider K ∈ Kn and a sequence of isometries {Am}m∈N. If the
sequence

Km = 1
m

m∑
j=1

AjK

converges, then the same happens for every compact set C ∈ Cn such that conv(C) =
K. Moreover, the two sequences converge to the same limit.

Proof. First, note that orthogonal transformations and Minkowski addition commute
with the convex envelope. Thus for Cm = ∑m

j=1 AjC/m, where C ∈ Cn and {Aj} is
a sequence of isometries as in the hypothesis,

conv(Cm) = conv

 1
m

m∑
j=1

AjC

 = 1
m

m∑
j=1

Ajconv(C) = 1
m

m∑
j=1

AjK = Km.

We now apply Theorem 1.5 Theorem, obtaining

dH(Cm,Km) = dH(Cm, convCm) ≤
√
n

m
max

1≤j≤m
D(AjC) =

√
n

m
max

1≤j≤m
D(C).

C is compact and thus bounded, hence dH(Cm,Km) → 0, completing the proof. In
fact, compactness is not necessary, and boundedness would suffice, but this is beyond
the interest of the present paper.
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Corollary 3.15. Let K be a convex compact set and let (Hm) be a sequence of subspaces
of Rn (not necessarily of the same dimension) such that the sequence of iterated
symmetrals

Km := MHm ...MH1K

converges to a convex compact set L in Hausdorff distance. Then the same happens
for every compact set K̃ such that conv(K̃) = K, and the sequence K̃m, defined as
K̃m := MHm . . .MH1K̃, converges to the same limit L.

Proof. We will show that the theorem holds proving that

dH(K̃m,Km) → 0

for m → ∞. First, we can write Km as the mean of Minkowski sums of compositions
of reflections of K. Indeed, we have

K1 = K +RH1K

2 ,

K2 = K +RH1K +RH2(K +RH1K)
4 = K +RH1K +RH2K +RH2RH1K

4 ,

. . .

and so on. The same obviously holds for K̃m. We call these compositions of reflections
Aj , 1 ≤ j ≤ 2m, and defining Aj := AjK̃ we can write

K̃m = 1
2m

2m∑
j=1

AjK̃ = 1
2m

2m∑
j=1

Aj .

The proof follows applying Theorem 3.14.

We obtain the generalization of Klain’s result as a consequence of Corollary 3.15.

Corollary 3.16. Let K ∈ Cn, F = {Q1, ..., Qs} ⊂ G(n, i), 1 ≤ i ≤ n − 1, (Hm) a
sequence of elements of F . Then the sequence

Km := MHm ...MH1K

converges to a convex set L such that it is the limit of the same symmetrization
process applied to K̄ = conv(K). Moreover, L is symmetric with respect to all the
subspaces of F appearing infinitely often in (Hm).

Proof. The proof follows at once from Theorem 3.5 and Corollary 3.15.

We can use a similar method to generalize the following classical result from
Hadwiger. See, for example, [Sch14, Theorem 3.3.5].

Theorem 3.17. For each convex body K ∈ Kn
n, there is a sequence of rotation means

of K converging to a ball.

Moreover, combining Theorems 3.17 and 3.14, we have the following.

Corollary 3.18. For each compact set C such that conv(C) ∈ K n
n , there is a sequence

of means of isometries C converging to a ball.
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3.2.2 The case of convex outer boundary
One of the main properties of Minkowski symmetrization is that, as a consequence
of the Brunn-Minkowski inequality 1.1.1, it increases the volume. Indeed, for every
measurable set K ⊂ Rn such that λn(K) > 0 and MHK is measurable, we have

λn(MHK)1/n = λn(1/2(K +RHK))1/n ≥ 1
2λn(K)1/n + 1

2λn(RHK)1/n = λn(K)1/n,

where equality holds if and only if K and RHK are homothetic convex sets from
which sets of measure zero have been removed. We work only with compact sets.
Therefore, the equality condition is possible if and only if the two sets are homothetic
and convex. This happens if and only if K = MHK, and thus we would like to
state that the iteration of Minkowski symmetrization increases the volume until the
sequence of symmetrals reaches MHconv(K).

With Theorem 3.12 we proved that, regardless of the volume, the limit of K̃m is
actually MHconv(K), but now we raise one more question: can we obtain this limit
in a finite number of iterations? Under which hypothesis is this possible?

We start by answering these questions for compact sets of R. This case is more
complicated than for similar objects in Rn, n ≥ 2, as we will prove later.

Lemma 3.19. Let K ∈ R be a compact set such that conv(K) = [a, b] with the
following property:

∃ε > 0 s.t. [a, a+ ε] ⊂ K or [b− ε, b] ⊂ K.

Then there exists an index ℓ ∈ N depending on ε and (b− a) such that

M ℓ
oK = M ℓ+k

o K

for every k ∈ N.
Moreover, ℓ increases with (b− a) and decreases if ε increases.

Proof. First consider the case K ⊇ {a} ∪ [b− ε, b]. Then

MoK ⊇ Mo({a} ∪ [b− ε, b]) ⊃
[
a− b

2 ,
a− b

2 + ε

2

]
∪
[
b− a

2 − ε

2 ,
b− a

2

]
.

Easy calculations show that the same happens when K ⊇ [a, a + ε] ∪ {b}. Then,
naming

M := b− a

2 , m := b− a

2 − ε

2 ,

and we can work with a set containing a subset the form

[−M,−m] ∪ [m,M ] =: K̃,

where M −m = ε/2.
If we apply the symmetrization, we obtain

MoK ⊇ [−M,−m] ∪
[
m−M

2 ,
M −m

2

]
∪ [m,M ] = MoK̃. (3.2.2)
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If (M −m)/2 ≥ m, that is m ≤ M/3, then MoK = conv(K), and the result holds
with ℓ = 1.

In the general case, we can show by induction that the following inclusion holds

Mk+1
o K ⊇ Mk+1

o K̃ ⊇
2k+1⋃
j=0

[
(2k+1 − j)m− jM

2k+1 ,
(2k+1 − j)M − jm

2k+1

]
,

where the first inclusion is trivial thanks to the monotonicity of Minkowski sym-
metrization. In particular we will show that

Mk+1
o K̃ ⊇ Mk

o K̃∪
2k⋃

j=1

[
(2k+1 − 2j + 1)m− (2j − 1)M

2k+1 ,
(2k+1 − 2j + 1)M − (2j − 1)m

2k+1

]
,

which is the desired set. This inclusion is actually equality, but proving this fact is
beyond our goal here.

If k = 0, by (3.2.2) that the inclusion holds. By inductive hypothesis, at the
(k + 1)-th step the means of adjacent intervals of Mk

o K̃ are given by

1
2

[
(2k − (j + 1))m− (j + 1)M

2k
,
(2k − (j + 1))M − (j + 1)m

2k

]
+

1
2

[
(2k − j)m− jM

2k
,
(2k − j)M − jm

2k

]

=
[

(2k+1 − 2(j + 1) + 1)m− (2(j + 1) − 1)M
2k+1 ,

(2k+1 − 2(j + 1) + 1)M − (2(j + 1) − 1)m
2k+1

]

for every j = 0, ..., 2k − 1, giving us the elements of the union with odd indices.
Observe that Mk

o K̃ is invariant under reflection. Thus, thanks to Lemma 3.11
and the monotonicity of Minkowski symmetrization, we have Mk

o K̃ ⊆ Mk+1
o K,

concluding the induction.
Taking at the k-th step two adjacent intervals, we have that they are connected if

(2k − (j + 1))M − (j + 1)m
2k

≥ (2k − j)m− jM

2k
.

It follows that the condition for filling the whole segment conv(Mk
HK) is

m

M
≤ 2k − 1

2k + 1 .

Observe that the dependence on the index j disappeared after calculations, confirming
that this holds for every couple of adjacent intervals.

By hypothesis M −m = ε/2 and (2k − 1)/(2k + 1) → 1. We have

m

M
= 1 + m−M

M
= 1 − ε

2M ,

then there exists ℓ ∈ N such that

1 − ε

2M <
2ℓ − 1
2ℓ + 1 ,
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thus M ℓ
oK = conv(K) for

ℓ ≥ log2

(4M
ε

− 1
)
.

This set is convex and o-symmetric, thus is invariant under Minkowski symmetrization.
The dependence from M and ε is clear from the last inequality.

Notice that it is crucial that either a or b belong to an interval with positive
measure contained in K. Indeed, if that was not the case, there would occur a
situation analogous to the example presented in Example 3.10. Thus, there would
be a part of the set which stabilizes itself only at the limit.

With wider generality, the previous Lemma holds for the means of Minkowski
sums. Indeed, if K ⊂ R, for every x ∈ R holds

1
m

m∑
j=1

(K − x) = 1
m

m∑
j=1

K − x,

and taking x as the mean point of the extreme points of K we reduce ourself to the
same context of the Lemma, which can be restated as follows.

Lemma 3.20. Let K ∈ R be a compact set such that conv(K) = [a, b] with the
following property:

∃ε > 0 s.t. [a, a+ ε] ∪ [b− ε, b] ⊂ K.

Then there exist an index ℓ ∈ N depending on ε and (b− a) such that

1
2ℓ

2ℓ∑
j=1

K = 1
2ℓ+k

2k+ℓ∑
j=1

K

for every k ∈ N. Moreover, ℓ increases with (b− a) and decreases if ε increases.

Proof. First, we remind the reader that, as we have seen in Theorem 3.12, when we
iterate MH , after the first symmetrization we are just computing the mean

1
2m−1

2m−1∑
j=1

MHK = Mm
HK.

Moreover, we observe that the only difference with the previous Lemma is that we
do not have the sum with the reflection, so we have to require in the hypothesis that
both the end-points of K belong to segments included in K. Now we can work with
a set

K̃ := ([−M,−m] ∪ [m,M ]) + x

for a suitable x ∈ R, and the rest of the proof follows as the previous one.

A weaker property of these sets is to contain the boundary of their convex
envelope. When n ≥ 2, this is enough to prove the stronger and more general result
in Corollary 3.23.
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Lemma 3.21. Let K,L ∈ Cn such that ∂K, ∂L are connected and K ∩ L ̸= ∅. If
neither L is strictly contained in K nor K is strictly contained in L, then there exists
z ∈ ∂K ∩ ∂L.

Proof. First, note that if K is a closed set and ∂K is connected, then K is connected.
Moreover, Rn \ intK is connected too.

Observe that if K = L, then ∂K ∩ ∂L = ∂K = ∂L ̸= ∅ and there would be
nothing to prove. Thus, we can work in the hypothesis K ̸= L.

We start proving that ∂K ∩L ̸= ∅. Indeed, there exists y ∈ L \K and x ∈ K ∩L.
Then since L is connected, there exists a continuous curve γ joining x, y. Now, γ
must cross ∂K ∩L going from one end (x, inside K) to the other (y, outside K) in a
point u which belongs to the required intersection.

Now we prove that ∂K \ L ̸= ∅. Indeed there exists x ∈ K \ L, and K and L are
compact. Therefore, there exists r > 0 such that the ball B(0, r) contains strictly K
and L. Then, there exists a continuous curve γ′ from x to the boundary of B(0, r)
that does not intersect ∂L because of the connectedness of Rn \ intL. Moreover, γ′

must cross ∂K in a point v that does not belong to L. Hence, this point belongs to
∂K \ L.

Finally, since ∂K is connected, we can join u, v with a curve contained in ∂K
from inside L to outside of it, crossing ∂L in at least one point z ∈ ∂K ∩ ∂L.

If A is a connected compact set, then we call the external connected component
of Rn \ A the unbounded connected component of such a set. Then we note that
as in [FLZ22], this result holds also for the boundary of the external connected
component of Rn \ K and Rn \ L. Moreover, we point out that the hypothesis of
Lemma 3.21 immediately rules out the case n = 1. This is going to be an issue in
Corollary 3.23 and Theorem 3.24.

We can now prove the following result.

Theorem 3.22. Let K,L be compact sets with connected boundary such that, for every
x ∈ Rn, neither K + x is strictly contained in −L nor −L is strictly contained in
K + x. Then,

K + L = ∂K + ∂L.

Proof. Let x ∈ K + L, then there exist κ ∈ K and ℓ ∈ L such that x = κ+ ℓ. If we
define K̃ := K + x − κ, L̃ := −L+ x+ ℓ, we have that x ∈ K̃ ∩ L̃ hence K̃ and L̃
satisfy the hypothesis of Lemma 3.21. Thus ∂K̃ ∩ ∂L̃ ̸= ∅.

Let z ∈ ∂K̃ ∩ ∂L̃, then

z − x+ κ ∈ ∂K, ℓ− z + x ∈ ∂L.

Now
(z − x+ κ) + (ℓ− z + x) = κ+ ℓ,

proving our assertion.
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Corollary 3.23. Let K ∈ Kn and H be a subspace of Rn. Then

MHK = MH∂K, (3.2.3)

In particular, if C ∈ Cn and C ⊇ ∂conv(C), then MHC is convex, and

MHconv(C) = MHC.

The same holds for fiber symmetrization if H is not a hyperplane.

Proof. We first prove the result regarding Minkowski symmetrization. We apply
Theorem 3.22 to K/2 and RHK/2. Indeed, observe that the two sets are convex
and thus with connected boundary. Moreover, since they have the same volume, no
translate of one set is strictly contained in the other. Then, Theorem 3.22 yields
MHK = MH∂K.

Consider now a set C ∈ Cn with ∂conv(C) ⊆ C. From equation (3.2.3),
∂conv(C) ⊆ ∂C and the monotonicity of Minkowski symmetrization, we infer

MHC ⊃ ∂C + ∂RHC

2 ⊇ ∂conv(C) + ∂RHconv(C)
2 = MHconv(C).

Since the reverse inclusion is trivial, this concludes the proof in the case of Minkowski
symmetrization.

Regarding fiber symmetrization, note that if H was a hyperplane, then the
sections are one-dimensional. Moreover, in Lemma 3.19, we proved that we need
certain conditions on the boundary to obtain idempotence. In general, we know
that fiber symmetrization preserves convexity. Therefore FHconvC is convex, and its
boundary is given by the union of the boundaries of the sections by H⊥ + x, x ∈ H.
If H is not a hyperplane, these sections are obtained by Minkowski symmetrization
of convex sets of dimension greater or equal than two, completing the proof.

We are now in a position to prove a version of Klain’s Theorem for fiber sym-
metrization of compact sets, except for the case of sequences of hyperplanes.

Theorem 3.24. Let K ∈ Cn such that ∂conv(K) ⊂ K, let F = {Q1, ..., Qs} be a
family of subspaces of Rn, 1 ≤ dim(Qi) ≤ n − 2, and let (Hm) be a sequence such
that Hm ∈ F for every m ∈ N. Then the sequence

Km := FHm ...FH1K

converges to a convex set L, where L is the limit of the same symmetrization process
applied to conv(K). Thus L is symmetric with respect to all the subspaces of F
appearing infinitely often in (Hm).

Proof. By Corollary 3.23 we have FH1K = FH1convK. Therefore FH1K ∈ Kn
n, and

it suffices to apply to for the rest of the sequence Theorem 3.5, proving the claim.

We conclude this section with another immediate application, a small addition
to Klartag’s following result (see [Kla04, Theorem 1.1]). The same generalization
holds for similar results in [Kla02].
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Theorem 3.25. Let n ≥ 2, 0 < ϵ < 1/2, and let K ⊂ Rn be a compact set such that
K ⊇ ∂convK. Then there exist cn log 1/ϵ Minkowski symmetrizations with respect to
hyperplanes, that transform K into a set K̃ that satisfies

(1 − ϵ)w(K)Bn ⊂ K̃ ⊂ (1 + ϵ)w(K)Bn,

where c > 0 is some numerical constant.

Proof. First, we consider the sequence given by the original statement of this theorem
for the convex set convMHK. As we have proved in Theorem 3.22, applying the
first symmetrization, the resulting set will be convMHK. The proof follows at once,
considering the sequence constructed in [Kla04, Theorem 1.1].

3.3 Convergence in shape and stable sequences
It seems clear at this point, that symmetrization processes can present many different
behaviors, and universal sequences are just a part of the zoo of phenomena we can
encounter studying them. For example, in the last part of this section, we study
instances where the convergence of symmetrization processes fails. We will present
one in Example 3.41, which was given previously in [BKL+11] and [BF13]. This
example shows that a dense sequence of directions, if accurately chosen, leads to
a non-converging symmetrization process. We show, in particular, that the same
construction works for the whole family of symmetrizations considered in Theorem
3.33.

For this family of non-converging sequences, when dealing with Steiner sym-
metrization of compact sets, convergence is still possible in a weaker sense, called
convergence in shape.

Definition 3.26 (Convergence in shape). Consider a family E of sets. Given K ∈ E , a
symmetrization ♢ on E and a sequence (Hm) of subspaces, the sequence of symmetrals

♢Hm · · · ♢H1K

is said to converge in shape if there exist a sequence (Am) of rotations such that

Am♢Hm · · · ♢H1K

converges.

This section will be devoted to the study and the generalization of this kind of
convergence (see Definition 3.26). The first result in this direction was achieved by
Bianchi, Burchard, Gronchi, and Volčič in [BBGV12, Theorem 2.2] and reads as
follows.

Theorem 3.27. Let (um) be a sequence in Sn−1 such that um · um−1 = cosαm, where
αm ∈ (0, 2π) and

∑
m∈N α

2
m < ∞. Let (Hm) be the corresponding sequence of

hyperplanes given by Hm = u⊥
m for every m ∈ N.

Then there exists a sequence (Am) of rotations such that for every non-empty
compact set K ⊂ Rn the sets

Km = AmSHm · · ·SH1K
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converge in Hausdorff metric to a compact convex set L.

To glue together all these concepts, stable sequences were introduced in [Uli23] to
study the instance of different limits arising other than the ball unconditionally from
the seed of the sequence. Theorem 3.4 and the variations we showed are an example
of this phenomenon. Thus, it make sense to introduce the following definition.

Definition 3.28 (Stable sequences). If ♢ is a symmetrization on E , a sequence (Hm)
of subspaces is said to be ♢-stable (or stable for the symmetrization ♢) if for every
k ∈ N, the sequence defined for m ≥ k by

Km,k = ♢Hm · · · ♢Hk+1♢Hk
K

converges for every K ∈ E .

Definition 3.28, together with Definition 3.26, motivates the further definition.

Definition 3.29 (Shape-stable sequences). If in Definition 3.26 for every k ∈ N,m ≥ k
the sequence

Am♢Hm · · · ♢Hk
K

converges, where (Am) is independent of K and k, the sequence (Hm) of subspaces
is shape-stable in E for ♢.

Examples of shape-stable sequences were presented in Theorem 3.27. Note that
if Am is the identity for every m ∈ N, then a shape-stable sequence (Hm) is stable.
To better understand these new concepts, we exhibit some examples.

Example 3.30 (Klain’s Theorem). By Theorem 3.4 and its variations, for a finite
family D of hyperplanes, a sequence (Hm) such that Hm ∈ D for every m ∈ N is
stable for Minkowski, fiber, and Schwarz symmetrizations on Kn.

Example 3.31 (Stable sequences). Consider in R2 the square Q with vertices (1, 0),
(0,−1), (−1, 0), (0, 1) as in Figure 3.3. Consider the sequence (Hm) of lines where
Hm = span{(1, 0)} when m is even, Hm = span{(0, 1)} when m is odd, for m ≥ 2,
while H1 = span{(

√
2+1, 1)}. Then (Hm) is stable in K2 for Minkowski symmetriza-

tion thanks to its version of Klain’s Theorem. Now, observe that MH1Q is the red
octagon in the figure, and all the other symmetrizations leave this set unchanged so
that the limit is exactly MH1Q. If we start from m ≥ 2 instead, the limit is always
Q.

Example 3.32 (Shape-stable sequences). Consider in R2 an ellipse E centered at
the origin and a sequence of lines as in Theorem 3.27. It is known that Steiner
symmetrization preserves ellipses, and we can choose a direction v such that the
symmetral with respect to the line H1 parallel to v is a ball.

If we consider a sequence (Hm) of lines starting from H1 and then continuing as
the sequence of Theorem 3.27, we infer that (Hm) is shape-stable in K2. Moreover,
since SH1E is a ball centered at the origin, the limit is of SH1E. If we skip the first
symmetrizations, as was proved in [BBGV12, Example 2.1] (which we recall here
in Example 3.41), we can choose the remaining directions such that the limit of the
convergence in shape is not a ball.

72



3.3. Convergence in shape and stable sequences

H2, H4, H6, . . .

H3, H5, H7, . . .

H1

Figure 3.3: Different limits may arise from stable sequences.

At least in K n
n , it seems clear at this point that Steiner (this is equivalent to fiber

symmetrization with respect to hyperplanes) and Minkowski symmetrizations play a
peculiar role in determining convergence behaviors. Indeed, Fiber and Minkowski
symmetrization can be considered the extremals of a certain family of symmetrizations,
in a sense that Theorem 3.33 ( [BGG17, Corollary 7.3]) will make clear.

Theorem 3.33 (Bianchi, Gardner, and Gronchi). Let H ∈ G(n, i), 1 ≤ i ≤ n− 1 and
let E = Kn or Kn

n. If ♢ satisfies Properties 1, 3, and 4, then

FHK ⊆ ♢HK ⊆ MHK (3.3.1)

for every K ∈ E.

This explains why the following family of symmetrizations is of particular interest:

F = { symmetrizations ♢ | Properties 1, 3, 4 hold },

where we refer to the properties presented in Section 3.1. The remainder of this
chapter is dedicated to the study of this family of symmetrizations. As we show,
these three properties are enough to characterize a full spectrum of convergence
phenomena.

3.3.1 Shape-stable symmetrization processes
We start by noting some monotonicity properties for volume and mean width with
respect to symmetrizations in F .

Lemma 3.34. Consider H ∈ G(n, i), 1 ≤ i ≤ n− 1, and a symmetrization ♢H : Kn →
(Kn)H such that ♢ ∈ F . Then for every K ∈ Kn we have

λn(♢HK) ≥ λn(K), V1(K) ≥ V1(♢HK).

Proof. The first inequality is a consequence of the Brunn-Minkowski inequality
(1.1.1). Indeed by definition if K ∈ Kn, then every H-orthogonal section of FHK is
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a Minkowski symmetral of an H-orthogonal section of K, thus λn(FHK) ≥ λn(K).
Now, by (3.3.1) we have

λn(♢HK) ≥ λn(FHK) ≥ λn(K).

For the second inequality, again in view of (3.3.1), we have ♢HK ⊆ MHK. Thus
clearly h♢HK(u) ≤ hMHK(u) for every u ∈ Sn−1 and consequently

V1(♢HK) ≤ V1(MHK) = V1(K),

completing the proof.

We can now prove the following equivalence result. Note that, for this result, the
dimension of the subspaces in the sequence is not relevant.

Theorem 3.35. Let ♢0 ∈ F . If a sequence (Hm) of subspaces is shape-stable for ♢0
in Kn with rotations (Am), then for any ♢ ∈ F , (Hm) is shape-stable for ♢ in Kn

with rotations (Am).
In particular, a sequence (Hm) of subspaces is shape-stable for ♢ ∈ F if and only

if the same property holds for fiber or Minkowski symmetrization. If each Hm is a
hyperplane, the same conclusion holds for Steiner symmetrization.

Proof of Theorem 3.35. The outline of the proof is the following. We proceed by
applying (3.3.1) multiple times. First, proving that if (Hm) is shape stable for ♢0
in Kn, then it is shape-stable for M in Kn. After that, we show that if the same
sequence is shape-stable for M in Kn, then the same holds for any ♢ ∈ F . For a
subspace H we denote by ♢0,H the symmetrization ♢0 with respect to H.

Let (Hm) be a shape-stable sequence of subspaces for ♢0 in Kn with rotations
(Am). We want to prove that for every K ∈ Kn the sequence of sets

Km = AmMHm · · ·MH1K (3.3.2)

converges. Suppose on the contrary that there exists K ∈ Kn such that for two
subsequences (Kmj ) and (Kml

) obtained by (3.3.2) one has Kmj → L1,Kml
→ L2

where L1 ̸= L2, L1, L2 ∈ Kn.
Consider the sequence of bodies obtained by the same process starting from

Kr = K +B(0, r) instead of K, r > 0 fixed. This is done to cover both the full- and
lower-dimensional cases at the same time.

Note that if H is a subspace and A is a rotation, for every K ∈ Kn we have

MH(K +B(0, r)) = MHK +B(0, r), A(K +B(0, r)) = AK +B(0, r)

and thus

Kr,m = AmMHm · · ·MH1(K +B(0, r)) = AmMHm · · ·MH1K +B(0, r),

that is Kr,m = Km +B(0, r) = (Km)r and instead of L1 and L2 we have the limits
L1 + B(0, r) and L2 + B(0, r). Note that L1 ̸= L2 if and only if L1 + B(0, r) ̸=
L2 +B(0, r) (see for example [Sch14, Theorem 1.7.5 (a)]).
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Since λn(Kr) > 0, thanks to Lemma 3.34 the sequence of volumes λn(Km +
B(0, r)) is increasing and strictly positive. Moreover, it is bounded; indeed, from the
compactness of K, there exists a ball B(0, R) with R > 0 such that Kr ⊆ B(0, R).
From the monotonicity and symmetry invariance of Minkowski symmetrization
Km + B(0, r) ⊆ B(0, R) for every m ∈ N. Therefore λn((Km)r) converges to a
certain value cr > 0.

Since L1 ̸= L2, λn((L1)r∆(L2)r) = δ > 0. Fix 0 < ε < δ/2. There exists an
index ν such that cr − λn((Km)r) < ε for every m ≥ ν. If for m > ν we define

Jm = Am♢0,Hm · · · ♢0,Hν+1A−1
ν (Kν)r

= Am♢0,Hm · · · ♢0,Hν+1MHν · · ·MH1Kr,

then thanks to Theorem 3.33, Jm ⊆ (Km)r and in particular we have Jmj ⊆ (Kmj )r

and Jml
⊆ (Kml

)r. From the hypothesis the sequence (Hm) is shape-stable in Kn for
♢0, so there exists J ∈ Kn such that Jm → J . Clearly the same holds for (Jmj ) and
(Jml

). In particular J ⊆ (L1)r and J ⊆ (L2)r and for Lemma 3.34 λn(J) ≥ λn((Kν)r).
We infer

λn((L1)r∆(L2)r) = λn((L1)r \ (L2)r) + λn((L2)r \ (L1)r) ≤
λn((L1)r \ J) + λn((L2)r \ J) = 2cr − 2λn(J) ≤ 2cr − 2λn((Kν)r) < 2ε < δ,

which is a contradiction, so L1 = L2. The same argument can be repeated for every
truncated sequence

AmMHm · · ·MHk
K

and consequently (Hm) is shape-stable for Minkowski symmetrization.
Now we prove that if a sequence is shape-stable in Kn for Minkowski symmetriza-

tion, then it is shape-stable for ♢ ∈ F as well. Consider for Z ∈ Kn the sequence of
sets

Zm = Am♢Hm · · · ♢H1Z.

If Zm does not converge, we can find two different subsequences (Zmj ) and (Zml
)

converging respectively to W1 and W2 ∈ Kn with W1 ̸= W2.
Thanks to Lemma 3.34 the sequence V1(Zm) is non-negative and non-increasing,

thus V1(Zm) → b for some b ≥ 0. Then, sinceW1 ≠ W2, we have V1(conv(W1∪W2)) >
b. Note that the cases W1 ⊂ W2 and vice versa are automatically excluded since
b = V1(W1) = V1(W2) and the mean width is strictly monotone. Now, for every
ε > 0 we can find ν ∈ N such that V1(Zm) − b < ε for every m ≥ ν. For every m ≥ ν,
define the sequence of sets

Vm = AmMHm · · ·MHν+1A−1
ν Zν

= AmMHm · · ·MHν+1♢Hν · · · ♢H1Z.

Then the sets Vm converge to some V ∈ Kn because (Hm) is shape-stable for
Minkowski symmetrization. Minkowski symmetrization preserves the mean width,
thus V1(V ) = V1(Zν). Moreover, thanks to Theorem 3.33 we have W1,W2 ⊆ V
and since V is convex, conv(W1 ∪W2) ⊆ V and hence V1(V ) ≥ V1(conv(W1 ∪W2)).
Therefore

V1(conv(W1 ∪W2)) − b ≤ V1(V ) − b = V1(Zν) − b < ε.
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Since ε is arbitrary this inequality contradicts V1(conv(W1 ∪ W2)) > b and thus
W1 = W2. Again the same process can be applied to the truncated sequences,
concluding the proof.

Now, the following result is just an easy corollary.

Theorem 3.36. Let ♢0 ∈ F be a symmetrization on Kn. Then, if (Hm) is a ♢0-stable
sequence of subspaces of Rn, it is ♢-stable for every symmetrization ♢ ∈ F .

In particular, this holds for Steiner and Minkowski symmetrization when the Hm

are hyperplanes.

Proof. Observe that if (Hm) is stable, then it is shape-stable with Am equal to the
identity for every m. The proof is then a straightforward application of Theorem
3.35.

A second consequence is the following extension of Theorem 3.7. Note that the
extension is twofold: The result is valid for the whole family F and the respective
family of objects is Kn instead of Kn

n.

Theorem 3.37. Let ♢0 ∈ F . A sequence (Hm) of subspaces is weakly ♢0-universal in
Kn if and only if it is weakly ♢-universal for every ♢ ∈ F .

Proof. The strategy is the same as Theorem 3.35, with the advantage of using
Theorem 3.36.

If (Hm) is weakly ♢0-universal in Kn, then it is stable in Kn. Using Theorem
3.36, this implies that (Hm) is stable for Minkowski symmetrization. Thus we only
need to prove that for every K ∈ Kn and k ∈ N, the limit L of the corresponding
sequence of sets

Km = MHm · · ·MHk
K

is a ball, where m ≥ k. Again the sequence of volumes λn(Km) is bounded and
increasing, and therefore it converges to a certain c ≥ 0. By the same argument
employed in Theorem 3.35, we can suppose that c > 0, i.e. considering K +B(0, r)
for arbitrarily small r > 0 instead of K.

Since (Hm) is weakly ♢0-universal, for every ν ≥ k the sequence of sets

♢0,Hm · · · ♢0,Hν+1MHν · · ·MHk
K

converges to a ball Bν . Moreover λn(Bν) ≥ λn(Kν) by Lemma 3.34 and Bν ⊆ L for
every ν thanks to Theorem 3.33. Since λn(Km) increases to c, for every ε > 0 exists
ν ∈ N such that λn(L∆Bν) < ε. Therefore L is a ball.

Suppose now that (Hm) is weakly universal for Minkowski symmetrization in Kn.
This implies that (Hm) is stable for Minkowski symmetrization and hence also for ♢,
by Theorem 3.36. Consider for Z ∈ Kn and k ∈ N the limit W of the sequence of
sets

Zm = ♢Hm · · · ♢Hk
Z

for m ≥ k. Again (V1(Zm)) is a non-negative and non-increasing sequence; thus it
converges to a value b ≥ 0.

76



3.3. Convergence in shape and stable sequences

The sequence (Hm) is weakly universal for Minkowski symmetrization, thus for
every ν ≥ k we have a ball Bν as the limit of the sequence of sets

MHm · · ·MHν+1♢Hν · · · ♢Hk
Z.

Then V1(Bν) = V1(Zν) thanks to the properties of Minkowski symmetrization and
for every ν Theorem 3.33 gives W ⊆ Bν . Since V1(Bν) decreases to V1(W ), W must
be a ball.

Theorem 3.35 allows us to extend many known results for Steiner symmetrization
to all ♢ ∈ F , in particular, Minkowski symmetrization with respect to hyperplanes.
For example, we immediately have the following generalization of Theorem 3.27.

Corollary 3.38. Let (Hm) be a sequence of hyperplanes with corresponding normals
um ∈ Sn−1. Consider ♢ ∈ F and angles αm ∈ (0, 2π) such that um · um−1 = cosαm.
If
∑

m∈N α
2
m < ∞, then there exist rotations Am such that for every non-empty

compact convex set K ⊂ Rn the sets

Km = Am♢Hm · · · ♢H1K

converge in Hausdorff metric to a set L ∈ Kn.

For Minkowski symmetrization with respect to hyperplanes, we have a stronger
result by Theorem 3.14 and 3.36.

Corollary 3.39. If (Hm) is a shape-stable sequence of hyperplanes for Steiner sym-
metrization on Cn, then it is shape-stable on Cn for Minkowski symmetrization. In
particular, Theorem 3.27 holds for Minkowski symmetrization as well.

Proof. First, observe that since Kn is closed in Cn, the sequence (Hm) is shape-
stable for Steiner symmetrization on Kn and by Theorem 3.35 it is shape-stable for
Minkowski symmetrization on Kn.

Now, to conclude the proof, we only have to express the shape-stable sequence as
a sequence of means of isometries so that we can apply Theorem 1.5. To see this,
note that for every C ∈ Cn

C1 = A1MH1C = A1

(
C +RH1C1

2

)
= A1C + A1RH1C

2 .

Iterating this process, we see that every Cm is a Minkowski mean of 2m isometries of
C.

Theorem 3.27 provides shape-stable sequences for Steiner symmetrization in Cn,
thus the same sequences are shape-stable in Cn for Minkowski symmetrization.

We conclude with a further interesting consequence, a partial answer to the ques-
tion: Does a converging sequence of hyperplanes induce a converging symmetrization
process? We find a positive answer when one additional assumption is imposed.
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Theorem 3.40. Let (Hm) be a sequence of hyperplanes and consider the corresponding
normals um ∈ Sn−1. Let ♢ ∈ F . If the angles αm ∈ [0, π/2] given by the relation
|um · um−1| = cosαm are such that∑

m∈N
|αm| < ∞,

then (Hm) converges and is ♢-stable on Kn.

Proof. We shall apply Corollary 3.38. The rotations Am there are those constructed
in Theorem 3.27; see the proof of [BBGV12, Theorem 2.2] which shows that Am =
ϕm · · ·ϕ1, where ϕm is a planar rotation by αm degrees that fixes u⊥

m ∩ e⊥
1 and is

such that ϕmAm−1um = e1, for a fixed basis {e1, . . . , en} of Rn.
First, we show that (Am) is a Cauchy sequence in GL(n) with the usual norm

∥ϕ∥ = sup
z∈Sn−1

∥ϕz∥.

From the properties of the norm and the triangle inequality we obtain

∥Am+k − Am∥ = ∥ϕm+k · · ·ϕm+1Am − Am∥ ≤ ∥Am∥∥ϕm+k · · ·ϕm+1 − Id∥ =
∥ϕm+k · · ·ϕm+1 − Id∥ ≤ ∥ϕm+k · · ·ϕm+1 − ϕm+1∥ + ∥ϕm+1 − Id∥ ≤

∥ϕm+1∥∥ϕm+k · · ·ϕm+2 − Id∥ + 2 sin(|αm+1|/2) ≤ · · · ≤ 2
m+k∑

j=m+1
sin(|αj |/2).

From the hypothesis, the series ∑ |αm| converges, proving the claim. Since Am is a
composition of rotations, Am ∈ SO(n) for every m. As a subspace of GL(n), SO(n)
is compact, and therefore it is complete. Thus the sequence (Am) converges to some
A ∈ SO(n).

By Corollary 3.38 the sequence of sets

Am♢Hm · · · ♢H1K

converges for every K ∈ Kn to a certain set L. We then have the estimate

dH(♢Hm · · · ♢H1K,A−1L) ≤ dH(♢Hm · · · ♢H1K,A−1
m L) + dH(A−1

m L,A−1L).

By the isometry invariance of the Hausdorff distance

dH(Am♢Hm · · · ♢H1K,L) = dH(♢Hm · · · ♢H1K,A−1
m L)

and thus from the convergence of Am♢Hm · · · ♢H1K and Am we infer that the
sequence of sets ♢Hm · · · ♢H1K converges to A−1L, concluding the proof.

3.3.2 Counterexamples to convergence
As we have seen, Theorem 3.35 lets us extend Theorem 3.33 to all the symmetrizations
♢ ∈ F . The latter result arises from the study of a peculiar counterexample which
we now briefly show. It can be found in different versions in [BBGV12], [BKL+11],
and [BF13]. In the following examples the vectors {e1, e2} form an orthonormal basis
of R2.
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Example 3.41. Consider a sequence of angles αm ∈ (0, π/2) such that∑
m∈N

αm = ∞,
∑

m∈N
α2

m < ∞. (3.3.3)

We consider the sequence of directions in R2 given by um = (cosβm, sin βm) where

βm =
m∑

j=1
αj

with corresponding orthogonal lines Hm = u⊥
m.

Let 0 < γ = ∏
m∈N cosαm (which converges because of the second condition in

(3.3.3)). We consider a compact set K ⊂ R2 with area 0 < λ2(K) < π(γ/2)2 and
containing a vertical unit segment ℓ centered at the origin. We claim that the sets

Km = SHm · · ·SH1K

do not converge. Indeed, consider the segments

ℓm = PHmKm−1,

where the length of ℓm ⊆ Hm converges to γ > 0. The sequence (um) of directions
is dense in S1, thanks to (3.3.3), and it does not converge. The same holds for the
sequence (Hm) of lines. Thus for every ν ∈ S1, we can find a subsequence (H⊥

mk
)

such that the normal directions converge to ν. Then ℓmk
converges to a segment of

length γ > 0 parallel to ν.
Now, if Km converges, by the monotonicity of Steiner symmetrization the limit

set must contain all these subsequences of diameters, and consequently a ball B of
diameter γ centered at the origin. But we supposed λ2(K) < π(γ/2)2, thus Km

cannot converge.

The peculiarity of the sequence involved in this example is that the corresponding
directions are dense in S1, which could seem a reasonable sufficient condition for
convergence to a ball. As was shown, this is not the case, even though in [BKL+11]
it was proved for compact convex sets that a dense sequence of hyperplanes can be
reordered to obtain a universal sequence. This was generalized in [Vol16] to generic
compact sets.

In [BGG22b], Bianchi, Gardner, and Gronchi proved a characterization concerning
the symmetry that a convex body needs to be a ball. The form we present includes
the statements from [BGG22b, Theorem 3.2] for one-dimensional subspaces.

Theorem 3.42. Let Hj ∈ G(n, 1), j = 1, . . . , n, be such that
(i) at least two of them form an angle that is an irrational multiple of π,
(ii) H1 + · · · +Hn = Rn, and
(iii) H1, . . . ,Hn cannot be partitioned into two mutually orthogonal non-empty subsets.

If E ⊆ Sn−1 is non-empty, closed, and such that RHjE = E, j = 1, . . . , n, then
E = Sn−1.

Hence, if K ∈ Kn
n satisfies RHjK = K for j = 1, · · · , n, then K is a ball centered

at the origin.
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We can use this theorem to find sequences of lines such that the corresponding
symmetrization process, if it converges, tends to a ball. Indeed, consider a sequence
(vm) of directions with n accumulation points generating a family of lines H1, . . . ,Hn

as in the statement of Theorem 3.42. Consider a sequence (Km) of convex bodies
such that every Km is symmetric with respect to v⊥

m. Then, if the sequence converges,
the limit must necessarily be a ball. We can use this fact to provide a new kind of
counterexample.

Example 3.43. Consider in R2 the two directions w1 = (1, 0), w2 = (cosα, sinα) such
that α > 0 is an irrational multiple of π. We consider γm ∈ [0, α], m ∈ N, such that
αm = |γm+1 − γm| is as in (3.3.3). Moreover we want α and 0 to be accumulation
points of (γm).

Consider the sequence (Hm) of lines given by Hm = span{(cos γm, sin γm)}. Then
the corresponding sequence of directions has w1 and w2 as accumulation points.

Let K be a compact body centered at the origin with a diameter of unit length
parallel to w1 and consider the sequence of symmetrals

Km = SHm · · ·SH1K.

As in Example 3.41 we can consider a sequence of segments

ℓm = Km ∩Hm

such that λ1(ℓm+1) ≥ λ1(ℓm) cosαm+1, thus λ1(ℓm) converges to a value γ > 0 and
in particular the two limits of the converging subsequences of (ℓm) respectively parallel
to w1 and w2 have length greater than γ.

Using Theorem 3.42, if Km converges, the limit must be a ball. If we choose
λ2(K) < π(γ/2)2, the limit ball should contain a diameter of length γ, which is not
possible. Therefore (Km) cannot converge.

We conclude proving that Example 3.41 can be generalized for other symmetriza-
tions, again thanks to Theorem 3.33.

Example 3.44. Consider a set K ∈ K2
2 that contains a horizontal unit segment and

has mean width 1/2π < V1(K) < γ, where γ is as in Example 3.41. In the hypothesis
of Theorem 3.33, for ♢ ∈ F

SUm · · ·SU1K ⊆ ♢Um · · · ♢U1K ⊆ MUm · · ·MU1K,

where Uj = span{uj}, and we used Steiner symmetrization because it is equivalent to
fiber symmetrization relative to a hyperplane, which is our case working in R2.

In this way, we can exploit the first counterexample and the inclusion chain of
Theorem 3.33 to guarantee that, if a limit exists for ♢Um · · · ♢U1K and MUm · · ·MU1K,
proceeding as before it must contain a ball of diameter γ, and therefore this limit
must have mean width greater than γ. In particular, this holds for the sequence of
Minkowski symmetrals. But Minkowski symmetrization preserves mean width, which
we supposed to be less than γ. This is a contradiction, and therefore there cannot be
a limit.
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