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Abstract. We consider a simplified model of the continuous double auction
where prices are integers varying from 1 to N with limit orders and market
orders, but quantity per order limited to a single share. For this model, the
order process is equivalent to two M/M/1 queues. We study the behaviour of the
auction in the low-traffic limit where limit orders are immediately transformed
into market orders. In this limit, the distribution of prices can be computed
exactly and gives a reasonable approximation of the price distribution when the
ratio between the rate of order arrivals and the rate of order executions is below
1/2. This is further confirmed by the analysis of the first passage time in 1 or
N .

1. Introduction

Most of the regulated markets in the world implement a trading mechanism known
as the continuous double auction to match supply and demand. This mechanism
has two sides. On the supply side there are orders to sell and on the demand side
there are orders to buy. Hence, the auction is called double. Moreover it occurs in
continuous time. Hence, it is called continuous.

In recent years, the theory of this auction has gained more and more interest. In
particular, it has been shown that appropriate models of the double auction can be
mapped in a multi-class queue [1], so that its ergodic properties and the limiting
invariant distribution can be studied using established techniques [2].

In this paper, we consider a simplified model (see [3] and references therein) where
prices take N integer values from 1 to N . Only two types of orders are considered:
limit orders and market orders. In their turn, limit orders can be either orders
to sell a single share at a price not lower than a given amount (asks) or orders
to buy a single share at a price not higher than a given amount (bids). In other
words, the quantity attached to every limit order is always 1. Among all the
asks, the best ask is the smallest ask price, whereas the best bid is the largest bid
price. The best bid is always strictly smaller than the best ask. Market orders
have also two sides: either they accept the available best bid or the available
best ask. For the sake of simplicity, limit ask orders and limit bid orders arrive
according to a Poisson process at a rate λa and λb, respectively. In the following,

1

ar
X

iv
:1

60
3.

09
66

6v
1 

 [
m

at
h.

PR
] 

 3
1 

M
ar

 2
01

6



2 ENRICO SCALAS, FABIO RAPALLO, AND TIJANA RADIVOJEVIĆ

we assume symmetry, i.e. λa = λb = λ. Market orders to buy and market
orders to sell arrive separated by durations following the exponential distribution
with parameter µb and µa, respectively. Again, symmetry is assumed, namely
µa = µb = µ. Limit ask orders follow the uniform distribution in the interval from
pb + 1 to pb + n, where pb is the current best bid and n ≥ 1 is a parameter of the
model. Similarly, limit bid orders are uniformly drawn from the interval pa− n to
pa − 1, where pa is the the current best ask. The accessible states of the auction
are limited by the condition pb < pa. When pa is between 1 and n (pb between
N −n+ 1 and N), the bid (respectively ask) interval is restricted correspondingly.
For instance, if pa = 1, bids are impossible. The parameter n acts as a cut-off for
price jumps. Eventually, if no orders are present in the auction, the next bid, b, is
uniformly chosen in the interval p − n ≤ b ≤ p and the next ask, a, is uniformly
taken from p ≤ a ≤ p + n, where p is the price of the last trade. Specifying
an initial price (the opening auction price) is sufficient to start the auction. A
short remark is necessary at this stage: It turns out that order inter-arrival times
are not exponentially distributed in real markets (see [4] and references therein).
This means, that the above description in terms of M/M/1 processes should be
replaced by a semi-Markov description in terms of G/G/1 processes. However, in
this paper, for the sake of simplicity, we will limit our analysis to the Markovian
case.

The model described above is essentially the same as in [5] and in [6]. It is a zero
intelligence agent-based model [7]. As already mentioned in [3], this version of the
model does not use the uniform distribution over [0,∞) as in [5] and it is not
limited to the case in which limit orders arrive only at the best bid/ask price as
in [6]. A preliminary discussion of this version was presented in [8]. This model
was extensively studied in [9], in the case in which price movements equal one
tick. These authors also studied the heavy-traffic limit [10] where functional limit
theorems are available leading to diffusion approximations [11, 12].

In [3], the focus was on the ergodic properties of the model. Based on the fact that
the order process is equivalent to two independent M/M/1 queues, it was shown
that there are three regimes depending on the value of ρ = λ/µ. For 0 < ρ < 1,
prices are free to fluctuate over the full price range and statistical equilibrium is
reached (ergodic regime). For ρ ≥ 1, the auction is in a non-ergodic regime which
stabilizes prices. Due to the presence of the parameter n, there is an additional
transition. If 1 ≤ ρ < n, prices can still fluctuate in a limited range, whereas
for ρ ≥ n, prices eventually fluctuate between two values. This regime cannot be
found if one only considers the case n = 1.

In the following, we further characterize the ergodic regime by considering the
so-called low-traffic limit where ρ � 1. It is a limit where analytic results are
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available for the price dynamics as discussed below. Moreover, we study the first-
passage time of the auction in 1 or in N . It turns out that this analysis provides
useful approximations for the behaviour of the auction when ρ < 1/2.

2. The low-traffic limit

In the low-traffic limit (ρ � 1), when limit orders arrive, they are immediately
transformed into market orders. The book is almost always empty. In this limit,
it is possible to explicitly write the transition probabilities for the price process
and study the price Markov chain for any value of n and N . To give an idea on
how to proceed, let us assume that the initial price is p. Then, the conditional
probability of a bid is given by

(1) P(B1 = b|P0 = p) =


0 if b < p− n or b > p

1
p

if 1 ≤ b ≤ p ≤ n

1
n+1

if 1 ≤ p− n ≤ b ≤ p.

This bid is immediately accepted and it becomes the next price. A similar set of
equations can be written for the asks conditioned to the initial price.

(2) P(A1 = a|P0 = p) =


0 if a < p or a > p+ n

1
N−p+1

if N − n+ 1 ≤ p ≤ a ≤ N

1
n+1

if p ≤ a ≤ p+ n ≤ N.

Both equations are an immediate consequence of the model definition. For a full
characterization of the price Markov chain, the distribution of the initial price is
needed. For instance, if the initial price is chosen uniformly, the probability of
an initial price is 1/N ; if the chain starts from a given price, the probability of
this price is 1 and the probabilities of all the other prices are 0, and so on. In a
symmetric auction, for which λa = λb = λ and µa = µb = µ, the probability of a
bid arriving is 1/2 and it is equal to the probability of arrival of an ask. Therefore,
in the low traffic regime, the transition probability for prices is given by

(3) Pp,p′ = P(P1 = p′|P0 = p) =
1

2
P(A1 = p′|P0 = p) +

1

2
P(B1 = p′|P0 = p).

Let us now assume that the limit ρ � 1 is realized by keeping the arrival rate λ
finite and letting µ� λ. Then, if N(t) denotes the number of transactions up to
time t, we have that N(t) is Poisson distributed with parameter 2λ, given that
the auction has two sides (either a bid arrives with rate λ or an ask arrives with
rate λ). In fact, N(t) is the superposition of two Poisson processes with parameter
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λ. In other words, the price process can be seen as an embedded Markov chain
characterized by the transition probability (3) subordinated to the Poisson process
N(t). Once this remark is made, it is safe to focus on the embedded chain and
study its properties. In particular we are interested in the convergence of the price
probability. First of all, we notice that after any transactions, the double auction
is exactly in the same situation as in the initial case, except for the fact that the
price probability varies with time. In other words, the Markov chain defined above
is homogeneous. From the study of the transition probability, one can further infer
that the Markov chain is irreducible. In fact, it is possible to reach any price from
any other price. Moreover, given that the diagonal terms of the Markov transition
matrix are all positive, meaning that there is a finite probability for the price not
to change at every step, we can conclude that our Markov chain is aperiodic. Being
irreducible and aperiodic, our chain has a unique invariant distribution and this is
an equilibrium distribution.

In order to illustrate the above findings, let us consider a specific example with
N = 10 prices and n = 2. In this case, the price transition probability matrix
is

(4) P =



4/6 1/6 1/6 0 0 0 0 0 0 0
1/4 5/12 1/6 1/6 0 0 0 0 0 0
1/6 1/6 1/3 1/6 1/6 0 0 0 0 0
0 1/6 1/6 1/3 1/6 1/6 0 0 0 0
0 0 1/6 1/6 1/3 1/6 1/6 0 0 0
0 0 0 1/6 1/6 1/3 1/6 1/6 0 0
0 0 0 0 1/6 1/6 1/3 1/6 1/6 0
0 0 0 0 0 1/6 1/6 1/3 1/6 1/6
0 0 0 0 0 0 1/6 1/6 5/12 1/4
0 0 0 0 0 0 0 1/6 1/6 4/6


.

The invariant distribution is obtained by looking for the left eigenvector with unit
eigenvalue, namely

(5) πP = π,

which, in the case of (4) gives

(6) π = (0.1171, 0.0895, 0.1, 0.0961, 0.0974, 0.0974, 0.0961, 0.1, 0.0895, 0.1171) .

In the Appendix A, we present a general algorithm to find the invariant distribution
of prices. For n = 1, there is a remarkable result. In fact, in this case, the transition
matrix is a symmetric, doubly-stochastic matrix. Since P1 = 1 and 1TP = 1T

(because row sums and column sums are 1), then

(7)
1

N
1TP =

1

N
1T ,

and the uniform distribution is the invariant distribution for the Markov chain.



LOW TRAFFIC IN A DOUBLE AUCTION MODEL 5

0 10 20 30 40 50

0
.0

2
0

0
.0

2
5

0
.0

3
0

0
.0

3
5

Price

F
re

q
u

e
n

cy

Figure 1. Equilibrium price distribution in the low-traffic limit in
the case N = 50, n = 5 (circles). The triangles denote the price
frequency for a Monte Carlo simulation of the double auction with
ρ = 10−4 after 106 steps.

Always for purpose of illustration, in Figure 1, we plot the low-traffic limit price
distribution for the case N = 50, n = 5 and we compare it with the frequency with
which states appear after equilibration in a Monte Carlo simulation of the chain
after 106 iterations for ρ = 10−4. In this case 106 iterations are already sufficient
to show that the agreement between the low-traffic-limit approximation and the
result of Monte Carlo simulations is good. It is striking to observe that the price
distribution in the low-traffic limit is still a reasonable approximation when ρ = 0.3
as shown in Figure 2. The approximation breaks down for ρ ≥ 0.5 as shown in
Figure 3 for the case ρ = 0.9. This behaviour of the price distributions leads
to a different behaviour for first passage times at the boundary prices. In fact,
for ρ > 0.5 and n > 1 the residence time of the systems close to the boundaries
becomes negligible as shown by Figure 3, leading to an increase of the value of the
average first passage time.

3. First passage times

In this section we shall focus on first passage times. Given a double auction with
N possible prices, labeled with the integers 1, . . . , N , we fix the initial price at the
median point bN+1

2
c, where b·c denotes the floor operator. We study the random

variable T : The first passage time at 1 or at N ; for this reason, our problem belongs
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Figure 2. Comparison between the equilibrium price distribution
in the low-traffic limit in the case N = 50, n = 5 (circles) and
a a Monte Carlo simulation (triangles) of the double auction with
ρ = 0.3 after 109 steps.

to the class of two-barrier problems, and, for simplicity, we will assume that the
price walk is symmetric. The behaviour of the first passage time distribution
has been studied in several similar problems, both with theoretical results on the
exact or asymptotic distribution, and through simulation studies, see e.g. [14] and
[15].

Here, we present the results of a simulation study to investigate the main features
of the distribution of log(T ). In particular, we compare such a distribution with
the theoretical distribution derived under the low traffic assumption. Since the
distribution of T is highly skewed with a fat upper tail, as shown in figures, all
the plots reported here refer to the distribution of its natural logarithm log(T ).
For sake of simplicity, we have performed all comparisons in this section with
the parameter µ = 1 fixed. With this assumption, we get the low traffic limit if
ρ = λ� 1.

In Figure 4 the histograms of log(T ) for n = 5 and for ρ = 0.02 are displayed for 4
different values of N , namely N = 10, 40, 70, 100. One can observe that the shape
of the distribution is skewed for small values of N , while it approaches a Gaussian
distribution in the case N = 100 (the best-fit normal curve is plotted together
with the histogram). The simulations have been implemented in R [13], and all
histograms in this study are based on 10, 000 Monte-Carlo replicates.
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Figure 3. Comparison between the equilibrium price distribution
in the low-traffic limit in the case N = 50, n = 5 (circles) and
a a Monte Carlo simulation (triangles) of the double auction with
ρ = 0.9 after 109 steps.
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Figure 4. Distribution of log(T ) for n = 5 fixed and ρ = 0.02.

Figure 5 refers to the same settings as above, but with the ratio fixed at ρ = 0.5.
The distribution of log(T ) has almost the same shape for ρ = 0.5 and for ρ = 0.02.
In agreement with the conclusions of the previous section, this suggests that the
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Figure 6. Mean of log(T ) for n = 5 and N = 10, 40, 70, 100.

behaviour of the low traffic limit is a good approximation also for values of ρ up
to 0.5 also in terms of the first passage time distribution.

Finally, in Figure 6, the means of log(T ) as a function of ρ under various choices
of N (n = 5 fixed) are displayed. A minimum occur between ρ = 0.4 and ρ = 0.5
except for the first experimental setting (N = 10).

To complete the simulation study, we have compared the distribution of T with an
approximation suggested by the results of the previous section. Basically, we adapt
here a known formula for a discrete two-barrier problem. Such formula gives the
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distribution of the number of price changes needed to reach the boundary. Then,
the parameter ρ controls the proportion of orders leading to a price change, and
therefore it defines the discrete time distribution of the number of orders needed
to reach the boundary. Remember that in the low traffic limit when limit orders
arrive, they are immediately transformed into market orders. Finally, we add
suitable exponential distributions to switch to the continuous framework of our
model. To avoid problems in some formulae, we assume here N to be odd, so that
(N + 1)/2 is always integer. We have limited our study to the case n = 1 in order
to avoid further technicalities in the formulae and to capture the major features of
the model. The approximation is built up in three steps, as detailed below:

• First, consider a discrete first passage time T̃ (d) in a simple symmetric
random walk with two reflecting barriers and discrete ±1 steps, whose
distribution is

(8) P(T̃ (d) = h̃) =
2

N − 1

N−2∑
k=1

(−1)k+1 sin

(
kπ

N − 1

)
cosh̃−1

(
kπ

N − 1

)
sin

(
kπ

2

)
for h̃ ≥ 1. The above distribution can be found in [16] and is extensively
discussed with several generalizations in [17].

• The rate of arrival of limit orders over all orders is λ/(λ+ µ) = ρ/(ρ+ 1),
and in the low traffic approximation all limit orders arrive when the book
is empty. A limit order to buy (resp. to sell) fixes the price at the old
price p or at p + 1 (resp. p − 1) with probability 1/2 each. Therefore, at

any given time, the price changes with rate ρ
2(ρ+1)

. Thus, given T̃ (d) = h̃,

consider a Negative Binomial variable NB with parameters h̃ and ρ
2(ρ+1)

,

and define T (d) = NB + 1. The variable T (d) is again a discrete random
variable and it counts the number of events after the change of price is
actually performed;

• The interarrival time between two consecutive events follows an exponential
distribution with mean 2µ(1 + ρ). Therefore, given T (d) = h, the first
passage time is approximated by a random variable following a Gamma
distribution with parameters h and 1

2µ(1+ρ)
.

In conclusion, the distribution of the first passage time can be approximated by
a suitable mixture T (a) of Gamma distributions, whose parameters are computed
according to the formula in Eq. (8) for the discrete case. Notice that in the
previous construction the low-traffic hypothesis is used only when we assume the
book empty when a limit order arrives.

To show that this approximation works well for small values of ρ, we have plotted
in Figure 7 the empirical cumulative distribution function (ECDF) of log(T ) and (a
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Figure 7. ECDFs of log(T ) (in black) and its low traffic approxi-
mation log(T (a)) (dashed, in red) for N = 11, n = 1.

Monte-Carlo approximation of) the distribution of log(T (a)) for 4 different values
of ρ in the case N = 11. Also in these simulations we have considered only the
case µ = 1.

We can observe in Figure 7 that for ρ = 0.01, ρ = 0.05 the simulated distri-
bution and its theoretical approximation are nearly identical (the p-value of the
Kolmogorov-Smirnov based on 10,000 Monte Carlo replicates is 0.7212 for ρ = 0.01
and 0.0116 for ρ = 0.05. When ρ = 0.1 the two distributions show some discrep-
ancies, while in the last scenario (ρ = 0.5) the approximation fails. The low traffic
approximation T (a) tends to underestimate the distribution of T . This behaviour
is observed also in the ρ = 0.1 case, but it is clearer in the ρ = 0.5 case, as
expected.

When n > 1 a formula like that in Eq. (8) is no longer available. However,
we can analyze the low-traffic approximation by studying the expected values of

the distributions. In fact, the expected value of the first passage time µ
(d)
T of the

discrete chain in the low-traffic approximation can be computed through the linear
system

(9) (I − P2,N−1)x = 1

where P2,N−1 is the transition matrix restricted to the transient states, I is the (N−
2)×(N−2) identity matrix, and 1 is a column vector of 1 with dimension N−2 (see
e.g. [18] for details). Then, the mean time in the continuous setting µT is obtained

by scaling µ
(d)
T by a factor 1/(2ρ), following the same reasoning as above. In Table

1, the means T of the Monte Carlo simulations and the theoretical expected value
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ρ = 0.01 ρ = 0.02 ρ = 0.05
N n T µT ∆% T µT ∆% T µT ∆%
10 5 273.17 275.67 −0.91 136.58 137.76 −0.85 54.63 56.44 −3.20
40 5 2787.28 2821.84 −1.22 1393.64 1433.86 −2.80 557.46 598.03 −6.78
40 10 1176.20 1197.19 −1.75 588.10 604.54 −2.72 235.24 248.15 −5.20
80 5 9939.48 9888.86 +0.51 4969.74 5181.18 −4.08 1987.90 2164.12 −8.14
80 20 1598.81 1617.58 −1.16 799.41 824.12 −3.00 319.76 342.19 −6.55
100 5 15151.93 15183.58 −0.21 7575.97 7807.49 −2.97 3030.39 3267.66 −7.26
100 25 1763.36 1768.67 −0.30 881.68 903.18 −2.38 352.67 369.58 −4.58

ρ = 0.10 ρ = 0.50
N n T µT ∆% T µT ∆%
10 5 27.32 29.47 −7.31 5.46 8.72 −37.35
40 5 278.73 319.18 −12.67 55.75 124.99 −55.40
40 10 117.62 132.71 −11.37 23.52 45.54 −48.35
80 5 993.95 1159.32 −14.26 198.79 495.32 −59.87
80 20 159.88 182.86 −12.57 31.98 62.29 −48.66
100 5 1515.19 1780.02 −14.88 303.04 769.96 −60.64
100 25 176.34 198.62 −11.22 35.27 70.41 −49.91

Table 1. Average times in the real settings and the corresponding
low-traffic approximation for different values of N , n and ρ.

under the low-traffic approximation µT are given for several settings. For ρ up to
0.05 the approximation works well, and the relative error is less than 10% in all
settings, while for ρ = 0.1 and ρ = 0.5 the differences become relevant, especially
in the latter case.

4. Summary and conclusions

In this paper, we characterized the ergodic regime of a simple model for the con-
tinuous double auction in the low-traffic limit ρ � 1. In this limit, the price dis-
tribution can be derived for any value of the model parameters n and N . Explicit
numerical procedures to find the price distributions are given in the Supplemental
Material. We also showed that these results give a reasonable approximation of
the auction behaviour for ρ < 1/2. We further studied the first passage time T
in 1 or N using Monte Carlo simulations. We noticed that the low-traffic limit
approximation for T works reasonably for ρ� 1/2 in this case.

There are several open questions we would like to answer. A natural extension of
this simple model is its semi-Markov version in which non exponential distributions
for waiting times between events are introduced. In such an extension, the behavior
of the embedded chain does not change, but the mixing time of the chain changes.
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A particularly interesting case is when the distribution of waiting times is heavy-
tailed with infinite mean. This is linked to recent results of ours on semi-Markov
graph dynamics [19, 20]. A further research direction worth exploring is considering
non-independent processes for limit and market orders.
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Appendix A

In this appendix, we present a general algorithm to find the invariant distribution
for the price Markov chain. First, we observe that, in general, the transition
probability matrix is a stochastic block tri-diagonal (symmetric in the inner part)
matrix of the form:

(10) P =


D0 A 0 . . . 0
AT D A . . . 0
0 AT D . . . 0
... D A

0 . . . AT D̃0

 ,

where AT is the transpose of the block A and D̃0 = (dn−i+1,n−j+1) for dij being
elements of the block D0. There is some freedom in the choice of the blocks D0,
D and A and their transformations whose dimensions depend on the value of n.
In the case of the transition probability (4) in the paper, this is a possible choice
of blocks:

(11) P =



4/6 1/6 1/6 0 0 0 0 0 0 0
1/4 5/12 1/6 1/6 0 0 0 0 0 0
1/6 1/6 1/3 1/6 1/6 0 0 0 0 0
0 1/6 1/6 1/3 1/6 1/6 0 0 0 0
0 0 1/6 1/6 1/3 1/6 1/6 0 0 0
0 0 0 1/6 1/6 1/3 1/6 1/6 0 0
0 0 0 0 1/6 1/6 1/3 1/6 1/6 0
0 0 0 0 0 1/6 1/6 1/3 1/6 1/6
0 0 0 0 0 0 1/6 1/6 5/12 1/4
0 0 0 0 0 0 0 1/6 1/6 4/6


,

but the following block choice seems to be more convenient

(12) P =



4/6 1/6 1/6 0 0 0 0 0 0 0
1/4 5/12 1/6 1/6 0 0 0 0 0 0
1/6 1/6 1/3 1/6 1/6 0 0 0 0 0
0 1/6 1/6 1/3 1/6 1/6 0 0 0 0
0 0 1/6 1/6 1/3 1/6 1/6 0 0 0
0 0 0 1/6 1/6 1/3 1/6 1/6 0 0
0 0 0 0 1/6 1/6 1/3 1/6 1/6 0
0 0 0 0 0 1/6 1/6 1/3 1/6 1/6
0 0 0 0 0 0 1/6 1/6 5/12 1/4
0 0 0 0 0 0 0 1/6 1/6 4/6


.
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To better see how this generalizes, let us consider the structure of the matrix for
N = 10 and n = 2, once more

(13) P =



d1 a a 0 0 0 0 0 0 0
b2 d2 a a 0 0 0 0 0 0
a a 2a a a 0 0 0 0 0
0 a a 2a a a 0 0 0 0
0 0 a a 2a a a 0 0 0
0 0 0 a a 2a a a 0 0
0 0 0 0 a a 2a a a 0
0 0 0 0 0 a a 2a a a
0 0 0 0 0 0 a a d2 b2
0 0 0 0 0 0 0 a a d1


.

For N = 10, n = 3, instead, we have

(14) P =



d1 a a a 0 0 0 0 0 0
b2 d2 a a a 0 0 0 0 0
b3 b3 d3 a a a 0 0 0 0
a a a 2a a a a 0 0 0
0 a a a 2a a a a 0 0
0 0 a a a 2a a a a 0
0 0 0 a a a 2a a a a
0 0 0 0 a a a d3 b3 b3
0 0 0 0 0 a a a d2 b2
0 0 0 0 0 0 a a a d1


and so on, where:

a =
1

2(n+ 1)

(15) di =
1

2i
+ a

bi =
1

2i
as a consequence of (3) in the paper and

d1 + na = 1

b2 + d2 + na = 1

b3 + b3 + d3 + na = 1

(16)
...

(n− 1)bn + dn + na = 1

2na+ 2a = 1

as a consequence of the properties of the transition matrix.
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The linear system of equations whose solution is the invariant distribution from
Eq. (5) in the paper is:
(17)

d1π1 + b2π2 + · · ·+ bnπn + aπn+1 = π1

aπ1 + d2π2 + b3π3 + · · ·+ bnπn + aπn+1 + aπn+2 = π2
...

...

aπ1 + · · ·+ aπn−1 + dnπn + aπn+1 + · · ·+ aπ2n = πn
aπ1 + · · ·+ aπn + 2aπn+1 + aπn+2 · · ·+ aπ2n+1 = πn+1

aπ2 + · · ·+ aπn+1 + 2aπn+2 + aπn+3 · · ·+ aπ2n+2 = πn+2

...
...

aπN−2n + · · ·+ aπN−n−1 + 2aπN−n + aπN−(n−1) · · ·+ aπN = πN−n
aπN−2n−1 + · · ·+ aπN−n + dnπN−(n−1) + aπN−(n−2) + · · ·+ aπN = πN−(n−1)
...

...

aπN−n + bnπN−(n−1) · · ·+ b2πN−1 + d1πN = πN

with the additional equation:

(18)
N∑
i=1

πi = 1.

A possible numerical solver for the system (17) given N and n, and written in
MATLAB is:

function prob = pricedistrlt(N,n)

a = 1/2/(n+1);

% defining the transition matrix

d = 2*a*ones(1,N); % blue diagonal values

d(1:n) = 0.5./[1:n] + a; % green diagonal values

P = diag(d);

for i=1:n % red

P = P + diag(a*ones(1,N-i),i) + diag(a*ones(1,N-i),-i);

end

for i=2:n % green

for j=1:i-1

P(i,j) = 1/2/i;

end

end

P(N-n+1:N,N-n+1:N) = rot90(P(1:n,1:n),2);

X = sym(’x’,[1 N]);

x = solve(X*P - X,sum(X)-1);

x = struct2cell(x);
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prob = zeros(1,N);

for i=1:N

prob(i) = x{i};

end

The above function requires the Symbolic Math Toolbox in MATLAB. Another
possibility is to solve (17) using the Matlab function eig after defining the transi-
tion matrix in the following way:

[prob,l] = eig(P.’);

if n==1

prob = prob(:,end)./sum(prob(:,end));

else

prob = prob(:,1)./sum(prob(:,1));

end

This option is much faster, but less accurate.
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