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Abstract

Pandora’s problem is a fundamental model that studies op-
timal search under costly inspection. In the classic version,
there are n boxes, each associated with a known cost and a
known distribution over values. A strategy inspects the boxes
sequentially and obtains a utility that equals the difference
between the maximum value of an inspected box and the to-
tal inspection cost. Weitzman (1979) presented a surprisingly
simple strategy that obtains the optimal expected utility.
In this work we introduce a new variant of Pandora’s problem
in which every box is also associated with a publicly known
deadline, indicating the final round by which its value may be
chosen. This model captures many real-life scenarios where
alternatives admit deadlines, such as candidate interviews and
college admissions. Our main result is an efficient threshold-
based strategy that achieves a constant approximation relative
to the performance of the optimal strategy for the deadlines
setting.

Introduction
Pandora’s problem, introduced in a seminal paper by Weitz-
man (1979), models the search for a good alternative among
different options, under costly evaluation. An instance of the
problem consists of n boxes, each hiding some reward drawn
from a known and independent distribution. Each box also
comes with a known evaluation cost.

In the original variant, the decision maker opens the boxes
sequentially in any desired order (which may be adaptive),
until she decides to halt. The goal is to maximize the ob-
tained utility, which is the maximum observed value across
all opened boxes, minus the sum of their costs. This captures
many real-life scenarios such as interviewing job candidates
and choosing colleges, where the decision-maker has to bal-
ance between the need to explore many options in order to
guarantee a good result, and to minimize the total explo-
ration cost. Remarkably, Weitzman provided a simple and
efficient strategy which obtains the optimal expected utility.

The original model described above assumes that all re-
wards are available throughout the entire procedure. How-
ever, this may not necessarily be the case in practice, as some
alternatives might become unavailable at some point in time.
For instance, job candidates might eventually defer to other
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employment opportunities if the recruiter took too long to
offer them the job.

Motivated by such applications, in this work we introduce
a variant of Pandora’s problem where each box, in addition
to its cost and value distribution, is also associated with a
known deadline, after which it is no longer available. This
constraint complicates the problem significantly, as it lim-
its the exploration orders that can be chosen by the decision
maker. Furthermore, it may introduce interference between
boxes that are otherwise compatible. For instance, suppose
there are two favorable candidates that an employer would
have liked to interview one after the other, but both of them
are available only in the very next time slot. Weitzman’s so-
lution would not work in this case, as the employer must
choose only one of them to interview.

Our results. While Weitzman’s algorithm is not applica-
ble in our model, we devise a simple strategy that attains a
constant approximation to the optimal utility attainable by
any algorithm.
Result 1 (see Corollary 1). There is an efficient algorithm
that achieves a 0.15-approximation to the optimal expected
utility in Pandora’s Problem with Deadlines.

We further show how to generalize this result to the more
restricted time slots setting — where in addition to the ex-
ploitation deadline, each box is also associated with the set
of time slots in which it is allowed to be inspected.
Result 2 (see Theorem 1). There is an efficient algorithm
that achieves a 0.15-approximation to the optimal expected
utility in Pandora’s Problem with Time Slots.

Our results add to a large body of work that studies Pan-
dora’s problem under different restrictions on exploration
and exploitation (see Related Work).

Technical Challenges and Techniques. Solving Pan-
dora’s problem entails finding a balance in the well known
exploration-exploitation dilemma: inspecting new boxes is
costly, but may offer the opportunity to collect better reward.
The presence of deadlines and time slots imposes extra con-
straints on the order in which boxes can be opened, as well
as on the “reward collection” process. For instance, continu-
ing the exploration process may impede the decision maker
to collect some very good observed reward whose deadline
is close. To address the last challenge, we focus on strategies

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20337



that always take the reward that was seen last. This allows
us to treat the deadlines only as a constraint to the order of
exploration, and not on the exploitation. Then, we make the
crucial observation that the family of sets of boxes for which
there exists a feasible exploration order forms a transversal
matroid. This allows us to exploit adaptivity gap results for
submodular maximization (Bradac, Singla, and Zuzic 2019),
and find a feasible subset of the boxes S̃ that admits the fol-
lowing property: there exists a strategy that commits in ad-
vance to opening only boxes in S̃ without sacrificing more
than a constant fraction of the optimal utility. Furthermore, S̃
admits a threshold such that for any ordering of it, selecting
the first box that exceeds this threshold attains a constant ap-
proximation to the optimal utility. Finally, we compute this
threshold (using techniques from Esfandiari et al. 2019) and
the feasible ordering which exists by definition, and this de-
fines our strategy.

Related Work. The two works closest to ours are Singla
(2018) and Esfandiari et al. (2019). Singla (2018) consid-
ers a variant of Pandora’s problem that constrains the set of
boxes that can be opened and selected, and offers constant
factor approximation algorithms for many natural classes of
downward closed constraints. Note that these constraints ap-
ply only to the set of boxes that can be opened, and not
the order in which they can be opened. Esfandiari et al.
(2019) study an online version of Pandora’s problem where
the boxes have to be considered online, one after the other
in some predetermined order. Once a box arrives, the deci-
sion maker chooses whether to open it (and possibly halt and
take its realized reward), or discard it forever. Their model
is strictly subsumed by ours, as it coincides with the spe-
cial case of disjoint time slots but does not capture (natural)
situations where the decision maker has some freedom in
choosing the order of exploration (still respecting deadline
constraints).

Weitzman’s seminal paper has given rise to many natural
variants of Pandora’s Problem that have been investigated
over the years: non-obligatory inspection (Doval 2018; Bey-
haghi and Kleinberg 2019; Beyhaghi and Cai 2023; Fu, Li,
and Liu 2023), precedence constraints (Boodaghians et al.
2023), commitment constraints (Fu, Li, and Xu 2018; Segev
and Singla 2021), interdependent valuations (Chawla et al.
2020, 2023), and combinatorial costs (Berger et al. 2023).
Finally, Pandora’s problem has also been studied from the
learning perspective, both in the sample complexity frame-
work (Guo et al. 2021), and in online learning (Gergatsouli
and Tzamos 2022; Gatmiry et al. 2022).

Model and Preliminaries
In Pandora’s problem there are n boxes, each contain-
ing a hidden random variable Vi which is drawn from a
distribution Xi. These distributions are independent, non-
negative and publicly known. Each box is also associated
with a known cost ci ∈ R≥0. The reservation value of a
box i, denoted ri, is the number that satisfies the equation
E [(Vi − ri)

+] = ci, where the expectation is with respect
to the variables Vi, which are drawn from Xi, and we use
the notation (·)+ to denote max(·, 0). The notion of reserva-

tion value is the crucial ingredient for Weitzman’s rule: the
simple greedy strategy that is optimal for the original version
of Pandora’s problem (Weitzman 1979). The rule works as
follows: it opens boxes in decreasing order of reservation
value, and stops when the reservation value of the next box
is smaller than the largest reward experienced so far (or there
is no other box left).

Pandora’s Problem with Deadlines. We introduce a vari-
ant of Pandora’s problem where each box i is also associated
with a known deadline di ∈ N, indicating the final time
point by which it can be chosen. Formally, an instance to the
problem is denoted by I = (Xi, ci, di)i∈[n]

*, including all
available information, namely, the box distributions, costs
and deadlines.

A strategy π for I opens the boxes in a sequential manner,
revealing the hidden values inside. At each round t (starting
from the first round t = 1), the strategy may choose to open
any unopened box i, or otherwise the strategy may choose
to halt. We say that a box is expired at a given round t if its
deadline has passed before that round, i.e., di < t. Other-
wise, we say that the box is active.

The utility attained is the expected difference between the
largest observed value of a box that is active at the last round
of the process — i.e., upon halting (or 0 if no such box ex-
ists), and the sum of the costs of all opened boxes. The strat-
egy may be adaptive, i.e., the decisions at each round may
depend on the values observed along the procedure. Note
that the classic Pandora’s problem introduced by Weitzman
(i.e., without deadlines) is a special case of our setting where
di = n for every box i, but that the greedy solution based
on reservation value does not work, as it does not capture
the central notion of deadlines. Given a strategy π for I, we
introduce the following notation:

• S(π) denotes the (random) ordered tuple of boxes
opened by π.

• V (π) denotes the maximum value of an active box ob-
served by π:

V (π) = max
i∈S(π),

|S(π)|≤di

Vi.

We also refer to this value as the reward obtained by π.

• u(π) = E [V (π)]−E
[∑

i∈S(π) ci

]
denotes the expected

utility (i.e., value minus cost) achieved by π.

Note that the quantities defined above depend on both the
given instance and the strategy. Since only active boxes can
be chosen, we may assume without loss of generality that
strategies inspect only boxes that are active in the corre-
sponding round.

Pandora’s Problem with Time Slots. It is possible to fur-
ther generalize the deadline model to scenarios where each
box has a feasible set of rounds (not necessarily contigu-
ous) at which it is available for exploration. This captures
many real-life scenarios such as interviewing job candidates,

*For any positive integer x, we denote with [x] the set of the
first x numbers: [x] = {1, . . . , x}
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where each employee has a set of days when she is avail-
able for the interview. Formally, there are m days, and n
boxes, where each box i, in addition to having a deadline
di, a hidden value Vi ∼ Xi, and an inspection cost ci,
has a set of feasible days Ti ⊆ [m]. An instance of Pan-
dora’s Problem with Time Slots is then characterized as fol-
lows: I = (Xi, ci, di, Ti)i∈[n]. Each day t = 1, . . . ,m,
the decision-maker can choose one box i such that t ∈ Ti

(i.e., the box is available for exploration on this day) or she
can skip inspecting a box at that day. If the decision-maker
chooses to open some box i then the cost ci is incurred, and
Vi is observed. For any strategy π it is possible to define,
similarly to what is done for the deadline model, the ordered
tuple of opened boxes S(π), the maximium value V (π), and
the decision-maker’s utility u, which is the maximum ob-
served value that did not expire minus the sum of the in-
spection costs. This new model is more general than the pre-
vious one, as deadlines are captured by setting m = n, and
Ti = [n] for every box i.

Efficiency. It is clear that both new versions of Pandora’s
Problem can be solved exactly by exponential time algo-
rithms via dynamic programming; therefore our goal is to
find algorithms that are efficient and provide expected utility
that at least approximates the one achievable by the optimal
strategy. To simplify the analysis of our algorithms, we as-
sume access to an exp-max oracle that, given in input a set
of boxes S, outputs the expected maximum of the random
variables min{Vi, ri} for i ∈ S. When the support of the
distributions is polynomially supported, this expected max-
imum can be computed directly, while in general it can be
estimated via sampling (we refer to Guo et al. (2021) for fur-
ther details on how sample-based discrete distributions can
be used to approximate continuous ones in our setting).

Submodular Optimization and Matroid Constraints.
An important ingredient for our analysis is submodular max-
imization subject to matroid constraints. We report here
some of the basic definitions and relevant results; we refer
the interested reader to Part IV of Schrijver et al. (2003) for
further details.

A pair (E,M) is called a matroid if E is a finite set and
M is a nonempty collection of subsets of S satisfying the
following two properties:
• (Downward-closure) If S ∈ M and T ⊆ S, then T ∈ M
• (Exchange property) If S, T ∈ M and |T | < |S|, then
T ∪ {x} ∈ M, for some x ∈ S \ T .

Example 1 (Transversal Matroids). Starting from a bipartite
graph G = (L,R;E), it is possible to construct a matroid
(L,M) on the left nodes L as follows: S ⊆ L belongs to
M if there exists a matching in G such that S constitutes
the endpoints of the matching in L.

A set function f : 2E → R≥0 is submodular if, for any
subsets T ⊆ S ⊂ E and element x /∈ S, the following
inequality holds: f(S∪{x})−f(S) ≤ f(T ∪{x})−f(T ).
A set function is monotone (with respect to inclusion), if
for any subsets T ⊆ S ⊆ E it holds that f(T ) ≤ f(S).
The state-of-the-art for monotone submodular maximization
subject to a matroid constraint is an algorithm by Vondrák

(2008) which combines a continuous greedy approach with
the pipage rounding technique; we report here its properties.

Lemma 1 (Vondrák 2008). For every monotone submodu-
lar function f defined on a base set E, and for every ma-
troid (E,M) and precision constant ε ∈ (0, 1), there exists
an efficient randomized algorithm that finds a set S̃ ∈ M
such that E[f(S̃)] ≥ (1 − 1/e − ε)f(S∗), where S∗ =
argmaxS∈M f(S).

The running time of a submodular optimization algorithm
is typically measured in terms of the calls to two specific ora-
cles: the value oracle (which returns the value f(S) on given
set S) and the independence oracle (which returns whether
S ⊆ E belongs to M). The algorithm in Vondrák (2008) is
efficient as it issues a number of oracle calls that is polyno-
mial in 1/ε and in the cardinality of the base set E.

Set and sequence constraints. Pandora’s problem with
deadlines or time slots imposes constraints on the boxes that
may be chosen by an algorithm. In what follows, we intro-
duce relaxations of the two models which are used in our
analysis. These relaxations impose restrictions only on the
time at which boxes can be inspected, but not on the time at
which they can be chosen, as in the deadlines or time slots
models. Hence, in the models presented below, the value ob-
tained from a strategy is the maximum value of an inspected
box, as in Weitzman’s original model.

We first make a distinction between a sequence constraint
and a set constraint. A sequence constraint is a collection
of valid tuples of boxes, namely, a collection of inspec-
tion orderings that a strategy may undertake. A set con-
straint is a collection of valid sets of boxes (that does not
take into account the inner ordering of the boxes). We say
that a sequence constraint F is prefix-closed if for any tu-
ple (i1, . . . , ik) ∈ F and any j = 0, 1, . . . , k we have
(i1, . . . , ij) ∈ F . A set constraint F is downward-closed
if for any set S ∈ F and any subset T ⊆ S we have T ∈ F .

The main sequence constraint that we consider in this
work is EXP-SEQ, where inspection times respect the
boxes’ deadlines and the time slots constraints (if any). For-
mally, it is defined by

EXP-SEQ =
m⋃
t=0

{(i1, . . . , it) | j ∈ Tij ∩ [dij ] ∀j ∈ [t]}.

Given a sequence (respectively, set) constraint F , we say
that a tuple (resp., set) of boxes S is feasible under F if
S ∈ F . A strategy π is consistent with a constraint F , if
S(π) ∈ F with probability 1.†

We denote by EXP-SET the set constraint induced by
EXP-SEQ. In other words, a set of boxes S is feasible under
EXP-SET if there exists some ordering of S which is com-
patible with the given deadlines and possibly time slots, i.e.,
some ordering of S which is in EXP-SEQ. The following
lemma shows that EXP-SET is a transversal matroid.

Lemma 2. EXP-SET is a transversal matroid constraint.
†In the case that F is a set constraint, S(π) –although techni-

cally a tuple– is interpreted as the corresponding set.
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Proof. Consider the following bipartite graph, where the
vertices on the left are the boxes, and the vertices on the
right are the integers 1, . . . ,m. Each box i has edges to
times {1, . . . , di}∩Ti. A subset of boxes S is feasible under
EXP-SET, (i.e., there exists an inspection order compatible
with the deadlines) if and only if the sub-graph induced by
S admits a matching of cardinality |S|. Therefore, by defini-
tion, EXP-SET is a transversal matroid.

Given a constraint F , we denote by OPTF the perfor-
mance of an optimal strategy for Pandora’s problem with
a feasibility constraint F , i.e., this is the highest utility at-
tainable by a strategy consistent with F . Clearly, the TIME-
SLOTS constraint induced by the Pandora’s problem with
time slots is stronger than the corresponding EXP-SEQ con-
straint, which is in turn stronger than EXP-SET. Therefore,
the following inequality follows:

OPTEXP-SET ≥ OPTEXP-SEQ ≥ OPTTIME-SLOTS (1)

The same holds for DEADLINE. The following example
shows how Formula (1) may be strict even in the special
case of deadlines.
Example 2. Consider an instance of the Pandora’s problem
with deadlines composed by two boxes with deadlines d1 =
1, d2 = 2 and costs c1 = 2, c2 = 1. The first box has value
V1 = 20 with probability 1/5 and value V1 = 10 otherwise.
The second box has value V2 = 20 with probability 1/5 and
value 0 otherwise. If we look at the sequence constraint, we
note that it is not possible to open the box 1 after the box 2,
therefore EXP-SEQ = {∅, (1), (2), (1, 2)}. On the contrary,
it is possible to open the box 2 after box 1, thus the EXP-SET
does not impose any actual constraint on the set of boxes
that can be opened: EXP-SET = {∅, {1}, {2}, {1, 2}}. In
other words, EXP-SET is equivalent to the original version
of Pandora’s problem.

In the EXP-SEQ setting there is a small number of strate-
gies to consider, as once box 2 is opened then box 1 can-
not be opened afterwards due to its deadline. A straight-
forward calculation shows that the optimal strategy in the
EXP-SEQ setting is to first open box 1, halt if V1 = 20 and
open box 2 otherwise. The expected cost of this strategy is
2 + 4/5 = 14/5. The expected reward of this strategy is

20 ·
(
1
5 + 4

5 · 1
5

)
+ 10 · 4

5 · 4
5 = 68

5

Thus, the expected utility is OPTEXP-SEQ = (68−14)/5 = 54/5.
On the other hand, if box 2 is opened first then there

is clearly no point in opening box 1 in the second round.
Therefore an optimal strategy for the DEADLINE setting
will open only one box, and between opening just box 1 or
box 2 the former is strictly better. We thus have

OPTDEADLINE = 20 · 1
5 + 10 · 4

5 − 2 = 10 < OPTEXP-SEQ.

As for the EXP-SET setting, since the deadlines do not
impose any constraints, the optimal strategy for this setting
is to follow Weitzman’s rule which for this instance would
be to first open box 2 and then open box 1 in case V2 is
observed to be 0. Similarly to the calculations above, the
expected utility for this strategy is

OPTEXP-SET = 55
5 > OPTEXP-SEQ

Our Algorithm
In this section we present our main result: an efficient strat-
egy for the Pandora’s Problem with Time Slots which yields
an expected utility that is a constant factor approximation to
the optimal one. As a corollary, we obtain the same approx-
imation guarantee for the simpler problem of deadlines.

We achieve our approximation result using a threshold
strategy. A threshold strategy for a generic instance I =
(Xi, ci, di, Ti)i∈[n] of the Pandora’s Problem with Time
Slots is defined by a threshold τ , and a feasible inspection
ordering σ = (i1, . . . , ik) for some k ∈ [n] (by convention,
we introduce dummy boxes to model the choice of “skip-
ping turn” without opening any box). Such a strategy opens
boxes according to σ and stops when Vit ≥ τ , or after all
boxes in σ have been opened. Note, σ is feasible if any time
step j ≤ k falls before deadline dij and belongs to the ad-
missible time slots Tij . Given an instance of the problem,
we compute threshold τ and ordering σ in three steps:

Finding the right set of boxes. Start computing for each
box i its reservation value ri, and define the random variable
Yi = min{Vi, ri}. The function f that maps a set of boxes
S ⊆ [n] to the expected value of the maximum Yi in S is
then well defined:

f(S) = E
[
max
i∈S

Yi

]
. (2)

It is an easy exercise to see that f is a monotone submodular
set function over the set of boxes [n]. In the previous Section
we showed that the set constraint EXP-SET is a transversal
matroid over [n], so it is possible to find a subset Ŝ of the
boxes that is feasible and has good value (Lemma 1). It is
possible to find Ŝ efficiently as the value oracle for the sub-
modular function f is provided by the exp-max oracle for the
underlying random variables, while the independence oracle
can be obtained via a maximum matching routine on the bi-
partite graph that defines the transversal matroid.

Finding the right order. We know that Ŝ is a feasible so-
lution according to EXP-SET, therefore it is possible to find
an ordering σ̂ of the boxes that respects the EXP-SEQ family
of constraints. The ordering σ̂ can be computed efficiently
by reducing the problem to finding a perfect matching in a
bipartite graph (one side will have the boxes, and the other
side the time slots).

Finding the right threshold. Now that we have the (non-
adaptive) sequence σ̂ according to which the boxes in Ŝ will
be opened, we need to find a stopping rule (in our case gov-
erned by a certain threshold τ̂ ) that balances the exploration-
exploitation trade off, while taking into account the dead-
lines of the various boxes. This can be done by setting:

τ̂ = 1
2E

[
max
i∈S̃

{Yi}
]
= 1

2f(S̃).

This choice draws inspiration from the literature on prophet
inequalities, and has already been proposed in the Pandora’s
setting in Esfandiari et al. (2019). Note, τ̂ can be computed
via a single call to the exp-max oracle.
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Theorem 1. For any constant ε ∈ (0, 1), there exists a
threshold strategy for the Pandora’s Problem with Time
Slots that can be computed efficiently and provides a(
e−1
4e − ε

)
-approximation to the optimal expected utility.

Proof. We have already argued that it is possible to compute
a threshold τ̂ and order σ̂ in time that is polynomial in 1/ε
and n; so we only need to prove the approximation guaran-
tee. Recall, we denote with OPTTIME-SLOTS the expected util-
ity guaranteed by the optimal strategy, while OPTEXP-SET is
the expected utility achievable when the deadlines and time
slots constraints are removed from the exploitation and only
limit the feasible subset of boxes that can be explored. For
convenience, we denote with ALG the expected utility of the
threshold strategy with σ̂ and τ̂ .

We know, by Equation (1), that the utility of the opti-
mal strategy for the time slots problem is dominated by that
achievable under the weaker EXP-SET constraints. So, as
a first step in the analysis, we recall a result by Kleinberg
and Kleinberg (2018) which relates OPTEXP-SET with a spe-
cific instance of the stochastic probing problem (Asadpour
and Nazerzadeh 2016). In this latter problem, a decision-
maker faces the same set of boxes with the random values
Y1, . . . , Yn that can be opened subject to the prefix-closed
constraint EXP-SET, and her utility is the maximum ob-
served value. At each round the decision maker can (adap-
tively) choose one box to open, as long as the feasibility
constraint is satisfied. Let π∗ be an optimal strategy for the
above problem, and denote by S(π∗) the random set of vari-
ables Yi which were probed by the algorithm, the following
Lemma holds (we report the proof for completeness).

Lemma 3 (Kleinberg and Kleinberg 2018). The following
inequality holds:

E
[

max
i∈S(π∗)

{Yi}
]
≥ OPTEXP-SET.

Proof of Lemma 3. Let π be an optimal strategy for the Pan-
dora’s problem under inspection constraints EXP-SET, i.e.,
π achieves utility OPTEXP-SET. For every i ∈ [n], let Ii be the
indicator function for box i being inspected by π, and let Ai

be the indicator function for box i being chosen by π. Then
OPTEXP-SET, the expected utility achieved by π equals:

E

[
n∑

i=1

AiVi − Iici

]
= E

[
n∑

i=1

AiVi − IiE
[
(Vi − ri)

+
]]

=
n∑

i=1

E [AiVi]− E
[
Ii(Vi − ri)

+
]

(Ii and Vi are independent)

=
n∑

i=1

E
[
AiYi +Ai(Vi − ri)

+ − Ii(Vi − ri)
+
]

≤
n∑

i=1

E
[
AiYi + Ii(Vi − ri)

+ − Ii(Vi − ri)
+
]

(Ii = 0 implies Ai = 0)

=
n∑

i=1

E [AiYi] ≤ E
[
max
i∈S(π)

{Yi}
]
,

where the last inequality follows because only one box in
S(π) is chosen. To conclude the proof we note that by def-
inition of π∗ (i.e., the adaptive strategy that maximizes Yi)
we have E

[
maxi∈S(π){Yi}

]
≤ E

[
maxi∈S(π∗){Yi}

]
, con-

cluding the proof.

Our focus has now shifted towards upper bounding this
new quantity E

[
maxi∈S(π∗){Yi}

]
. This optimization task

is extremely challenging, as one needs to compare against
all adaptive strategies, which may change the set of boxes
to open according to the realized Yi. To overcome this issue,
we lean on an elegant result by Bradac, Singla, and Zuzic
(2019) that holds for general monotone submodular func-
tion (we are using the function f defined in Equation (2)),
which bounds the the gap in performance between adaptive
and non-adaptive strategies (the so-called adaptivity gap).
As the proof of this result is involved and technical, we only
report the statement.

Lemma 4 (Bradac, Singla, and Zuzic 2019). The following
inequality holds:

max
S∈EXP-SET

E
[
max
i∈S

{Yi}
]
≥ 1

2
· E

[
max

i∈S(π∗)
{Yi}

]
.

We have proved in the previous Section that the family of
constraints EXP-SET is a transversal matroid, so it is possi-
ble to apply the approximation guarantees of Lemma 1 for
the submodular function f as in Equation (2) and the ma-
troid constraint EXP-SET, to argue that the set Ŝ output by
continuous greedy enjoys the following property:

E
[
max
i∈Ŝ

{Yi}
]
≥

(
1− 1

e − ε
)

max
S∈EXP-SET

E
[
max
i∈S

{Yi}
]
.

(3)
Let’s recap what we achieved so far: starting from Lemma 3
and then with Lemma 4 and finally Equation (3), we proved
that the expected utility of the optimal solution is “close” to
the value of the submodular function f on Ŝ. In the next step
of the analysis we prove how the threshold strategy charac-
terized by σ̂ and τ̂ manages to achieve an expected utility
that is comparable with f(Ŝ). This passage is analogous to
what is done in the Prophet Pandora setting in Beyhaghi and
Kleinberg (2019). Once the set of boxes Ŝ is chosen, and the
compatible ordering σ̂ is fixed, the crucial observation is that
f(Ŝ) = E

[
maxi∈Ŝ Yi

]
is the performance of the prophet

in the prophet inequality problem‡, therefore the following
bound holds (we add our version of the proof for complete-
ness):

Lemma 5 (Esfandiari et al. 2019). The following inequality
holds:

ALG ≥ 1

2
· E

[
max
i∈Ŝ

{Yi}
]
.

‡In the prophet inequality problem, a decision-maker observes
random variables given in some order, and needs to select one of
them in an immediate and irrevocable manner. The goal is to max-
imize the chosen value.
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Proof of Lemma 5. Consider the prophet inequality problem
with random variables {Yi}i∈S̃ that arrive in the given or-
der σ̂. It is well known (Kleinberg and Weinberg 2019)
that the threshold algorithm with the above threshold τ̂ =
1/2E

[
maxi∈S̃{Yi}

]
achieves expected utility (with respect

to the Yi) which is at least τ̂ . For each box i, the probabil-
ity that ALG halts upon consideration of box i is exactly
Pr(Yi ≥ τ̂), the same as the corresponding probability with
respect to the threshold algorithm for the prophet inequality
problem.

Therefore, to conclude the proof of the Lemma, it is
enough to show that the utility obtained by ALG from
each box i conditioned on that box being considered, de-
noted u(i), is at least as much as the conditional utility
that the aforementioned prophet inequality threshold al-
gorithm obtains from box i. Note that the latter equals
E
[
Yi · I{Yi≥τ}

]
= E

[
min{Vi, ri} · I{Yi≥τ}

]
. Therefore, to

finish the proof we establish the following inequality:
u(i) ≥ E

[
min{Vi, ri} · I{Yi≥τ}

]
(4)

Assume that ALG considers box i in its execution. We first
consider the case ri < τ . In this case, ALG does not open
box i, implying that the utility achieved from that box is
u(i) = 0. But in this case we also have I{Yi≥τ} = 0, imply-
ing in particular that E

[
min{Vi, ri} · I{Yi≥τ}

]
= 0, and we

are done.
We now consider the case ri ≥ τ . Recall that in this case,

upon considering box i, ALG inspects the box (incurring its
cost), and stops and obtains the value Vi if Vi ≥ τ . Thus, in
this case the utility u(i) is at least

E
[
−ci + Vi · I{Vi≥τ}

]
= E

[
−E [max{Vi − ri, 0}] + Vi · I{Vi≥τ}

]
= E

[
E [min{ri − Vi, 0}] + Vi · I{Vi≥τ}

]
= E

[
min{ri − Vi, 0}+ Vi · I{Vi≥τ}

]
= E

[
min{ri − Vi, 0} · I{Vi≥τ} + Vi · I{Vi≥τ}

]
= E

[
(min{ri − Vi, 0}+ Vi) · I{Vi≥τ}

]
= E

[
min{ri, Vi} · I{Vi≥τ}

]
= E

[
min{Vi, ri} · I{min{Vi,ri}≥τ}

]
The fourth and last equalities in the chain above hold since
we are in the case ri ≥ τ .

We have all the ingredients to conclude the proof of the
Theorem, as chaining the results in Lemmas 3 and 4, In-
equality (3) and Lemma 5 yields the desired bound (together
with rescaling the precision ε used in pipage rounding).

Since the Pandora’s Problem with Deadlines is a special
case of the Time Slots model, we have immediately the fol-
lowing Corollary. Note, the only difference in the algorithm
is that the ordering σ̂ can be easily computed starting from
the set of boxes Ŝ by simply sorting them in increasing order
of deadlines.
Corollary 1. For any constant ε ∈ (0, 1), there exists a
threshold strategy for the Pandora’s Problem with Deadlines
that can be computed efficiently and provides a

(
e−1
4e − ε

)
-

approximation to the optimal expected utility.

Discussion and Further Directions
In this paper we have introduced the Pandora’s Problem
with Deadlines and Time Slots, where each box is associ-
ated with a deadline and, possibly, with a subset of the time
slots where the exploration is allowed. Carefully combining
techniques from submodular maximization, stochastic prob-
ing and prophet inequalities we have constructed an efficient
algorithm that is guaranteed to achieve at least a 0.15 frac-
tion of the optimal utility. A natural open question is whether
this approximation factor is tight for efficient algorithms or
not. Since the three “approximation steps” in our approach
are known in general to be tight, namely the factor (1− 1/e)
for submodular maximization, the adaptivity gap of 1/2 and
the factor 1/2 for prophet inequalities, in order to improve
on the 0.15 term a new –possibly more direct– approach is
needed.
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