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Abstract: Sleep state misperception (SSM) is a common issue in insomnia disorder (ID), causing a
discrepancy between objective and subjective sleep/wake time estimation and increased daytime
impairments. In this context, the hyperarousal theory assumes that sustained central nervous system
activation contributes to the SSM. This study investigates factors influencing SSM during sleep
latency (SL) and total sleep time (TST). Objective polysomnographic sleep variables (the alpha density
index, latency-to-sleep stages and the first K-complex, and Rapid Eye Movement (REM) arousal
density) and subjective sleep indices, taken from sleep diaries, were analyzed in 16 ID patients.
Correlation analyses revealed a positive association between the degree of SL misperception (SLm)
and the percentage of epochs that contained a visually scored stereotyped alpha rhythm during
objective SL. A regression analysis showed that the REM arousal density and alpha density index
significantly predicted TST misperception (TSTm). Furthermore, the degree of SLm was associated
with an increased probability of transitioning from stage 1 of non-REM sleep to wakefulness during
subjective SL. These findings support the role of hyperarousal in SSM and highlight the importance
of alpha activity in unravelling the heterogeneous underpinnings of SSM.

Keywords: insomnia disorder; sleep disorder; sleep state misperception; sleep discrepancy;
polysomnography; hyperarousal theory; alpha rhythm

1. Introduction

Insomnia disorder (ID) is characterized by difficulties initiating or maintaining sleep,
accompanied by non-restorative sleep quality and daytime impairments such as fatigue,
cognitive impairment, and mood disturbances [1]. The prevalence of ID corresponds to 6%
of the population when based on the definition provided by the Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR), which includes a
time criterion (i.e., symptoms must be present at least three times a week for at least three
months) as a key aspect of an ID diagnosis [2–5].

One of the most widely accepted models within the scientific community to explain
ID pathophysiology is Spielman’s 3P model. This behavioral framework elucidates the
progression of ID from acute occurrences to chronic and self-perpetuating states. The
model is founded on the interplay between three key components: predisposing, precipi-
tating, and perpetuating factors. The first two types of factors delineate a stress–diathesis
conceptualization, explaining how ID emerges initially, where predisposing elements en-
compass genetic and early life stress factors, contributing to an individual’s vulnerability
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to ID. Precipitating factors, instead, involve significant events that act as triggers for acute
episodes of insomnia. The third type of factor defines how cognitive and behavioral aspects
influence and perpetuate the disorder and includes hyperarousal, maladaptive behaviors,
and cognitive elements, assuming a pivotal role in sustaining and intensifying ID over
time [6,7].

A core feature of individuals affected by ID concerns the estimation of sleep–wake
times. Indeed, ID patients tend to overestimate the sleep onset and underestimate the
total sleep time (TST) [8]. In some cases, this deficit is so pervasive that it leads to a
specific condition previously categorized as ‘Paradoxical Insomnia’, characterized by a
phenomenon known as sleep state misperception (SSM). Despite objective sleep recordings
being in normal ranges, these individuals report sleeping little or not at all, highlighting
a significant discrepancy between subjective and objective estimations [9,10]. The level
of distress and the daytime consequences experienced by patients regardless of their
objective sleep duration underline the considerable role of SSM in the maintenance of ID
symptoms [9]. Therefore, gaining a better understanding of the mechanisms behind this
phenomenon would contribute to a deeper understanding of ID itself and facilitate the
development of more targeted therapeutic approaches.

The hyperarousal model is the most accredited hypothesis proposed to explain the
SSM phenomenon in ID, as it stems from the sustained activation of the central nervous
system that leads ID patients to perceive themselves as awake instead of asleep.

Hyperarousal is defined as a condition characterized by a relatively heightened 24 h
(both waketime and nighttime) cognitive, emotional, physiological, and cortical arousal.
These factors contribute to expressing symptoms at both subjective and objective levels [11].
Hyperarousal can manifest in separate but interconnected domains, such as increased brain
activity, elevated heart rate, and heightened cognitive alertness during bedtime, making
it challenging to transition into a state of sleep [11,12]. According to this hypothesis, ID
patients demonstrate an elevated frequency of arousals during Non-Rapid Eye Movement
(NREM) sleep compared to healthy controls [13,14]. Additionally, during sleep onset and
early sleep stages, they show increased electroencephalogram (EEG) fast frequencies (i.e.,
beta and gamma) usually associated with the waking state [15]. Coherently, a moderate
beta activity increase during NREM sleep has been related to the underestimation of
TST [16]. However, SSM is also a common phenomenon in the general population, and it is
associated with peculiar EEG features. Indeed, also in good sleepers, TST underestimation
is associated with higher cortical activation (a reduced delta/beta power ratio) during
NREM and REM sleep, and, on the other hand, TST overestimation is associated with
the increased EEG activation of slow frequencies during REM sleep [17]. Moreover, in
an fMRI study based on ID patients, altered functional connectivity was observed during
NREM sleep, specifically in the period immediately following the sleep onset, between
cortical and subcortical regions implicated in higher cognitive processes. Specifically, ID
patients during NREM sleep showed increased functional connectivity related to brain
areas responsible for inwardly directed attention and conscious awareness. The authors
posit that such connectivity patterns may be intricately linked to the primary complaints of
patients regarding sleep and their corresponding perceptions [14].

Even considering sleep as a local phenomenon, recent evidence suggests that individu-
als with ID exhibit an altered physiological state of arousal. Recent research on local sleep, a
term used to indicate the presence of sleep or wakefulness confined to specific brain regions,
has reported insightful results [18,19]. A high-density EEG study by Riedner and colleagues
revealed that the subjects with ID generally exhibited a greater amount of high frequencies
(>16 Hz) and elevated alpha activity in the sensory and sensorimotor areas compared to
the healthy controls, even when the brain globally appeared to be in deeper NREM sleep
phases [20]. Additionally, the evidence showed that ID patients present increased EEG
activation during NREM sleep localized in the mid-posterior brain areas, which correlated
with SSM, suggesting that these subjects might be more sensitive to correctly perceiving
shifts towards wakefulness-like brain activity rather than misperceiving their sleep [17].
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Moreover, the alpha band is also involved in the imbalance of information flow between
the anterior and posterior cortex, which significantly decreases during transitions between
a state of wakefulness (W) and NREM sleep stage 1 (N1) [21].

Moreover, it is known that individuals with ID experience significant sleep fragmenta-
tion during the process of falling asleep [22], which is directly associated with the extent of
their SSM [23]. This phenomenon could be attributed to insomniacs’ difficulty transitioning
from being awake to sleeping. In this context, the alpha rhythm is a brainwave activity
particularly relevant during sleep onset, manifesting itself when an individual is awake but
with eyes closed, attempting to relax [24]. Remarkably, alpha rhythm alterations have been
found to be a characteristic trait in ID patients [25,26]. However, up to now, no study has
investigated the relationship between alpha waves during the wake–sleep transition and
their impact on SSM both during sleep onset and the entire night. Moreover, the same sleep
fragmentation in ID conditions was observed during the whole night. Wei and colleagues,
through a sleep stages transition probabilities analysis, revealed a distinctive vulnerability
of NREM stage 2 (N2) sleep during the night in insomnia patients. Indeed, the stable N2
sleep in ID patients was more likely to shift to lighter sleep or wakefulness than in the
HCs [27].

Another relevant putative neurophysiological mechanism underlying SSM concerns
the instability of the REM phase. In fact, it has been observed that ID patients exhibit
increased REM instability (i.e., increased REM arousal) [28], which is associated with hy-
peractivity of the locus coeruleus, a structure responsible for promoting wakefulness [29].
In light of this, due to the similarities in EEG activation between REM sleep and wake-
fulness, as well as the presence of vivid mental activity often associated with REM sleep,
individuals may perceive REM periods with greater fragmentation as wakefulness [30].
Furthermore, individuals with ID identified as higher misperceivers demonstrate more
emotional-related symptoms compared to those classified as moderate misperceivers. The
elevated levels of daytime consequences in the emotional domain align with the obser-
vation of impaired REM sleep in those with SSM, considering the role of REM sleep in
emotional regulation [31].

Starting from these premises, this study aimed to determine which polysomnographic
(PSG) parameters in ID patients affect the subjective perception of their sleep during the
wake-to-sleep transition and throughout the whole night. We aimed to (i) evaluate the
impact of the stereotypical alpha rhythm manually scored during the sleep latency (SL)
period and the period from latency to the first K-complex (KC) or NREM stage 3 (N3) sleep
in accounting for SL misperception (SLm), and (ii) to test the association between TSTm
and electrophysiological indices like REM sleep fragmentation. Finally, considering the
heightened instability throughout an entire night’s sleep that characterizes individuals
with ID [13], we aimed to assess the transition probabilities between sleep and wake stages
during subjective SL (SLsubj) using a Markov chain analysis and to test its impact on SLm.

We hypothesized that (i) an increased amount of alpha rhythm during objective SL
(SLobj) might be associated with SLm and (ii) increased levels of the REM arousal index
might correlate with TSTm. Moreover, we expected an association between sleep instability
during SLsubj and SLm.

2. Materials and Methods
2.1. Participants

The study utilized a convenient sample, a pragmatic approach chosen due to the pilot
clinical nature of our investigation. Sixteen ID patients (M/F: 12/4; mean age: 51.3 ± 13.34;
range: 31–79 years) recruited from the Sleep Disorder Centre of San Raffaele Hospital,
Milan (Italy) between November 2019 and November 2021 voluntarily participated in the
study. A sleep medicine expert diagnosed ID according to the criteria of the third edition
of the International Classification of Sleep Disorders (ICSD-3) [1]. Patients undergoing
unstable drug therapy (less than 3 months) with other sleep, neurological, or psychiatric
disorders were excluded from the study.
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2.2. Polysomnography

The ID patients underwent a nocturnal PSG evaluation in their hospital room. The PSG
recording included 6 EEG channels (F3, C3, O1, F4, C4, O2, referred to as the contralateral
mastoid) placed according to the international 10–20 system [32]. Moreover, electroocu-
lography (EOG) and electromyography (EMG) of the submentalis and tibialis muscles
were carried out, and electrocardiograms (ECGs) and airflow and respiratory effort signals
were acquired according to the American Academy of Sleep Medicine (AASM) criteria [20].
The sleep scoring was conducted in 30 s epochs, where each epoch was categorized into
different sleep stages, including wake, N1, N2, N3, and REM sleep. Specific criteria, based
on a visual inspection of EEG patterns, eye movements, and muscle tone, were used to
determine the sleep stage of each epoch. This standardized approach ensures consistency
and reliability in sleep stages across different studies [33]. The sleep scoring was per-
formed manually through Polyman Software 1.5 for Windows 10, referring to the standard
criteria defined by the AASM Manual for the Scoring of Sleep and Associated Events,
Version 2.6 [34].

2.3. Sleep Diary

After the PSG recording night, the patients filled in an electronic sleep diary within
15 min after their final awakening. Online delivery allows for an objective assessment of
when the compilation process was finished, excluding all patients who submitted their
diaries with inadequate timing. The patients were instructed to complete the diary by
referring only to their subjective feelings and memories and not to time-tracking devices
(i.e., clocks, alarm clocks, electronic devices, etc.) or advice from third parties. The diary
included questions about several sleep parameters, such as bedtime (BT), subjective sleep
onset time (SOsubj), SL (in minutes), number of nocturnal awakenings (nAWK), wake
after sleep onset (WASO, in minutes), TST (in minutes), final wake-up time, and out-of-
bedtime time.

2.4. Sleep State Misperception Indices

Two indices were used to evaluate the degree of SSM during specific moments of the
night (i.e., sleep onset and the whole night).

To evaluate SLm, the objective (i.e., extracted by PSG recordings) and subjective (i.e., ex-
tracted by sleep diaries) SL indices were compared using the formula
(SLsubj/SLobj) × 100, and higher scores (>100%) indicate a greater overestimation of SL. The
same calculation was carried out for the entire night, comparing the objective/subjective
TST indices: (TSTsubj/TSTobj) × 100. Lower TSTm scores (<100%) denote higher TST
underestimation [17] (Figure 1).
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Figure 1. Graphical representation of sleep onset modeling. At the beginning of the graph, the time
at which the subject ceased all activities to begin trying to sleep (bedtime, BT) is indicated. Then,
the time of objective sleep onset (SOobj) and the time of subjective sleep onset (SOsubj) are indicated.
Abbreviations: BT: bedtime, corresponds to the moment when the patient decided to stop any activity
to try to fall asleep; SOobj: objective sleep onset, corresponds to the appearance of the first K-complex;
SOsubj: subjective sleep onset, indicated by patients in the sleep diary; SLobj: objective sleep latency;
SLsubj: subjective sleep latency.
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Moreover, we also calculated a raw index of the subjective and objective SL dis-
crepancy (i.e., SLsubj-SLobj), which is useful for splitting the sample into two subgroups
(8 participants each) based on the cut-off of 10 min (i.e., <10 min: lower discrepancy;
>10 min: higher discrepancy). This threshold was chosen based on evidence by Hermans
and co-workers, who determined that a minimum of 10 min of uninterrupted sleep is
needed to be recognized as such [23]. Therefore, any discrepancy below 10 min might be
attributed to chance.

2.5. Electrophysiological Indices

The indices selected from the literature are described in the following paragraphs to
determine which EEG parameters can account for the degree of SSM.

2.5.1. Alpha Density

The alpha activity was visually scored on occipital derivations (i.e., O1 and O2) in
micro-epochs of 3 s during SLobj. To label a micro-epoch as containing stereotyped alpha
rhythm (frequency range of 8–13 Hz), this activity must be detected for at least 50% (1.5 s) of
each micro-epoch. The alpha density index was computed by dividing the total number of
3 s micro-epochs containing stereotyped alpha rhythm by the total number of micro-epochs
during SLobj and expressed as a percentage (%α).

2.5.2. Latency-to-Sleep Stages

The latency-to-sleep stages were calculated by measuring the time elapsed between BT
and (i) the occurrence of stage N1, (ii) the first KC, and (iii) the first epoch of N3. The KC was
scored according to the definition provided by the AASM, i.e., a waveform characterized
by a sharp negative deflection immediately followed by a positive component, with a total
duration between 0.5 and 3 s and a peak-to-peak amplitude ≤ 75 µV on frontal derivations
(F3 and F4) [34].

2.5.3. REM Arousal Density

The percentage of arousal occurring during REM sleep (the REM arousal density
index—A-REMd) was calculated based on the AASM definition. REM sleep arousal was
identified when a sudden shift in the EEG frequency to an alpha or theta rhythm, or
frequencies exceeding 16 Hz (excluding sleep spindles), occurred. The shift should last for
at least 3 s and be accompanied by an increase in submental muscle activity lasting at least
1 s, followed by a period of stable sleep lasting a minimum of 10 s [34].

2.5.4. Sleep Transition Probability

A Markov chain analysis, a statistical method used to model and analyze systems tran-
sitioning from one state to another, was performed using the R package Markovchain [35].
This analysis determines the probability of transitioning between different states, and it is
independent of how a system arrived at its current state [36]. The Markov chain analysis
was carried out to analyze the sleep stage and wake transitions during SLsubj and to calcu-
late the transition probabilities between the sleep and wake stages [37]. Markov chains, or
Markov processes, are stochastic models describing a sequence of possible events, where
the probability of each event depends only on the state attained in the previous event.
Markov chains can have a discrete state space or a discrete index set and are widely applied
as statistical models for various real-world processes. Our Markov chain analysis was im-
plemented to investigate transitions between different sleep stages and wakefulness during
the SLsubj period. This analysis allows us to understand how sleep transitions contribute
to a subjective perception of the sleep onset process. Markov chains are characterized by
a state space, a transition matrix describing the probabilities of specific transitions, and
an initial state across the state space. We assumed all possible states and transitions were
included in the definition of the process, ensuring there was always a next state and that the
process did not terminate. In practical terms, we evaluated the probability of transitioning
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between sleep states (e.g., wake, N1, N2, N3, REM) during SLsubj. This methodology may
provide new insights into how sleep transitions contribute to subjective perceptions of the
falling asleep process.

2.6. Statistical Analysis

The data were analyzed using Statistical Package for Social Sciences (IBM SPSS Statis-
tics for Windows, Version 25.0. Armonk, NY, USA: IBM Corp.), Jeffreys’s Amazing Statistics
Program (JASP, version 0.16) [38], and R software version 4.3.2. The descriptive statistics for
gender, age, disease duration, drug treatment, PSG, and sleep diary indices were computed.
The Shapiro–Wilk normality test was used to assess the sample distribution. Since the data
did not meet the normality assumption and given the small sample size, non-parametric
tests were performed.

A stepwise backward multiple linear regression analysis was conducted to assess
whether the A-REMd index, the %α index, and the percentage of N3 significantly predicted
the TSTm.

Regarding SLm, since the basic assumptions for multiple linear regression were not
met, Spearman’s rho test was performed to evaluate (i) the correlation between SLm, the
%α index, and the SL indices (i.e., to N1, to the first KC, and to N3), and (ii) the correlation
between the TSTm, A-REMd, %α, and the sleep stages percentages.

Furthermore, the two subgroups, split based on their degree of SL discrepancy (< or
>10 min), were compared for the %α index and the Markov transitioning probability using
the Mann–Whitney U test.

Notably, we conducted analyses to assess the potential impact of the presence of stable
benzodiazepine therapy on our results. The dichotomy variable ‘presence of therapy’ was
included as a covariate in analyses examining between-group differences. Furthermore, we
performed stratified correlation analyses in the two subgroups to identify the EFFECT OF
the presence of drug therapy.

3. Results
3.1. Demographical and Clinical Features

Table 1 presents the sample’s (n = 16) demographic and clinical features. The mean ID
duration was 13.14 ± 6.62 years (range: 2–22 years), with a male prevalence (n = 12; 75%).

The subjective sleep parameters differed from those recorded by the PSG examina-
tion. As expected, the average SLsubj period was longer than the SLobj period (U = 186.5;
p-value = 0.028), and the TSTsubj was lower than the TSTobj (U = 2.1; p-value = 0.044). Sur-
prisingly, the subjective WASO was lower than the objective WASO (U = 81;
p-value = 0.049).

Ten of the sixteen patients in the sample had been on stable benzodiazepines (i.e.,
Clonazepam, Delorazepam, or Lormetazepam) therapy for at least 3 months. However, the
presence of benzodiazepine intake did not significantly alter the observed outcomes, ensur-
ing that our reported results remain robust and unaffected by the presence of drug therapy.

3.2. Linear Regression Analysis

In the stepwise backward multiple linear regression analysis predicting the TSTm, a
model initially including A-REMd, %α, and N3 latency was assessed. The final model,
however, identified that the two-factor model comprising A-REMd and %α (F = 9.6,
p-value = 0.003) provided a significantly better fit. This model accounted for a substantial
portion of the variance, explaining 59% of the variability in the TSTm. The adjusted R-
squared value indicated that the model with A-REMd and %α as predictors was a better
fit compared to the three-factor model (adjusted R2 = 0.576 vs. 0.539, respectively). The
resulting regression line is expressed as follows:

TSTm = 132.67 − 56.04 × (A-REMd) − 178.48 × (%α)

Age did not influence the A-REMd and %α indices.
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Table 1. Patients’ demographic and sleep characteristics.

n = 16 %

Male 12 75%
On medication 10 62.5%

Mean
(Mean ± SD)

Age (years) 51.3 ± 13.34
Disease duration a

(years) 13.14 ± 6.62

Objective parameters
(Mean ± SD)

Subjective parameters
(Mean ± SD) U-test p

Effect Size
(rank-biserial
correlation)

SL (min) 11.69 ± 10.55 34.12 ± 32.60 186.5 0.028 −0.926
TST (min) 417.12 ± 65.92 379.37 ± 129.12 2.1 0.044 −0.768

WASO (min) 58.91 ± 47.63 37.12 ± 46.44 81 0.049 −0.562
N1ג (min) 15.66 ± 14.97 --
N3ג (min) 60.09 ± 54.44 --

K-Complexג (min) 26.73 ± 18.22 --
Alpha density (%) 11.28 ± 0.11 --

REM arousal density
(%) 0.38 ± 0.19 --

SLm (%) 753.41 ± 1240.56 --
TSTm (%) 90.99 ± 26.30 --

Abbreviations: SL: sleep onset Latency; TST: total sleep time; WASO: wake after sleep onset; :N1ג latency to
stage-one sleep; :N3ג latency to stage-three sleep; :K-Complexג latency to the first K-Complex. a Only 14 out of 16
had disease duration information. Significant results (p-value < 0.05) are in bold.

3.3. Relationship between Objective Sleep Indices and the Degree of SSM

The correlation analyses showed no significant relationship between N1, N3, the
first KC latencies, and SLm. On the other hand, a significant positive correlation was
observed between the %α index during the SLobj and the SLm periods (rhoSpearman = 0.641;
p-value = 0.007) (Figure 2).
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The correlation analyses showed no significant relationship between the sleep stage
percentages, A-REMd, and TSTm. However, a negative correlation was found between
the %α index during the SLobj period and the TSTm (rhoSpearman = −0.626; p-value = 0.009)
(Figure 3). It was concluded that age did not affect the results.
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3.4. Differences between Groups Based on the Degree of Misperception

Comparing the groups based on the objective/subjective SL discrepancy (above or be-
low 10 min), a significant between-group difference was observed (U = 6; p-value = 0.0092).
As measured by the rank-biserial correlation, the effect size was −0.825, suggesting a large
effect. The group with a higher SL discrepancy (>10 min) exhibited a higher %α (16.5 ± 10.8)
compared to the subgroup with an SL discrepancy of less than 10 min (2.6 ± 3.8) (Figure 4).
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3.5. Markovian Matrices

The Markovian transition matrices showed an increased probability of transiting
from the N1 state to the W state during SLsubj, which is higher for the group with an SL
discrepancy higher than 10 min (SL discrepancy > 10 = 0.57 ± 0.7 vs. SL discrepancy ≤ 10
= 0.01 ± 0.034; U = 4; p-value = 0.002; rank-biserial correlation = −0.750) (Figure 5).
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Figure 5. Differences in the transition probability: the left side of the figure illustrates a graphical
representation of the mean Markovian matrix, where grey lines indicate non-significant differences
in the transition probabilities between states, while black lines marked with ** highlight significant
variations in the transition likelihoods between the two groups. On the right side, heat maps show
the mean ± standard deviation of the probabilities of transitioning from one state to another for both
groups. Significant results, denoted in bold, report the distinctions in the transition dynamics between
the groups. The color gradient within the heat maps represents the power of the probability, with
darker colors indicating higher probabilities. NB: the absence of transition probabilities involving
N3 and REM is attributed to a high proportion of subjects who did not attain these sleep stages
during subjective sleep latency. Abbreviations: N1: Non-Rapid Eye Movement sleep stage 1; N2:
Non-Rapid Eye Movement sleep stage 2; N3: Non-Rapid Eye Movement sleep stage 3; REM: Rapid
Eye Movement sleep. ** indicates significant results (p < 0.05).

4. Discussion

This study investigated neurophysiological factors influencing the discrepancy be-
tween subjectively and objectively measured sleep in ID patients, distinguishing between
the sleep onset period and the whole night. As anticipated, the participants in our sam-
ple tended to overestimate SL and underestimate the TST (i.e., SLsubj was significantly
greater than SLobj; the TSTsubj was significantly less than the TSTobj). Notably, contrary
to expectations, the subjects reported a significant underestimation of WASO. This unex-
pected finding aligns with the existing literature, highlighting the considerable variability
in WASO assessments across different measuring instruments, environments, and even
between nights [39,40]. This variability underscores the limitations of WASO as a reliable
index for measuring and assessing SSM [39].

Regarding sleep onset, our findings indicate a significant positive association between
the %α index during SLobj and the extent of the degree of SLm, indicating that a higher
SL overestimation is related to a higher density of alpha activity during the sleep onset
period. This may appear counter-intuitive, as alpha activity is typically associated with
relaxed wakefulness with closed eyes, and it is crucial for transitioning from wakefulness to
sleep [24]. On the other hand, it is well known that the alpha rhythm is also characteristic
of light and shallow sleep [41–43]. Hence, individuals with ID who spend more time in
this state might be more likely to misperceive the process of falling asleep.

This finding is consistent with the evidence in the literature reporting that the NREM
sleep of ID patients is characterized by more cortical activation than in healthy con-
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trols. Several studies have reported an increase in alpha [13,44–46], sigma [13,44,45],
beta [13,17,44–46], and gamma [17,46,47] frequencies and a decrease in delta frequen-
cies [17,44–46] during an entire night’s NREM sleep [48]. It was also found that ID patients
exhibited increased beta frequencies even during diurnal sleep, as observed in multiple
sleep latency tests (MSLTs), and those with lower sleep efficiency and longer latency to
MLST showed higher beta power also during night sleep [49]. Furthermore, some studies
have shown a positive correlation between increased EEG frequencies and SSM [20,45].
Moreover, heightened alpha activity while falling asleep has been more commonly ob-
served across subjects with ID than healthy subjects [26]. However, the specific role of these
frequency bands concerning the misperception of falling asleep has not yet been thoroughly
explored. In this context, our data suggest that a hyperarousal state may influence the
perception of sleep onset. This is supported by the evidence that SLm is associated with
a lower delta/beta ratio in SLobj [50]. Additionally, in a paradigm of programmed awak-
enings (from N1 and N2), erroneously perceiving sleep as a wakeful state was associated
with lower relative theta power and higher alpha, beta, and gamma power [51].

The link between the SSM during sleep onset and an index of sleep microstructure
preceding falling asleep is not the first finding of its kind. Maes and colleagues found an
association between a lower delta/beta ratio and SLm, suggesting that an acceleration of
pre-sleep EEG might affect the sleep–wake discrepancy during this period. Furthermore,
the amount of beta EEG activity during SLobj was associated with a higher density of KCs
immediately preceding a sleep spindle. This finding has been interpreted as an attempt
to cope with the hyperarousal state with an extra effort to protect sleep continuity [51].
In this way, it is plausible to hypothesize that these individuals might find it challenging
to disengage from a fast EEG rhythm towards a lower frequency and thus fall asleep,
perceiving longer wakefulness due to sleep effort, a construct known to perpetuate ID [52].
Supporting the hypothesis that there are challenges in disengaging from wakefulness
to sleep, evidence from event-related potential studies indicates that individuals with
psychophysiological ID exhibit difficulties in inhibiting information processing during sleep
onset (i.e., increased N100 and N350 amplitudes and a decreased overall amplitude) [53,54].
Consequently, an increase in the alpha rhythm density might be associated with the effort
expended by a subject in attempting to fall asleep in a state of cognitive arousal.

Since the association between sleep effort and SSM has not yet been investigated in
any study, future investigations might test whether the alpha activity density correlates
with objective and subjective measures of sleep effort. Indeed, evidence shows that higher
levels of sleep effort (measured with the Glasgow Sleep Effort Scale [55]) are associated
with increased ID severity [51]. These data fit coherently into the context of Espie and
collaborators’ theory of ID, known as the psychobiological inhibition model, based on the
A-I-E (Attention, Intention, Effort) pathway. This model suggests that anxiety about sleep
and its consequences leads individuals to focus on their explicit intention to sleep and make
efforts to fall asleep. This mechanism paradoxically results in the opposite of the desired
outcome: the need for perceived control over sleep leads to sleep interruption [56,57].
According to Espie’s theory, individuals with ID try to exert explicit and conscious control
over sleep instead of relying on the automatic and involuntary mechanisms that promote
and regulate sleep in healthy individuals. Therefore, the density of alpha activity may be
symptomatic of insomniacs’ unsuccessful attempts to achieve a state of forced relaxation
leading up to sleep. Consequently, it may be difficult for subjects to disengage from the
awake state due to their efforts to sleep [45]. Indeed, when so much attention is focused on
sleep and all its related worries, as well as the effort to relax, the subject reaches a state of
increased cognitive and physical activation.

Finally, the Markovian chain analysis revealed higher states instability associated with
increased SLm. Specifically, compared to previous evidence in ID [27], the ID patients in
our study demonstrate a higher probability of returning to wakefulness while in the N1
sleep stage. This finding again emphasizes the association between SSM and the instability
of the sleep system, a relationship observed in previous studies [23,58]. Furthermore, this
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evidence seems to suggest that a higher amount of alpha activity, characteristic of the
waking state with closed eyes [24], might play a central role in explaining the mechanism
underlying SSM in individuals with ID. The increased alpha density index at sleep onset
observed in the patients that significantly overestimated their SLobj is consistent with their
subjective tendency to be anchored to a wake state in this period rather than maintaining
N1 sleep or transitioning into deeper sleep stages.

The correlation analyses revealed no significant results concerning the SSM during the
entire night. However, the multiple regression analysis showed that a two-factor model,
including the %α during sleep onset and REM arousal density, significantly explained the
largest portion of the variance in the TSTm. We hypothesize that its association with the
alpha density could be due to the influence of this rhythm on the perception of sleep onset.
However, if the increase in alpha activity detected at sleep onset was consistent throughout
the night, the finding could align with studies reporting a positive correlation between
the amount of alpha rhythm and the TSTm [44,45]. The association between the under-
estimation of the TST and the REM arousal density is consistent with previous evidence
indicating an increase in REM sleep instability in relation to the extent of SSM [30,59] and
its association with lighter REM sleep in individuals with SSM [60]. Accordingly, Feige and
colleagues (2008 and 2023) reported that the REM arousal index was significantly higher in
the subjects with ID compared to the healthy controls, while the arousal index in N2 did
not differ between the two groups. These findings could support the involvement of REM
sleep in the hyperarousal state, suggesting a relationship between increased arousal during
this phase and the degree of SSM [28,61]. Additionally, this aligns with the results obtained
by Castelnovo and colleagues, who, in a study involving ID patients categorized into high
misperceptor (HM) and moderate misperceptor (MM) groups, identified that those in the
HM group reported a reduced frequency of dream recall than those in the MM group. This
was observed despite comparable amounts of REM sleep between the two groups, even
though the HM group exhibited a significantly higher number of awakenings per hour of
sleep [31]. Although REM sleep can be considered a deep sleep state, it is characterized by
patterns of fast frequencies of brain activity reminiscent of waking states [60]. Since REM
sleep is the stage during which dreams occur most frequently, according to the hypothesis
proposed by Riemann and collaborators, the presence of mental contents similar to wake-
fulness, combined with fragmented sleep, could make these contents more accessible to
memory, leading individuals to perceive a period of REM sleep with fragmented dreams
due to continuous micro-awakenings as a single episode of wakefulness [30].

5. Conclusions, Limitations, and Future Directions

Our results identified two electrophysiological sleep indices related to the SSM phe-
nomenon: the first concerns the amount of alpha activity observed during SLobj, and the
other is the REM sleep fragmentation; both are ascribable to a hyperaroused state.

Some limitations should be considered in our study. The small sample size and the
lack of a control group limit the generalizability of our findings. Moreover, the presence of
pharmacologic therapy in most patients could represent a confounding factor. Nevertheless,
our results did not show any specific effects of therapy on SSM. Moreover, a meta-analysis
conducted by Zhao and colleagues in 2021 revealed a significant impact of benzodiazepine
use exclusively on theta activity during wakefulness [46]. Furthermore, we did not investi-
gate cognitive and physiological levels of pre-sleep arousal and levels of sleep effort that
might be useful for a more in-depth explanation of our results. A further criticism that may
arise is the use of Markovian matrices applied to the sleep system. Indeed, this analysis
is only applicable to systems that possess the Markovian property, defined as a property
whereby the states of a system are independent of each other, so the term ‘Markovian’ is
often replaced by the term ‘memoryless’. Sleep is not a system with independent states, as
the probability of transitioning from one stage to another is influenced both by the previous
stage and by the time of the night in which we find ourselves [62]. However, the analysis
was only applied to the wake-to-sleep transition, which is characterized by intrinsic insta-
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bility, with the implicit assumption that, at least in this phase and in a pathologic condition
such as ID, sleep behaves as a system with independent states. In addition, it is worth
noting that the scoring of the sleep stages and indices was performed manually. While this
method is widely accepted in the sleep medicine community, manual scoring introduces
potential variability [63]. Despite these limitations, studies have demonstrated good inter-
subjective reliability rates in manual sleep scoring, especially concerning wakefulness and
REM epochs [33]. Nonetheless, using automated scoring systems could further enhance
the reliability of sleep scoring, and this limitation should be considered when interpreting
our results.

Future studies should replicate the present results using a larger sample size, com-
prising a healthy control group and patients not undergoing pharmacological therapy.
Moreover, high-density EEG would enable the consideration of topographical aspects, such
as local sleep. Additionally, including rating scales to assess the presence of perceived
arousal would facilitate the assessment of the relationship between other sleep-related
variables (such as sleep effort) and the misperception phenomenon.

In summary, these findings suggest that an underlying hyperarousal state may play a
central role in shaping the discrepancy between how individuals perceive their sleep and
the quantitative measurements of their actual sleep patterns. These insights contribute to
our understanding of the multifaceted nature of ID and may inform potential strategies for
its management and treatment.
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