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ABSTRACT 

Background: Amnestic mild cognitive impairment (MCI) is a transitional stage between 

normal aging and Alzheimer’s disease (AD). However, the clinical conversion from MCI to 

AD is unpredictable. Hence, identification of non-invasive biomarkers able to detect early 

changes induced by dementia is a pressing need. 

Purpose: To explore the added value of histogram analysis applied to measures derived from 

diffusion tensor imaging (DTI) for detecting brain tissue differences between AD, MCI and 

healthy subjects (HS).  

Study type: Prospective. 

Population/subjects: Local cohort (57 AD, 28 MCI, 23 HS), Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) cohort (41 AD, 58 MCI, 41 HS). 

Field Strength: 3T. Dual echo TSE;  FLAIR;  MDEFT;  IR-SPGR; DTI. 

Assessment: Normal appearing white matter (NAWM) masks were obtained using the T1-

weighted volumes for tissue segmentation and T2-weighted images for removal of 

hyperintensities/lesions. From DTI images, fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (AXD) and radial diffusivity (RD) were obtained. NAWM histograms 

of FA, MD, AXD and RD were derived and characterized estimating: peak height, peak 
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location, mean value (MV), and quartiles (C25, C50, C75), which were compared between 

groups. Receiver operating characteristic (ROC) and area under ROC curves (AUC) were 

calculated. To confirm our results, the same analysis was repeated on ADNI dataset. 

Statistical tests:  one-way ANOVA, post-hoc Student’s t-test, multi-class ROC analysis. 

Results: For the local cohort, C25 of AXD had the maximum capability of group 

discrimination with AUC of 0.80 for “HS vs patients” comparison and 0.74 for “AD vs 

others” comparison. For ADNI cohort, MV of AXD revealed the maximum group 

discrimination capability with AUC of 0.75 for “HS vs patients” comparison and 0.75 for 

“AD vs others” comparison. 

Data conclusion: AXD of NAWM might be an early marker of microstructural brain tissue 

changes occurring during AD course and might be useful for assessing disease progression. 

Keywords: Magnetic Resonance Imaging; Diffusion Tensor Imaging; Alzheimer Disease; 

Cognitive Dysfunction; White Matter 
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INTRODUCTION 

Amnestic mild cognitive impairment (MCI) is regarded as a transitional stage between 

normal aging and fully developed Alzheimer’s disease (AD) (1). However, the short-term 

clinical conversion from MCI to AD remains largely unpredictable. The identification of non-

invasive biomarkers with the ability of staging MCI patients is becoming more and more 

critical for patients’ management and clinical trials. While the standard diagnostic criteria for 

MCI are based on clinical/neuropsychological assessment (1), several biomarkers (2) have 

been proposed to improve diagnostic accuracy, such as medial temporal lobe atrophy (3), PET 

imaging measures such as beta-amyloid plaque load and index of cerebral glucose metabolism  

(4, 5) and cerebrospinal fluid (CSF) levels of beta-amyloid and phospho-tau (6). However, 

medial temporal lobe atrophy has been shown not to be an early biomarker, being not evident 

in the asymptomatic stage of AD (7), while CSF assessment is an invasive procedure and PET 

imaging require the injection of a radioactive tracer that could present side effects (e.g., 

allergic reaction). A large body of literature has demonstrated that white matter (WM) damage 

is present since the early clinical stages of AD, and strongly contributes to the disease 

progression (8). 

Diffusion tensor imaging (DTI) is one of the preferred magnetic resonance imaging 

(MRI) methods for WM investigation in vivo, detecting macro- and microscopic tissue 

abnormalities (9). To date, several DTI derived indices (e.g., fractional anisotropy [FA], mean 

diffusivity [MD], axial [AXD] and radial diffusivity [RD]) have been proposed as reflecting 

different aspects of WM microstructure and damage (10). Against this background it is 
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conceivable that these different DTI parameters may change differently across AD evolution, 

possibly reflecting different aspects of AD pathophysiology (e.g., axonal damage and loss, 

demyelination, etc).  

Histogram analysis has been largely used to analyze data coming from MRI imaging, 

for the investigation of various neurological disorders (11, 12, 13). This approach offers the 

advantage, compared to region of interest or voxel-based analyses, of being operator-

independent and of summarizing the information from a whole image into few simple 

numerical indices. 

The principal aim of this study was to define the evolution of WM damage as assessed 

by different DTI-based histogram parameters at different AD stages. The secondary aim was 

to identify the most promising prognostic parameter (or set of parameters) to be used in 

clinical settings.  

 

MATERIALS AND METHODS 

Subjects 

  This prospective study was approved by the local Ethics Committee and written 

informed consent was obtained from all participants before the study initiation.  

 One hundred patients were recruited from the Specialist Dementia Clinics of our 

institution (Table 1). Fifteen patients were excluded for the following reasons: i) 

claustrophobia or poor cooperation during MRI, with scanning interruption before completing 

the protocol acquisition (n = 7); and ii) presence of artifacts on MRI images (n = 8). Out of 

the 85 enrolled patients, 57 fulfilled the diagnostic criteria for AD and 28 those of amnestic 

MCI as defined below. The diagnosis of AD was made according to the National Institute of 

Neurological and Communication Disorders and Stroke/Alzheimer’s Disease and Related 

Disorders Association criteria (NINCDS-ADRDA) (14). AD patients had also to fulfill the 



5 

 

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria for major 

neurocognitive disorders (15).  

MCI patients had to show episodic memory disorders (1) and no or very mild 

impairment in daily living activities, with a total Clinical Dementia Rating score not 

exceeding 0.5 (16). Within 3 days after recruitment, patients underwent neuropsychological 

and behavioral assessments and an MRI scan. With respect to the presence and severity of 

macroscopic WM lesions, there are no definite cut-off criteria available to discriminate 

between vascular and neurodegenerative dementia. To reduce as much as possible the risk of 

including patients with vascular MCI, principal comorbidities (i.e., diabetes, hypertension, 

hyperlipidemia, arrhythmias) and risk factors (i.e., alcohol abuse) for developing 

cerebrovascular pathology were ruled out in all patients. Additionally, in every patient, the 

Hachinski score (17), a clinical tool often used to differentiate between AD and vascular 

dementia, had to be less than 4, and the total WM lesion volume had not to exceed 25 ml
 
(18). 

 Twenty-three healthy elderly subjects (HS) were also recruited from the relatives of 

patients and served as a control group (see Table 1). All HS with major systemic and 

neurological illnesses, cognitive deficits, and Behavioral and Psychological Symptoms of 

Dementia (BPSD) were excluded. Finally, to reduce any potential source of variability due to 

hemispheric dominance, all subjects had to be right-handed, as assessed by the Edinburgh 

Handedness Inventory (19).  From now on, we refer to this group of 108 subjects as local 

cohort. 

Neuropsychological assessment (local cohort) 

All subjects of the local cohort underwent a neuropsychological battery, including the 

following tests: verbal episodic long-term memory: 15-Word List (Immediate and 15-min 

Delayed recall) (20) and Short Story Test (Immediate and 20-min Delayed recall) (20); visuo-

spatial episodic long-term memory: Complex Rey's Figure (Immediate and 20-min Delayed 
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recall) (20); short-term memory: Digit span and the Corsi Block Tapping task (21); executive 

functions: Phonological Word Fluency (20) and Modified Card Sorting Test (20); language: 

Naming objects subtest of the BADA (Batteria per l’Analisi dei Deficit Afasici) (22); 

reasoning: Raven's Coloured Progressive Matrices (20); constructional praxis: Copy of simple 

drawings with and without landmarks (20) and Copy of Complex Rey's Figure (20); general 

cognitive efficiency: Mini-Mental State Examination (MMSE) (20, 23). For all employed 

tests, we used the Italian normative data for both score adjustment (sex, age and education) 

and to define cut-off scores of normality, determined as the lower limit of the 95% tolerance 

interval for a confidence level of 95%. For each test, normative data are reported in the 

corresponding references.  

 

MRI data acquisition (local cohort) 

All subjects of the local cohort underwent MRI scanning at 3T (Magnetom Allegra, 

Siemens, Erlangen, Germany), including the following acquisitions: (1) dual-echo Turbo Spin 

Echo (dual-echo TSE, repetition time [TR]=7600 ms, echo time [TE]=12/109 ms, matrix 

=256x192, FOV=230x172.5 mm
2
, slice thickness 3 mm); (2) fast-fluid-attenuated inversion 

recovery (FLAIR; TR=8170 ms, TE=96 ms, inversion time [TI]=2100 ms, same matrix, FOV 

and slice thickness as the TSE); (3) 3D Modified-Driven-Equilibrium-Fourier-Transform 

(MDEFT; TR=1394 ms, TE=2.4 ms, TI=910 ms, matrix=256x224x176, in–plane 

FOV=256x224 mm
2
, slice thickness=1 mm); (4) diffusion weighted (DW) twice-refocused 

Spin-Echo Echo Planar Imaging (SE EPI; TR=10.2 s, TE=85 ms, b factor=1000 s/mm
2
, 

isotropic resolution=2.3 mm
3
). This last sequence collects 7 images with no diffusion 

weighting (b0) and 61 images with diffusion gradients applied in 61 non collinear directions. 

Image processing and histogram analysis (local cohort) 

Brain tissue segmentation: White matter hyperintensities (WMHs) were identified by 
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consensus of two trained observers (with 3 and 10 years of experience in head imaging 

analysis, respectively) on the T2-weighted image (the longest echo time image of sequence 

(1)), using a semi-automated local thresholding contouring software (Jim 4.0, Xinapse 

System, Leicester, UK, http://www.xinapse.com/). FLAIR images were used to increase 

confidence in lesion identification. 

Binary lesion masks and lesion volumes were then calculated. The T2-weigthed 

images were then affine-registered to the T1-weighted images (MDEFT) using ANTs (24). 

The same transformation parameters were applied to the lesion mask. Then lesions were 

stripped from the T1-weigthed images, which were then processed using SPM8 

(www.fil.ion.ucl.ac.uk/spm/) toolbox VBM8 (www.neuro.uni-jena.de/vbm/download/) to 

yield local volumes maps of grey matter (GM), normal appearing white matter (NAWM) and 

CSF. These maps were used to compute global brain tissues volumes (GMvol, NAWMvol, 

CSFvol). To account for subjects' head size differences, the global brain tissue volumes were 

expressed as percentages of the total intracranial volume 

(ICV=GMvol+NAWMvol+WMHs_vol+CSFvol), by computing GM fraction (GMvol/ICV), 

NAWM fraction (NAWMvol/ICV) and lesion fraction (WMHs_vol/ICV). These measures 

were obtained to further characterize the patient groups included in the study and ensure 

consistency with previously reported cohorts. 

  

DTI analysis: DW images were processed using tools from the FMRIB software library (FSL, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and CAMINO (http://camino.cs.ucl.ac.uk/).  

Firstly, diffusion data were corrected for misalignment between volumes according to 

the following steps:  

i) the 7 b0 images were realigned to the first b0 volume with a rigid body 

transformation and averaged (obtaining meanb0);  
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ii) the 7 b0 images were rigidly coregistered to meanb0;  

iii) the 61 DW volumes were averaged obtaining meanDW; meanDW was then rigidly 

coregistered to the scalp stripped meanb0 image through the transformation T_1;  

iv) all DW volumes (i=1, 2, …, 61) were separately realigned to the meanDW image 

(with a rigid body transformation, T_2
(i)

), and the transformation matching each DW volume 

with the meanb0 image was obtained by combining T_2
(i)

 and T_1.  

 The b matrices were rotated accordingly (25). The final realigned DW volumes were 

obtained by merging the images from steps ii and iv. Therefore, the diffusion tensor was 

estimated in every voxel and maps of FA, MD, RD and AXD were obtained for each subject. 

 

Histogram computation and features extraction: For all participants, T1-weighted images 

were warped to the FA map using ANTs (24); the same non-linear transformation was then 

applied to the NAWM mask. This way we could create histograms of each DTI measure (FA, 

MD, AXD, RD) distribution in the NAWM (4 histograms per subject).  

 An absolute histogram was created by dividing the full range of image intensity into a 

number of bins, each spanning a fraction of the full range and counting the number of voxels 

with value falling in each bin. Absolute NAWM histograms were computed using 0.5% of the 

maximum wide bins (200 bins). Absolute histograms were then normalized, dividing by both 

the bin width and the total number of voxels contributing to the histogram. The effect of 

normalization is to make the shape of the histograms independent from the brain size (26). 

Histograms were analyzed following guidelines available in (26), using in-house MATLAB 

scripts. To increase the reliability of peak detection, the histograms of NAWM were smoothed 

using an 8
th

 order median filter. Next, from each normalized and smoothed histogram, we 

derived: peak height (PH), peak location (PL), 25
th

 centile (C25), 50
th

 centile (C50), 75
th

 

centile (C75) and mean value (MV). These six parameters are able to appropriately 
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characterize histograms with unimodal shape (26). 

 

 

Repeated analysis on ADNI cohort 

In order to test if results obtained on the local cohort were independent from both 

scanner and clinical evaluation for patients’ dementia staging, we replicated all the analyses 

using a completely different dataset, obtained from the Alzheimer's Disease Neuroimaging 

Initiative (ADNI, http://adni.loni.usc.edu). ADNI is a global research effort that actively 

supports the investigation and development of treatments that slow or stop the progression of 

AD; in this view ADNI makes publicly available neuropsychological (including MMSE) and 

imaging data for HS, early MCI (EMCI), late MCI (LMCI) and AD patients, often including 

different time-points per subject (longitudinal data). 

From ADNI database, we downloaded data relative to subjects whose MRI protocol 

included at least T13D, DTI and FLAIR sequences (not being available dual-echo TSE); if 

there were more than one MRI dataset per subject (longitudinal acquisitions), we selected the 

oldest time-point for which the MMSE score was available. In every patient the total WM 

lesion volume, as assessed from FLAIR images, had not to exceed 25 ml
 
(18). Using these 

constraints, we were able to collect data including 41 HS, 58 MCI (27 EMCI, 31 LMCI) and 

41 AD. We referred this dataset of 140 subjects as ADNI cohort, which main demographics 

characteristics are given in Table 1. 

 

MRI data acquisition (ADNI cohort) 

MRI data for the ADNI cohort were collected at several sites, all equipped with whole 

brain 3T MRI scanner (GE Medical Systems). The protocol included: (1) fast-fluid-attenuated 

inversion recovery (FLAIR; TR=11000 ms, TE=150 ms, TI=2250 ms, matrix=256x256, 

FOV=220x220 mm
2
, slice thickness= 5 mm); (2) inversion-recovery spoiled gradient recalled 

http://adni.loni.usc.edu/
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T1-weighted (IR-SPGR; TR=1422 ms, TE=3 ms, TI=400 ms, matrix=256x256x196; in-plane 

FOV=260x260 mm
2
, slice thickness=1.2 mm); (3) diffusion weighted (DW) twice-refocused 

Spin-Echo Echo Planar Imaging (TR=13 s, TE=70 ms, b factor=1000 s/mm
2
, voxel 

size=1.37x1.37x2.7 mm
3
). This last sequence collects 5 images with no diffusion weighting 

and 41 diffusion-weighted images.   

 

Image processing and histogram analysis (ADNI cohort) 

Brain tissue segmentation, DTI analysis and histogram computation were performed 

following the same pipelines described for the local cohort.  

 

Statistical Analysis 

Statistical analysis was performed using the Statistics Toolbox available in MATLAB 

(MathWork, Natick, MA, USA). In all the ANOVAs and post-hoc Student’s t-tests we have set 

the statistical significance threshold to p=0.05 and then applied the Bonferroni correction for 

multiple comparisons. The same analyses were performed for both local and ADNI cohorts. 

All demographic characteristics but female/male ratio, clinical characteristics and 

brain tissue volumetrics were compared between all groups (HS, AD, MCI) by using a one-

way ANOVA; on the measures surviving the ANOVA analysis, post-hoc Student’s t-tests were 

performed. The female/male ratios were compared between groups using chi-square test,  

considering as significant p values inferior to 0.05. For the local cohort, the 

neuropsychological scores (not available in ADNI cohort) were compared between all groups 

by using a one-way ANOVA; on the scores surviving the ANOVA analysis, post-hoc Student’s 

t-tests were performed. 

 Multi-class ROC analysis of histogram-derived features: The six histogram-derived 

indices (PH, PL, C25, C50, C75, MV) relative to FA, MD, AXD and RD in NAWM, were 
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compared among groups using a one-way ANOVA. On the indices surviving the ANOVA 

analysis, post-hoc Student’s t-tests were performed. In the ANOVA and t-test analyses we 

considered as significant p values less than 0.05, applying the Bonferroni correction for 

multiple comparisons (we set the statistical threshold to 0.05/24 in the ANOVA analysis, and 

to 0.05/3 in the post-hoc t-tests). 

 To assess the capability of group discrimination of each histogram-derived index, we 

employed a multi-class receiver operating characteristic (ROC) curve analysis. ROC analysis 

is typically used for two-groups diagnostic problems (27). In our case (three groups) we used 

the multi-class problem approach. One method for handling n>2 classes is to produce n 

different ROC curves, one for each class. In particular, the ROC curve for the class j (with j 

spanning from 1 to n) refers to the classification performance in which j is the positive class 

and all other n-1 classes are combined to form the negative class (27). While this approach 

can be straightforwardly applied to n mutually independent classes, the three classes involved 

in this study (HS, MCI, AD) do not fulfill this criterion, being MCI a prodromal stage of AD. 

Consequently, the comparison MCI vs HS plus AD is meaningless and was not modeled. We 

thus retained only the two class comparisons “MCI plus AD vs HS”, and “AD vs HS plus 

MCI”. For each comparison we considered the feature with the highest AUC (area under the 

ROC curve) as the “best discriminator”.  

Post-hoc correlation analysis: In the patients group only, Spearman partial correlation 

(controlled for age, gender and education) was used to test for associations between general 

cognitive efficiency (measured by the MMSE score) and the "best discriminator" histogram 

features as revealed by ROC analyses. P < 0.05 was considered statistically significant. 

 

RESULTS 

Demographic and neuropsychological data  
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Demographic and clinical characteristics of the studied subjects are summarized in 

Table 1. 

Local cohort: according to the inclusion criteria, there were no significant differences 

in age (F2,105=2.26, p=0.11) or gender distribution (Chi-square=2.60, p=0.27) between all 

groups. Conversely, there were differences in years of formal education (F2,105=4.61, p=0.012) 

resulting AD patients less educated than HS. As expected, the three groups showed 

significantly different MMSE scores (F2,105=67.77, p<0.0001). From a neuropsychological 

viewpoint, MCI patients performed worse than HS at tests exploring long-term verbal 

episodic memory and verbal and visuo-spatial short-term memory. Moreover, MCI patients 

reported significantly lower scores than HS at the Modified Card Sorting Test. Patients with 

AD reported a widespread cognitive impairment involving all domains (Table 2).  

 ADNI cohort: there were no significant group differences with respect to age 

(F2,137=1.72, p=0.18) and gender distribution (Chi-square=5.19, p=0.07), while MMSE scores 

(available for 115 out of 140 subjects) were significantly different (F2,112=38.43, p<0.0001) 

across groups (see Table 1). 

 

Brain tissue volumetrics  

Brain volumetrics of all subjects are summarized in Table 1. 

Local cohort: AD patients showed a significantly lower GM fraction than MCI 

patients and HS (F2,105=14.04, p<0.0001). When comparing MCI patients to HS, no significant 

difference was found. No differences in NAWM fraction were detected between any of the 

groups (F2,105=1.12, p=0.33). Although the average lesion fraction was higher in both patients 

group compared to HS, these differences were not statistically significant (F2,105=1.79, 

p=0.17).  

 ADNI cohort: GM fractions resulted different in each group (F2,137=37.20, p<0.0001). 
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AD patients also showed a significantly lower NAWM fraction than MCI patients and HS 

(F2,137=8.07, p< 0.0001); when comparing MCI patients to HS, no significant difference was 

found. The average lesion fractions were not significant different between groups (F2,137=2.38, 

p=0.10). 

 

Histograms computation 

Local cohort: with the exception of FA, all NAWM histograms had a clear unimodal 

shape for all participants (Figure 1A). The FA histograms, in several subjects, presented 

instead a maximum with a plateau or two maxima with similar height and close each other. 

For this reason, for the FA histograms we computed C25, C50, C75 and MV, but not PH and 

PL.  

 ADNI cohort: for all subjects, all NAWM histograms had a clear unimodal shape          

(Figure 1B). 

 

Multi-class ROC analysis of histogram-derived features 

Local cohort: no between-group difference was found in PH, PL and C75 of MD, 

AXD and RD. Both patient groups, compared to HS, showed higher C25, C50 and MV 

relative to MD, AXD and RD. AD compared to MCI patients showed a significant increase in 

C25 of AXD histogram (C25AXD). No between group difference was found in any of the FA 

histogram derived metrics (see Table 3). The ROC analyses were thus performed on the 

following indices: C25, C50 and MV of AXD, RD and MD. 

 C25AXD was the best between-group discriminator, having a maximum AUC of 0.80 

(95% confidence intervals [CI]: 0.65 - 0.95) for MCI plus AD vs HS (Figure 2A) and of 0.74 

(95% CI: 0.60 - 0.88) for AD vs HS plus MCI comparison (Figure 3A).  

ADNI cohort: as in the local cohort, no between group difference was found in any of 
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the FA histogram derived metrics. Both AD and MCI, compared to HS, showed higher C25, 

C50, C75, MV of AXD, C50, MV of MD and MV of RD. AD compared to HS showed also 

lower PH of AXD and higher C75 of MD and RD. AD compared to MCI had lower PH of 

AXD and higher C75 and MV of AXD and MV of MD (see Table 3). The ROC analyses were 

thus performed on the following indices: PH, C25, C50, C75 and MV of AXD, C50, C75 and 

MV of MD and C75 and MV of RD. 

MVAXD was the best between-group discriminator, having a maximum AUC of 0.75 

(95% confidence intervals [CI]: 0.62 - 0.87) for MCI plus AD vs HS (Figure 2B) and of 0.75 

(95% CI: 0.63 - 0.87) for AD vs HS plus MCI (Figure 3B) comparison.  

 

 

Post-hoc correlation analysis 

Local cohort: in the patients group (MCI plus AD) we found a significant Spearman 

partial correlation (adjusted for age, gender and education) equal to r=-0.34 (p=0.0016) 

between MMSE raw score and C25AXD. 

ADNI cohort: in the patients group (MCI plus AD) a significant Spearman partial 

correlation (adjusted for age and gender; education scores were not available) equal to r=-0.30 

(p=0.0079) between MMSE raw score and MVAXD  was found. 

 

DISCUSSION 

In this study, we assessed the ability of NAWM diffusivity changes to classify patients 

at the different stages of the clinical course of AD and evaluated the suitability of histogram-

derived metrics for patient staging and monitoring the disease progression. Several previous 

studies attempted to define the features of diffusivity changes in the advanced stages of AD 

(28) and to identify correlations with clinical evaluations or measures of cognitive decline 
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such as the MMSE score (7). However, it remains to be clarified whether a simple 

quantification of DTI parameters can support patient staging. 

 In the current study, we used histogram analysis, which is able to detect subtle global 

changes in the brain tissue and is particularly indicated when dealing with a diffuse disease 

such as AD (29). Histograms summarize the information derived from large portions of tissue 

(in our case the whole NAWM) into a curve, which can be characterized by simple metrics. In 

this work, we compared the diagnostic reliability of a number of histogram metrics, computed 

for FA, MD, AXD and RD. 

Our study strongly suggests that the information delivered by AXD of NAWM is the 

most informative DTI measure regarding the biological evolution of Alzheimer’s disease in 

the human brain. The data analysis identically performed on local dataset (108 subjects) and 

ADNI dataset (140 subjects) has indeed found in both cases that AXD histogram related 

parameters had the best performance in distinguishing AD, MCI and HS.  

In particular, with the post-hoc t-test analysis we found that, for the local cohort 

dataset, C25, C50, MV of MD, AXD and RD were able to distinguish patients (MCI, AD) 

from healthy subjects. More interestingly, C25AXD resulted as the only parameter different in 

each group and the most sensitive parameter to differentiate either AD patients from the HS 

plus MCI group and HS from the MCI plus AD group, as demonstrated by ROC curves and 

AUC values.  

Similarly, the analysis on the ADNI dataset has shown that MV of MD and AXD and 

C75 of AXD were all significantly different in each group, but the ROC analysis has 

highlighted as MVAXD was the measure with the maximum AUC value in the two 

comparisons.  

C25AXD and MVAXD accounted also for the patients’ level of global cognitive 

impairment of the two cohorts as highlighted by the post-hoc correlation analysis.  
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It is meaningful that in two independent datasets we observed that AXD was the best 

discriminator between groups (C25AXD for local dataset and MVAXD for ADNI dataset). In 

terms of histogram features, however, we found some differences between datasets. For the 

local dataset, C25 was the best discriminator, while for the ADNI dataset, it was MV. We can 

speculate on the source of this inconsistency, bearing in mind that these features ultimately 

reflect the shape of the histograms, which in turn depend on the NAWM masks, on the DTI 

maps and on the anatomical to DTI space coregistration.  

NAWM masks and anatomical to DTI space warping were carefully checked for 

assuring accuracy. DTI data were acquired with similar but not identical protocols, differing 

in number of diffusion gradients and spatial resolution. The number of gradients (61 vs 41) 

should not substantially influence the DTI diffusivity measures (30, 31), but the in-plane 

resolution (about 3 times lower in local dataset) affects the amount of partial volume effects. 

Comparing the histograms shapes and the range of diffusivity values relative to local and 

ADNI cohorts with the DTI values referred by literature (32) confirms this hypothesis, as the 

histograms of the local cohort dataset (suffering of greater partial volume effect) tend to 

include more bins with low FA and high diffusivity values. This observation accounts for 

both, the FA histogram not being unimodal and diffusivity histograms having right tails with 

lower slope when compared to ADNI ones.  

Nevertheless, the results of the two histogram analyses converged in selecting axial 

diffusivity as the best discriminator, and yielded similar AUC values for C25AXD (for the local 

cohort dataset) and MVAXD (for the ADNI cohort dataset), therefore indicating a similar group 

discrimination capability. 

WM damage in AD has been interpreted on the basis of two coexisting main 

pathophysiological mechanisms (33): neurodegeneration and myelin damage. The former 

mechanism induces axonal damage caused by Wallerian degeneration (34), secondary to the 
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effect of cortical neuronal loss. Concurrently, homeostatic repair mechanisms are activated by 

demyelinating processes, with amyloid and tau accumulating as by-products of these 

mechanisms. Evidence (34) suggests that in the early stage of the disease these pathological 

processes coexist and are relatively independent, while at later stages Wallerian degeneration 

seems to prevail. Reduced AXD and increased RD have been proposed as specific markers of 

axonal degeneration and demyelination, respectively, based on animal models (34, 35). 

However, this interpretation in human brain data has been challenged (36). In particular, little 

evidence of reduced AXD has been reported, with the majority of studies reporting increased 

AXD in multiple conditions, including AD (37). A previous study comparing these indices in 

patients with AD at differing stages (38) showed increased axial diffusivity as the earliest sign 

of white matter change. They speculated that these changes could reflect early inflammatory 

events such as microglial activation, which has been implicated in AD pathophysiology (39). 

In accordance with these findings, we found both in local and ADNI datasets an increase of 

MD, AXD and RD in the NAWM of patients (MCI, AD – probably driven by the latter) when 

compared with healthy subjects, while only changes in AXD were able to distinguish also 

MCI from AD.  

The interpretation of increased AXD as a marker of inflammation is very speculative, 

and alternative explanations are possible, including some form of axonal degeneration. This 

would fit with the hypothesis of Wallerian degeneration secondary to distal cortical atrophy, 

as the neuropathological process underlying WM damage in AD, particularly along the main 

cholinergic pathways. Currently, our data do not allow us to draw a firm conclusion on the 

substrate of the measured change.  

Regardless of the pathological substrate, our data indicate that AXD histogram derived 

parameters are the most promising indexes among the ones here investigated for patient 

stratification. With regards to the potential clinical impact of our study, the results of ROC 
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analyses and post-hoc correlation analysis are promising. Although these results need to be 

confirmed by further studies on larger patient populations and different MRI scanners and 

DTI protocols, the ROC analyses results indicate that AXD features in the NAWM have the 

capability of discriminating between groups, while the post-hoc correlation results highlight 

that AXD features account for the patients’ level of global cognitive impairment, thus 

expressing the clinical impact of brain involvement. These findings suggest that histogram 

features of AXD might be reliable biomarkers to be used in clinical trials (i.e., patients’ 

staging and follow-up) and possibly, as a diagnostic tool in clinical settings. In future work, it 

will be interesting to test if the classification performance, and consequently the clinical 

usefulness, could be improved by using a linear/non-linear combination of AXD features 

and/or exploiting more sophisticated classification algorithm, such as those used in machine 

learning  (e.g., Support Vector Machine, Random Forest).  

One might argue that neuropsychological assessments provide a comparable 

performance at a lower cost. However, MRI is typically performed at the time of diagnosis, 

and current DTI protocols (available on all clinical scanners) would add only a few minutes to 

the basic clinical protocol. The advantage of imaging biomarkers is that they are more 

objective and might be more sensitive than MMSE at the very early stages. Clearly more 

validation is needed before these tools can be translated to the clinic. 

There were some limitations in our study. First, this study lacked of longitudinal data. 

Moreover, data for DTI analysis are relatively easy to acquire; nevertheless, recent 

development in microstructural imaging suggest that more sophisticated approaches (40) can 

provide more specific information about the white matter. Future studies are warranted to 

investigate whether more accurate biomarkers for AD progression can be obtained by 

applying histogram analysis to indices derived from these advanced models of diffusion. An 

important observation is that the spatial resolution of DTI might affect the results of 
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histogram analysis. While further investigations are required, the current recommendation 

would be to match the ADNI protocol. Another potential source of bias is the different 

resolution of T1-weigthed and T2-weigthed data, which were co-registered for the purpose of 

obtaining NAWM mask. While ideally one would acquire data with similar geometry, in this 

case the sequences were optimized for brain segmentation and lesion segmentation 

respectively. Regarding lesion segmentation, it is also legitimate to wonder whether, as 

patients tend to have higher lesion load, this could introduce a bias. However, we excluded 

participants with lesion volume larger than 25 ml and all histograms were normalized by the 

total voxel count. This implies that, for every participant, the number of total lesion voxels 

was at least 20-30 times lesser than the number of NAWM voxels. Including/excluding in the 

NAWM histograms such small amount of voxels would not affect the shape of the histograms 

that would be substantially unchanged. 

Finally, it should be noted that the local cohort groups were well matched for age and 

gender, but the level of education was higher in healthy controls compared to the patients’ 

groups (education is not available for the ADNI cohort). While this may introduce a potential 

bias, it is a fairly common occurrence in this kind of studies. 

In conclusion, our findings suggest that histogram-derived measures of AXD in 

NAWM might be sensitive marker of microstructural brain tissue changes occurring during 

the course of AD and might be useful to predict the rate of disease progression and hopefully 

to be used as index of response to medication in pharmacological trials. 
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Table 1. Principal demographic and clinical characteristics of the participants belonging to the 

local (upper numbers) and ADNI (lower numbers) cohorts. 

 
 

AD 
 

 

MCI  
 

HS 
P-value 

AD vs MCI 

P-value 

AD vs HS 

P-value 

MCI vs HS 

 

N 

 

 

57 
 

41 
 

 

28 
 

58 

 

23 
 

41 

 

 

age (years) 

 

72.2 [6.6] 
 

74.5 [8.5] 
 

 

70.9 [8.5] 
 

72.2 [6.9] 

 

68.4 [6.9] 
 

71.9 [6.1] 

ANOVA ns: 0.11 
 

ANOVA ns: 0.18 

 

female/male 

ratio 

 

36/21 
 

15/26 
 

 

16/12 
 

20/38 

 

10/13 
 

23/18 

chi-square ns: 0.27 
 

chi-square ns: 0.07 

 

 

 

education 

(years) 

 

 

9.2 [4.3] 
#
 

 

not available 
 

 

9.9 [4.6] 
 

not available 

 

12.2 [2.9] 
 

not available 

0.302 
 

/ 

0.011 
 

/ 

0.043 
 

/ 

 

 

 

MMSE ^ 

 

21.0 [3.9]
 # *

 
 

22.3 [3.6]
 # *

 
 

 

26.8 [1.8]
 #
 

 

27.0 [1.9]
 #
 

 

29.0 [1.0] 
 

28.9 [1.1] 

< 0.001 
 

< 0.001 

< 0.001 
 

< 0.001 

< 0.001 
 

< 0.001 

 

GM fraction 

 

0.42 [0.02]
 # *

 
 

0.37 [0.03]
 # *

 
 

 

0.43 [0.02] 
 

0.40 [0.03]
 #
 

 

0.44 [0.01] 
 

0.42 [0.02] 

0.009 
 

0.002 

< 0.001 
 

< 0.001 

0.053 
 

< 0.001 

 

NAWM 

fraction 

 

0.31 [0.02] 
 

0.29 [0.03]
 # *

 
 

 

0.32 [0.02] 
 

0.31 [0.02] 

 

0.32 [0.02] 
 

0.31 [0.02] 

 

ANOVA ns: 0.33 

0.005 
 

< 0.001 
 

0.249 
 

 

WMHs 

fraction 

 

0.003 [0.003] 
 

0.003 [0.003] 
 

 

0.003 [0.004] 
 

0.003 [0.002] 

 

0.001[0.002] 
 

0.002 [0.002] 

ANOVA ns: 0.17 
 

ANOVA ns: 0.10 

 

Note.— Unless otherwise noted, all values are expressed as: mean [standard deviation]. 
All measures were compared between groups by using the Student’s t-test. Bonferroni correction was 

used to account for multiple comparisons (p<0.05). Statistically significant P-values are highlighted in 

bold. 
 
# 
Statistically significant difference between patients (AD or MCI) and HS. 

*Statistically significant difference between AD and MCI. 
 

Abbreviations: AD=Alzheimer’s disease; GM=gray matter; HS=healthy subjects; MCI=mild 
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cognitive impairment; MMSE=Mini-Mental State Examination (raw); NAWM=normal appearing 

white matter; WMHs=white matter hyperintensities; ns= not significant. 
 

^ Due to lack of data in ADNI database, mean values of MMSE in ADNI cohort were computed in 

only 30 out of 41 AD, 49 out of 58 MCI and 36 out of 41 HS (115 out of 140 subjects). 

 

 

 

Table 2. Performance obtained by patients and healthy control subjects (belonging to the local 

cohort) on neuropsychological testing. 

COGNITIVE DOMAIN 

 

Neuropsychological 

test 
AD 

(n=57) 

MCI 

(n=28) 

HS 

(n=23) 

VERBAL EPISODIC 

LONG-TERM MEMORY 

    

 
15-Words List: 

   

 Immediate recall 

(cut-off > 28.5)  
23.2 (9.1)

 # *
 29.9 (5.8) 

#
 45.8 (8.8) 

 Delayed recall 

(cut-off > 4.6) 
2.5 (2.4) 

# *
 4.5 (2.3) 

#
 9.4 (2.0) 

 
Short story test:    

 Immediate recall 

(cut-off >3.1) 
2.2 (2.0) 

# *
 4.6 (1.3)

 
 6 (1.4) 

 Delayed recall 

(cut-off > 2.6) 
0.9 (1.8) 

# *
 3.7 (2.2) 

#
 5.9 (1.2) 

VISUO-SPATIAL EPISODIC 

LONG-TERM MEMORY 

 
   

 Complex Rey's 

Figure: 
   

 Immediate recall (cut-

off > 6.4) 
5.6 (5.2) 

# *
 10.9 (6.6) 14.2 (7.9) 

 Delayed recall 

(cut-off > 6.3) 
4.7 (5.1) 

# *
 9.5 (7.1)

 #
 14.3 (6.2) 

VERBAL 

SHORT-TERM MEMORY 

 
   

 Digit span 

(cut-off > 3.7) 
4.7 (1.2)

 #
 5.2 (0.9) 5.9 (1.1) 

VISUO-SPATIAL 

SHORT-TERM MEMORY 

    

 Corsi span 

(cut-off > 3.5) 
3.6 (1.3) 

# *
 4.3 (0.6) 5 (0.9) 

EXECUTIVE FUNCTIONS  
 

   



26 

 

 Phonological Word 

Fluency  
(cut-off >17.3) 

26.8 (8.2)
 #

 31.8 (7.3) 36.6 (8.8) 

 Modified Card 

Sorting Test  
Criteria achieved 

(cut-off > 4.2) 

2.4 (1.7) 
# *

 3.7 (1.9)
 #

 5.7 (0.8) 

 Modified Card 

Sorting Test 

Perseverative errors 

(cut-off <7.6) 

11.3 (11.5) 
#
 6.6 (4. 9) 1.9 (3.5) 

LANGUAGE     

 Naming of objects 

(cut-off > 22) 
24.4 (5.6) 28.4 (1.6) 29.1 (0.9) 

REASONING  
   

 Raven's Coloured 

Progressive Matrices 
(cut-off > 18.9) 

22.9 (6.3) 
# *

 27.7 (4.7) 
#
 32.6 (2.8) 

CONSTRUCTIONAL PRAXIS  
   

 Copy of drawings 

(cut-off > 7.1) 
7.4 (3.3) 

# *
 9.4 (1.7) 10.7 (1.3) 

 Copy of drawings 

with landmarks  
(cut-off > 61.8) 

56.7 (16.4) 
# *

 66 (4.4) 69.3 (0.9) 

 Copy of Complex 

Rey's Figure  
(cut-off > 23.7) 

20.5 (12.5) 
# *

 29.8 (6.7) 32.6 (2.1) 

 

Note.— All values are expressed as: mean (standard deviation).   
All measures were compared between groups by using the Student’s t test. Bonferroni correction was 

used to account for multiple comparisons (p<0.05). For each administered test appropriate adjustments 

for gender, age and education were applied according to the Italian normative data. Available cut-off 

scores of normality (> 95% of the lower tolerance limit of the normal population distribution) are also 

reported for each test.  
   
# Statistically significant difference between patients (AD or MCI) and HS   
* Statistically significant difference between  AD and MCI 
 

Abbreviations: AD=Alzheimer’s disease; HS=healthy subjects; MCI=mild cognitive impairment. 
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Table 3. Histogram-derived indices of DTI measures in NAWM of patients (AD, MCI) and 

HS, for the local (upper numbers) and ADNI (lower numbers) cohorts. 

FA 

 PH PL       C25 C50 C75 MV 

AD 
/ 

2.79 [0.16] 

/ 

0.34 [0.02] 

0.18 [0.01] 

0.27 [0.02] 

0.29 [0.02] 

0.36 [0.02] 

0.42 [0.02] 

0.47 [0.02] 

0.31 [0.02] 

0.38 [0.02] 

MCI 
/ 

2.83 [0.15] 

/ 

0.34 [0.03] 

0.18 [0.02] 

0.28 [0.02] 

0.29 [0.02] 

0.37 [0.02] 

0.42 [0.02] 

0.47 [0.02] 

0.31 [0.02] 

0.39 [0.02] 

HS 
/ 

2.75 [0.18] 

/ 

0.35 [0.03] 

0.18 [0.02] 

0.28 [0.01] 

0.30 [0.02] 

0.37 [0.02] 

0.42 [0.02] 

0.48 [0.02] 

0.32 [0.02] 

0.39 [0.02] 

MD 

 PH PL       C25 C50 C75 MV 

AD 
2.75 [0.45] 

4.14 [0.61] 

0.80 [0.03] 

0.76 [0.03] 

0.75 [0.03] 
#
 

0.71 [0.02] 

0.85 [0.04] 
#
 

0.78 [0.03]
 #
 

1.00 [0.06] 

0.85 [0.03]
 #
 

0.92 [0.04]
 #
 

0.83 [0.03]
 # *

 

MCI 
2.63 [0.45] 

4.55 [0.72] 

0.79 [0.04] 

0.76 [0.03] 

0.74 [0.03] 
#
 

0.71 [0.03] 

0.84 [0.04] 
#
 

0.77 [0.03]
 #
 

1.00 [0.07] 

0.84 [0.04] 

0.92[0.05]
 #
 

0.81 [0.04]
 # 

 

HS 
2.78 [0.35] 

4.61 [0.65] 

0.77 [0.03] 

0.74 [0.03] 

0.72 [0.02] 

0.69 [0.02] 

0.81 [0.03] 

0.75 [0.03] 

1.00 [0.05] 

0.82 [0.03] 

0.88 [0.04] 

0.79 [0.03] 

AXD 

 
PH PL       C25 C50 C75 MV 

AD 
1.67 [0.16] 

1.95 [0.14]
#*

 

1.11 [0.04] 

1.06 [0.03]
 
 

1.01 [0.03] 
# *

 

0.98 [0.03]
 #
 

1.17 [0.04] 
#
 

1.11 [0.03]
 # 

 

1.36 [0.05] 

1.29 [0.04]
 # *

 

1.23 [0.04]
 #
 

1.19 [0.04]
 # *

 

MCI 
1.59 [0.14] 

2.04 [0.14] 

1.10 [0.04] 

1.05 [0.04]
 
 

0.99 [0.03] 
#
 

0.97 [0.03]
 #
 

1.16 [0.04] 
#
 

1.10 [0.04]
 #
 

1.36 [0.06] 

1.27 [0.05]
 #
 

1.22 [0.05]
 #
 

1.17 [0.04]
 #
 

HS 
1.62 [0,10] 

2.08 [0.12] 

1.08 [0.03] 

1.03 [0.03] 

0.97 [0.03] 

0.96 [0.02] 

1.13 [0.03] 

1.08 [0.03] 

1.32 [0.04] 

1.24 [0.03] 

1.18 [0.04] 

1.14 [0.03] 

RD 

 PH PL       C25 C50 C75 MV 

AD 
2.25 [0.29] 

3.30 [0.35]
 
  

0.65 [0.04] 

0.61 [0.03] 

0.58 [0.03] 
#
 

0.53 [0.02] 

0.70 [0.04] 
#
 

0.61 [0.03] 

0.87 [0.06] 

0.70 [0.03]
 #
 

0.77[0.04]
 #
 

0.66 [0.03]
 # 

 

MCI 
2.20 [0.29] 

3.55 [0.41] 

0.64 [0.05] 

0.60 [0.04] 

0.57 [0.04] 
#
 

0.53 [0.03] 

0.69 [0.05] 
#
 

0.60 [0.03] 

0.86 [0.07] 

0.68 [0.04] 

0.77[0.05]
 #
 

0.64 [0.04]
 # 

 

HS 
2.35 [0.22] 

3.56 [0.33] 

0.62 [0.03] 

0.59 [0.03] 

0.55 [0.04] 

  0.51 [0.03] 

0.67 [0.03] 

0.59 [0.03] 

0.82 [0.05] 

0.67 [0.03] 

0.73 [0.04] 

0.62 [0.03] 
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Note.—.All values are expressed as: mean [std]. Diffusivity measures are expressed in 10
-3

mm
2
/s. 

All indices were compared between groups by using the Student’s t-test. Bonferroni correction was 

used to account for multiple comparisons (p<0.05). 
 

# 
Statistically significant difference between patients (AD or MCI) and HS. 

*Statistically significant difference between AD and MCI. 
 

Abbreviations: AD=Alzheimer’s disease; AXD=axial diffusivity; C25=25th centile of histogram; 

C50=50th centile of histogram; C75=75th centile of histogram; FA=fractional anisotropy; HS=healthy 

subjects; MCI=mild cognitive impairment; MD=mean diffusivity; MV=histogram mean value; 

NAWM=normal appearing white matter; PH=peak height of histogram; PL=peak location of 

histogram; RD=radial diffusivity. 

 

 

 

 

FIGURE CAPTIONS 

 

Figure 1  

Group-averaged histograms of FA, MD, AXD and RD in NAWM of three groups: HS (green), 

MCI (black) and AD patients (red).  Panel A refers to local cohort dataset, panel B refers to 

ADNI cohort dataset. 

 

 

Figure 2 

ROC curves relative to the comparison MCI plus AD vs HS in local cohort dataset (panel A) 

and ADNI cohort dataset (panel B). In these figures, sensitivity is the proportion of MCI and 

AD patients correctly classified and specificity is the proportion of HS correctly classified. 

Different features are represented with different colors; the features with maximum AUC are 

highlighted with a colored circles. 

 

Figure 3  

ROC curves relative to the comparison AD vs HS plus MCI in local cohort dataset (panel A) 
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and ADNI cohort dataset (panel B). In these figures, sensitivity is the proportion of AD 

patients correctly classified and specificity is the proportion of HS and MCI subjects correctly 

classified. Different features are represented with different colors; the features with maximum 

AUC are highlighted with a colored circles. 


