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SignalingProfiler 2.0 a network-based
approach to bridge multi-omics data to
phenotypic hallmarks

Check for updates

Veronica Venafra1,2, Francesca Sacco 2 & Livia Perfetto3

Unraveling how cellular signaling is remodeled upon perturbation is crucial for understanding disease
mechanisms and identifying potential drug targets. In this pursuit, computational tools generating
mechanistic hypotheses from multi-omics data have invaluable potential. Here, we present a newly
implemented version (2.0) of SignalingProfiler, a multi-step pipeline to draw mechanistic hypotheses
on the signaling events impacting cellular phenotypes. SignalingProfiler 2.0 derives context-specific
signaling networks by integrating proteogenomic data with the prior knowledge-causal network. This
is a freely accessible and flexible tool that incorporates statistical, footprint-based, and graph
algorithms to accelerate the integration and interpretation of multi-omics data. Through a
benchmarking process on three proof-of-concept studies, we demonstrate the tool’s ability to
generate hierarchical mechanistic networks recapitulating novel and known perturbed signaling and
phenotypic outcomes, in both human andmice contexts. In summary, SignalingProfiler 2.0 addresses
the emergent need to derive biologically relevant information from complex multi-omics data by
extracting interpretable networks.

Intracellular signaling pathways, marked by molecular interactions and
post-translationalmodifications like phosphorylation,mediate the ability of
cells to translate signals into observable changes in phenotypic traits.
Numerous pathways (e.g., MAPKs, EGFR, …) have been extensively stu-
died and it is now evident that these linear cascades are not isolated entities,
but rather components of a large and complex network that impact phy-
siological and pathological processes1. To understand the intricate nature of
such a human signaling network it is crucial to grasp the cross-talk among
diverse signaling cascades and elucidate how they collectively impact key
cellular phenotypes.

The recent tremendous technological advances have enabled the cost-
effective generation of large-scale -omics datasets, providing a systematic
description of different regulatory layers (e.g., DNA, RNA, and protein
levels) in various pathophysiological conditions. The simultaneous
exploration of different omics layers in an integrativemanner (the so-called,
‘multi-omics data analysis’) is indeed gaining popularity2–4 to obtain a
holistic picture of the cell state5. However, extracting biological information
from such complex omics data remains a major challenge and demands
computational interventions.

Among the different methods developed6,7, footprint-based
techniques8,9 generate lists of kinases and transcription factors

characterized by an activity score derived from the phosphorylation or
expression level of their known targets10–14. However, how and if these
kinases and transcription factors are connected within the human phos-
phorylation network and impact biological processes remain open ques-
tions that need to be addressed by additional computational approaches.
Over the past decade, numerous mechanistic modeling approaches primed
by prior knowledge emerged as robust aids in comprehending the com-
plexities of the cell signaling15. These approaches use pre-existing infor-
mation, annotated in public repositories16–18, about regulatory interactions
among proteins, to establish a ground structure of the signaling network.
Subsequently, they incorporate (multi)-omics data to generate a snapshot
describing the main molecular mechanisms occurring in a specific condi-
tion (mechanisticmodel).Mechanisticmodels have been shown to be highly
effective for studying cancer progression or drug response and for dis-
covering novel biomarkers19–22. For instance, the COSMOS pipeline has
been used to generate mechanistic hypotheses from multi-omics data,
including metabolomics, in patients with clear cell renal cell carcinoma
(ccRCC)23. In general, mechanistic models aim to bridge the gap between
the vast omics datasets and the phenotypic outcomes observed in biological
systems. However, models usually contain many nodes and edges, and this
complexity hampers their functional interpretation. To tackle this issue,
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most of themethods use themanual exploration of themodel guided by the
functional enrichment analysis19,23; as an alternative, other tools, such as
HiPathia21, decompose pathways into functional circuits ending on phe-
notypes. Finally, we recently developed ProxPath24, a graph-based tool
designed to estimate the regulatory impact of proteins on phenotypes
annotated in SIGNOR17.

What is still missing is a strategy that integrates all these procedures
(protein activity estimation, network reconstruction, and phenotypic
interpretation) in a unified pipeline capable of drawing from multi-omics
data a coherent picture depicting the signaling events that eventually impact
hallmark phenotypes.

To fill this gap, here we present a newly implemented version (2.0) of
SignalingProfiler. This is a generally applicable strategy that captures from
multi-omics data the signal remodeling in response to perturbations (e.g.,
diseases, drug treatments, etc.). Specifically, SignalingProfiler 2.0 integrates
transcriptomics, proteomics, and phosphoproteomics data with the existing
knowledge of molecular interactions sourced from databases such as
SIGNOR17 andPhosphoSitePlus16. Thefinal output of our pipeline is amodel
connecting perturbed proteins (e.g., receptors) to effector proteins, ultimately
regulating phenotypes relevant to the user’s biological context (Fig. 1).

The first prototype of SignalingProfiler allowed us to uncover
mechanisms of drug resistance in drug-resistant leukemia cells20,22. The
current version of SignalingProfiler (2.0) extends its utility to broader con-
texts, includes novel parameters, advanced functionalities, and incorporates
expanded databases, making it a valuable resource for a more agile omics
data interpretation and hypothesis generation (Fig. 1). Here we carry out a
systematic benchmarking of SignalingProfiler 2.0, emphasizing its advanced
capabilities and broader applicability in the systems biology and network
modeling fields.

Results
Pipeline overview
SignalingProfiler 2.0 is an R workflow designed to unbiasedly integrate
literature-derived causal networks withmulti-omics data to deliver context-
specific signed and oriented graphs connecting molecular entities (e.g.
proteins, complexes, metabolites) and ending up on functional traits
(phenotypes) (Fig. 1A–C).

The entire pipeline is freely accessible and available for reuse and
interoperability at https://github.com/SaccoPerfettoLab/SignalingProfiler/.

Here we provide a step-by-step description of the method and tech-
nical parameters explanation for each step is available in Table 1.

Step 1. Find the activity of key signaling proteins
In this step, SignalingProfiler 2.0 derives the activity of key signaling proteins
by systematically analyzing transcriptomic and (phospho)proteomic data
derived from human and mouse samples. Protein activity estimation
includes two main methods:

Footprint-based approach. Here, SignalingProfiler 2.0 determines the
activity of transcription factors, kinases, and phosphatases based on the
abundance of their targets (transcripts or phosphopeptides) by inte-
grating our newly developed algorithms and statistical tests (Table 1,
asterisks indicate novel implementations) with the VIPER inference
method25. This process is often referred to as Transcription Factor or
Kinase Substrate Enrichment Analysis (TFEA and KSEA, respectively)
(Fig. 1D, Step 1).

The relationship between a TF/kinase/phosphatase and its specific set
of transcripts/phosphopeptides is referred to as ‘regulon’ and is extracted
from public repositories17,18,26–29. A major implementation in SignalingPro-
filer 2.0 is the import of novel regulons, such as theCollecTRI resource28 and
the Serine/Threonine and Tyrosine Kinome Atlas27,29 (Supplementary
Fig. 1A, B).

PhosphoScore. Thismethod exploits themodulation of phosphosites in
phosphoproteomics data with their impact on protein activity or stability

as annotated in PhosphoSitePlus and SIGNOR (Supplementary Fig.
1C, D). Importantly, the PhosphoScore methodology allows us to extend
our analysis to distinct types of molecular entities: 30% of the proteins
with a regulatory phosphosite available in SignalingProfiler 2.0 are TF/
kinase/phosphatase, the remaining 70% exhibit different GO molecular
functions, including, but not limited to, ubiquitin-ligase, GTP-ase, and
membrane transporter activities (Supplementary Fig. 1E).

Thanks to the integration ofmultiple resources and the combination of
PhosphoScore and footprint-based methods, the coverage of Signaling-
Profiler 2.0 is greatly expanded: a user can potentially infer nearly the entire
kinome (519 and 480 kinases for human andmouse), 62 phosphatases, and
over one thousand transcription factors and other signaling proteins (Fig.
1B). Remarkably, the modular nature of the pipeline allows users to feed
SignalingProfiler 2.0 with the three datasets simultaneously (tran-
scriptomics, proteomics, and phosphoproteomics) or with only a selection
of them.

Step 2. Connect signaling proteins in a causal network
The next step of the pipeline is the reconstruction of the molecular inter-
actions between the modulated signaling proteins, by accessing literature-
derived causal networks (Fig. 1D, Step2).This step includes (i) the search for
connections between modulated molecules detected in Step 1 within a
compendium of available interactions in a prior knowledge network (PKN)
and (ii) the optimization of the final model.

The PKNs. SignalingProfiler 2.0 offers six categories of prior knowledge
networks (PKNs), organized by organism (human or mouse) and cov-
ering signaling pathways and post-translational modifications (direct
interactions) as well as gene regulation (mostly indirect interactions)
derived from public resources16,17 (Supplementary Fig. 2 and Supple-
mentary Fig. 3A). Every PKN is a graph built of causal interactions
represented according to the activity-flow model. Briefly, every interac-
tion is binary, directed (has a regulator and a target of the regulation), and
signed (representing either an up- or a down-regulation). The PKNs
contain up to 60,807 connections (Supplementary Fig. 3A) linking a wide
range of molecular entities, including proteins, fusion proteins, meta-
bolites, and complexes (Supplementary Fig. 2). Overall, the assembly of
these six categories provides a balanced and comprehensive approach to
Prior Knowledge Networks, offering a mix of manually curated data,
cross-species comparisons, flexibility in computational demands, and the
option for customization based on specific research goals. Furthermore,
SignalingProfiler 2.0 offers ready-to-use strategies to query public
resources (SIGNOR, PhosphoSitePlus, OmniPath) and to assemble
custom PKNs in a SignalingProfiler 2.0 compliant format.

The naïve network. SignalingProfiler 2.0 allows to progressively make
the PKNs context-specific, retaining only interactions in the current
knowledge that are responsible for the modulation of TFs, kinases,
phosphatases, and other signaling proteins (Step 1). Users have the
possibility to embed in the network a set of starting perturbed nodes,
which can be proteins whose activity is impacted upon genetic or phar-
macological perturbation (e.g., a drug-target, a mutated protein, or
ligand-stimulated receptor) (Fig. 1D, Step 2).

First, we allow the user the possibility to remove the interactions
that do not involve genes or proteins expressed in the samples (PKN
preprocessing). Subsequently, we provide a modular framework to
identify the regulatory paths linking the perturbed nodes to tran-
scription factors, resulting in distinct layouts, defined as one-, two-, or
three-layered networks (Supplementary Fig. 3B). These layouts arise
from the integration of three hierarchical layers: in the first, we
retrieve connections bridging perturbed node(s) to kinases and
phosphatases (1st layer); in the second we connect kinases/phospha-
tases to other, undefined signaling proteins (2nd layer); finally, in the
third, we link the latter to transcription factors (3rd layer) (Supple-
mentary Fig. 3B).
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The optimization. The naïve network undergoes optimization upon protein
activity through the application of the Integer Linear Programming (ILP).
Within the SignalingProfiler2.0 framework,wehave incorporated twoflavors
of the CARNIVAL algorithm, namely Vanilla or Standard CARNIVAL
(StdCARNIVAL) and Inverse CARNIVAL (InvCARNIVAL)19. The

CARNIVAL algorithm is developed to identify the smallest sign-coherent
subnetwork, connecting as many deregulated proteins as possible. To
enhance the comprehensiveness of the generated model, we have imple-
mented a novel optimization feature that entails the execution of multiple m
(multi-shot) for each layer of the model, producing subparts of the final
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model. Subsequently, these subparts are combined to form amore expansive
and richer representation (Supplementary Fig. 3C–F).

The result of these steps is a mechanistic model that can be explored at
the phosphorylation-resolution level (Fig. 1C).

Step 3. Hallmark phenotypes inference for functional
interpretation
An important novelty of SignalingProfiler 2.0 is the implementation of the
PhenoScore algorithm that infers from themodel the regulation of hallmark
phenotypes (Fig. 1D, Step 3). Specifically, it incorporates and adapts our in-
houseProxPathmethod24, a graph-based algorithmdesigned tomeasure the
functional proximity of a list of gene products to target pathways and
phenotypes, using causal interactions annotated in SIGNOR. The Pheno-
Score algorithm averages the activity of phenotype upstream regulators in
themodel and uses this value as a proxy of the activation level of phenotypes
(Table 1).

In summary, SignalingProfiler 2.0 offers information on ~200 distinct
phenotypes (e.g., Proliferation, Apoptosis, G2/M phase transition, etc.) that
can be incorporated into the model (Fig. 1C).

Given the importance of prior knowledge in the performance of Sig-
nalingProfiler 2.0, we set out to regularly update information from source
databases, or, in alternative, allow users to use custom datasets.

Benchmarking strategy
SignalingProfiler 2.0 is a versatile tool composed of three steps that can be
used independently or in combination. Each step provides a variety of
functions with customizable parameters, allowing the user to choose prior
information, statistical methods, network generation approaches, and
techniques for multi-omic data integration (Table 1).

To objectively determine default parameters for future users and sys-
tematically assess the performance of SignalingProfiler 2.0, we implemented
a benchmarking strategy consisting of two parts: (1) parameters tuning,

Fig. 1 | SignalingProfiler 2.0 pipeline. A SignalingProfiler 2.0 input consists of
multi-omic data collected from perturbed and control conditions (e.g., disease/
treated vs control).BCoverage of SignalingProfiler 2.0 inferable signaling proteins in
human and mouse datasets, categorized by molecular function (TF transcription
factors, KIN kinases, PP phosphatases, and OTHER other molecular functions).
C SignalingProfiler 2.0 final output illustrates the remodeling of the signal, linking
user-defined perturbed nodes (optional) with inferred proteins, and ultimately
leading to relevant phenotypes. Node activities are coherent with the sign of the
edges (red and blue are active and inactive proteins, respectively). Phosphopro-
teomics is mapped onto edges (validated interactions with phosphoproteomics).
D SignalingProfiler 2.0 is a three-step modular pipeline. Step 1 derives the activity of

signaling proteins from regulatory phosphosites (PhosphoScoremethod) and direct
transcripts/phosphopeptides using the VIPER algorithm (footprint-based
methods)25 Step 2 A user-defined set of perturbed molecules/receptors (e.g., targets
of a treatment or mutated genes in a disease) is connected to the inferred proteins
using a prior knowledge network (PKN) exploiting: (i) a shortest-path algorithm to
reduce the dimension of the PKN to the neighborhood of the inferred proteins (naïve
network); (ii) the CARNIVAL optimization strategy19 that retains only the sign-
coherent interactions between proteins (context-specific network). Users can pro-
vide custom PKNs. Step 3 The context-specific network is connected to cellular
phenotypes using the ProxPath algorithm24 and the phenotype activity is obtained by
integrating upstream protein activities.

Table 1 | SignalingProfiler 2.0 parameters

Step 1 Protein activity inference parameters

Regulons’ sources Regulons’ databases for Transcription Factors Enrichment Analysis (TFEA) or Kinase Substrates Enrichment
Analysis (KSEA) (Supplementary Fig. 1)

Hypergeometric test* Boolean, using hypergeometric test on VIPER output to weight the inferred activity according to the number of
significantly modulated analytes in the regulon

VIPER correction with proteomics* Boolean, adjust VIPER output based on proteomics fold-change of analytes. If VIPER returns non-significant
modulation but the same modulation is significant in proteomics, include the analyte in VIPER result

Normalize phosphoproteomics* Boolean, correct phosphoproteomics using proteomics data, reducing the importance of phosphosites equally
modulated in both datasets

Phosphosites regulating activity Boolean, in PhosphoScore computation use regulatory phosphosites that affect only protein activity or both
activity and abundance (Supplementary Fig. 1)

Step 2 Network construction parameters

Kinome Atlas integration* Boolean, indicating if PKN contains kinase-substrate relations from the
Ser/Thr Kinome Atlas28 (Supplementary Fig. 3)

Include only direct iteractions Boolean, keeping only direct interactions in the PKN (Supplementary Fig. 3)

Preprocess PKN* Boolean, excluding interactions between proteins not quantified in experimental data

Naïve network types* Distinguished by layer numbers (one, two, three, Supplementary Fig. 3)

Shortest path maximum length* Maximum distance between two set of molecules forming a layer in the naive network (Supplementary Fig. 3)

Include interactions between shortest paths
(connect_all)*

Boolean, incorporate interactions among proteins identified along distinct shortest paths

CARNIVAL types* CARNIVAL algorithms types (inverse, vanilla one-shot, vanilla two-shots, vanilla three-shots) (Supplementary
Fig. 3)

Step 3 Phenotypes inference parameters

ProxPath preprocessing* Boolean, exclude paths between model proteins and phenotypes that contain undetected proteins in
experimental data

Protein-phenotype path length* Path length between model proteins and phenotypes

Z-score statistic* Statistics (mean or median) utilized for randomization in ProxPath (refer to25)

Remove cascades* Boolean, consider only model proteins independently regulating the phenotype

Weight protein contribution* Boolean, weight protein activity contribution to phenotype based on the number of regulatory paths

Use CARNIVAL activity* Boolean, consider only experimentally inferredproteins (derived inStep1) or all networkproteins (withCARNIVAL
activity) in phenotypic activity computation
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where we identify the top-performing technical setting for each step of the
pipeline, and (2)parameters validationon two independent datasets (Fig. 2).

Parameters tuning and performance evaluation. The parameters
tuning was a standardized evaluation process in which we tested any
possible combination of functional parameters of SignalingProfiler 2.0
(3524 conditions) (Supplementary Data 2), thus identifying the best
parameters to set as defaults (Fig. 2C). Briefly, we took advantage of
our previously published transcriptome, proteome, and phospho-
proteome dataset of breast cancer cells upon treatment with
metformin30, whose molecular targets (the mammalian target of
rapamycin, mTOR, and the AMP-activated protein kinase, AMPK)
and phenotypic impact are well characterized31–37 (Fig. 2C). To sys-
tematically evaluate the performance of each parameter in recapitu-
lating the metformin-induced signaling rewiring, we manually
compiled a literature-derived gold standard. This is a list of known
downstream effectors and phenotypes impacted by metformin with
their expected activity. The so-generated protein and phenotypic gold

standard accounted for 74 proteins, including 17 transcription factors,
20 kinases, and 10 phenotypes (Fig. 2B, Supplementary Data 1).

Performance of parameters in protein activity inference (Step 1).
Here, we tested 100 distinct combinations of different reference databases
(Supplementary Fig. 1A) and technical parameters (Supplementary Data
1 and 2) in inferring protein activity from the training dataset (Supple-
mentary Data 3). Subsequently, by comparing these results with the
protein gold standard, we systematically assessed the precision, recall, and
Root Mean Squared Error (RMSE) associated with each combination
(Fig. 3), to ultimately identify the optimal set of parameters resulting in an
accurate and complete list of modulated proteins (Fig. 2C, panel a, and
Supplementary Data 4).

Transcription factors. The procedure enabled us to infer the activity of up to
7 out of 17 (40%) transcription factors in the protein gold standard (Sup-
plementary Fig. 4A). Our systematic comparison of parameter combina-
tions showed that the choice of Regulons’ sources was the most influential
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parameter, as it positively impacts all the selected performancemetrics (Fig.
3A and Supplementary Fig. 4D). In contrast, other parameters, like the
Hypergeometric test and Normalize Phosphoproteomics, displayed a milder
impact. Still, these parameters tended to strengthen the signal by reducing
the RMSE (Supplementary Fig. 4D).

Kinases. The process of inferring kinases resulted in the identification of up
to8outof 20 (40%)kinases fromthegold standard (SupplementaryFig. 4B).
In general, the Regulons’ source choice had a strong impact on the

performance, where integrating Omnipath and Ser/Thr Kinome Atlas
increased both Precision and Recall. In addition, other parameters, such as
Normalize Phosphoproteomics, the Hypergeometric test, and VIPER correc-
tion with Proteomics improved all the metrics, emphasizing the importance
of incorporating these novel functionalities in SignalingProfiler 2.0 (Fig. 3B
and Supplementary Fig. 4D).

Other signaling proteins. Among 30 of the non-TFs/kinases in the gold
standard, eight were identified (27%) (Supplementary Fig. 4C). This

Normalize 
phosphoproteomics

Phosphosites regulating 
protein activity

O
m

ni
pa

th

O
m

ni
pa

th
+

Ki
no

m
e 

At
la

s

1.0000.998

0.620.75

0.620.75

56

RMSE
0.9830.9851.0000.973

0.330.400.500.57

0.140.290.430.57

1234

C
ol

le
cT

R
I

C
ol

le
cT

R
I+

S
IG

N
O

R

D
or

ot
he

a

D
or

ot
he

a+
S

IG
N

O
R

Precision

Recall

True 
positives

Transcription 
factors

K
inases and

Phosphatases
O

ther signaling
proteins

0.9981.000

0.670.57

0.570.57

55

FA
LS

E

TR
U

E

RMSE

Precision

Recall

True 
positives

RMSE

Precision

Recall

True 
positives

1.0000.997

0.600.62

0.380.62

35

RMSE

Precision

Recall

True 
positives

FA
LS

E

TR
U

E

FA
LS

E

TR
U

E

1.000

0.570.67

0.570.57

55

0.998
RMSE

Precision

Recall

True 
positives

1.0000.989

0.570.83

0.500.62

45

RMSE

Precision

Recall

True 
positives

FA
LS

E

TR
U

E

1.000

0.861.00

0.750.50

64

0.992
RMSE

Precision

Recall

True 
positives

FA
LS

E

TR
U

E

10.97

0
0.86

00.75

06

RMSE

Precision

Recall

True 
positives

FA
LS

E

TR
U

E

B

C

Default 
parameters

maxmin

Regulons’ sources

A

Protein activity inference parameters tuning (Step 1)

Fig. 3 | SignalingProfiler 2.0 protein activity inference parameters tuning (Step 1).
A–C For each parameter, the average Precision, Recall, Number of true positives,
and Root Mean Squared Error (RMSE) with respect to the protein gold standard are
reported across 64, 32, and 4 conditions for transcription factors (A), kinases/

phosphatases (B), and other signaling proteins (C), respectively. Optimal parameter
values are reported in red. White and dark gray represent minimum and maximum
parameter values.

https://doi.org/10.1038/s41540-024-00417-6 Article

npj Systems Biology and Applications |           (2024) 10:95 6

www.nature.com/npjsba


benchmarking underscored the importance of the Normalize Phosphopro-
teomics parameter and utilization of phosphosites that regulate activity
rather than quantity (Phosphosites regulating protein activity parameter) to
guarantee minimal RMSE and enhanced precision when using the Phos-
phoScore algorithm (Fig. 3C).

Overall, the best combination of parameters led to the inference of 23
transcription factors, 41 kinases, 3 phosphatases, and 25 other signaling
proteins (Supplementary Fig. 5AandSupplementaryData 5) andwasused as
an input for Step 2 (Fig. 2C, panel b). As expected, integrating the Phos-
phoScore method with footprint-based analyses expanded the number of
inferred proteins (Supplementary Fig. 5B) while maintaining a high level of
agreement with the gold standard (Supplementary Fig. 5C). Remarkably, our
pipeline enabledus to catchamong themosthighlymodulatedproteinsmany
members of the gold standard (Supplementary Fig. 5A, starred proteins).

To evaluate the robustness of the analysis, the best combination of
parameterswas also testedover a set of partially degradedexperimental data,
and regulons, generated by randomly shuffling for 100 times an increasing
number (25, 50, 100%) of entries.We next compared each SignalingProfiler
2.0 result against the protein gold standard. In both cases, there was a
significant decline in precision, recall, and true positives, while false nega-
tives increased. Interestingly, the predictions were extremely sensitive to the
regulons’ randomization, where 50 and 100% of the regulons’ shuffling
produced no results (Supplementary Fig. 6A, B).

Performance of parameters in Network construction (Step 2). A key
challenge in multi-omics data integration is extracting the cause-effect rela-
tionshipsunderlying the experimental data.Translated toour trainingdataset,
this task attempts to address the specific molecular events triggered by met-
formin treatment. To this aim, we extracted the direct and indirect connec-
tions linking the mTOR protein and AMPK complex to the proteins
modulated in their activities through any possible framework in Step 2 of
SignalingProfiler 2.0 (Supplementary Fig. 3). This process involved the

screening and the evaluation of 3328 possible resulting networks (Table 1 and
SupplementaryData 2), by ranking them according to a combined score, that
considers elements such as the consistencywith theprotein gold standard and
topological graphmetrics (seeMethods) (Fig. 4, SupplementaryFigs. 7, and8).

Overall, the networkswere obtained from2989 runs over 3328,with an
average computation time of 200 s (Supplementary Fig. 8A and Supple-
mentary Data 6). As shown, the integration of the Ser/Thr Kinome Atlas
into the prior knowledge network, as well as the usage of two- and three-
layer naïve network types, led to an increased computation time and
dimensionality and, as expected, increased coverage of metformin-
dependent phosphorylation events (Fig. 4, Supplementary Fig. 7 and Sup-
plementary Data 6).

We also benchmarked the two types of CARNIVAL differentiated by
the usage of starting perturbed nodes as constraints. The invCARNIVAL
required increased computational time (Supplementary Figs. 7 and 8A) and
returned smaller networks with reduced precision and recall (Fig. 4 and
Supplementary Fig. 7). Moreover, due to the limited constraints and the
complexity of the basic network, only 3% of the models generated by
invCARNIVAL correctly inferred bothmTOR andAMPK, whereas 55% of
them inferred only one of them.

On the other hand, the stdCARNIVAL returned larger networks with
the three-shot optimization outperforming the one- and two-shot ones, in
the number of nodes and phosphorylation events, with little impact on the
computation time (Fig. 4, Supplementary Fig. 7 and SupplementaryData 6).

Overall, the quality of themodels with respect to the gold standardwas
satisfactory, with an average precision and recall of 0.75 and 0.35, respec-
tively (Fig. 4 and Supplementary Fig. 8).

We ranked the models according to the combined score (Supple-
mentary Fig. 8G and Supplementary Data 6) and set as default the para-
meters thatmostly contributed to the combined score (SupplementaryData
6, in red). The top-quality network (Network1554) accounted for 99 nodes
and 219 edges and recapitulated the expected mTOR pathway inactivation
andAMPKpathway activation uponmetformin treatment (Supplementary
Fig. 9)30.

To investigate the robustness of SignalingProfiler 2.0 also in network
construction, we generated three classes of randomized PKNs, obtained by
randomly shuffling an increasing number (25%, 50%, and 100%) of edges
using the BiRewire tool38, which generates random networks by preserving,
for eachnode, its signed/directional degree.Next,we evaluated the impact of
the PKN shuffling on the mechanistic power of the model by analyzing the
number of interactions representing phosphorylation events caught by
phosphoproteomic data. As depicted in Supplementary Fig. 6C, their
numerosity already decreased at 25%, greatly reducing the model’s
mechanistic relevance for experimental data interpretation.

Performance of parameters in phenotype inference (Step 3). Finally,
weused the top-qualitynetworkderived fromStep2as input for the inference
of phenotypic outcomes. To note, the PhenoScore algorithm considers var-
ious modalities (Table 1), resulting in a total of 96 potential outcomes that
were systematically compared to the phenotypic gold standard (Fig. 2C, panel
c, Supplementary Data 1, and Supplementary Data 7). Briefly, PhenoScore
parameters, such as the ProxPath preprocessing and Remove cascades, had a
clear impact on Precision and RMSE, whereas the others showed ambiguous
results (Fig. 5). The median phenotypic inferred activity across the 96 con-
ditions alignedwith the expected (with few exceptions), suggesting the overall
reliability of the algorithm (Fig. 5B). Since the evaluation of individual
parameterswasnotdecisive in thedefault choice,weused anaggregated score
to rank the results (see Methods) and the top 10 settings were selected as
default (Supplementary Data 7). Then, we used themost accurate prediction
of the phenotypic gold standard (Fig. 5C) to create a final model (109 nodes
and 298 edges) depicting the metformin-induced signaling axes impacting
the selected phenotypes (Supplementary Fig. 10, and SupplementaryData 8).
Interestingly, in thisfinalmodel,metformin results in the activation of death-
associated pathways (e.g., apoptosis and cell death) and autophagy (themost
characterized phenotypic hallmark of mTOR inhibition)31, and in the
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inhibition of proliferation and biosynthetic pathways (e.g., protein synthesis)
(Supplementary Fig. 10 and 11).

Independent validation. With the dual aim of confirming that the optimal
parameters selected were not suffering from an ‘overfitting’ effect and could
find applicability on a broader set of input data, we cross-validated Signa-
lingProfiler 2.0 on two independent and heterogeneous datasets (Fig. 2A, B,
Fig. 6A, B).

The first dataset reported the HeLa cell line phosphoproteomic profile
modulation uponEGF treatment39 (Fig. 6C). The second consistedofmulti-
omics data from a murine acute myeloid leukemia (AML) cell line treated
with ac220, a tyrosinekinase inhibitor (TKIs) targeting theFMS‐like tyrosine
kinase 3 (Flt3), as described in our previouswork20 (Supplementary Fig. 12).

For both datasets, wemanually compiled a list of expected protein and
phenotypic activities (gold standard) (Supplementary Data 9). As shown in
Fig. 6A, B, SignalingProfiler 2.0 (default options) displayed comparable
performance in terms of accuracy and phosphorylations coverage for both
datasets, confirming the broad applicability of the approach (Supplemen-
tary Data 10, 11 and 12).

Biological Insights and Exemplary Results with
SignalingProfiler 2.0
SignalingProfiler 2.0 is a tool for extracting molecular hypotheses and
functional insights into the molecular mechanisms of signal transduction
from multi-omics data. By integrating and analyzing diverse data types,

SignalingProfiler 2.0 can uncover complex interactions and regulatory
networks, providing a comprehensive understanding of cellular signaling
pathways. Here we aim to picture a clear example of the results of Signa-
lingProfiler 2.0 for potential users. To this scope, in Fig. 6C, we summarized
the output from the analysis of Olsen et al.39.

Briefly, from phosphoproteomics data, we inferred the activity mod-
ulation upon EGF stimulation of 56 kinases, 5 phosphatases, 3 transcription
factors, and 10 other signaling proteins (Fig. 6 and SupplementaryData 10).
The resulting signaling network encompassed 84 nodes and 256 edges,
where 14% were experimentally detected phosphorylation events (Fig. 6B).
In agreement with findings from the original publication, SignalingProfiler
2.0 successfully identified proteins downstream of EGF, including BRAF,
RAF1, MAPK1-3 (ERK1/2), MAPK14 (p38) kinases, along with ATF7 and
JUN transcription factors (Supplementary Data 10). The resulting EGF
network accurately recapitulated signaling cascades associated with pro-
proliferative pathways activation and cell death-related pathways inhibition
(Fig. 6D). Notably, the molecular circuits leading to the deregulation of
individual phenotypes can be inspected as individual or as groupedmaps of
regulatory interactions at the phosphorylation-resolution level (Fig. 6E). As
an example, in Fig. 6E we highlighted the subnetwork combining the axes
impacting Cell Growth, Proliferation, Cell Cycle Block, and Cell Cycle
Progression. The circuit not only recapitulated known signaling cascades
(e.g. the one involving the MAPK family members) but also shed light on
potential crosstalk between different axes, allowing users to formulate novel
hypotheses.
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Overall, these results highlighted the reliability of the benchmarking
strategy and SignalingProfiler 2.0 applicability on a broader set of input data.
The findings discussed in this manuscript demonstrated that Signaling-
Profiler 2.0 is a powerful tool for extracting molecular hypotheses from
multi-omics data and for identifying functional circuits that influence
phenotypes.

Discussion
In this paper,we thoroughly presentSignalingProfiler2.0, amethod to create
mechanistic context-specific networks of signaling remodeling and to
identify functional circuits impacting phenotypes.

Here, we show that SignalingProfiler 2.0 is a modular pipeline that
allows users (i) to unbiasedly derive the activity of proteins from the
integration of proteogenomic data with prior knowledge information
deposited in public repositories; (ii) to connect the identified proteins
to generate a coherent network that explains nodes’ change in activity;
(iii) to estimate the activation level of hallmark phenotypes and
integrate them in the final model. As compared to SignalingProfiler
1.020, the 2.0 version incorporates: (i) extended background databases,
such as CollectTRI28 and Ser/Thr Kinome Atlas27,29, (ii) increased
coverage and accuracy of protein activities’ prediction, (iii) PKN
browsing methods, optimization strategies, and PhenoScore inference
with ProxPath24. Indeed, it is possible to estimate the activity of >3300
proteins, including, but not limited to, kinases, phosphatases, and
transcription factors, and map up to 200 cellular phenotypes onto the
final model (Supplementary Data 13). This represents an effective
strategy of feature reduction and a valuable resource for omics data
interpretation and hypothesis generation in diverse biological
contexts.

To systematically identify the parameter settings that optimize the
performance of SignalingProfiler 2.0, we employed a benchmarking
approach consisting of a parameter tuning phase on a training dataset30 and
a subsequent validation phase on murine20 and human39 datasets. Notably,
the parameter settings determined during the training process exhibited
comparable performance (Fig. 6A) when applied to the validation datasets,
demonstrating their broad applicability and limited risk of ‘overfitting’.

The validation phase also highlighted an important feature of Signa-
lingProfiler 2.0 which is flexibility. Flexibility on required multi-omics data
(e.g. users can employ only transcriptomic or phosphoproteomic data);
flexibility on theorganismchoice (mouse andhumandata are accepted) and
flexibility on the type of perturbed nodes, since we include relations that are
both signaling or transcriptional; also, thanks to itsmodular structure, users
can use only a limited number of steps of the pipeline and, possibly, to
integrate SignalingProfiler 2.0 with other methods for protein activity esti-
mation and network optimization.

Indeed, SignalingProfiler 2.0 is not the sole method to generate a
mechanistic network from omics data. Here, we report a systematic com-
parison of SignalingProfiler 2.0 with a panel of similar methods, released
from 2017 to 202219,21,23,40–44 (Table 2). Our analysis reveals that Signaling-
Profiler 2.0 is: (i) one of the few techniques directly annotating meta-
information about the molecular function at node/protein levels, (ii) is the
sole tool capable of estimating the activity of proteins, aside fromkinases and
phosphatases, from the phosphoproteomic data and (iii) is the sole
approach together with CausalPath42 combining proteomics in the analysis
and, apart from HiPathia21, integrating phenotypes with their activation
status into the ultimate model to unbiasedly derive functional circuits.

Finally, the comparison with other methods highlights some of the
limitations of our pipeline. Compared to tools such as COSMOS23, Signa-
lingProfiler 2.0 does not include metabolomic data. At the present state,
additional types of regulation such as epigenetic, acetylomic, and ubiqui-
tylomic data, which are becoming more popular45,46 cannot be integrated
into the signaling and represent a future challenge to face. Also, as for all the
methods that base their prediction on prior knowledge, SignalingProfiler 2.0
suffers from the limited coverage of available information in public repo-
sitories: either regulon databases and causal interaction resources are

incomplete and offer information for <50% (about 9,000 proteins) of the
Uniprot-SwissProt proteome. As an important novel feature to balance this
limitation, we also implemented regular updates of the prior knowledge
information from source databases to ensure up-to-date data.

In summary, SignalingProfiler2.0 is a versatile andflexible pipeline that
efficiently generates mechanistic networks from multi-omics data hier-
archically bridging signaling molecules to phenotypic traits. As such, it
addresses the emergent need to extract interpretable networks and derive
biologically relevant information from complex multi-omics data. We
expect that in the multi-omics era, where the proteogenomic characteriza-
tion of human samples and biopsies are becoming increasingly more
available to the public47,48, SignalingProfiler 2.0 could pave the way to the
development of personalized medicine strategies.

Methods
PKNs creation
We downloaded all causal interactions available for Mus musculus
(TaxID = 10090) and Homo sapiens (TaxID = 9606) from the SIGNOR
and PhosphoSitePlus® resources. SIGNOR 3.0 datasets, retrieved via the
REST API, are based on information up to November 2023. Interactions
labeled ‘down-regulates,’ ‘up-regulates,’ and ‘form complex’ in SIGNOR
were assigned values of−1, 1, and 1, respectively. Interactions involving
entities with the TYPE ‘protein family’ in SIGNOR were excluded.
Causal phosphorylations from PhosphoSitePlus® were obtained by
manually downloading and combining two independent tables: kinase-
phosphosite interactions (‘Kinase_Substrate_Dataset.gz’) and the reg-
ulatory role of phosphosites on proteins (‘Regulatory_sites.gz’). The
tables were joined using the UniProt ID and modified residue as keys.
The content of the ‘ON_FUNCTION’ column in PhosphoSitePlus®
representing the regulatory role of phosphosites wasmapped to values of
1, −1, or 0. These manipulated datasets were merged and filtered to
retain interactions with a defined regulatory effect (−1 or 1). For Homo
sapiens, causal interactions derived from the Ser/Thr KinomeAtlas were
added to SIGNOR and PhosphositePlus datasets (see Methods ‘Ser/Thr
Kinome Atlas parsing’). UniProt IDs were updated, and primary Gene
Names were retrieved using the UniProt database’s REST API. The
primary Gene Names of the involved entities were used as keys for each
interaction, and multiple UniProt IDs and attributes (e.g., TYPE,
DATABASE field of SIGNOR) were collapsed into a single string. We
created six Prior Knowledge Networks (PKNs) adding increasingly
exclusive filtering criteria: no filtering (PKN2 for human and PKN6 for
mouse), removal of indirect interactions representing ‘transcriptional
regulations’ (PKN1 for human and PKN5 for mouse), removal of
Kinome Atlas interactions (PKN4), and removal of direct interactions
not involving proteins (PKN3). The number of nodes and edges of each
PKN is shown in Supplementary Figs. 1 and 3. SignalingProfiler 2.0
PKNs are available in the R package as built-in objects, but users can also
create custom PKNs.

Ser/Thr Kinome Atlas parsing
We obtained Supplementary Data 4 from the work of ref. 27, containing
information on 89752 serine (Ser) and threonine (Thr) sites and their
probabilities (or percentile) of beingphosphorylatedby 303 Ser/Thr kinases.
We kept phosphosite-kinase relations with a percentile >88 (‘regulon
threshold’) and 99 (‘PKN threshold’), retaining 3,134,109 and 291,682 rela-
tions, respectively.

The ‘regulon threshold’ of 88 was determined as themedian value from
the distribution of percentiles of phosphosite-kinase relations documented
in SIGNOR or PhosphoSitePlus®. These relations were incorporated into
the regulons for kinase inference analysis, with weights assigned pro-
portionally to the percentiles within the range of 0.5 to 0.9.

The ‘PKN threshold’ of 99 was chosen to keep only the most accurate
relationships. We joined this table with the PhosphoSitePlus table on the
regulatory role of phosphosites (‘Regulatory_sites.gz’) using thephosphosite
as key. As a result, we included 28,012 interactions in the prior knowledge

https://doi.org/10.1038/s41540-024-00417-6 Article

npj Systems Biology and Applications |           (2024) 10:95 10

www.nature.com/npjsba


networks, representing relationships between kinases from the Atlas and
proteins for which the regulatory phosphosite is known.

Each kinase was annotated with its UniProt ID.

Benchmarking strategy
We first exploited a training dataset30 to identify the best-performing
technical setting for each step of the pipeline (parameters tuning) and we
then validated the optimal parameters on two independent validation
datasets, one fromhuman39, and one frommouse20 (parameters validation).

Training and validation datasets preparation. For the training dataset,
we downloaded relevant tables from our work as published in ref. 30 to
build transcriptomic, proteomic, and phosphoproteomic data tables. The

so-obtained information was parsed and adapted to make it Signaling-
Profiler 2.0 compliant.

Briefly, the dataset accounted for 9591, 7974, and 15812 quantified
transcripts, proteins, and phosphosites. These tables included computed
fold-change values among three replicates of both the control and metfor-
min conditions.

For the human validation dataset, we downloaded phosphoproteomic
data table from39 work. We updated UniProt IDs and phosphopeptide
sequences by querying the UniProt database via API. Data was analyzed
using theDEPRpackage (v. 1.16.0). Briefly, we normalized intensities using
variance stabilizing transformation (vsn).We kept 22773 phosphosites that
had just 1 missing value in at least one condition (thr = 1) and imputed
missing data with the ‘MinProb’ (q = 0.01) DEPmethod. The DEP test_diff

Table 2 | Qualitative comparison of SignalingProfiler 2.0 and existing methods

Omics data properties SignalingProfiler 2.0 COSMOS CausalPath TPS CARNIVAL HiPathia CausalR NicheNet KPNN

Omics
layers

Transcriptomics X X X X X X X X

Proteomics X X

Phosphoproteomics X X X X

Metabolomics X

Biological
resolution

Bulk/Pseudo-bulk X X X X X X X X

Single-cell X X X

Omics data
used as

Measurements
(observations)

X X X

Statistical scores (contrast/
correlation)

X X X X X X X

Additional
input

Does not use additional
inputs

X X X X

Accepts additional inputs X X X X

Requires additional inputs X

PKN properties

Sign Directed X X X

Activations/Inhibitions X X X X X X X

Size Pathways X

Large networks X X X X X X X X

Biological
content

Protein signaling interactions X X X X X X X

Gene regulatory interactions X X X X X X

Method properties

Omics
to PKN

Direct mapping to nodes X X X X X X

Indirect mapping to nodes X X X

Not‐
measured
nodes

Estimates unmeasured
nodes state

X X X X X X X

Includes unmeasured nodes
in output

X X X X X X X X

Algorithm
type

Edge filtering and
shortest path

X X X X

Recursive signal propagation
and heat diffusion

X

Integer linear programming X X X X

Neural networks X

Final network properties

Includes user-defined
perturbed nodes

X X X

Includes phenotypes X X

Includes meta-information
on nodes

X X X X

Includes meta-information
on edges regarding
phosphorylation events

X X X
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function called limma to identify significantly modulated phosphopeptides
between EGF stimulation for 15min and control (p-value adjusted <0.05,
fold-change threshold = 1).

For the murine validation dataset, we downloaded transcriptomic,
proteomic, and phosphoproteomic datasets from our work as published
in ref. 20.

The three datasets were parsed to make them SignalingProfiler 2.0
compliant.

Normalization of phosphoproteomics over proteomic data. We
created a normalized phosphoproteomic dataset (Normalize Phospho-
proteomics parameter) by adjusting the fold-change in phosphorylation
in response to metformin treatment based on the corresponding fold-
change in protein abundance. To achieve this, we calculated the differ-
ence between the phosphorylation level of the phosphosite and its
associated fold-change in protein abundance. The phosphorylation levels
of phosphosites that showed modulation in proteomics with the same
direction were reduced, while those with opposite phosphorylation and
protein abundance changes were increased. We then computed the
Z-score for the new distribution of phosphorylation fold-changes using
their mean and we defined corrected fold-changes with an absolute value
>1.96 (i.e., p-value < 0.05) significant.

Protein andphenotypic gold standard creation.Wemanually curated
a list with their expected activity for training and validation datasets.

For the training dataset, a list of 74 proteins with their expected activity
modulation to metformin treatment (protein gold standard) was compiled
from three recent papers32,33,36,37 focusing on mTOR and AMPK pathways.
Since metformin inhibits mTOR (and activates AMPK), negative and
positive targets of mTOR (and AMPK) were set to active and inactive
(inactive and active), respectively. Each protein was manually cross-
referenced and converted to its primary gene name. Themolecular function
of each proteinwas annotated using SignalingProfiler 2.0. The resulting gold
standard protein list was compared with proteins in SignalingProfiler 2.0
databases, including TFEA or KSEA regulons and the PhosphoScore
database. Notably, eight proteins were not found in the databases and were
consequently labeled as ‘not inferable’ proteins. Additionally, a list of 10
phenotypic traits with their expected modulations upon metformin treat-
ment (phenotypic gold standard) was compiled, based on the phenotypic
readout from our previous work30 and three referenced papers31,34,35. The
complete training dataset gold standard is available in Supplementary
Data 1.

Similarly, for the validation datasets we compiled protein and phe-
notypic gold standards accounting for 46 and 33 proteins, and 21 and 7
phenotypes with their expected activity in Olsen et al.39 andMassacci et al.20

datasets, respectively. The complete list and associated references are
available in Supplementary Data 9.

SignalingProfiler 2.0 parameters tuning. We ran the SignalingProfiler
2.0 pipeline with all technical parameter combinations. A detailed
explanation of SignalingProfiler 2.0 functions and parameters is provided
in Table 1. Briefly, any test combination of parameters was evaluated by
measuring precision, recall, and RootMean Squared Error (RMSE) using
protein and phenotypic gold standard lists.

Precision, recall, and RMSE definition. We defined an inferred protein
matching and diverging the expected value, as true and false positive,
respectively. False negatives were proteins present in the gold standard but
not inferred. True negatives were proteins with opposite activity than
expected and not inferred.We calculated as qualitymetrics (i) precision, the
ratio of true positives to the sum of true and false positives, (ii) recall, the
ratio of truepositives to the sumof truepositives and false negatives, and (iii)
RMSE, the squaredmean difference between predicted and expected values.
The eight ‘not inferable’ gold standard proteins were not considered in the
quality metrics computation.

Step 1 parameters tuning. SignalingProfiler 2.0 independently infers the
activity of transcription factors, kinases/phosphatases, and phosphorylated
proteins. Transcription factors/kinases/phosphatases can be inferred with
footprint-based methods, PhosphoScore, or a combination of both. The
parameter combinations for the inference of transcription factors, kinases/
phosphatases, and phosphorylated yielded 64, 32, and 4 results, respectively
(SupplementaryDatas 2 and 3). Each result referred to a unique selection of
parameters for the type of regulons/phosphosites database, the usage of the
Hypergeometric Test, VIPER correctionwith proteomics, and correction of
phosphoproteomics over proteomics.

The default setting for Step 1was determined by selecting the result for
each molecular function that maximizes precision and recall while mini-
mizing RMSE (Supplementary Data 4 and 5).

Step 2 parameters tuning. The network construction step involves 7 main
parameters (see Table 1, Supplementary Data 2 for details). All combina-
tions resulted in 3328 possible results, but only 2989 combinations yielded
actual networks. Eachmodel was annotated with computation time (sum of
naïve network computation and CARNIVAL optimization time); topolo-
gical metrics (nodes, edges and components, clustering coefficient, dia-
meter, fit to the power law, maximum path length between end nodes and
AMPK, mTOR and Perturbation node created by Inverse CARNIVAL);
biologicalmetrics, such as the precision, recall andRMSEwith respect to the
gold standard, and the number of interactions validated by quantified or
significant experimental phosphorylations (Supplementary Data 6). We
developed a Step 2 combined score defined as follows:

Combined scorestep2 ¼ precision � 0:5þ recall � 0:5�

þSignRatio � 0:5þ ClusteringCoefficient � 0:5Þ
� NormTime � 0:2þ PowerLawFitð Þ

where SignRatio is the ratio between the number of edges that are validated
by significant phosphorylation events over the total and the NormTime is
the ratio between each computation time and itsmaximum. The bestmodel
was selected based on the highest aggregate score (Network1554 with 99
nodes and 219 edges) and we set its parameters as default for Step 2.

Step 3 parameters tuning. The phenotypic traits inference considers 6 dif-
ferent parameters (see Table 1, Supplementary Data 2 for details). The ten
phenotypes of the phenotypic gold standard were selected, including
apoptosis, autophagy, adipogenesis, biosynthesis of fatty acids, glycogenand
proteins, proliferation, and glycolysis. We obtained 96 results that were
compared to the phenotypic gold standard, and we annotated precision,
recall, RMSE, and computation time (Supplementary Data 7). We for-
mulated a Step 3 combined score:

Combined scorestep3 ¼ precisionþ recall
� �� ðnormRMSE þ normTime � 0:5Þ

wherenormRMSE andnormTime are the ratioof its value and itsmaximum.
We linked the phenotypes’ values with the highest combined score to

their regulators in the Step 2model, resulting in afinal optimizednetwork of
109 nodes and 309 edges (Supplementary Data 8).

The network is publicly available for browsing at: https://www.
ndexbio.org/viewer/networks/fa22e724-b54b-11ee-8a13-005056ae23aa.
The Step 3 default was set by considering the most represented parameters’
values among the top 10 results.

SignalingProfiler 2.0 best parameters validation. To validate the
parameters tuning result, we run SignalingProfiler 2.0 on both validation
datasetswith the optimal parameters establishedusing the trainingdataset. For
the Olsen et al.39 dataset, we inferred 74 proteins (3 transcription factors, 56
kinases, 5 phosphatases, and 10 other signaling proteins) and generated a
network of 84 nodes (72 proteins and 12 phenotypes) and 256 edges (Sup-
plementary Data 10). For Massacci et al.20 dataset, we predicted the activity of
87 transcription factors, 53 kinases, 8 phosphatases, and 4 other signaling
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proteins (152 proteins in total) and generated a network of 180 nodes (172
proteins and 8 phenotypes) and 419 edges (Supplementary Data 11). Both
networks are publicly available on NDEX (Olsen et al.: https://www.ndexbio.
org/viewer/networks/59ab8c7b-0611-11ef-9621-005056ae23aa;Massacci et al:
https://www.ndexbio.org/viewer/networks/bde743d2-0613-11ef-9621-
005056ae23aa).

For both datasets Precision andRecall with respect to their protein and
phenotypic gold standard and thenumber of experimental phosphorylation
interactions in the model was determined and compared to the training
dataset results (Supplementary Data 12).

Randomization analysis. We generated a set of randomized versions of
experimental data, regulons, and PKN where an increasing number of
analytes or edges were shuffled (25, 50, 100% of all analytes/edges). To
shuffle both regulons and PKN, we exploited birewire.sampler.dsg
function of the BiRewire (v. 3.26.5) R package, to generate 100 rando-
mized graphs for each percentage independently. We evaluate separately
the impact of each randomization. Then, SignalingProfiler 2.0 was run for
each randomized experimental dataset, regulon, or PKN with the same
parameters as the original run. To evaluate the noise sensitivity for the
protein inference step of SignalingProfiler 2.0 (Step 1) we compared the
results with the protein gold standard. For Steps 2–3, we analyzed the
coverage in the resulting network of experimentally caught
phosphorylations.

SignalingProfiler 2.0 output visualization. The optimized networks
generated by SignalingProfiler 2.0 were displayed on Cytoscape using the
RCy3 package (v. 2.14.2). Two XML files provided within the Signa-
lingProfiler 2.0 R package were used to set the network style in Cytoscape.

The ‘SignalingProfiler 2.0 layout’ provides users with a clear and
intuitive visual representation of the entire model (used in Fig. 6 and Sup-
plementary Figs. 10–12). On the other hand, the ‘Phosphorylation layout’
(used in Supplementary Fig. 9) allows users to focus specifically on proteins
involved in experimentally confirmed phosphorylation events.

Data availability
No new experimental data was generated as part of this study. The multi-
omic data of the three benchmarking datasets are taken from refs.20,30,39. The
data in SignalingProfiler 2.0 compliant format and the resulting networks
are available at https://github.com/SaccoPerfettoLab/SignalingProfiler_
Benchmarking.

Code availability
All code used for SignalingProfiler 2.0 benchmarking is available at https://
github.com/SaccoPerfettoLab/SignalingProfiler_Benchmarking. Signaling-
Profiler 2.0 R package code is available at https://github.com/
SaccoPerfettoLab/SignalingProfiler.
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