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Abstract: This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-
MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled
with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial
properties of these composites. When compared to the MgZn composite, the microhardness and
compressive strength of the MgZn/TiO2-MWCNTs composites were enhanced to 79 HV and 269 MPa,
respectively. The results of cell culture and viability experiments revealed that incorporating TiO2-
MWCNTs increased osteoblast proliferation and attachment and enhanced the biocompatibility of
the TiO2-MWCNTs nanocomposite. It was observed that the corrosion resistance of the Mg-based
composite was improved and the corrosion rate was reduced to about 2.1 mm/y with the addition of
10 wt% TiO2-1 wt% MWCNTs. In vitro testing for up to 14 days revealed a reduced degradation rate
following the incorporation of TiO2-MWCNTs reinforcement into a MgZn matrix alloy. Antibacterial
evaluations revealed that the composite had antibacterial activity, with an inhibition zone of 3.7 mm
against Staphylococcus aureus. The MgZn/TiO2-MWCNTs composite structure has great potential for
use in orthopedic fracture fixation devices.

Keywords: magnesium matrix composites; TiO2-CNTs fillers; microstructure; mechanical property;
biological behavior; corrosion property

1. Introduction

Magnesium alloys have many advantages as lightweight structural materials, which
include their low density, high stiffness and specific strength, and great recyclability and
cytocompatibility [1–3]. In the body’s fluid surroundings, they can gradually degrade
which means there is no requirement for further operation to eliminate implants [4,5]. Mg
ions, the body’s fourth most common ions, have been shown to stimulate bone regeneration
and reduce healing rates [6,7]. Furthermore, MgZn alloys are comparable to real bones in
terms of density and Young’s modulus, which lowers stress-shielding influence and deters
osteoporosis [8–10]. However, rapid degradation in body fluid, which causes local alkalin-
ity and hydrogen evolution, has proven to be complicated and potentially increases the
risk of infection and implant failure. This is characterized by a lack of mechanical integrity
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because of rapid deterioration, crack propagation, and failure when still in use [11–13]. The
time it takes for an implant to dissolve completely is determined by the location of the
implant, the age of patient, the bone regeneration rate, and the mechanical strength of the
broken bone [14]. Prior to the mechanical and structural characteristics deteriorating in the
body and losing their effectiveness [15,16], a safety period of at least three months is recom-
mended to allow for cell adhesion and hard bone tissue regeneration [17–19]. Nevertheless,
Mg-based composites have demonstrated poor antibacterial efficiency, resulting in implants
being associated with infections and post-operative complications. Bone infection is primar-
ily a destructive problem with significant economic and clinical consequences [17–20]. As a
result, there is a pressing need to improve Mg alloys’ antibacterial performance [8,20,21].

Hence, the encapsulation of an antibacterial agent into Mg-based matrix materials is
a favorable method to diminish the viability, attachment, and growth of microbes on the
surface of implants [20,21]. Because of its limitations, pure Mg cannot be used in service
conditions without the addition of alloying elements or additional reinforcements [19]. The
most common technique for enhancing the degradation resistance and antimicrobial per-
formance of Mg is alloying and composite fabrication with appropriate nanofillers. Carbon
nanotubes (CNTs) have generated great interest as a nanofiller because of their Young’s
modulus (1 TPa), strength (30 GPa) and ultra-high thermal conductivity as well as their an-
timicrobial performance toward a wide variety of micro-organisms [7,11]. Because of these
properties, CNTs are one of the best additives for Mg-based nanocomposites [12,14,22–27].
For example, Nai et al. [28] developed an Mg composite reinforced with CNTs via powder
metallurgy with an excellent tensile strength (237 MPa); a 39% improvement compared to
monolithic Mg. According to Han et al. [29], the elastic modulus and compressive yield
strength of AZ31 composite containing CNTs were both improved in comparison with
the AZ31 alloy. In the same manner, it was exhibited [3,12] that the addition of CNTs
to Mg/Al composites increases ductility and decreases overall tensile strength. Because
CNTs are one-dimensional and easily coagulated, this decrease in strength could be at-
tributed to agglomerate formation. As a result, researchers face a significant challenge in
achieving the uniform dispersion of CNTs in the matrix. As a result, many researchers
have attempted to solve this problem through traditional mechanical milling and melting
procedures [7,10–12]. However, these techniques could not be used to create composites
with a uniform distribution of CNTs. Furthermore, CNTs were damaged during the tra-
ditional milling and casting procedures, causing breakage. To address these two issues
(agglomerate formation of CNTs and CNT breakage), the semi-powder metallurgy (SPM)
method is used to prepare the composites. SPM was used to prepare composites with a uni-
form dispersion of CNTs within the Mg-based matrix while avoiding CNT agglomeration
and breakage [3,12]. However, until now, research on CNTs as reinforcement has primarily
concentrated on mechanical properties, with little emphasis on the biocompatibility of
Mg alloys [1,30,31]. However, these additions may affect the biosafety of magnesium
alloys used in biological applications [32]. TiO2-based biomaterials are widely used as
bone substitutes because of their biological compatibility with the body, and nanoscale
TiO2 improves implant integration with host tissue in orthopedic applications [32–34].
Furthermore, nano-TiO2 has been reported to be biocompatible due to hydroxyapatite
(HAp) formation via Ti–OH groups. It is corrosion resistant, has a large specific surface
area, is non-toxic, flexible, high in tensile strength, has a relatively lower cost and a stable
colloidal suspension [32–34]. It is possible to improve in vitro bioactivity of bone-like ap-
atite development ability in simulated body fluid (SBF) by incorporating TiO2 nanoparticles
into the composite [33,34]. However, findings from a published study [34] show that there
has been no attempt to investigate the influences of TiO2 nano addition on the compressive
and tensile performance of monolithic Mg. Currently, little research has been conducted
to develop a new strategy to increase the antibacterial and mechanical characteristics of
Mg metal matrix composites prepared with SPM. The goal of this study is to explore
the feasibility of boosting the mechanical and antibacterial characteristics of Mg matrix
nanocomposites by incorporating a TiO2-CNTs nanosystem during the manufacturing
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process. The mechanical alloying and SPM process coupled with spark plasma sintering
(SPS) was used to create Mg/TiO2-CNTs composites with various amounts of TiO2-CNTs
fillers, and their mechanical, corrosion and biological responses were investigated. The
microstructural and mechanical characteristics of nanocomposites were investigated in
comparison to those of an Mg alloy without TiO2-CNTs fillers.

2. Experimental Procedures
2.1. Materials and Preparation

Mg (size < 100 µm with 99.5% purity), Zn (size < 3 µm with 99.9% purity), and TiO2
(size < 500 nm with 99.5% purity) powders were provided by Merck Co. (Darmstadt,
Germany). The procedure was conducted by mechanical alloying using 120 mL steel
containers which were rotated at 600 rpm under an Ar gas atmosphere. A mixture of balls
(ball diameter = 10 and 20 mm, mass = 35 g) were loaded into the container. The powder
for the Mg–6Zn samples (Zn powders, 6 wt%; and Mg powders, 94 wt%) weighed about
12 g, where the ball material was zirconia with an approximate 20:1 mass ratio of powder
to balls. The powder was prepared for 25 h at room temperature.

To create Mg-6Zn/TiO2-MWCNTs composite via the SPM technique [32], TiO2 nanopar-
ticles and CNTs as the reinforcement agents were mixed in a 10:1 weight ratio and were
then denoted as TM0 (Mg-6Zn), TM1 (5TiO2-0.5MWCNTs), TM2 (10TiO2-1MWCNTs), and
TM3 (15TiO2-1.5MWCNTs). In this regard, in order to achieve homogenous distribution,
MgZn composite powder was stirred ultrasonically in 100% ethanol for 2 h. In this case,
MgZn was used as a matrix and magnetic stirring was used to mix it for 1 h in ethanol at
600 rpm. At the same time, 0.5, 1, and 1.5 wt% MWCNTs and 5, 10, and 15 wt% TiO2 were
ultrasonically dispersed for 3 h in ethanol. A solution containing magnesium composite
and MWCNT was kept in the oven under controlled conditions for 1 day. The mixing
procedure was carried for 3 h in order to obtain a homogenous mixture. To obtain the
composite powder, the mechanically stirred mix was filtered and vacuum-dried at 70 ◦C
overnight. The composite powders were sintered in the SPS chamber for 10 min at 570 ◦C
and 40 MPa pressure to produce green billets with dimensions of 30 mm in diameter and
5 mm in thickness (Figure 1).
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Figure 1. The prepared nanostructure (a) TM0, (b) TM1 and (c) TM3 composites fabricated via
SPS methods.

2.2. Microstructure Characterization and Mechanical Property Testing

The composition distribution was examined via transmission electron microscopy
(TEM; Phillips 208 m, (Amsterdam, The Netherlands)), field emission scanning electron
microscope (FESEM, Tescan, Mira 3 Czech Republic, Prague, Czech Republic), and energy
dispersive spectroscopy (JSM-5910LV, JOEL Ltd., Tokyo, Japan). Using an X-ray diffrac-
tometer, the constituent phases were identified (XRD, D8 Advance, Karlsruhe, Germany).
The experimental parameters for XRD were Cu–Kα of X-ray and scan speed of 8◦ min−1.
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In order to assess the wettability of samples, the sessile drop method was used with a
video contact angle device (GBX Digidrop, Romans-sur-Isère, France) and a drop size
of 10 mL at room temperature. The results of 3 specimens were used to calculate the
average contact angle for each kind of material. According to the ASTM-E9 standard, the
compressive strength (SANTAM universal) of cylindrical composite materials with various
contents of TiO2-MWCNTs was determined by pressing them at a weight of 10 kN and a
speed of 2 mm/min. The microhardness of the samples was assessed using the Vickers
microhardness (Shimadzu, Kyoto, Japan) test method with a load of 300 g.

2.3. Electrochemical and Immersion Tests

A potentiometric polarization experiment was carried out in the SBF using an EC-Lab
device at a voltage range of between −250 and +250 mVSCE and an open circuit potential
at a rate of 0.5 mV/s in order to assess electrochemical behavior. The specimens were
evaluated using a working electrode that had a surface area of 1 cm2 associated with
exposure to the electrolyte, with a graphite electrode operating as the counter electrode
and a saturated calomel electrode (SCE) acting as the reference electrode. The corrosion
potential, corrosion current density, and slope of the anodic and cathode curves were also
assessed using the EC-Lab express program. Electrochemical impedance spectrometry
(EIS) was employed to establish potential stability following a 30 min sample immersion
in the SBF. This test was performed in accordance with ASTM G106 standards utilizing
a sign signal with a potential amplitude of 10 mV and an open circuit potential in the
frequency band of 105 to 10−2 Hz. The specimens were submerged in 200 mL of Kokubo
SBF medium, in accordance with ASTM G1–03, for the immersion experiment. Throughout
the immersion test, the pH change in SBF media was measured every 24 h.

The composites conducted mass loss testing, in accordance with the ASTM standard
G31-72. During processing, the pH of the solution was measured using a pH meter. The
volume of H2 gas emitted as a result of the Mg degradation was also measured, according
to [20]. After the funneling and submerging of composites in SBF, a burette filled with SBF
was positioned directly above them to collect the released H2 gas evolution and to measure
its volume.

2.4. Antibacterial Properties

The biological properties of each Mg/TiO2-MWCNTs composite (n = 3) was exam-
ined, and the antibacterial activity against Gram-negative and Gram-positive bacteria was
measured using the disc diffusion method. To accomplish this, lawns were used as the cul-
tivation environments and sterile swabs dipped in the microbial suspension were flushed
(by pressing swabs against a pipe’s side). The specimens were maintained at 37 ◦C for
1 day in an incubator while being incubated in an agar medium. If the specimens contain
antibacterial capabilities, it will be visible in the inhibition area (IA) around them [35,36].

2.5. In Vitro Biocompatibility

The in vitro cytotoxicity of the Mg/TiO2-MWCNT composite was assessed using an
indirect 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium-bromide (MTT, Sigma, Saint
Louis, MO, USA) test according to the extraction method. The culture media was combined
with the nanocomposites (5 mg) and incubated for 1 to 3 days at 37 ◦C. After 104 cells/mL
were placed on the 96-well plates for 24 h, the cell media were replenished with 1 and
3-day extracts. The medium was withdrawn after another 24 h, and 100 µL of MTT agents
(0.5 mg/mL in PBS) were added to each well. The incubator was then left in place for
4 h. To dissolve formazan crystals, 100 µL of DMSO was then added into the well. The
absorbance was then determined at 545 nm using an ELISA Reader (Stat Fax-2100, Miami,
FL, USA) in comparison to a control group using free nanocomposites culture media. To
investigate the alkaline phosphatase (ALP) activity of the samples, the composites were
washed twice after culture for 3, and 7 days, according to [35]. The staining of ALP was
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performed using staining reagents. A microscope (TE2000U, Nikon, Tokyo, Japan) was
then used to examine the stained cells [37].

2.6. Statistical Analysis

The test findings were provided as mean standard error (SE) and evaluated utilizing
Sigmaplot software (version 12) with (*) p < 0.05, (**) p < 0.01, and (***) p < 0.001 to reveal a
considerable difference between data.

3. Results and Discussion
3.1. Microstructure Characterization, XRD and Raman Analysis

In Figure 2a, the peaks observed at 2θ = 32, 34, and 36◦ related to the (100) prism,
(002) basal, and (101) pyramidal planes of HCP Mg structure, respectively [26,27]. The
X-ray pattern of MgZn/TiO2-MWCNTs composites investigated along the cross-sections
of the specimens is shown in Figure 2b. Meanwhile, the peak intensities corresponding to
Mg51Zn20 in the Mg composite, and the existence of TiO2 and MgTiO3 peak suggests the
integration of TiO2 in the Mg-based composite [38,39]. These precipitates act as barriers
to grain boundary sliding, which limits further grain growth and thus improves the
mechanical strength of the composite. The crystallite size of the composite was in the
range of 64–87 nm, according to the Williamson–Hall equation [17]. The incorporation
of TiO2 into the Mg-based composite caused a rise in reactive interface surfaces between
the TiO2 and Mg powders via ball milling, facilitating the presence of reaction (1) through
the applied mechanical self-propagating reaction (MSR) [40]. It is important to note that
a small content of the geikielite (MgTiO3) phase forms in all milled specimens as a result
of the following exothermic reaction [1]. Sul et al. [41] reported the cytocompatibility and
bioresorbable quality of magnesium titanate oxide (MgTiO3) as a biological implant.

Mg + 1.5TiO2 −→MgTiO3 + 0.5Ti (1)

Raman spectroscopy is commonly utilized to evaluate the structure of carbonaceous
materials, crystallization, and imperfections. The Raman spectrum of the as-received MWC-
NTs revealed three different peaks: D (1340 cm−1), G (1585 cm−1) and 2D (2666 cm−1)
(as shown in Figure 2c). The D peak resulted from structural defects and disorder in the
carbon lattice, whereas the G peak resulted from sp2 bonding [42,43]. The two-phonon
double resonance Raman phenomena were represented by the 2D peak. The ID/IG ratio of
the MWCNTs were enhanced from 0.82 to 0.97 in the MgZn/TiO2-MWCNTs composite
powders (Figure 2d). As a result of the chemical oxidization and powder mixing operation,
the degree of graphitization of the MWCNTs reduced, and the defects in the MWCNTs
structure increased [42,43]. In this regard, it was demonstrated that [42] the acid oxida-
tion reaction caused some minor etching of the MWCNTs surface, as well as continuous
ball-to-powder contact during the ball milling procedure, which may have led to plas-
tic deformation or fracture of the MWCNTs. This causes some structural damage to the
MWCNTs. However, as compared to the G peak of the as-received MWCNTs, the G peak
of the MgZn/TiO2-MWCNTs composite (1591 cm−1) shifted in the shorter wavelength
direction. This peak shift was caused by the powder mixture procedure, which distorted
the sp2 bonding microstructure of the MWCNTs. As a result, the blending operations of
the introduced MWCNTs significantly affected the MWCNTs’ structure.

SEM was used to examine the powder morphologies of pure Mg, nano-TiO2, MgZn/TiO2,
and TM2 mixed powders, as shown in Figure 3. SEM images revealed that all Mg and
TiO2 powders had spherical particles, but the nano-TiO2 powder had much finer particles
(Figure 3a,b). Due to strong plastic deformation and the cold welding of Mg particles,
milled Mg powders have a semi-spherical shape and a higher surface area. The efficient
contact surfaces increase, making sintering densification easier. It is worth noting that it is
preferable that the initial Mg and Zn powder particle sizes are quite different in order to
achieve uniform Zn distribution in Mg. Because of the higher surface reactivity of Mg, it was
complicated to utilize smaller sizes. On the other hand, the structure has Zn concentration
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of only 3 wt%. As a result, incorporating Zn particles of a similar size increases the risk of Zn
concentration in specific areas of the composite structure. Furthermore, the homogeneous
dispersion of Zn and TiO2 particles at the powder stage is aided by their smaller size and
high surface area (Figure 3c). The aggregated morphology of MWCNTs is significantly
tangled together. This microstructure might decrease the performance of MWCNTs as
an additive. Fine particles of MgTiO3, TiO2 and MWCNTs are distributed and adhere
homogeneously to the surface of Mg matrix alloy particles after the milling process, as
shown in Figure 3d.
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elemental mapping and (f) EDS analysis of TM2 powder composite.

Details of the EDS elemental mapping data and SEM images show that the Zn element
and nano-TiO2 reinforcements and MWCNTs were dispersed fairly on the Mg alloy surface
powders, as shown in Figure 3e. SPM was utilized to fabricate Mg-based composites
containing CNT and TiO2, where all powders were incorporated into the surface of a
deformed Mg matrix during ball milling [44]. Different colors have been used to depict the
cumulative and discrete dispersion of elements. Figure 3f depicts the elemental analysis
(EDS) of the surface of Mg based alloy, revealing the existence of all the elements Zn, Ti,
O, Mg and C in a homogeneous distribution [45]. The spectrum of the TM2 specimen
contained Mg and Zn peaks, indicating that the powder was of high purity. The C peak
in the EDX pattern can be verified by the incorporation of MWCNT on the synthesized
Mg-based alloy specimen.

The morphological shape and size of the powder mixture of the MgZn, MgZn/TiO2,
TiO2, MgZn/TiO2-MWCNTs (TM3) is exhibited by the TEM image in Figure 4. Milled
MgZn powders have a spherical shape and increased surface area because of significant
plastic deformation and the cold welding of Mg powders (Figure 4a), unlike the brittle
components of MgZn/TiO2 that are attributed to a small particle size with various shapes
(Figure 4b–d). The TM3 composite consisted of fine particles of MgTiO3, TiO2, and MWC-
NTs, where MWCNTs presented a diameter of 50 nm with homogeneous distribution and
great adhesion within the matrix particle (Mg-based alloy), as shown in Figure 4e–i. Due to
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the fact that nearly all Mg particles were covered on the MWCNTs surface and only a few
Mg powders remained outside the MWCNT support, the Mg-MWCNT/TiO2 interaction
was observed to be strong.
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composite powders.

Wettability tests were also carried out using a contact angle instrument to determine
the ability of the surfaces of the specimen to allow protein adhesion, which aids in cell
attachment. The contact angles of the TM0, TM1, TM2 and TM3 composites are shown in
Figure 5. The data from the in vitro cell culture test demonstrated that there is a significant
relationship between the hydrophilicity of the specimen surfaces and cell behavior. Among
all the samples, the TM0 composite had the highest hydrophilicity, with a contact angle of
99 ± 2.9◦. The contact angles of the TM1 and TM2 samples were 87 ± 2.1◦ and 78 ± 1.3◦,
respectively [45]. The incorporation of MWCNTs enhanced the hydrophilic property of
TM0 [41]. These results may be attributed to the hydrophilic nature of MWCNTs that
contain a high concentration of hydroxyl functional groups [46]. It is well recognized that
by increasing wettability the cell viability enhances. The MgZn base contains fewer voids
and pores than the TM composites, which indicates that the corrosive medium penetrates
the matrix of these composites less when compared to the TM3 containing 15 wt% TiO2
with contact angles of 72 ± 1.1◦. As a result, the corrosion performance of the TM samples
is highly influenced by the composite structure defect, with higher defects resulting in
more corrosive solution infiltration and thus a lower corrosion rate.
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3.2. Mechanical Characteristics

Figure 6a illustrates the microhardness experiments of the TM0, TM1, TM2 and TM3
nanocomposites. Compared to TM0, the incorporating TiO2-MWCNTs enhanced the
hardness result considerably, with a maximum boost of approximately 64% observed with
the incorporation of 10TiO2-1MWCNTs nanoparticles [34]. The hardness of the TM0, TM1,
TM2 and TM3 composites was 50 ± 2.8 HV, 71 ± 3.3 HV, 79 ± 3.4 HV, and 75 ± 3.6 HV,
respectively. The decrease in composite hardness for great incorporation of addition
fractions (15TiO2-1.5CNTs) is attributed to the existence of agglomeration and, in particular,
MWCNT segregation [47]. The main reason for the increase in hardness after the addition
of 10TiO2-1CNTs fillers could be: (a) the appearance of TiO2, MgTiO3, and MgZn phases
and MWCNTs fillers, (b) the presence of nanofillers that restrict localized deformation
throughout indentation, and (c) grain size refinement [34].

Figure 6b shows the compression characteristics of the developed TM nanocomposite
at room temperature. The ultimate compressive strength (UCS) of the TM1, TM2 and
TM3 samples was greater than that of the TM0 sample. A maximum UCS (269 MPa) was
detected for the TM2 sample, and a minimum UCS (152 MPa) was observed for the TM0.
The boost in UCS of the nanocomposites may be related to: (a) grain size refinement,
(b) Orowan strengthening attributed to the existence of nanofillers, (c) difference in the
coefficient of thermal expansion values resulting in the formation of dislocations, and
(d) the efficient load transfer from the matrix to MgTiO3, TiO2 and CNTs nanofillers. The
capacity of a high-energy absorption up to failure under compression load, relating to the
region under the stress–strain curve of the TM0 sample, was discovered to improve with
the incorporation of the nanofillers. TM3 has a lower UCS than TM2 due to the formation
of large agglomerates. Large, aggregated filler particles in the MgZn matrix would induce
dislocation accumulation, causing crack formation and a lower compressive failure strain.

Figure 6c–f displays the fracture surfaces of the TM nanocomposite samples under
the compression load. The fractographic images show that shear bands exist in all of
the MgZn and nanocomposite specimens [34]. Several factors influence the reinforcing
effectiveness of nanoscale additives such as MWCNTs fillers in the Mg matrix, including
(1) the inherent mechanical characteristics of the reinforcement material, which includes
TiO2 and MWCNTs, (2) the load transfer efficiency at the interface of the reinforcement and
matrix, (3) the distribution level of the nanosize reinforcements in the Mg-based matrix,
and (4) the uniform dispersion of the secondary phases and fillers in the Mg matrix [34].
Consolidation causes the MWCNTs to be bent or integrated between the Mg-based grains
as a result of the force exerted on the MWCNTs by the matrix grains surrounding them, or if
they are dispersed in the grain boundary and inside grain [48]. Because of the close contact
between the MWCNTs and the grains, more binding occurs between the MWCNTs and the
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matrix grains, resulting in enhanced contact surface and mechanical interlocking, which
results in improved load transfer performance between the Mg matrix and the MWCNTs.
This has a significant effect on the mechanical characteristics of specimens [47]. These
results demonstrate that uniform low contents of MWCNTs have a major influence on the
mechanical characteristics of the sample.
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Regarding the enhancing mechanism, mechanical alloying significantly reduces the
second phase particle size in the Mg-based matrix from micron to nano length scale. Crack
branching and load transfer are the toughening mechanisms that have been identified in
all of the composites studied. The interaction of the propagating crack prevention and the
TiO2-MWCNTs nano additions of varying sizes is the source of this mechanism. A crack is
arrested and deflected in-plane when it propagates and comes in contact with the MgTiO3,
TiO2, and MWCNTs nanofillers. It is well-known that such a crack deflection mechanism
causes an extra tortuous route for stress release, where it enhances fracture toughness
and the load transfer at the matrix-filler interface, which helps enhance the ductility and
strength of Mg-based composites [47–50].

3.3. Corrosion Behavior

To determine the corrosion resistance of the TM composites under test conditions,
potentiodynamic polarization experiments were conducted. Figure 7a depicts the typical
Tafel curves for potentiodynamic polarization tests on all composites. The addition of TiO2-
MWCNTs reduces corrosion current density (Icorr) and shifts corrosion potential (Ecorr) to
the positive side. The electrochemical potential enhanced to −1498.9 mVSCE, which was
considerably greater than the electrochemical potentials of TM2 (−1315.3 mVSCE), TM1
(−1338.7 mVSCE), and TM3 (−1480.8 mVSCE). A great reduction in current density and
a significant boost in the electrochemical potential of polarization plots imply that the
corrosion behavior of the TM composite has improved. Figure 7a presents the Icorr and Ecorr
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values that correspond to the polarization curve. The low incorporation of TiO2-MWCNTs
to Mg alloy noticeably reduced the Icorr of the composite. The addition of 15 TiO2-1.5
MWCNTs resulted in a slight decrease in the Icorr. In this respect, the TM2 composite
showed lower corrosion current density than the other composites in the following order:
TM2 (118.6 µA/cm2) < TM1 (148.1 µA/cm2) < TM3 (156.4 µA/cm2) < TM0 (174.7 µA/cm2).
This could be attributed to higher-content aggregation of 15 TiO2-1.5 CNTs, which function
as just a secondary phase and cause more Mg degradation [11,51]. The existence of more
fillers, including 15 TiO2-1.5 MWCNTs in the TM3 composite in comparison to TM2 and
TM1, resulted in an increase in filler agglomerates. Furthermore, by adding more fillers
(TM3 sample), the number of pores/voids around and/or within the TiO2-MWCNTs
aggregates might be enhanced, resulting in a higher corrosion rate.
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Figure 7b–d depicts the electrochemical impedance measured for the TM0, TM1, TM2
and TM3 composites. The diameter of the semicircles for the composites with a low filler
content (TM1 and TM2) is clearly greater than that of the TM3 specimen, implying an
escalation in corrosion resistance with the incorporation of a low number of fillers. The
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decrease in corrosion resistance of the specimen with high filler content (TM3), on the other
hand, can be seen in the smaller diameter of the semicircles and defines the composite’s
lower capacitive nature [15]. The equivalent circuit was comprised of a constant phase
element (CPE), polarization resistance (Rp), charge transfer resistance (Rct) and solution
resistance (Rs). The Rct value of TM1 (117 Ω·cm2) and TM2 (163 Ω·cm2) was greater than
that of the TM3 (101 Ω·cm2) and TM3 (78 Ω·cm2) samples. It was shown that a composite
containing a low content of TM1 and TM2 could greatly increase the corrosion resistance
of the samples [52]. Similarly, the Bode magnitude and Bode phase curves exhibited the
highest impedance modulus at a low-frequency (|Z|) and maximum phase angle for
the TM1 and TM2 composites (Figure 7c,d). There are also reports [15,52] that a greater
concentration of ceramic-based fillers led to more localized pitting corrosion of Mg-based
composites. TiO2 and MWCNTs do not interact with metals throughout sintering due to
their ceramic nature and high melting points, resulting in inadequate sintering at high TiO2
and MWCNTs content. This could also cause increased intensity of the galvanic couple, as
TiO2 and MWCNTs are not well diffused in the matrix, resulting in a high corrosion rate,
as seen in composite TM3. Furthermore, the corrosion rate was decreased by boosting the
content and dispersion of TiO2 and MWCNTs [45]. It is important to note that the increase
in corrosion resistance of the Mg-based composite containing ceramic additions can be
related to a reduction in the number of pores and voids near the ceramic aggregates, which
is induced by decreasing the ceramic content (TiO2-MWCNTs) of the Mg-based composite.

Figure 8a–h shows SEM images of the TM0, TM1, TM2 and TM3 samples after 14 days
of immersion. On the surface of the TM0 sample, cracks (with an arrow) can be seen,
which led to further penetration of the corrosive media and subsequently an escalation
of the corrosion rate of the specimens during corrosion. The TM1 and TM2 composites
hae fewer surface cracks than the TM3 composite with high TiO2-MWCNTs content. The
TM2 specimen has the fewest corrosion cracks, which proves that the composite has good
corrosion resistance and agrees completely with the outcomes of the polarization and
EIS tests. On the corroded surface of the TM1 and TM2 biocomposites, there were fewer
corrosion cracks and corrosion products (mainly white particles were visible); whereas, the
TM3 composite had a severely corroded surface and corrosion products appear to cover
the surface layer.
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EDS analysis of these particles reveals that the product layer in point A-C was com-
prised of Mg, Ti, Ca, O and P elements, implying the possible development of apatite and
Mg(OH)2 (Figure 8i–k). The corrosion products have a Ca/P ratio of 1.50, that is smaller
than that of pure HA (Ca/P = 1.67) but close to that of calcium-phosphate (Ca/P = 1.63),
implying that TiO2 and CNTs can form apatite. As a result of the greater calcium ion
concentration in the SBF medium, greater negative charge, and many more nucleation sites,
a TiO2-MWCNTs sample can create an apatite layer almost covering the entire composite
surface, whereas apatite segments appear on the surface of the TM0 sample. Regarding for-
mation of bone-like apatite, the apatite layer tends to attract phosphate ions in SBF, causing
the development of a bone-like apatite cluster [53]. Because MWCNT reinforcements may
influence both HA crystal nucleation and growth, the incorporation of MWCNTs had an
influence on HA morphological changes. More specifically, the negatively charged carboxyl
groups of MWCNTs could also function as a nucleation agent, which can attract Ca2+ ions
and cause the deposition of HPO4

2− or PO4
3−, finally resulting in the creation of HA [54].

Immersion experiments were carried out to determine their degradation properties
further. The pH values observed in the experiment drastically enhanced during the immer-
sion time in the first 48 h. On the other hand, pH showed a comparatively gentle, greatly
increased trend (Figure 9a). More notably, the pH plots indicate that the TM2 biocomposite
had the lowest pH value of 8.9, compared to 9.3 for TM1 and 9.4 for TM3 and 9.8 for TM0
biocomposites after 14 days of immersion in SBF.

Furthermore, the degradation rates from the weight loss investigation were efficiently
calculated. The degradation rate of the TM0 sample (3.1 mm/y) was gradually reduced
for TM2 (2.1 mm/y) and TM1 (2.4 mm/y), but greatly expanded for TM3 (2.9 mm/y)
after 14 days of immersion in SBF (Figure 9b), indicating a relatively better degradation
resistance [55]. The slope of the pH plot and the weight loss rate of the TM composite
reduced because the immersion time was enhanced for all specimens. This result could be
because of the decreased surface area of composite specimens, which allows the corrosion
reaction to occur. Within the first few days of immersion, a larger surface area was exposed
to solution leading to more degradation reactions and, as a result, an increase in the weight
loss rate. The weight loss rate of the composite specimens lowered and then stabilized
as the exposure time was extended to 7 and 14 days. This condition might be explained
by the greater immersion time, which causes the creation of barrier layer on the surface
of the composite specimens from corrosion products [49]. These films keep the samples
from coming into direct contact with the solution, which reduces the weight loss rate of the
composite samples. Figure 9c depicts the H2 gas evolution results for the TM composite,
and the trend in the quantity of H2 gas evolved per unit surface area of the corrosion
medium is nearly identical to that seen in the mass loss data. The TM1 specimen released
almost 40.1 mL·cm2 in 14 days, compared to 49.2 mL·cm2 from the TM0 specimen. The
amount of H2 gas evolved from the TM2 and TM3 specimens was 38.4 and 43.2 mL·cm2,
respectively, after 14 days of immersion in SBF. The changes in mass loss and H2 evolution
can be described using SEM images of the composites, which show that the protection
provided by the TM1 and TM2 composites caused lower corrosion rates than TM0 [15].
These results suggest that the TM2 composite performs better than other composites in
terms of degradation resistance. In this context, significant differences between corrosion
rates of Mg-based composite without TiO2-MWCNTs (TM0) and with TiO2-MWCNTs
(TM2) were observed (p < 0.05). However, there was no significant difference between
the corrosion rate of TM1 and TM2 (p > 0.05) at a similar immersion time. Similarly, no
significant differences (p > 0.05) were found between TM1 and TM2 for H2 evolution, but a
significant difference between the H2 evolution of TM0 and TM2 (p < 0.05) was detected.
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The XRD data of the specimens after 14 days of immersion is also shown in Figure 9d.
The new peaks of the Mg(OH)2 and HAp precipitates could be seen for the TM2 composites
when compared to the specimens without immersion, verifying the mineralization of the
Mg matrix composites. The newly formed Mg(OH)2 and HAp precipitates sealed the
pitting and cracks, allowing the Mg alloys to remain protected during immersion [39].
Biomineralized HAp precipitates a layer which is of great importance in influencing Mg
corrosion due to its potentially dual role as a precipitate layer which involves: (1) influenc-
ing the kinetics of Mg resorption; and (2) affecting cell signaling for good tissue repair [39].
The FT-IR spectrum of the TM2 sample after 14 days of immersion in SBF is shown in
Figure 9e. The triply devolved asymmetric stretching mode of the υ3PO4

3− bands at
1032 cm−1 and the υ4PO4

3− bands at 602 cm−1 and 565 cm−1 in the spectrum obviously
demonstrated the presence of PO4

3− [55–57]. The spectrum exhibited CO3
2− absorption

bands at approximately the same time, including the stretching mode of the υ1CO3
2− group

in carbonated apatite at 1422 cm−1 and the characteristic bending mode of the υ4CO3
2−

in carbonated apatite at 877 cm−1, indicating that the calcium phosphate development on
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the surface of the coated sample was comparable to the bone-like apatite. The band at
3704 cm−1 corresponds to Mg(OH)2 (brucite) in the FT-IR spectrum, and the OH group
can be seen at 3416 cm−1 and 1624 cm−1 [56]. The adsorbed water was responsible for the
broad absorption bands at 1635 cm−1.

3.4. Evaluation of Biocompatibility

An MTT assay is a typical technique used to determine cell viability through a chemical
reagent response. Figure 10a–d shows the fluorescence microscope image of the cell. Cell
nuclei dyed with DAPI can be noticed as blue spots under a fluorescent microscope. Each
spot represents the core of a single cell. It is clear that composites with low TiO2-MWCNTs
amounts have greater total cell numbers than TM3 composites. The MTT assay shows
that when osteoblast cells were co-cultured with TiO2-MWCNTs, cell viability increased
with increasing time, implying that TiO2-MWCNTs affected cell viability. The TM1 and
TM2 surfaces have shown a 92% and 96% increase in osteoblast cell viability, respectively,
which is a greater increase than in the TM0 composite (80%) after 3 days of cultivation,
as shown in Figure 10e. This suggests that TM2 is more suitable for cell adhesion than
TM0 and TM3. There are numerous agglomerates on the composite surface of TM3, which
may decrease cell adhesion. Interestingly, there is a significant difference between TM0
and TM2 for cell viability (p < 0.05). The number of cells increases as the amount of TiO2-
MWCNTs increase up to a certain value (10TiO2-1MWCNTs), revealing that the surface
structure of the specimen containing a low content of MWCNTs (0.5–1 wt%) is better
for cell adhesion, whereas a higher amount of MWCNTs shows a lower number of cells,
indicating cytocompatibility of the TM specimens with lower concentrations of MWCNTs
(up to 1 wt%). The lower pH and H2 release in the TM1 and TM2 biocomposite extracts
may illustrate the higher cell viability of these composites compared to the TM0 and TM3.
These findings showed that integrating a small content of TiO2-MWCNTs improved the
biocompatibility of the TM0 biocomposite [39,45,47,55]. A lower content of CNT (≈5
vol%) has been recommended in the composite in order to control the amount entering
the human body [11]. The biosafety of these particles is ensured by the immobilization
of CNT in metallic biomaterials, which prevents their direct exposure to surrounding
tissues [7,11]. However, further research is needed to determine their safe clinical use as
novel biomaterials for use in tissue engineering as CNT is safe when applied topically but
not in certain areas such as the lungs and the abdominal cavity.
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The ALP assay was used to evaluate the effect of material extracts on osteogenesis
differentiation. During the first three days of incubation, the TM2 composite provided
better stimulation for cell differentiation. However, when compared to TM0, the ALP
activity of the TM3 composite is higher. It should be noted that increasing the incubation
period to 5 days increased ALP activity in all groups, particularly in the TM1 and TM2
groups. This could be attributed to bone mineralization and implies that Mg-containing
10TiO2-1MWCNTs increased the ALP activity of cells grown on the surface. This is because,
following the incorporation of TiO2-MWCNTs, a bioactive apatite layer precipitates on
the composite surface, causing the binding of proteins and other bio-organic substances
used to stimulate cell attachment and proliferation [57]. Cell viability was found to be less
for TM3 compared to TM1 and TM2. At higher concentrations, the addition of 15TiO2-
1.5MWCNTs tends to aggregate and act as a secondary phase in the sample, which increases
the corrosion rate and hence reduces cell viability [58]. Cell adhesion and proliferation are
physically inhibited by the corroded surface. Thus, a low content of MWCNTs (0.5–1 wt%)
is proposed as the optimal content for boosting the biocompatibility of the composite.
Evidently, there was no significant difference between the cell viability of TM1 and TM2
(p > 0.05) at a similar cultivation time. Webster et al. [59] discovered a boost in the number
of adherent osteoblasts after incorporating carbon nanofibres into polycarbonate urethane.
This is most likely the result of increased material deficiencies and electron delocalization
on the nanostructured surface. Furthermore, the nanoscale topography of the TiO2 surface
affects osteoblast functions such as attachment and proliferation, with broad nanosheets
(>100 nm) being ideal for osteoblast attachment [27].

3.5. Antibacterial Properties

The antibacterial performance of the TM0, TM1, TM2 and TM3 composites was
evaluated functionally using inhibition area (IA) for 24 h (Figure 11a–d). Figure 11 shows
that as the concentration of TiO2-MWCNTs increased, subsequently the antibacterial activity
of the composite escalated. Antibacterial activity was determined after 24 h of incubation
by measuring the inhibition area diameter and is shown in Figure 11e. The inhibition
zone of TM1 and TM2 was 2.2 mm and 3.3 mm, respectively, against Staphylococcus aureus
(S. aureus) indicating effective antibacterial performance against Gram-positive bacteria.
It was also discovered that incorporating fillers (TiO2-MWCNTs) and the boost in filler
concentration resulted in a higher diameter zone against Gram-negative and Gram-positive
bacteria in all cases. The bacteriostatic activity was high in the composite loaded with TM3,
with a high inhibition zone of 3.7 mm against S. aureus. The disc diffusion tests show that
the inhabitation area (IA) around the Mg-based composite without TiO2-MWCNTs (TM0) is
significantly smaller (p < 0.001) than that of the composite containing TiO2-MWCNTs fillers.
These findings demonstrate that the TiO2-MWCNTs-loaded composites developed in this
research have strong antimicrobial activity, with the majority of bacteria being inhibited
from growing or even killed. The findings revealed that the TM2 and TM3 composites
containing 10–15 wt% TiO2 and 1–1.5 wt% MWCNTs fillers had increased activity against
the bacterial species, namely, S. aureus and Escherichia coli (E. coli). According to the results
in Figure 11e, the diameter zone of S. aureus bacteria was slightly greater than that of E. coli
bacteria, which implies that there was no significant difference between the IA values
(p > 0.05) in E. coli or S. aureus for any sample.
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The obtained inhibition zone is attributable to the influence of the MWCNTs and TiO2
nano additions. Furthermore, the titanium ion release mechanism can improve antibacterial
performance [60]. Moreover, because of regulatory and signal dysfunction, phosphorous
and iron motion, and heme groups along the cell wall, TiO2NPs have antimicrobial activity.
The antibacterial performance of TiO2 nano additions may also be due to the generation
of reactive oxygen species and Ti ions [61–63]. Furthermore, several prior studies [64,65]
have suggested that the antibacterial performance of CNTs is associated with cell mem-
brane destruction induced by direct contact between agglomerated CNT and bacteria.
Individually dispersed CNTs can be illustrated as numerous moving “nano darts” in the
medium, which are continuously trying to attack the bacteria, thus also degrading the
integrity of bacterial cell and ultimately leading to cell death, as demonstrated by Liu
et al. [64]. Previous research has linked CNT antibacterial activity to the physical puncture
of agglomerated CNT, leading to physical damage to the cell’s outer membrane. As a
result, the well-dispersed surface with identifiable active particles and fillers leads to the
inhibition of bacteria. Taken together, the addition of various amounts of fillers, such as
TiO2 and CNTs, into the composites has a significant influence on the biological response,
corrosion behavior and mechanical properties of the Mg-based composite [66–83].

4. Conclusions

This study used mechanical alloying and semi-powder metallurgy processes combined
with spark plasma sintering to fabricate high-density MgZn/TiO2-MWCNTs composites.
The MgZn matrix co-encapsulated with TiO2 and MWCNT nano additives has considerably
higher strength than that required to meet the mechanical characteristics of biomedical
devices. The incorporation of TiO2-MWCNTs fillers into the MgZn matrix largely controlled
the adjustable mechanical characteristics and proper corrosion rate. The corrosion rate of
MgZn/TiO2-MWCNTs composite (~2.1 mm/y) is lower than that of MgZn (~3 mm/y)
when protected by a more even Ca-P layer with fewer cracks and defects on the surface
of the composite. The MgZn/TiO2-MWCNTs composite is biocompatible with MG-63
cells in vitro, and the cytocompatibility of TM composite with low TiO2-MWCNTs content
is slightly better than that of the MgZn composite. The findings also revealed that co-
incorporating MWCNTs and TiO2 into the Mg-based matrix had a considerable effect on
antibacterial action by physical puncture of CNT aggregates and more penetration of TiO2
nanoparticles, leading to physical damage of the outer membrane of cells with subsequent
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degradation of bacterial cell integrity and cell death. The TM1 and TM2 composites
containing 5–10 wt% TiO2 and 0.5–1 wt% MWCNTs fillers may be potential candidates
for use in biodegradable implants due to their excellent mechanical and antibacterial
characteristics, acceptable biocompatibility, and relatively low in vitro corrosion rate.
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