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A B S T R A C T 

We develop a machine learning algorithm to infer the three-dimensional cumulative radial profiles of total and gas masses in 

galaxy clusters from thermal Sun yaev–Zel’do vich effect maps. We generate around 73 000 mock images along various lines of 
sight using 2522 simulated clusters from THE THREE HUNDRED project at redshift z < 0.12 and train a model that combines an 

auto-encoder and a random forest. Without making any prior assumptions about the hydrostatic equilibrium of the clusters, the 
model is capable of reconstructing the total mass profile as well as the gas mass profile, which is responsible for the Sunyaev–
Zel’dovich effect. We show that the reco v ered profiles are unbiased with a scatter of about 10 per cent, slightly increasing towards 
the core and the outskirts of the cluster. We selected clusters in the mass range of 10 

13 . 5 ≤ M 200 / ( h 

−1 M �) ≤ 10 

15 . 5 , spanning 

different dynamical states, from relaxed to disturbed haloes. We verify that both the accuracy and precision of this method 

show a slight dependence on the dynamical state, but not on the cluster mass. To further verify the consistency of our model, 
we fit the inferred total mass profiles with a Navarro–Frenk–White model and contrast the concentration values with those 
of the true profiles. We note that the inferred profiles are unbiased for higher concentration values, reproducing a trustworthy 

mass–concentration relation. The comparison with a widely used mass estimation technique, such as hydrostatic equilibrium, 
demonstrates that our method reco v ers the total mass that is not biased by non-thermal motions of the gas. 

Key words: methods: numerical – galaxies: clusters: general – cosmology: theory. 
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 I N T RO D U C T I O N  

mall density fluctuations in the early Universe were the seeds
or structure formation. The latest stage of structure evolution is
haracterized by the formation of clusters of galaxies. Galaxy clusters
re the largest gravitationally bound structures in the Universe,
eaching a mass of a few 10 15 h 

−1 M �. The majority of this mass,
bout 80 per cent, corresponds to dark matter (DM), 12 per cent is
iffused hot gas, i.e. the intracluster medium (ICM), and the 8 per cent
re galaxies within the ICM (see Kravtsov & Borgani 2012 , for a
e vie w). The abundance of galaxy clusters as a function of the mass
nd redshift, i.e. the halo mass function, is crucial for constraining
osmological parameters (e.g. Allen, Evrard & Mantz 2011 ; Pratt
t al. 2019 ). 
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Ho we ver, the DM component cannot be directly observed. On
he contrary, the baryons could be revealed in the optical band via
tar/galaxy emission, at infrared wavelengths with the dust emission,
n the X-ray band via bremsstrahlung emission, or at sub/millimetre
avelengths via the Sunyaev–Zeldovich (SZ; Sunyaev & Zeldovich
970 ) effect. Through the information that the baryon component
ives us, it is therefore possible to have some hints on the cluster’s
otal mass. Common approaches exploit: (1) X-ray and SZ observa-
ions to reco v er cluster potential well from the ICM distribution under
he assumption of hydrostatic equilibrium (HE), (2) mapping back-
round lensed objects revealing cluster mass distorting power, and (3)
alaxy member kinematics indicating potential well (see Pratt et al.
019 , for a re vie w). Due to the basic assumptions and measurement
ifficulties of each of the methods, the inferred mass could be affected
y biases. These biases are commonly quantified in hydrodynamical
imulations comparing the true and method-derived masses. In a
ecent re vie w by Gianfagna et al. ( 2021 ), the mass, estimated with the
E model in synthetic clusters, is from a minimum of 10 per cent to a
aximum of 20 per cent lower than the real value. Consistent results
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Figure 1. Mass distribution of clusters at the selected redshifts. The sample 
is first selected at redshift z = 0 (blue bars), and then it is complemented 
with clusters at the other redshifts (represented by the colours defined in the 
legend) to make it homogeneous. 
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re also derived in clusters from THE THREE HUNDRED simulations 
Gianfagna et al. 2022 ). The origin of this bias is still not totally
onstrained as well as its dependence on the cluster properties, 
ainly the dynamical state, and the redshift. Non-thermal pressure 

upport due to different gas motion components (Lau, Kravtsov & 

agai 2009 ) could have an impact on the cluster mass budget.
oreo v er, the bias seems to be affected by the cluster relaxation

tate (Ansarifard et al. 2020 ; Gianfagna et al. 2022 ). More intriguing
s the bias dependence on the redshift. While simulations agree on a
egligible dependence (Henson et al. 2016 ; Gianfagna et al. 2022 ),
bservational data support that the estimated masses are more biased 
t higher redshift (Sereno & Ettori 2017 ; Wicker et al. 2022 ), but
robably this can be due to observational mass selection effect. 
Therefore, even if the cluster total mass is a powerful tool to

onstrain the evolution of the Universe, inaccurate estimates of this 
uantity make a large impact in the inference of the cosmological 
arameters (Pratt et al. 2019 ; Salvati, Douspis & Aghanim 2020 ). 
Recently, machine learning (ML) models have started to be 

pplied for estimating the cluster mass from mock multiband images 
Ntampaka et al. 2015 , 2016 , 2017 ). More recently, Ho et al. ( 2019 )
uggested that ML algorithms can also be used to assess the effect of
nterlopers in the dynamical cluster mass estimates. Exploiting the 
ower of convolutional neural networks (CNNs), this methodology is 
laying an important role in the analysis of synthetic observations of
-ray (Ntampaka et al. 2019 ) and SZ (Gupta & Reichardt 2020 ; Yan

t al. 2020 ; Gupta & Reichardt 2021 ). Moreo v er, it has been recently
pplied for the first time, on real cluster observations from Planck 
ompton- y parameter maps (de Andres et al. 2022 ). By considering
o physical assumptions about the gas in clusters, this technique can 
deally infer unbiased mass values for real clusters. 

In this work, we present a combination of deep learning architec- 
ure, followed by an ML regression method that has been developed 
n order to infer the total mass radial profile of clusters extracted
rom THE THREE HUNDRED simulations. We take as inputs a large 
ample of mock SZ maps quantified in terms of the Compton- y
arameter. Moreo v er, in order to obtain an independent estimate of
he gas fraction, we designed our machinery to infer simultaneously 
he cluster gas mass radial profile. 
This paper is organized as follows: In Section 2 , we introduce the
imulated data set, based on a cluster sample extracted from THE

HREE HUNDRED project, and the mock SZ maps. 
In Section 3 , we briefly describe the deep learning archi-

ecture, based on an auto-encoder that is used to extract fea-
ures from SZ maps and the random forest (RF) regression al-
orithm that performs the mass profile inference. The results 
f our study are reported in Section 4 where we also analyse
he performance of our method. Finally, in Section 6 we com-
are our results with more classical approaches based on the 
E approximation and we summarize our main conclusions in 
ection 7 . 

 DATA  SET  

.1 Simulation 

his study is based on synthetic clusters generated in THE THREE

UNDRED project, first introduced in Cui et al. ( 2018 ). This consists
n a set of zoomed hydrodynamic simulations of 324 spherical 
egions of 15 h 

−1 Mpc radius centred on the most massive clusters 
 M vir > 8 × 10 14 h 

−1 M �, at z = 0) identified within the DM-
nly MultiDark Planck 2 simulation (MDPL2; Klypin et al. 2016 )
y the ROCKSTAR halo finder (Behroozi, Wechsler & Wu 2013 ).
he MDPL2 simulation is a comoving volume of (1 h 

−1 Gpc ) 3 

ontaining 3840 3 DM particles of mass 1 . 5 × 10 9 h 

−1 M � and
mplements the Planck cosmology ( �m 

= 0.307, �b = 0.048, 
� 

= 0 . 693, h = 0 . 678 , σ8 = 0 . 823, and n s = 0.96; Planck Col-
aboration XIII 2016 ). To resimulate each THE THREE HUNDRED 

egion with the full baryonic physics, the particles within the sphere
f radius 15 h 

−1 Mpc were mapped back to the initial conditions 
nd were splitted into DM ( M DM 

= 1 . 27 × 10 9 h 

−1 M �) and gas
 M gas = 2 . 36 × 10 8 h 

−1 M �) particles according to the universal
aryon fraction of the Universe as estimated by Planck , preserving
he original mass resolution. The remaining particles outside the 
oomed regions were resampled as low-resolution particles in order 
o take into account the large-scale gravitational tidal field and 
educe the computational cost. The hydrodynamical resimulations 
ere performed by using the TREEPM + SPH GADGET-X code, a
odified version of the GADGET3 code that includes an impro v ed

moothed particle hydrodynamics (SPH) scheme to account for 
he gas dynamics of the baryonic component in the simulations 
Springel 2005 ; Beck et al. 2016 ). The code also includes metal-
ependent cooling as described in Tornatore et al. ( 2007 ). Star for-
ation and supernova heating are modelled following the scheme of 
pringel & Hernquist ( 2003 ). Moreo v er, the effects of active galactic
ucleus (AGN) feedback via gas accretion on to supermassive black 
oles are also taken into account as described in Steinborn et al.
 2015 ). 

Each of the 324 resimulated regions was then analysed by using
he Amiga’s halo finder (AHF; Knollmann & Knebe 2009 ). It detects
ll haloes by identifying the local peaks in the total density field
nterpolated from particles on to a hierarchical mesh structure. It then
stimates R 200 of each halo, as the radius at which the density of the
bject reaches 200 times the critical density of the Universe ρc , and
 200 , as the mass of all the particles dynamically bounded to the clus-

er that lies within this radius. Hereafter, we refer to these quantities as
 

true 
200 and M 

true 
200 . 

The sample used in this work is made of 2522 clusters uniformly
istributed within the mass interval 10 13 . 5 ≤ M 200 / ( h 

−1 M �) ≤
0 15 . 5 at six nearby redshifts, from z = 0 to 0.116, in order to have
n almost homogeneously mass populated sample. Note, ho we ver, 
MNRAS 520, 4000–4008 (2023) 
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Figure 2. The 3D radial mass profile inference architecture using the auto-encoder plus the RF. The auto-encoder encrypts the input SZ map in a latent vector. 
The latter is then used as input for the RF regressor. 
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hat there must be al w ays fewer haloes in the larger mass range (see
ig. 1 ). 

.2 Cluster mass radial profiles 

or each cluster, we extract the cumulative three-dimensional (3D)
adial profiles of the total mass and the gas mass. These profiles
re obtained by summing up the mass of all the particles within
oncentric spheres, centred in the AHF position corresponding to
he highest density peak, up to r = 2 R 200 . We have interpolated
he total mass profiles at fixed overdensities. We selected 24 linearly
paced o v erdensities, � from 200 to 2500, to homogeneously sample
he profiles. This profile sampling allows us to predict the mass at
 v erdensities that are commonly used in literature, such as M 200 ,
 500 , and M 2500 . With this approach, we differ and extend the

revious work in literature that estimates the cluster mass al w ays
t a specific single aperture. M 200 was derived in Gupta & Reichardt
 2020 ) from simulated SZ map, Yan et al. ( 2020 ) by using optical,
-ray and SZ images generated from BAHAMAS simulation while
tampaka et al. ( 2019 ) trained a CNN model to reco v er M 500 from

llustris TNG X-ray mock images. 
The SZ (Sunyaev & Zeldovich 1970 ) effect consists of an inverse

ompton scattering of cosmic microwave background (CMB) pho-
ons on the hot plasma of the ICM. This leaves a specific fingerprint
n the CMB at the position of a galaxy cluster, shifting photons
nergy to higher frequencies. The observable of the SZ effect is the
ompton- y parameter defined as 

 = 

σT k B 

m e c 2 

∫ 

n e T e d l , (1) 

where σ T , k B , c , and m e are the Thomson cross-section, the
oltzmann constant, the speed of light, and the electron mass at

est, respectively. Whereas, n e , the electron number density, and T e ,
he electron temperature, are integrated along the line of sight, d l . 
NRAS 520, 4000–4008 (2023) 
In numerical simulation the quantity n e can be substituted with the
iscrete number of electrons in the gas particle N e , by assuming that
 e = N e /d A /d l , where d A is the projected area. Thus, the integral in
he equation ( 1 ) can be replaced by the sum (Sembolini et al. 2013 ;
e Brun, McCarthy & Melin 2015 ): 

 � 

σT k B 

m e c 2 dA 

∑ 

i 

N e , i T e , i W ( r, hi) , (2) 

where W ( r , h i ) is the projected SPH kernel adopted in simulation
ith the smoothing length h i and used to spread each mass particle

o the surrounding area. This equation is implemented in the public
ackage PYMSZ (Baldi et al. 2018 ; Cui et al. 2018 ) that is used here
o generate Compton- y parameter maps. For each map, gas particles
nside a cube of side 2 R 200 , centred in the cluster centre identified
y AHF, are taken into consideration. The pixel size of each map is
arametrized in terms of R 200 , i.e. a R 200 xR 200 map is sampled with
28 × 128 pixels. In order to increase the statistics, for each cluster
e produced 29 maps at different projections rotating the cluster

round its centre. 

 T H E  PROPOSED  M E T H O D  

he end-to-end pipeline is composed of two main parts: an auto-
ncoder and an RF regressor. The idea is to extract the features
rom the SZ images in an unsupervised manner and then to feed the
btained representation to an algorithm which learns how to predict
he mass profiles. More details about the architecture can be found
ereafter in the text, while the high-level architecture is shown in
ig. 2 . 

.1 Auto-encoder for dimensionality reduction 

n auto-encoder is a neural network that tries to define a mapping
etween input X and an output (reconstruction) ˆ X through an internal

art/stad377_f2.eps
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Figure 3. The median bias as a function of the o v erdensity for total mass 
(blue solid line), gas mass (red dashed line), and gas fraction (green dotted 
line). The shaded light blue, pink, and green regions correspond to the 16th–
84th percentiles for total, gas mass, and gas fraction, respectively. 

p  

h
f

3

O  

a
S
r  

a  

S  

a  

t  

t
a  

p
b
a  

4

I  

t

p  

p
t  

w

b

 

a  

a  

w  

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/3/4000/7024857 by U
niversita' degli Studi R

om
a La Sapienza user on 19 June 2023
epresentation Z , that has a dimension, d , smaller than the input
ne, d in , (Goodfellow, Bengio & Courville 2016 ) and is used to
earn useful properties of the data in an unsupervised setting. It is
omposed of two parts: the encoder (mapping X to Z : Z = f ( X ))
nd the decoder (mapping Z to ˆ X : ˆ X = g( Z )). Recently, auto-
ncoders have been used in astrophysics for different purposes, e.g. 
enerative method of mock SZ observations (Rothschild et al. 2022 ) 
nd automatic morphological classification of galaxies (Zhou et al. 
022 ). 
In our contest, we set an auto-encoder to derive a representative 

eature vector with a reduced dimension of our input data, i.e. the
Z maps, while being faithful to the original input. In particular, we
uild the encoder and decoder steps as follows: 

(i) Encoder { E } : X 

d in → Z 

d : it projects the input map X SZ 

f dimension d in to a corresponding space through many stacked 
onvolution-batch-normalization-ReLu layers. The output of each 
ncoder is a d -dimensional vector Z that will be further used by the
ownstream task algorithm to infer the mass profiles. We note that 
 ≤ d in since the encoder’s role is the dimensionality reduction. In
ur architecture, the encoder is constituted by four layers that project 
he d in = 128 × 128 SZ maps into a latent vector of dimension
 = 150. 
(ii) Decoder { D } : Z 

d → X 

d in : it has a mirrored architecture to
he encoder E (four layers). It takes a vector from the latent space
f dimension d = 150 and generates the corresponding map ˆ X SZ 

f dimension d in = 128 × 128. Both networks E and D are trained
sing a reconstruction loss that catches the difference between the 
econstructed map ˆ X SZ and the original one X SZ . 

Thus, with this architecture, it acts as a self-supervised feature 
 xtractor. F or coding the auto-encoder architecture, we made used of
he publicly available PYTORCH 

1 package (Paszke et al. 2017 ). 

.2 Random forest method 

n RF (Breiman 2001 ) is a supervised learning algorithm composed 
y a collection of decision trees. Each tree is an algorithm that is
apable of performing classifications or regressions by entering as 
nput some features and by applying a series of if-then-else statements 
ntil the possible conditions are fulfilled. Although decision trees 
re a powerful tool, o v er time the y hav e pro v en to be not v ery
exible and prone to overfitting. The combination of several trees 

n an RF o v ercomes these problems (Se gal 2003 ). This is achieved
y assigning to each tree a subset of original data by bootstrap
ampling and then all the predictions of the individual tree are 
veraged in the final result. This technique, known as ‘bagging’, 
akes RF a robust and versatile model with low variance and less
 v erfitting. 
In this work, we use the class RANDOMFORESTREGRESSOR im- 

lemented in the python package SCIKIT-LEARN (Pedregosa et al. 
011 ). In the RF set-up phase, we setup the hyperparameters 
f the function in order to optimize the performance of the 
odel. According to Fern ́andez-Delgado et al. ( 2014 ) and Bent ́ejac,
s ̈org ̈o & Mart ́ınez-Mu ̃ noz ( 2020 ), we identify the number of

rees, N ESTIMATORS , as the most important hyperparameter, and 
he maximum depth of each tree, MAX DEPTH , as the second.

e observe that we reach convergence for N ESTIMATORS ≥ 200 
egardless of the depth of the trees. Regarding the depth, we 
btain the best results with the default value of the MAX DEPTH
 https://pytorch.org 

o  

v  

T  
arameter. Consequently, we set the RF with 200 trees and all other
yperparameters to default values of the RANDOMFORESTREGRESSOR 

unction. 

.3 Train and test sets split 

nce the RF has been planted, we train it to predict the radial total
nd gas-only mass profiles from the information extracted from the 
Z maps by the auto-encoder algorithm. Therefore, we perform a 
andom selection of the training and test sets containing 80 per cent
nd 20 per cent of the original sample of 2522 clusters, respectively.
ubsequently, we increase the statistics of the two sets by taking into
ccount the 29 projections for each cluster. We have thus ensured
hat the same cluster cannot belong to different data sets at the same
ime. Although the mass profiles are extracted from 3D distributions 
nd are common to each projection in both the training and test
hases, each projection was treated as independent. This was possible 
ecause the starting features are the information extracted from the 
uto-encoder that are different for each map and for each projection.

 RESULTS  

n this section, we present the application of the trained RF on the
est set and the accuracy of its predictions. 

We analyse the performance of our model by comparing the 
redicted and the true profiles at each o v erdensity. We analyse the
erformance of our model by comparing the predicted profiles and 
he true one of the test set, at each o v erdensity. To perform this task,
e define the bias at each � as 

 � 

= 

M 

pred 
� 

− M 

true 
� 

M 

true 
� 

. (3) 

The biases in the cluster mass estimate after the training of our
lgorithm is shown in Fig. 3 , where the median bias b is e v aluated as
 function of the o v erdensities for total and gas masses, represented
ith blue solid line and red dashed line, respectively. The masses
redicted by the RF model are unbiased in the whole range of
 v erdensities, from the cluster core to the outskirts. The median
 alues increase to wards the centre but al w ays less than ∼1 per cent .
he scatter, quantified with the 16th and the 84th percentiles and
MNRAS 520, 4000–4008 (2023) 
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Figure 4. The median bias of the predicted total (upper panel) and gas (lower 
panel) as a function of the logarithm of true mass M 

true 
200 . For graphical reasons, 

we only show the lines representing the bias at � = 200, 300, 500, 1000, 
1500, 2000, and 2500 in yello w, purple, bro wn, pink, green, orange, and 
blue, respectively. The shaded areas correspond to the 16th–84th percentiles 
intervals. 
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Figure 5. Classification of the dynamical state of the clusters within the test 
sample in terms of the relaxation parameter χ200 . The blue bars represent 
zero redshift clusters, while higher redshift clusters are represented by the 
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hown with the shaded regions, is around 10 per cent for the total
ass (blue) and ∼8 per cent for the gas mass (red). Moreo v er, the

catter is not properly constant, but become slightly larger in the
irection of the cluster outskirts and towards the cluster centre. The
inimum scatter is reached for o v erdensities around 500 and 600 for

otal and gas profiles, respectively. 
The bias for the gas fraction, defined as ( f pred 

gas − f true 
gas ) /f 

true 
gas , is less

han 1 per cent in the entire o v erdensities range considered in this
nalysis. In this case, the scatter decreases from ∼10 to ∼3 per cent ,
s shown with the green dotted line in Fig. 3 . 

.1 Bias dependence on the total cluster mass 

o test if the performance of our ML model suffers of any particular
ias related to the true cluster total mass, M 

true 
200 , we study the mass

ependence of ML predictions dividing the sample in seven equally
opulated mass bins. We show in Fig. 4 the median and relative
catter of the total (upper panel) and gas (lower panel) biases for
even chosen overdensities (for graphical reasons). In general, we
o not observe any dependence of gas mass profile on cluster true
asses in the whole range of o v erdensities considered. Whereas,
e see a tendency to o v erestimate the total mass in the first mass
in (10 13 . 5 ≤ M 

true 
200 / h 

−1 M � < 10 13 . 7 ) for o v erdensity � = 200 and
00. The scatter is around 10 per cent but tends to increase in the
ow-mass bins for both total and gas profiles. 
NRAS 520, 4000–4008 (2023) 
.2 Bias dependence on dynamical state 

lassical methods to infer the cluster mass from SZ and X-ray
bservations make assumptions on the hydrostatic equilibrium of
he clusters, so they are sensitive to deviation from it (e.g. Ruppin
t al. 2018 ; Pearce et al. 2019 ; Gianfagna et al. 2021 ). Therefore, it
s extremely important to investigate if and how the performance of
ur ML approach change with the dynamical state of the clusters.
onsidering hydrodynamical simulation, it is possible for a specific
luster to extract any possible dynamical or thermodynamical infor-
ation about its components, like particle 3D velocity , entropy , etc.
ased on these information, several indicators have been defined in

he literature to assess the dynamical state of synthetic clusters. In
his work, we use the relaxation parameter χ originally introduced
n Haggar et al. ( 2020 ) and later revised in De Luca et al. ( 2021 ),
ombining only two indicators: 

200 = 

√ 

2 (
f s 
0 . 1 

)2 + 

(
� r 

0 . 1 

)2 
, (4) 

here f s is the ratio between the sum of the masses of all the
ubhaloes within R 200 and the cluster total mass M 200 , and � r is
he offset between the theoretical centre of the cluster and the centre
f mass of the cluster, normalized to R 200 . The distribution of our
ample as a function of the relaxation parameter is shown in Fig. 5 ,
ere ne gativ e and positiv e tails represent e xtremely disturbed and
 xtremely relax ed systems, respectiv ely. 

The median biases are shown in Fig. 6 for seven equally populated
ins of χ200 . Only sev en o v erdensities are plotted for clarity. We
ee that in general, the model is sensitive to the dynamical state
f the clusters. There is a dependence of both total (upper panel)
nd gas (lower panel) mass reconstruction with the dynamical
tate, depending also on the o v erdensity. Our ML analysis tends
o underestimate the mass in the outskirts of disturbed clusters and
o o v erestimate it in the inner part, while it behaves in the opposite
or relaxed systems. Ho we ver, profiles at � = 500 and 600 do not
how any dependence on χ200 . This behaviour, as a function of the
ynamical state, can also explain the minimum of the scatter around
hese o v erdensities that we observ ed in Fig. 3 . Re garding the scatter,
t remains ∼10 per cent for log ( χ ) > 0 at all the o v erdensities.
or log ( χ ) < 0, the scatter starts to grow as the clusters become
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Figure 6. The median bias of the predicted total (upper panel) and gas (lower 
panel) mass with respect M true as a function of the logarithm of the relaxation 
parameter χ200 . For graphical reasons we only show the lines representing 
the bias at � = 200, 300, 500, 1000, 1500, 2000, and 2500 in yellow, 
purple, brown, pink, green, orange, and blue, respectively. The shaded areas 
correspond to the 16th–84th percentiles intervals. 
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Figure 7. The concentration–halo mass relation from both the true profiles, 
denoted by c true , and the ML profiles c ML . The blue triangles and red stars 
show the median concentrations for c true and c ML , respectively, within the 
halo mass bins. Error bars show the 16th–84th percentiles. Magenta circles 
with error bars show the median value with 16th–84th percentiles of the 29 
projections. 

Figure 8. The concentration bias as a function of c ML from the predicted 
halo profile. Here, we only show the median values and 16th–84th percentiles 
in each concentration c ML bin that contains the same number of clusters per 
bin. Thus, a slight difference in bin size is expected. Here, c ML means the 
median result of concentration from the 29 projected maps per cluster. The 
right-hand side panel shows the o v erall distribution of the concentration bias. 
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ore disturbed. Moreo v er, we see that the scatter remains around 15
er cent for o v erdensities related to the cluster outskirts, whereas it
rows up to ∼30 per cent going towards clusters’ inner regions. 

 T H E  C O N C E N T R AT I O N – M A S S  RELATION  

RO M  INFER R ED  PROFILES  

nvestigating the mass profile provides more information on the 
alaxy cluster internal structure. A general, good tracer of the mass
rofile of galaxy clusters is given by the two-parameter Navarro–
renk–White (NFW) model (Navarro, Frenk & White 1997 ). Besides 

he enclosed masses estimated at different o v erdensities, we e xamine
hether the profiles from these masses give consistent NFW concen- 

ration parameters. In this section, we fit the predicted profiles with 
4 different data points (o v erdensities) to the NFW profile and derive
he c ML = R 200 / r s , where r s is the typical scaling radius of the NFW
rofile. Thus, we compare these estimates with the concentration 
arameters, c true , calculated using the true mass profiles. 
In Fig. 7 , we show both c true (cyan squares) and c ML (magenta

ycles) as a function of the true halo mass M 

true 
200 . The errorbars for

he c ML data (magenta circles) represent 16th–84th percentiles among 
he 29 projections. The concentration–mass relation, represented by 
he blue triangles and red stars, is obtained by computing the median
f c true and c ML in seven equally populated mass bins, respectively. 
he relations of our ML analysis and the true one are almost
ndistinguishable, whereas the errorbars (16th–84 th percentiles) in the 
L c –M relation are slightly smaller than the true ones. In general,

he predicted concentration has small scatters with respect to the true
ne, which means a small projection effect for these c ML . Therefore,
he extreme concentration values at both c � 1 and c � 7 are less
epresented. 

We further quantify the concentration bias ( c ML / c true − 1) in Fig. 8
s a function of the predicted median concentration, c ML , o v er the 29
rojections. 
After dividing the sample into 10 bins of c ML with the same number

f clusters, the median concentration bias wiggles around 0, except 
t the lowest concentration bin. However, it is worth noting that
he error bars at low concentrations are larger compared to those of
MNRAS 520, 4000–4008 (2023) 

art/stad377_f6.eps
art/stad377_f7.eps
art/stad377_f8.eps


4006 A. Ferragamo et al. 

M

Figure 9. Median bias estimated with ML method compared with HE mass 
bias values at the three common o v erdensities for the same cluster selection 
in THE THREE HUNDRED sample at z = 0 analysed in Gianfagna et al. ( 2022 ). 
The error bars represent 16th–84th percentiles. 
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ass biases (Fig. 4 ), while they are comparable at intermediate and
igh concentrations. Instead, we see that this trend is similar to the
ne shown in Fig. 6 . We speculate that a possible explanation for
his behaviour is that ML tends to o v erpredict the masses at higher
 v erdensities (see Fig. 6 ) for dynamical unrelaxed clusters caused by
ajor merger events that, instead, tend to have lower concentrations.
herefore, the concentration of ML profiles is biased high for objects
ith low concentrations, while ML underpredicts their masses in the

ore, which results in a slightly lower concentration. This picture is
onsistent with having fewer outliers from the ML results, as shown
n Fig. 7 . 

 C O M PA R I S O N  WITH  H E  MASS  ESTIMATES  

ur ML model reco v ers the mass radial profiles with median bias
lose to zero. It is remarkable that we achieve this result without
aking any a priori assumption on the physical properties of the

lusters. Here, we compare our median bias with the mass bias
omputed when HE approximation is adopted. We refer to the
nalysis of Gianfagna et al. ( 2022 ) where also synthetic clusters
rom THE THREE HUNDRED have been used. The mass of the clusters
as inferred by using ICM data typical of X-ray and SZ observations.
nly the most massive clusters present in each resimulated region

t redshift z = 0 were considered. In order to compare our result
ith them, we recalculated the bias only for the common clusters, 53
bjects in a mass range between 1 . 3 × 10 14 and 3 × 10 15 h 

−1 M �.
he results of this comparison are shown in Fig. 9 . The HE bias is of

he order of 10 −20 per cent considering X-ray observables (red dots)
uch as electron gas temperature and density or SZ (green)-derived
ressure and density. In the case of ML estimates (blue dots), it is clear
hat the bias is less than 1 per cent with a scatter of approximately
0 per cent. Interestingly, the bias shows the lower scatter at � =
00. Although the biases are compatible within the errors, ML mass
stimates are systematically more accurate and unbiased than the HE
nes. Moreo v er, the ML approach results in a smaller scatter in the
hole range of o v erdensities. 
NRAS 520, 4000–4008 (2023) 
 C O N C L U S I O N S  

nly recently, cluster masses have been recovered with ML ap-
roaches starting from different spectral band images but al w ays at
ne specific single aperture, such as M 200 or M 500 . In this paper,
e present an ML model that for the first time is able to infer

imultaneously the full integrated radial profile for the gas and the
otal mass from SZ mock images. The ML model architecture is
 combination of an auto-encoder and an RF regressor. This ML
lgorithm is trained and tested on a sample of 73 138 mock Compton-
 parameter maps generated along 29 projections for each of the
522 galaxy clusters extracted from the GADGET-X run of THE THREE

UNDRED simulations. 
The auto-encoder is used to encrypt the rele v ant information

rom each map, while the RF performs the final estimation of
he radial mass profiles. The model is able to infer the gas mass
rofile, responsible for the SZ effect signal in the maps, but also the
luster total mass without any a priori assumption on the hydrostatic
quilibrium of the cluster. 

Our main results can be summarized as follows: 

(i) The ML model is able to reco v er unbiased profiles (bias lower
han 1 per cent) with a scatter of ∼10 per cent that is slightly
ncreasing towards the outskirts and to the inner part of the cluster
Fig. 3 ) with a minimum of around an o v erdensity of � ∼600. 

(ii) The accuracy and the precision of the method do not depend on
he cluster mass (Fig. 4 ). Nev ertheless, the y are more affected by the
ynamical state with an impact that depends on the o v erdensity. In
eneral, the scatter increases in unrelaxed clusters due to projection
ffects. 

(iii) From the total and gas mass profiles, we also derived the gas
raction profile. The bias, in this case, is also lower than 1 per cent,
hile the scatter decreases up to ∼3 per cent in the outskirts. 
(iv) The concentration parameter, obtained by fitting the inferred

otal mass profiles with an NFW model, seems to be unbiased with
 scatter between 10 and 20 per cent for c ML > 2. Therefore, the
L-predicted c –M relation is in reasonable agreement with the true

ne. 
(v) The comparison with a standard method to infer the cluster

otal mass, such as the HE approximation, shows that our estimation
f the mass is more accurate as it does not suffer from the hydrostatic
ass bias. 

Furthermore, in order to make this approach less prone to the
hysical models implemented in the simulation, we investigated the
ossibility of training the model with data from different simulations,
uch as GADGET-X (AGN feedback) and GIZMO-SIMBA (strong AGN
eedback). As described in Appendix A , the network trained in this
ay is able to marginalize o v er different hydrodynamical simula-

ions, obtaining results that are compatible with single-simulation
raining. Therefore, for future applications, we are going to use
his kind of approach by further extending the data set with other
imulations in order to marginalize o v er all possible baryonic
ffects. 

The framework presented in this paper can be extended to also
nfer other ICM radial profiles such as gas temperature and pressure,
mong others. Its application on different observational maps, such
s optical and X-ray mock images, seems a promising way to impro v e
he reconstruction of these profiles. 

In a forthcoming paper, we plan to train this ML approach on
ock SZ maps, adding instrumental and observational effects, such

s noise and limited angular resolution. Then, the model will be tested
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n real Compton- y parameter maps at different angular resolutions 
nd at different redshifts. Nevertheless, the redshift evolution of the 
 –M relation is negligible or weak up to z = 1 (Henden, Puchwein &
ijacki 2019 ; de Andres et al. 2023 ). The bias in the inferred ML
ass will also be compared with other methods using weak lensing 
ock images of the same cluster data set. 
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PPENDI X  A :  I M PAC T  O F  MULTI SI MUL ATIO N  

R A I N I N G  

n Sections 2 and 3 , we described that the proposed network was
rained with cluster maps selected within the GADGET-X run of THE

HREE HUNDRED project simulation. In Section 4 we showed the 
uality of the results obtained on a test set composed of clusters
elected from the same simulation. Ho we ver, each simulation has
ts own characteristics such as cosmology, resolution, or different 
aryonic physics. These differences can have effects of greater or 
esser importance on e.g. the mass of the structures, the shape of
he mass profiles, or the SZ maps. For this reason, if the differences
etween the products of different simulations are significant, the 
ccuracy of ML or more classical methods, such as scaling relations,
ay be compromised. In the context of machine learning, to over-

ome this problem one possible approach is to train a network with
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igure A1. The median bias of a sample of clusters selected from both
ADGET-X and GIZMO-SIMBA as a function of the o v erdensity for total mass
blue solid line), gas mass (orange dashed line), and gas fraction (green
otted line). The shaded light blue, orange, and green regions correspond to
he 16th–84th percentiles for total, gas mass, and gas fraction, respectively. 

he products of different simulations as proposed by the Cosmology
nd Astrophysics with MachinE Learning Simulations (CAMELS;
illaescusa-Navarro et al. 2021 ). Following this approach, we de-
ided to re-train our model by adding to the clusters selected from the
ADGET-X run those produced by the GIZMO-SIMBA run (for details
n the two runs, see Cui et al. 2022 ). 
Fig. A1 shows that using the network to predict the mass profiles

f a test set consisting of a mixture of clusters from GADGET-X and
IZMO-SIMBA yields results that are completely in line with what was
btained with the network trained and tested on GADGET-X clusters
lone, i.e. the median bias of both mass profiles is zero and the scatter
s about 10 per cent for all o v erdensities. 

The most interesting results are those obtained by applying this
etwork to test sets consisting of clusters from each run separately.
n the case of the test set of only GADGET-X clusters (top panel of
ig. A2 ), the median bias of the predicted total mass profiles (blue
olid line) is zero, and the scatter (blue shaded region) is also perfectly
n accordance with what was achieved with the network trained with
nly GADGET-X clusters. On the other hand, regarding the gas mass
rofiles (orange dashed line), we observe a bias that slightly decreases
o ∼ −5 per cent towards the cluster core whereas the scatter remains
imilar to that of the previous cases. In the bottom panel of Fig. A2 ,
e show the results of the network applied to the GIZMO-SIMBA

lusters. In this case, the median bias of the total mass profiles is
ero up to � ≤ 500 and then it grows to about 5 per cent in the core.
he scatter grows slightly but remains below 20 per cent. The gas
ass profiles show a fairly constant bias around 3 per cent, moreo v er,

or these profiles the scatter increases significantly in the inner part
f the clusters. This might be caused by the strong AGN-feedback
NRAS 520, 4000–4008 (2023) 
mplemented in GIZMO-SIMBA . In contrast, GADGET-X predictions are
ore stable in the centre. 
In conclusion, the approach of training the network with a mixture

f clusters from different simulations gives accurate results in esti-

igure A2. The median bias of GADGET-X (top panel) and GIZMO-SIMBA

bottom panel) clusters as a function of the o v erdensity for total mass (blue
olid line), gas mass (red dashed line), and gas fraction (green dotted line).
he shaded light blue, pink, and green regions correspond to the 16th–84th
ercentiles for total, gas mass, and gas fraction, respectively. 

ating the profiles of the two tests separately, showing the flexibility
f our ML model. Differences, as might be expected, are observed for
he gas mass profiles as well as in the innermost part of the clusters
here the different baryon physics models have greater effects. 
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