
Received: 19 August 2022 Revised: 5 July 2023 Accepted: 10 July 2023

DOI: 10.1002/spe.3246

R E S E A R C H A R T I C L E

Quick Subset Construction

Michele Dusi Gianfranco Lamperti

Department of Information Engineering,
University of Brescia, Brescia, Italy

Correspondence
Gianfranco Lamperti, Department of
Information Engineering, University of
Brescia, Via Branze 38, Brescia, 25123,
Italy.
Email: gianfranco.lamperti@unibs.it

Abstract
A finite automaton can be either deterministic (DFA) or nondeterministic
(NFA). An automaton-based task is in general more efficient when performed
with a DFA rather than an NFA. For any NFA there is an equivalent DFA that can
be generated by the classical Subset Construction algorithm. When, how-
ever, a large NFA may be transformed into an equivalent DFA by a series of
actions operating directly on the NFA, Subset Construction may be unnec-
essarily expensive in computation, as a (possibly large) deterministic portion
of the NFA is regenerated as is, a waste of processing. This is why a conser-
vative algorithm for NFA determinization is proposed, called Quick Subset
Construction, which progressively transforms an NFA into an equivalent
DFA instead of generating the DFA from scratch, thereby avoiding unnecessary
processing. Quick Subset Construction is proven, both formally and empir-
ically, to be equivalent to Subset Construction, inasmuch it generates exactly
the same DFA. Experimental results indicate that, the smaller the number of
repair actions performed on the NFA, as compared to the size of the equivalent
DFA, the faster Quick Subset Construction over Subset Construction.

K E Y W O R D S

determinization, finite automata, inward-oriented determinization, nondeterminism, subset
construction

1 INTRODUCTION

Subset Construction1 is the classical algorithm that generates a deterministic finite automaton (DFA) that is equiv-
alent to a given nondeterministic finite automaton (NFA). The need for NFA determinization is grounded on practical
reasons: generally speaking, automaton-based tasks perform better with DFAs than they do with NFAs. A peculiarity
of Subset Construction is generating an equivalent DFA from scratch, thereby leaving the input NFA untouched.
That algorithm does not operate directly on the NFA, by fixing the points that are affected by nondeterminism; instead,
a whole DFA is constructed starting from the initial state. This so-called outward-oriented approach to determinization
makes sense as long as either the NFA is small or a large number of repair actions are required to remove the nondeter-
minism, as there is no point in fixing the NFA rather than generating a new DFA when the equivalent DFA differs from
the NFA considerably. When, instead, a large NFA may be transformed into an equivalent DFA by a limited number of
repair actions (as compared to the size of the DFA), building a DFA from scratch may be less than optimal because a

Abbreviations: DFA, Deterministic Finite Automaton; FA, Finite Automaton; NFA, Nondeterministic Finite Automaton.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

2092 wileyonlinelibrary.com/journal/spe Softw: Pract Exper. 2023;53:2092–2132.

https://orcid.org/0000-0002-1915-6932
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/SPE

DUSI and LAMPERTI 2093

(possibly large) portion of the NFA that is deterministic already is unnecessarily processed. Put another way, a large NFA
may possibly be determinized more efficiently than Subset Construction does by fixing directly the NFA instead of
generating an equivalent DFA from scratch. Fixing an NFA means applying a series of repair actions on the nondetermin-
istic transition function that progressively transform the NFA into exactly the same equivalent DFA produced by Subset
Construction. This alternative technique to determinization of NFAs is said to be inward-oriented.

Consider, for example, an autonomous agent (robot) that is designed to learn by experience the environment in which
it is being operated. To this end, the robot may construct incrementally a model of the environment based on a DFA, where
states represent configurations of the environment, whereas transitions indicate actions of the robot that cause a change in
the environment configuration. Given the current instance of the DFA, an interaction of the robot with the environment
is bound to extend the DFA with new transitions and states. If such an extension comes with nondeterminism, the DFA
stops being deterministic, thereby becoming an NFA. This NFA may be very large (certainly so if the previous DFA is
large), with nondeterminism being confined to the newly-created transitions. Now, since the model of the environment
in which the robot is being operated is supposed to be a DFA, just-in-time determinization of the NFA is required in order
to update the deterministic model of the environment. Determinization by Subset Construction would generate the
new equivalent DFA from scratch, however, even if the new DFA is likely to be almost equal to the previous DFA. From a
computational point of view, regenerating the DFA from scratch on the fly may be impractical, especially so if performed
under stringent time constraints.

A more practical approach may be to update directly the NFA by fixing the points in which the transition function
becomes nondeterministic, thereby avoiding the unnecessary regeneration of the deterministic portion of the NFA. This
alternative approach to NFA determinization is substantiated by a novel algorithm, named Quick Subset Construc-
tion, which is the subject of this article. Unlike Subset Construction, the proposed algorithm progressively transforms
the NFA into an equivalent DFA that, remarkably, is identical to the DFA generated from scratch by Subset Construc-
tion. In this sense, Quick Subset Construction is equivalent to Subset Construction, even though the same DFA
is obtained in a very different mode.

Quick Subset Construction was not conceived overnight: it is the result of a series of algorithms designed for a
specific research domain of artificial intelligence named model-based diagnosis.2 Specifically, the problem of incremental
determinization of finite automata was addressed in monitoring-based diagnosis of active systems,3 which requires the
incremental determinization of an NFA that changes over time.4-7

To our knowledge, in the literature there is no inward-oriented determinization algorithm. Indeed, starting from Sub-
set Construction, all the alternative determinization algorithms are invariably outward-oriented, where the equivalent
DFA is generated from scratch.* Perhaps, in this respect, the closest algorithm to Quick Subset Construction is Sub-
set Restructuring,7 which was designed for the determinization of mutating automata. A mutating finite automaton
is an NFA that changes its morphology over discrete time by a sequence of mutations, where a mutation causes some
changes in the transition function of an NFA, such as the insertion and/or removal of some transitions as well as involved
states. This results in a temporal sequence of NFAs, namely0,1, … ,i, … , where0 is the initial NFA, whereas
each subsequent NFA results from a mutation of the preceding NFA. The idea is to generate on the fly an equivalent DFA
of each NFA, say i+1 that is equivalent toi+1, based on the DFA i (generated previously), that is equivalent toi,
and the difference (in the transition function) between i and i+1. Instead of generating i+1 from scratch as Sub-
set Construction does, i+1 is obtained by updating i while accounting for the mutation leading i to i+1. On
the other hand, Subset Restructuring cannot cope with the determinization of any given NFA outside the narrow
context of mutations, which is instead possible for Quick Subset Construction, which can therefore be regarded as
a general-purpose algorithm for NFA determinization, exactly like Subset Construction, although based on a very
different approach.

Specifically, the main contributions of the current paper are:

1. A detailed presentation of the Quick Subset Construction determinization algorithm;
2. A proof of equivalence of Quick Subset Construction, which demonstrates that the resulting DFA is identical to

the DFA generated from scratch by Subset Construction;
3. An implementation of a software framework (available online as open source) for experimenting with Quick Subset

Construction, as well as for generating pseudo-random test cases based on given configuration parameters;
4. A variety of experimental results that compare Quick Subset Construction with Subset Construction.

*Even the algorithm proposed by Brzozowski’s,8 which generates the minimal DFA that is equivalent to a given NFA/DFA, exploits Subset
Construction as is, thereby operating outward the input NFA/DFA.

2094 DUSI and LAMPERTI

In the rest of the article, Section 2 recalls the notion of a finite automaton, specifically DFA and NFA. Section 3 presents
the classical outward-oriented technique for NFA determinization by Subset Construction. Section 4 illustrates in
detail the inward-oriented technique for NFA determinization by Quick Subset Construction. The equivalence of
Subset Construction and Quick Subset Construction is formally proven in Section 5. Experimental results are
presented in Section 6, along with a discussion on the convenience of using Quick Subset Construction rather than
Subset Construction. Conclusions are drawn in Section 7.

2 FINITE AUTOMATA

A finite automaton (FA) is a mathematical formalism for the modeling of a variety of systems,9 which can be either
abstract or concrete. Abstract formal systems modeled as FAs are designed to solve problems like pattern matching based
on regular expressions,10 language recognizers and translators,11 as well as analysis of protein sequences.12 For instance,
a lexical analyzer, which is designed to recognize the words of a language, can be implemented as an FA, where the input
symbols are the characters of a given alphabet, while a state represents a prefix of the word being recognized, for example,
an identifier in a programming language. The (possibly infinite) set of strings that can be recognized by an FA is called
a regular language. Every regular language can be specified by a regular expression, and each language specified by a
regular expression is regular and can be recognized by an FA. Put another way, FAs and regular expressions share the
same expressive power.

As pointed out, an FA can also model a concrete system, which is typically discrete and dynamic. A dis-
crete system is characterized by input variables and system states that can be represented by discrete values.
A dynamic (or time-varying) system evolves over time from one state to another. Moreover, in a system mod-
eled by an FA, both the domain of input symbols and the set of states are finite. In both control theory
and artificial intelligence, FAs are exploited to model a class of physical systems called discrete-event systems.13

Once modeled, a discrete-event system can be subjected to specific engineering tasks, including monitoring and
diagnosis.3,14-26

Formally, an FA can be either deterministic (DFA) or nondeterministic (NFA). Specifically, a DFA is a 5-tuple,

 = (Σ,Q, 𝛿, q0,F), (1)

where Σ is the alphabet (a finite set of symbols called hereafter labels), Q is the (finite) set of states, 𝛿 is the transition
function, 𝛿 ∶ QΣ → Q, where QΣ ⊆ Q × Σ, q0 is the initial state, and F is the set of final states, where F ⊆ Q. Determinism
in  comes from the peculiarity of the transition function mapping each pair (q,𝓁) ∈ QΣ into a single state q′, namely
𝛿(q,𝓁) = q′.

Example 1 (DFA). Centered in Figure 1 is a graphical representation of a DFA, which includes six
states and eight transitions, where A is the initial state and G is the (unique) final state. Determinism is
grounded on the fact that all the transitions exiting the same state have different symbols of the alphabet, in
other words, the transition function maps each pair in QΣ into a single state, for instance, 𝛿(D, a) = E and
𝛿(D, b) = G.

F I G U R E 1 An NFA (left) and an equivalent DFA (center), which recognize the regular language (aba∗|ba+) b. A slight variation of the
left NFA is displayed on the right side.

DUSI and LAMPERTI 2095

An NFA is defined almost identically to a DFA, with the exception of the transition function. Formally, an NFA is a
5-tuple,

 = (Σ,Q, 𝛿, q0,F), (2)

where Σ, Q, q0, and F are defined as in Equation (1), whereas the transition function 𝛿 is defined differently, 𝛿 ∶ Q𝜀

Σ → 2Q,
where Q𝜀

Σ ⊆ Q × (Σ ∪ {𝜀}), with 𝜀 being the empty symbol (𝜀 ∉ Σ). Nondeterminism in  lies in the transition func-
tion, which, on the one hand, involves the empty symbol 𝜀, which allows for spontaneous state transitions and, on the
other, it maps a pair (q,𝓁), where q ∈ Q and 𝓁 ∈ Σ ∪ {𝜀}, into a set of states. Intuitively, an NFA may be in several
states when recognizing a string of symbols, which is impossible for a DFA, which is always in a single state during
processing.†

Roughly, the regular language recognized by an FA, either deterministic or nondeterministic, is the set of strings (com-
posed of the symbols in the alphabet) that we obtain by traversing all paths of transitions from the initial state to a final
state, where the instances of the empty symbol 𝜀 are immaterial. Two FAs are equivalent if they share (recognize) the same
regular language. From a practical stand point, however, equivalence is not synonymous with equality in computation.
Given an NFA and an equivalent DFA, the processing based on the NFA is in general more complex than the processing
based on the DFA. In lexical analysis, for instance, the recognition of a string based on a DFA requires the processing just
to keep track of one state, namely the state computed by the transition function 𝛿(q,𝓁), where q is the current state and
𝓁 is the next character in input. By contrast, the same recognition based on an NFA requires the lexical analyzer to keep
track of a set of states. In fact, since the transition function maps one state to several states, the NFA may be in several
states during processing, namely in a set Q = {q1, … , qk}. Hence, the recognition of the next character 𝓁 in input will
move the NFA to a set of states Q𝓁 ∪ Q

∗
𝓁 , where

Q𝓁 =
⋃

i∈[1 .. k]
𝛿(qi,𝓁), (3)

and Q
∗
𝓁 is the set of states that are reachable from any state in Q𝓁 by paths of 𝜀-transitions. We have, therefore, good

reasons to prefer an equivalent DFA over an NFA, especially considering that for any NFA there is always an equivalent
DFA, more generally, several (possibly an infinite number of) equivalent DFAs.

Example 2 (Equivalent FAs). With reference to Figure 1, note how the DFA displayed in the center is equiv-
alent to the NFA on the left side. In fact, they both recognize the same regular language, which is defined by
the following regular expression:

(aba∗|ba+) b. (4)

For instance, the string bab is recognized by the DFA via the following sequence of transitions: 𝛿(A, b) = C,
𝛿(C, a) = E, 𝛿(E, b) = G. Since G (the last state) is final, the string is recognized. The same string is recognized
by the equivalent NFA on the left of Figure 1 as follows: matching the first character moves the NFA to the
singleton 𝛿(0, b) = {2}; next, matching the second character moves the NFA to the set of states 𝛿(2, a) = {3, 4};
finally, matching the third character moves the NFA to the set of states 𝛿(3, b) ∪ 𝛿(4, b) = {5}. Since this last
set contains a final state, the string is recognized.

Before presenting the classical algorithm for NFA determinization, we introduce a little handy terminology. Given a
state s of an FA and a label 𝓁 of the alphabet, a transition mapping (s,𝓁) is called an 𝓁-transition. Let n be a state of an
NFA . The 𝜀-closure of n, denoted 𝜀-closure(n,), is the set of states in that is composed of n and all the states that
are reachable from n by paths of 𝜀-transitions. The 𝜀-closure of a set N of states in is defined as

𝜀-closure(N,) =
⋃

n∈N

𝜀-closure(n,). (5)

†In the literature, there is a distinction between an NFA and an 𝜀-NFA, where the former does not include 𝜀-transitions, while the latter does. In this
article, we do not make that distinction and consider a more general notion of an NFA, which may or may not include 𝜀-transitions.

2096 DUSI and LAMPERTI

Example 3 (𝜀-closure). With reference to the NFA displayed on the right of Figure 1 (a slight variation of
the NFA shown on the left side of the figure), we have 𝜀-closure(2,) = {2, 3, 5} and 𝜀-closure({3, 4},) =
{3, 4, 5}.

Let n be a state of an NFA and let 𝓁 be a label in the alphabet of . The 𝓁-mapping of n, denoted 𝓁-mapping(n,),
is the 𝜀-closure of the set of states generated by the transition function when applied to (n,𝓁). The 𝓁-mapping of a set N
of states in , is defined as

𝓁-mapping(N,) =
⋃

n∈N

𝓁-mapping(n,). (6)

Example 4 (𝓁-mapping). Considering the NFA  displayed on the right of Figure 1, we have
a-mapping(2,) = {3, 4, 5} and b-mapping({0, 1},) = {2, 3, 5}.

3 OUTWARD- ORIENTED DETERMINIZATION BY subset construction

The classical algorithm for NFA determinization is Subset Construction.1 The reason for this name stems from the
mode in which each state of the equivalent DFA is constructed, namely as a subset of the NFA states. Moreover, if the
NFA includes m states, in the worst case, the DFA will include 2m − 1 states, which is the number of possible subsets
of NFA states (empty set excluded). In other words, in the worst case, the complexity of the DFA generated by Subset
Construction is exponential in the number of NFA states. In practice, however, this is very pessimistic, as possibly a
large number of subsets of NFA states are not involved in the DFA constructed.

The modus operandi of Subset Construction is outward-oriented: it maps an NFA to an equivalent DFA that is
constructed from scratch, which, for this reason, is said to be SC-equivalent to the input NFA. Although there are in
general several DFAs that are equivalent to a given NFA, nonetheless there exists just one minimal equivalent DFA,
namely a DFA including the minimum number of states. Several algorithms exist for generating the minimal DFA
that is equivalent to a given DFA.8,27-34 Therefore, even if the SC-equivalent DFA is not minimal, it can be minimized
automatically.

The pseudocode of Subset Construction is listed in Algorithm 1 (lines 1–23). It takes as input an NFA  and
generates as output a DFA  that is equivalent to . For practical reasons, the algorithm makes a distinction between
the identifier d of a state of the output DFA and the subset of states marking d, called the extension of d, denoted ||d||. It
exploits a stack onto which the newly-created states are put. The idea is to pop one state at a time from the stack and to
generate the relevant transition function, which may cause the creation of new states. The processing terminates when
the stack becomes empty, that is, when the transition function of all states has been completed. Specifically, the set D of
states, the set 𝛿d of transitions, where a transition 𝛿d(d,𝓁) = d′ is denoted as an arc ⟨d,𝓁, d′⟩, and the set Fd of final states
are initialized as empty (line 5). In line 6, the initial state d0 is inserted into D, where ||d0|| = 𝜀-closure(n0,). In other
words, the extension of d0 includes the initial state n0 of plus the states of that are reachable from n0 by 𝜀-transitions
only. If the extension of d0 includes a final state of , then d0 is inserted into the set of final states of also (line 7). Then,
d0 is pushed onto the stack (line 8). Afterwards, the loop in lines 9–22 is executed until the stack of states becomes empty.
At each iteration, a state d is popped from the stack (line 10) and the transitions exiting d in  are generated within the
nested loop in lines 11–21. To this end, each label 𝓁 of the alphabet Σ relevant to a transition exiting an NFA state in ||d||
is considered (line 11). In line 12, a set N of states in is computed as 𝓁-mapping(||d||,), that is, the set of states of
 that are reached by the 𝓁-transitions exiting the states in ||d|| plus the states in that are reachable from these states
by 𝜀-transitions only. N is the extension of the target state of the 𝓁-transition exiting d in . Hence, if there is no such a
state (line 13), then it is created, namely d′ with extension N (line 14) and possibly added to the set of final states provided
that ||d′|| includes at least one final state of (line 15); then, since it is a newly-created state, d′ is pushed onto the stack
(line 16). If, instead, that state exists already, then it is referenced as d′ (line 18). In either case, a new transition ⟨d,𝓁, d′⟩
is eventually created in (line 20). Notice that, being the set N of states in finite, the set of states that can be generated
for is finite also, as it is bounded by the powerset of N; hence, sooner or later, Subset Construction terminates and
 is in fact a DFA, namely the SC-equivalent DFA of .

Example 5 (Subset Construction). Detailed in Figure 2 is the generation, performed by Subset Con-
struction, of the DFA that is SC-equivalent to the NFA depicted on the left side of Figure 1. Specifically,

DUSI and LAMPERTI 2097

Algorithm 1. Subset Construction

1: function Subset Construction() →
2: input: = (Σ,N, 𝛿n,n0,Fn): an NFA
3: output: = (Σ,D, 𝛿d, d0,Fd): a DFA that is equivalent to , namely the SC-equivalent DFA of
4: begin
5: Initialize D, 𝛿d, and Fd as empty sets
6: Insert the initial state d0 into D, where ‖d0‖ = 𝜀-closure(n0,)
7: if ‖d0‖ includes a final state of then insert d0 into Fd end if
8: Initialize a stack of states by including d0 only
9: repeat

10: Pop a state d from the stack
11: for all 𝓁 ∈ Σ such that there is a state n ∈ ‖d‖ for which 𝛿n(n,𝓁) is defined do
12: ̄N ← 𝓁-mapping(‖d‖,)
13: if there is no state d′ ∈ D such that ‖d′‖ = ̄N then
14: Insert a new state d′ into D, where ‖d′‖ = ̄N
15: if ‖d′‖ ∩ Fn ≠ ∅ then insert d′ into Fd end if
16: Push d′ onto the stack
17: else
18: Let d′ ∈ D such that ‖d′‖ = ̄N
19: end if
20: Insert a new arc ⟨d,𝓁, d′⟩ into 𝛿d
21: end for
22: until the stack is empty
23: end function

each intermediate instance of the DFA is associated with the content of the stack (placed on top of each
instance), which grows from left to right; hence, the rightmost state (in bold) represents the top of the
stack, that is, the next state to be processed. At the beginning of the main loop (lines 9–22), the DFA
is composed of the initial state only, namely A, which is also the unique element in the stack. Then,
state A is popped from the stack and the relevant transition function is materialized by means of two
exiting transitions, while the two newly-created states, namely B and C, are inserted onto the stack. The
algorithm continues popping one state from the stack and generating the relevant transition function, while
putting possible new states onto the stack. For instance, the processing of state C gives rise to the cre-
ation of the new state E, where ||E|| = a-mapping({2}) = {3, 4}. When the stack becomes empty (right
side of Figure 2), the DFA is complete. Note that the resulting DFA is identical to the DFA displayed on
the center of Figure 1, except that each state is marked with the relevant extension, a by-product of the
mode in which Subset Construction identifies the DFA states. Once the DFA is generated, however, all
the extensions may be removed and the states are simply identified by chosen symbols (in our example,
capital letters).

Since Subset Construction is a function, for each NFA there is one and only one DFA that is SC-equivalent to
 , albeit, generally speaking, several DFA might exist that are equivalent to .

4 INWARD- ORIENTED DETERMINIZATION BY quick subset construction

In order to generate an equivalent DFA, the Subset Construction algorithm does not operate directly on the NFA: the
DFA is constructed from scratch leaving the input NFA untouched. Yet, this outward-oriented approach is not strictly
necessary to the determinization task. In fact, the same equivalent DFA can also be obtained using a series of repair
actions operating directly on the input NFA: the nondeterminism is progressively removed from the NFA by fixing the
transition function wherever necessary, thereby eventually obtaining the SC-equivalent DFA.

2098 DUSI and LAMPERTI

F I G U R E 2 Generation by Subset Construction of the DFA SC-equivalent to the NFA displayed on the left of Figure 1. Displayed
on top of each intermediate graph is the content of the stack (growing from left to right).

This idea is substantiated by an alternative algorithm for NFA determinization, called Quick Subset Construc-
tion‡ To this end, each point of nondeterminism in the transition function of the NFA is considered and a specific repair
action is applied in order to remove the nondeterminism. Nondeterminism occurs when a state is exited either by an
𝜀-transition or by several transitions with the same label.

4.1 Singularities

In order to capture all the nondeterminism points, the relevant states of the NFA are marked with a set of labels inΣ ∪ {𝜀},
where Σ is the alphabet of the NFA. The initial marking is based on three rules:

1. If an 𝜀-transition exits the initial state n0 of the NFA, then n0 is marked with 𝜀.
2. If there is a transition ⟨n,𝓁,n′⟩, where 𝓁 ≠ 𝜀, and n′ is exited by an 𝜀-transition, then n is marked with 𝓁.
3. If a state n is exited by several 𝓁-transitions, where 𝓁 ≠ 𝜀, then n is marked with 𝓁.

If a label 𝓁 marks a state n, then (n,𝓁) is called a singularity. Since the collection of labels marking a state is an ordered
set, no duplication of the same singularity is allowed. A singularity initially marking the NFA indicates that the transition
function mapping (n,𝓁) results in several states, in other words, nondeterminism arises; consequently, a repair action
is required in order to fix that singularity. Fixing a singularity may cause the creation of additional singularities, which
indicate that the transition function of the relevant states needs to be either adjusted or completed with new transitions.

Any given NFA is therefore associated with a set of initial singularities. The notion of an initial singularity is exploited
for providing a precise measure of the quantity of nondeterminism affecting an NFA (Definition 1).§

Definition 1 (quantity of nondeterminism). The quantity of nondeterminism in an NFA is the number of
initial singularities.

Definition 1 should not be misleading, however: as shown in Section 6.6, the quantity of nondeterminism in an NFA
is generally unrelated to the number of singularities actually processed, which, in some circumstances, can be far larger
than the number of initial singularities. That is, a small quantity of nondeterminism may translate into a large number
of repair actions.

The order in which singularities are processed is important. Based on our experience, choosing the singularities ran-
domly may cause the disconnection of the resulting DFA and/or the nontermination of the algorithm. In order to avoid
both disconnection and nontermination, singularities are sorted based on the level of the states. The level of a state s in
an FA with initial state s0, denoted 𝜆(s), is the minimum number of transitions (including 𝜀-transitions) that connect s0
with s. Operationally, the level of a state can be defined inductively by the following two rules:

‡In that respect, Quick Subset Construction is equivalent to Subset Construction (cf. Section 5).
§Definition 1 is only instrumental within the narrow scope of this article: the same definition may be questionable if extrapolated from that context.

DUSI and LAMPERTI 2099

F I G U R E 3 NFA (left) and DFA (right), with states marked with corresponding levels (cf. Figure 1).

1. 𝜆(s0) = 0.
2. For any state s ≠ s0 having parent states¶ s1, … , sk, 𝜆(s) = min {𝜆(s1), … , 𝜆(sk)} + 1.

Example 6 (level). Shown in Figure 3 are the NFA (left) and DFA (right) displayed in Figure 1, where each
state is marked with the relevant level.

Since the level imposes only a partial order on states, as several states may have the same level, in order for Quick
Subset Construction to behave deterministically,# the singularities (q,𝓁) are totally ordered based not only on 𝜆(q)
but also on the natural (ascending) order of the identifiers q and 𝓁 (with the label 𝜀 being in first position). Therefore, the
singularities (q,𝓁) are sorted based first on 𝜆(q), then on the identifier of q, and finally on 𝓁. The resulting (sorted) list
of singularities is called a singularity list. Since processing a singularity may cause the insertion/removal of transitions,
with possible changes in the level of states, the position of each singularity within the singularity list may change during
processing.

As every state q in the FA being manipulated by Quick Subset Construction is marked with a nonempty subset
of the states of the NFA, as for Subset Construction, the new algorithm makes a distinction between an identifier
q and the subset of states marking q, namely the extension ||q||. Note that the extension of a state q can be changed
by the repair actions, whereas the identifier q cannot. For formal reasons, we widen the notion of extension to an
NFA state n, namely ||n|| = {n}. Also, given a set Q of states in the automaton being manipulated by Quick Sub-
set Construction, ||Q|| denotes the union of the extensions of the states in Q, that is, a subset of the states of the
input NFA.

4.2 Quick Subset Construction

The pseudocode of Quick Subset Construction is listed in Algorithm 2 (lines 1–47).|| The algorithm exploits five
auxiliary functions/procedures, namely Unsafe, Enlarge, New, Level, and Unify (detailed in Section 4.3). Quick
Subset Construction takes as input an NFA and generates a DFA that is SC-equivalent to . To this end, first a
copy  of  is created along with its initial singularities (line 5). Upon the termination of the algorithm,  has been
transformed into the equivalent DFA. For the determinization of , the singularities are considered one by one within
the singularity list. The repair actions associated with the singularity considered, however, depend on a relevant scenario.
Three scenarios are defined, called 0, 1, and 2, respectively.

Scenario 0 (lines 6–19) occurs for the singularity (q0, 𝜀) only, called the 𝜀-singularity, where q0 is the initial state of
. This means that q0 is exited by at least one 𝜀-transition. Since, the 𝜀-singularity is in the first position in the singularity
list, this is the first singularity that is processed. Besides, since no singularity (q, 𝜀) can be generated subsequently, neither
for the initial state nor for any other state, the processing of the 𝜀-singularity is placed upfront in the algorithm, before the
main loop (lines 20–46), in which scenarios 1 and 2 are possibly considered several times. Roughly, the repair actions
associated with (q0, 𝜀) remove the 𝜀-transitions exiting q0 while enlarging the extension of q0. First the sets Q, ̄U, and N

¶A state s is a parent of a state s when there is a transition from s to s, namely ⟨s,𝓁, s⟩.
#The deterministic behavior of Quick Subset Construction should not be confused with the deterministic function of a DFA: it means that Quick
Subset Construction always performs the same sequence of actions for the same input NFA to generate the SC-equivalent DFA.
||The processing of final states is omitted: as in Subset Construction, a DFA state is final when its extension includes an NFA that is final.

2100 DUSI and LAMPERTI

Algorithm 2. Quick Subset Construction

1: function Quick Subset Construction() → 
2: input: = (Σ,N, 𝛿n,n0,Fn): an NFA
3: output:  = (Σ,Q, 𝛿q, q0,Fq): a DFA that is equivalent to , namely the SC-equivalent DFA of
4: begin
5: Generate a copy  of and mark it with the initial singularities
6: if there is a singularity (q0, 𝜀) then ⟨ Scenario 0: lines 6–19 ⟩

7: ̄Q ← 𝜀-closure(q0,), ̄U ←
{

q̄ | q̄ ∈ ̄Q, Unsafe((q0, 𝜀), q̄)
}

, ̄N ← ‖ ̄Q‖
8: Enlarge(q0, ̄N)
9: Remove from 𝛿q all the 𝜀-transitions exiting q0

10: for all transition ⟨u,𝓁, q⟩ ∈ 𝛿q where u ∈ ̄U,𝓁 ≠ 𝜀, and q ∉ ̄U do
11: Insert a transition ⟨q0,𝓁, q⟩ into 𝛿q, Level([(q, 1)])
12: end for
13: for all transition ⟨q,𝓁,u⟩ ∈ 𝛿q where q ∉ ̄U and u ∈ ̄U do
14: Remove ⟨q,𝓁,u⟩ from 𝛿q
15: if 𝓁 ≠ 𝜀 thengenerate the singularity (q,𝓁) end if
16: end for
17: Remove from  all the states in ̄U and the relevant entering/exiting transitions
18: Remove (q0, 𝜀) from the singularity list
19: end if
20: while the singularity list is not empty, with (q,𝓁) being the singularity in first position do
21: ̄N ← 𝓁-mapping(‖q‖,)
22: if no 𝓁-transition exits q then ⟨ Scenario 1: lines 22–28 ⟩

23: if there is a state q′ ∈ Q where ‖q′‖ = ̄N then
24: Insert a transition ⟨q,𝓁, q′⟩ into 𝛿q, Level([(q′, 𝜆(q) + 1)])
25: else
26: q′ ← New(̄N)
27: Insert a transition ⟨q,𝓁, q′⟩ into 𝛿q and set the level 𝜆(q′) = 𝜆(q) + 1
28: end if
29: else if several 𝓁-transitions exit q or ⟨ Scenario 2: lines 29–43 ⟩

30: (either the only transition ⟨q,𝓁, q′⟩ is such that ‖q′‖ ≠ ̄N or q′ is exited by an 𝜀-transition) then
31: ̄Q ← 𝓁-mapping(q,), ̄U ←

{
q̄ | q̄ ∈ ̄Q, Unsafe((q,𝓁), q̄)

}

32: q′ ← New(̄N)
33: Remove from 𝛿q all the 𝓁-transitions exiting q
34: for all transition ⟨u,𝓁′, q′′⟩ ∈ 𝛿q where u ∈ ̄U,𝓁′ ≠ 𝜀, and q′′ ∉ ̄U do
35: Insert a transition ⟨q′,𝓁′, q′′⟩ into 𝛿q
36: end for
37: for all transition ⟨q′′,𝓁′,u⟩ ∈ 𝛿q where u ∈ ̄U and q′′ ∉ ̄U do
38: Remove ⟨q′′,𝓁′,u⟩ from 𝛿q
39: if 𝓁′ ≠ 𝜀 then generate a singularity (q′′,𝓁′) end if
40: end for
41: Remove from  all the states in ̄U and the relevant entering/exiting transitions
42: Insert a transition ⟨q,𝓁, q′⟩ into 𝛿q, Level([(q′, 𝜆(q) + 1)])
43: if there is a state q′′ ∈ Q, q′′ ≠ q′, where ‖q′′‖ = ‖q′‖ then Unify(q′, q′′) end if
44: end if
45: Remove (q,𝓁) from the singularity list
46: end while
47: end function

DUSI and LAMPERTI 2101

are determined (line 7), where Q is the 𝜀-closure of q0, ̄U is the set of the unsafe states in Q, and N is the set of NFA states
involved in Q. Intuitively, a state q is unsafe if the removal of the 𝜀-transitions may cause q to be no longer reachable from
the initial state, in other words,  may become disconnected. To know whether a state is unsafe, the auxiliary function
Unsafe is called (Algorithm 3, Section 4.3.1). Next, the extension of q0 is expanded to N (line 8) by means of the Enlarge
auxiliary procedure (Algorithm 4, Section 4.3.2), which may also create new singularities for q0. Then, the 𝜀-transitions
exiting q0 are removed (line 9). Next, for each transition ⟨u,𝓁, q⟩ in  where u is unsafe, 𝓁 ≠ 𝜀, and q is not in the set of
unsafe states (possibly outside the set Q), a transition ⟨q0,𝓁, q⟩ is created (lines 10–12), while the level of q and successive
states is possibly updated by the Level auxiliary procedure (Algorithm 6, Section 4.3.4). These new transitions prevent
 from becoming disconnected owing to the subsequent removal of transitions. Subsequently, every transition ⟨q,𝓁,u⟩
exiting a state that is not unsafe (possibly outside the set Q) and entering an unsafe state is removed and, if 𝓁 ≠ 𝜀, a
singularity (q,𝓁) is created (lines 13–16). This is required in order to avoid creating dangling transitions resulting from
the subsequent removal of the unsafe states. Eventually, the unsafe states and relevant transitions are removed from 
(line 17), as well as the 𝜀-singularity from the singularity list (line 18).

Example 7 (Scenario 0). Shown in Figure 4 is the processing of scenario 0 for a fragment of an NFA
(the initial configuration of ), where A is the initial state. Notice that, since the 𝜀-singularity is the first
being processed,  equals the input NFA , hence the extensions of the states in  are all singletons involv-
ing the corresponding NFA state. Highlighted in the first configuration of  displayed on the left side of
Figure 4 are the states in Q (line 7), where the dashed ones are the unsafe states (cf. the Unsafe auxiliary
function in Section 4.3.1), namely C, D, and F. Then, the extension of the initial state is enlarged by the set of
NFA states involved in Q (line 8), namely {1, 2, 3, 5} (cf. the Enlarge auxiliary procedure in Section 4.3.2),
while the 𝜀-transitions exiting the initial state are removed (line 9), which brings  to the second configura-
tion in Figure 4. The processing in lines 10–12 causes the insertion of the transitions ⟨A, b,G⟩ and ⟨A, b,H⟩,
while lines 13–16 provoke the removal of the transition ⟨B, b,C⟩, which brings to the third configuration in
Figure 4. Eventually, the processing in lines 17 and 18 brings to the last configuration (right side of Figure 4),
where the singularity (F, c) has been removed (owing to the removal of F), which terminates the processing
of scenario 0.

Scenario 1 (lines 22–28) occurs when no 𝓁-transition exits q. Hence, a transition mapping (q,𝓁) to a state q′ such that
||q′|| = N needs to be created. Two cases are possible: either q′ exists or it does not. If q′ exists already, then a transition
⟨q,𝓁, q′⟩ is inserted (lines 23 and 24). Since the insertion of a new transition may shorten the level of the target state and
possibly of other connected states, the auxiliary procedure Level is called (Algorithm 6, Section 4.3.4) for the adjustment
of the relevant levels. If, instead, q′ does not exist, then it is created with extension ||q′|| = N by means of the New auxiliary
function (Algorithm 5, Section 4.3.3) in line 26, which also generates the relevant singularities for the newly-created state.
Moreover, a new transition ⟨q,𝓁, q′⟩ is inserted and the level of q′ is assigned (line 27).

Scenario 2 (lines 29–43) occurs when an 𝓁-transition exiting q exists already. This scenario is reminiscent of scenario
0 and, hence, the repair actions are somewhat similar. The conditions in lines 29 and 30 avoid processing a singularity

F I G U R E 4 Processing of scenario 0 by Quick Subset Construction. On top of each intermediate graph is the content of the
singularity list, where the head (in bold) is the 𝜀-singularity under processing (note how new singularities are generated). The states in gray
are those in Q (namely, the 𝜀-closure of q0, line 7), where the unsafe states (those in ̄U) are dashed.

2102 DUSI and LAMPERTI

that does not change, thereby enabling the repair actions only if the transition mapping (q,𝓁) actually needs adjustment.
If so, first the sets Q and ̄U are computed (line 31). Then a state q′ is created by means of the auxiliary function New
(line 32), where ||q′|| = N (with N being the 𝓁-mapping of ||q|| generated in line 21). Then, the 𝓁-transitions exiting q are
removed (line 33). Next, for each transition ⟨u,𝓁′, q′′⟩ where u is unsafe, 𝓁 ≠ 𝜀, and q′′ is not among the unsafe states,
a transition ⟨q′,𝓁′, q′′⟩ is inserted (lines 34–36). Like in scenario 0, these new transitions are meant to prevent  from
becoming disconnected owing to the subsequent removal of transitions in lines 37–40, where for each transition ⟨q′′,𝓁′,u⟩
removed, with𝓁′ ≠ 𝜀, a singularity (q′′,𝓁′) is created. Then, all unsafe states and relevant transitions are removed (line 41).
Afterwards, in line 42, a new transition ⟨q,𝓁, q′⟩ is inserted into , where q′ is the new state created in line 32. The
insertion of the new transition requires the setting of the level of q′ as well as the possible update of the level of other
states by means of the auxiliary procedure Level. In case another existing state q′′ turns out to have the same extension
as q′, in order to avoid duplication of states in, q′ and q′′ are merged into a single state (line 43) by means of the Unify
procedure (Algorithm 7, Section 4.3.5).

Example 8 (Scenario 2). Shown in Figure 5 is the processing of scenario 2 for a fragment of an inter-
mediate configuration of , where the relevant singularity is (C, a), with C being exited by two a-transitions.
Highlighted in the configuration of in the left side of Figure 5 are the states in Q (line 31), where the unsafe
states are dashed, namely E and G. Then, based on lines 32 and 33, assuming N = {3, 4, 5, 6, 7, 8} in line 21,
a new state I is generated, with ||I|| = N, and the transitions exiting C are removed (second configuration of
 in Figure 5). The processing in lines 34–36 causes the insertion of the transition ⟨I, c,H⟩, while lines 37–40
provoke the removal of the transition ⟨F, a,E⟩, which brings  to the third configuration. Eventually, the
processing in lines 41–43 brings  to the last configuration in Figure 5, which terminates the processing of
scenario 2.

Example 9 (Quick Subset Construction). We now revisit the determinization of the NFA depicted
on the left side of Figure 1 using Quick Subset Construction, which has been carried out already by
Subset Construction in Example 5 (cf. Figure 2). Shown in Figure 6 are the various configurations of ,
which correspond to the processing of the singularities involved. Note that on top of each configuration of
 is the relevant content of the singularity list, where the singularity in first position (the head of the list,
the first singularity to be processed) is in bold. On the left side of Figure 6 is the initial configuration of 
(the input NFA), along with the initial singularities, namely (C, a), since C is exited by two a-transitions,
and (D, a), as there is a transition exiting D that enters the state D′ which is exited by an 𝜀-transition (cf. the
rules for the initial singularities in Section 4.1). The first singularity (C, a) leads to scenario 2 which, once
processed, brings  to the second configuration, with two new singularities (relevant to E) being generated.
The processing of the singularity (D, a) leads to scenario 1, which inserts the new transition ⟨D, a,E⟩ (third
configuration in Figure 6). Processing the singularity (E, a) leads again to scenario 1, which inserts the new
auto transition ⟨E, a,E⟩ (fourth configuration). Eventually, the singularity (E, b) has no effect because none of

F I G U R E 5 Processing of scenario 2 by Quick Subset Construction. On top of each intermediate graph is the content of the
singularity list, where the head (in bold) is the singularity under processing (note how new singularities are generated). The states in gray are
those in Q (namely, the 𝓁-mapping of q, line 31), where the unsafe states (those in ̄U) are dashed.

DUSI and LAMPERTI 2103

F I G U R E 6 Transformation by Quick Subset Construction of an NFA into its SC-equivalent DFA (cf. Figure 1). On top of each
intermediate automaton is the content of the singularity list, where the head (in bold) is the singularity under processing. The algorithm
terminates when the singularity list is empty.

Algorithm 3. Unsafe (auxiliary function)

1: function Unsafe((q,𝓁), q̄) → flag
2: input: (q,𝓁): a singularity in ,
3: q̄: a state in Q
4: output: flag: a Boolean value indicating whether q̄ is unsafe
5: begin
6: flag ← q̄ ≠ q0 and there is no transition ⟨q∗,𝓁∗, q̄⟩ in 𝛿q such that (q∗,𝓁∗) ≠ (q,𝓁) and 𝜆(q∗) ≤ 𝜆(q)
7: end function

the conditions in lines 29 and 30 is fulfilled, thereby bringing to the final configuration where the singularity
list is empty, which terminates the execution of the algorithm. As expected, the resulting DFA (right side of
Figure 6) is identical to the DFA generated from scratch by Subset Construction in Example 5 (cf. Figure 2).
In other words, Quick Subset Construction has progressively transformed the NFA into its SC-equivalent
DFA.

4.3 Auxiliaries

This section describes the five auxiliary functions/procedures exploited by Quick Subset Construction, namely
Unsafe, Enlarge, New, Level, and Unify.

4.3.1 Unsafe

The pseudocode of the Unsafe Boolean function is listed in Algorithm 3 (lines 1–7). It takes as input a singularity (q,𝓁)
and a state q of. It generates as output a flag indicating whether q is unsafe or not. The state q is unsafe if the removal of
an 𝓁-transition exiting q might cause the disconnection of q from the initial state q0. The condition of unsafety is expressed
in line 6, namely, when q is not the initial state and there is no transition ⟨q∗,𝓁∗, q⟩ either not exiting q or exiting q with a
different label, such that the level of q∗ is not greater than the level of q. If so, since the level may increase from one state
to a successive one, every parent state of q might be a state that is reachable from q and, hence, removing the 𝓁-transition
exiting q may result in the disconnection of q and possibly of other states that are reachable from q.

Example 10 (Unsafe). Shown in Figure 7 is a fragment of  when the Unsafe function is called, where
(q,𝓁) = (C, a). Within the set of gray states, the Boolean flag is true when q is a dashed state (E, F, H, I, and
J), while it is false when the state is plain (D and G). For instance, the state E is unsafe because the condition

2104 DUSI and LAMPERTI

F I G U R E 7 Portion of a configuration of  when the auxiliary function Unsafe is called, where (q,𝓁) = (C, a).

Algorithm 4. Enlarge (auxiliary procedure)

1: procedure Enlarge(q, ̄N)
2: input: q: a state of ,
3: ̄N: a set of states of the NFA
4: side effects: the extension of q is enlarged by ̄N and new singularities are possibly generated for q
5: begin
6: if ̄N ⊈ ‖q‖ then
7: for all 𝓁 ∈ Σ such that there is a state n ∈ (̄N ⧵ ‖q‖) that is exited by an 𝓁-transition in do
8: if a singularity (q,𝓁) does not exist then generate a new singularity (q,𝓁) end if
9: end for

10: ‖q‖ ← ‖q‖ ∪ ̄N
11: end if
12: end procedure

in line 6 is not fulfilled, specifically, because E is not the initial state, nor is there a transition ⟨q∗,𝓁,E⟩ such
that (q∗,𝓁) ≠ (C, a) and 𝜆(q∗) ≤ 𝜆(C). By contrast, the state D is not unsafe owing to the transition ⟨B, b,D⟩
which fulfills the condition in line 6 (in fact, 𝜆(B) = 𝜆(C) = 1). This means that the removal of the transition
⟨C, a,D⟩ will leave D still reachable from the initial state thanks to the connection with B.**

4.3.2 Enlarge

The pseudocode of the Enlarge procedure is listed in Algorithm 4 (lines 1–12). It takes as input a state q of  and a
set N of states of (the NFA given in input to Quick Subset Construction). As a side effect, the extension of q is
expanded by N, possibly with new singularities being created for q. The condition in line 6 prevents that expansion from
being immaterial. Thus, if there is at least one state in N that is not included in the current extension of q, then new
singularities for q are possibly generated in lines 7–9, specifically, a singularity (q,𝓁) for each label 𝓁 marking a transition
exiting a state in that is in N but not in the current extension of q, thereby allowing for the subsequent adjustment of
the transition function relevant to these labels. Eventually, the extension of q is enlarged by N (line 10).

**A state qualified as unsafe may be still reachable from the initial state after the removal of a transition (q,𝓁). For instance, although being qualified
as unsafe, state J is still connected with the initial state when all the a-transitions exiting C are removed, owing to its connection with G. In other
words, an unsafe state might be disconnected from the initial state, but not for sure. By contrast, if a state is not unsafe, it will remain connected with
the initial state for sure.

DUSI and LAMPERTI 2105

Algorithm 5. New (auxiliary function)

1: function New(̄N) → q
2: input: ̄N: a set of states of the NFA
3: side effects: a new state q is generated in , where ‖q‖ = ̄N, along with relevant singularities
4: output: q: the newly-created state
5: begin
6: Insert a new state q into Q, where ‖q‖ = ∅
7: Enlarge(q, ̄N)
8: end function

Algorithm 6. Level (auxiliary procedure)

1: procedure Level(Λ)
2: input: Λ = [(q, 𝜆)]: a singleton list, where q ∈ Q and 𝜆 is the actual level of q
3: side effects: the level of q and of other states reachable from q is possibly updated
4: begin
5: repeat
6: Remove the head (q̄, ̄𝜆) from the list Λ
7: if 𝜆(q̄) is unassigned or 𝜆(q̄)> ̄𝜆 then
8: 𝜆(q̄)← ̄

𝜆

9: for all transition ⟨q̄,𝓁, q′⟩ ∈ 𝛿q do
10: Append (q′, ̄𝜆 + 1) to Λ
11: end for
12: end if
13: until Λ is empty
14: end procedure

4.3.3 New

The pseudocode of the New function is listed in Algorithm 5 (lines 1–8). It takes as input a set of states of (the NFA
given in input to Quick Subset Construction) and creates a new state q in  having extension N. First, q is created
as an empty state (line 6). Then, the (empty) extension of q is extended by N by calling the Enlarge procedure, hence,
possibly generating new singularities for q also (cf. Algorithm 4).

4.3.4 Level

The pseudocode of the Level procedure is listed in Algorithm 6 (lines 1–14). It takes as input a singleton list Λ = [(q, 𝜆)],
where q is a state of , possibly with unassigned level, and 𝜆 is the actual level of q. As a side effect, the level of q,
as well as of other states that are reachable from q, is possibly updated. This is necessary whenever a new transition
inserted into  may shorten the level of some states (lines 11, 24, and 42 of Quick Subset Construction). A loop is
performed in lines 5–13, where the first pair (q, 𝜆) in Λ is considered (line 6). If the level of q is not yet assigned or the
current level of q is greater than the actual level 𝜆, then the level of q is assigned with 𝜆 (line 8). Since this assignment
may cause a change in the level of the successive states of q, for every state q′ that is entered by a transition exiting
q, a new pair (q′, 𝜆 + 1) is appended to Λ in order to subsequently propagate the change of levels to the states that are
reachable from q (lines 9–11). The loop terminates when Λ becomes empty, that is, when all relevant levels have been
updated (line 13).

Example 11 (Level). Shown on the left side of Figure 8 is a configuration of the FA being manipulated by
Quick Subset Construction, where each state is marked with the relevant level (whereas transition labels

2106 DUSI and LAMPERTI

F I G U R E 8 Processing by the auxiliary procedure Level after the insertion of a transition from A to H performed by Quick Subset
Construction, which causes a reduction in the levels of the states F, G, H, and I (transition labels are omitted). Displayed below each graph
configuration is the instance of Λ, where the processing of pairs in gray has no effect on levels.

are omitted). Let assume now that a new transition from A to H is inserted into  (dashed gray arrow). This
insertion causes a call to procedure Level with input parameter Λ = [(H, 1)], as expressed below the graph.
According to lines 7–12 of Level, the processing of the pair (H, 1) changes the level of H to 1 and appends
the new pairs (E, 2) and (F, 2) to the list Λ (second graph). The processing of (E, 2) has no effect on the level,
thereby leaving the graph unchanged. Instead, the subsequent processing of (F, 2) changes the level of F to 2,
while appending the pairs (G, 3) and (I, 3) (third graph). Next, processing (G, 3) changes the level of G to 3 and
appends the pair (D, 4) (fourth graph). Processing (I, 3) changes the distance of I to 3 and appends the pair
(H, 4) (last graph on the right). Eventually, the processing of both (D, 4) and (H, 4) has no effect on the levels,
thereby leaving the graph unchanged. Since now Λ is empty, the procedure Level terminates. As expected,
the levels of the states F, G, H, and I are reduced in accordance with the new topology of the graph after the
insertion of the transition.

4.3.5 Unify

The pseudocode of the Unify procedure is listed in Algorithm 7 (lines 1–14). It takes as input a newly-created state q′ in
 (cf. scenario2 in Quick Subset Construction) and another state q′′ in that has the same extension as q′. In order
to avoid duplication of states, all the transitions and singularities relevant to q′ are inherited by q′′, whereas the duplicated
state q′ is removed. First, the unique transition entering q′ is redirected towards q′′ (line 6). Since this redirection may
cause a change in the level of d′′, as well as of other states reached by q′′, level relocation is performed by the Level
procedure. Then, all transitions exiting q′ are moved to q′′ (lines 7 and 8). Even in this case, since this redirection may
cause changes in the level of the states entered by these transitions, Level needs to be called. Afterwards, every singularity
relevant to q′ is transformed into a singularity relevant to q′′ (lines 10–12). The (isolated) duplicated state q′ is eventually
removed from Q (line 13).

Example 12 (Unify). Shown on the left side of Figure 9 is a configuration ofwhen the Unify procedure
is called by Quick Subset Construction (line 43) with input parameters q′ = F (to be removed) and q′′ =
G (to be preserved). The new configuration of  resulting from the unification of F and G is displayed on
the right side of the figure, where F has been removed, while all its entering/exiting transitions (along with
relevant singularities, omitted in the figure) have been moved to G. Note how G is eventually exited by two
b-transitions, which in principle would require generating a singularity (G, b). More generally, redirecting
towards q′′ the transitions exiting q′ may cause the transition function of q′′ to become nondeterministic,
which therefore requires the generation of new singularities for q′′. In fact, however, according to line 32 of
Quick Subset Construction, the creation of the new state q′ by New (cf. Section 4.3.3) invariably creates
all the singularities of q′ by means of the Enlarge auxiliary procedure (cf. Section 4.3.2). Consequently, when
q′′ inherits the singularities of q′, it also inherits the singularities that should be crated owing to the possible
new nondeterminism stemming in q′. In other words, there is no need for the creation of new singularities
for q′′.

DUSI and LAMPERTI 2107

Algorithm 7. Unify (auxiliary procedure)

1: procedure Unify(q′, q′′)
2: input: q′: a newly-created state in Q (scenario 2),
3: q′′: an existing state in Q where ‖q′′‖ = ‖q′‖,
4: side effects: all transitions and singularities relevant to q′ are inherited by q′′, whereas q′ is removed
5: begin
6: Replace the (single) transition ⟨q,𝓁, q′⟩ entering q′ with ⟨q,𝓁, q′′⟩, Level([(q′′, 𝜆(q) + 1)])
7: for all transition t = ⟨q′,𝓁′, q∗⟩ ∈ 𝛿q do
8: Replace t with ⟨q′′,𝓁′, q∗⟩, Level([(q∗, 𝜆(q′′) + 1)])
9: end for

10: for all singularity (q′,𝓁′) do
11: Replace (q′,𝓁′) with (q′′,𝓁′)
12: end for
13: Remove q′ from Q
14: end procedure

F I G U R E 9 Processing by the auxiliary procedure Unify applied to q′ = F and q′′ = G, where ||F|| = ||G||.

5 ALGORITHM EQUIVALENCE AND DFA IDENTITY

Massive experimentation has convincingly shown that Quick Subset Construction generates a DFA that is
SC-equivalent to the input NFA, in other words, that Quick Subset Construction is equivalent to Subset Construc-
tion, inasmuch it generates a DFA that is identical to the DFA generated by Subset Construction. Empirical evidence,
however, cannot prove the equivalence of the two algorithms conclusively. This is why a proof of correctness of Quick
Subset Construction is provided hereafter (Theorem 1), which shows that the DFA resulting from the repair actions
performed on the NFA by this algorithm is identical to the DFA generated from scratch by Subset Construction. The
proof makes use of the notion of a path of the algorithm.

Definition 2 (execution point and path). Let be an NFA applied to Quick Subset Construction and
let be the FA being processed by Quick Subset Construction. Leti, i ≥ 0, be a configuration ofwhen
a singularity is considered (in either line 6 or 20), and let 𝜎i be the configuration of the singularity list when
such a singularity is considered. The pair (i, 𝜎i) is an execution point of Quick Subset Construction.
The sequence [(0, 𝜎0), (1, 𝜎1), …] of execution points relevant to the processing of all the singularities is
the path of Quick Subset Construction when applied to .

Theorem 1. Let = (Σ,N, 𝛿n,n0,Fn) be an NFA, where every state is reachable from the initial state, a final
state is reachable from every state, and there is no (auto) 𝜀-transition ⟨n, 𝜀,n⟩.†† Let  = (Σ,D, 𝛿d, d0,Fd) be the

††These assumptions do not affect the generality of , as the removal of the unwanted states and transitions does not change the regular language of .

2108 DUSI and LAMPERTI

DFA generated by the application of Subset Construction to  (namely the DFA that is SC-equivalent to ),
and let ′ = (Σ,Q, 𝛿q, q0,Fq) be the FA resulting from the application of Quick Subset Construction on . We
have ′ = .‡‡

Proof. The proof of the theorem is grounded on Definitions 3,4, and Lemmas 1–7. ▪

Definition 3 (completable transition). Let (i, 𝜎i) be an execution point of Quick Subset Construction
and let ⟨q,𝓁, q′⟩, 𝓁 ≠ 𝜀, be a transition in i. If ||q′|| = 𝓁-mapping(||q||,), then ⟨q,𝓁, q′⟩ is complete, oth-
erwise the transition is incomplete. An incomplete transition ⟨q,𝓁, q′⟩ in i is completable if and only if 𝜎i
includes a singularity (q,𝓁).

Definition 4 (viability). Let (i, 𝜎i) be an execution point of Quick Subset Construction. If every
incomplete transition in i is completable, then the execution point (i, 𝜎i) is viable.

Lemma 1. Quick Subset Construction terminates.

Proof. By contradiction, assume that Quick Subset Construction may not terminate. Since no recur-
sive call is performed, this requires that a loop is executed endlessly. With regard to the auxiliary func-
tions/procedures, only Level includes a loop to be considered for possible nontermination, as the input
(singleton) listΛ is possibly extended within the loop whose termination requires the emptiness ofΛ. Assume
that Level does not terminate. Since each new pair (q′, 𝜆 + 1) appended to Λ in line 10 of Level is such that
q′ is a successive state of q (that is, a state reachable from q, the state relevant to the initial pair in Λ), sooner
or later, the same state q′ needs to be considered again in line 6, namely q. However, 𝜆 cannot be less than the
current level of q, as the level 𝜆 continues growing in the processing, in other words, the loop in Level must
terminate, a contradiction.

Hence, the only mode in which Quick Subset Construction may not terminate is by traversing an
endless path, namely  = [(0, 𝜎0), (1, 𝜎1), … (k, 𝜎k), …]. Let (i, 𝜎i), i ≥ 0, be an execution point in  .
Since both the set of states in i and the alphabet Σ are finite, 𝜎i is finite also, being an ordered set of pairs
(q,𝓁), where q is a state in i and 𝓁 a symbol in Σ. Besides, since the set of transitions in i is finite, the set
of possible execution points is certainly finite. Hence, a necessary condition for the path  to be infinite is
to reach an execution point at least twice, that is  = [… , (i, 𝜎i), … , (j, 𝜎j), …] where (i, 𝜎i) = (j, 𝜎j).
Notice that, since the processing of Quick Subset Construction is deterministic, if an execution point is
repeated, then the algorithm loops endlessly on this point (and all the other points within the loop). Hence,
since the set of execution points is finite, to prove that  is finite (that is, Quick Subset Construction
terminates), it suffices to show that every execution point cannot be reached more than once in the path . To
this end, we consider each of the three scenarios when Quick Subset Construction processes a singularity
(q,𝓁).

In scenario 0, the singularity being processed is (q0, 𝜀), while the execution point is (0, 𝜎0), that is, the
first one in the path. Since the singularity (q0, 𝜀) cannot be generated again subsequently, (0, 𝜎0) cannot be
reached again.

In scenario1, assuming an execution point (i, 𝜎i), the singularity (q,𝓁) to be processed is such that there
is no 𝓁-transition exiting q; thus, a transition ⟨q,𝓁, q′⟩ is generated, with q′ being possibly created. Notice
that, in subsequent processing, q′ cannot be unsafe, as a subsequent singularity (q,𝓁) is such that 𝜆(q) ≤ 𝜆(q).
Hence, the transition ⟨q,𝓁, q′⟩ cannot be deleted subsequently to possibly repeat the execution point (i, 𝜎i).
Even a subsequent unification of another state with q by Unify in a new execution point (j, 𝜎j), i < j, cannot
repeat (i, 𝜎i) because q will be exited by an 𝓁-transition, a condition that makes j different from i.

In scenario 2, similarly to scenario 1, assuming an execution point (i, 𝜎i), the generation of the new
transition ⟨q,𝓁, q′⟩ makes q′ safe in subsequent processing, so that this transition cannot be removed after-
wards. Hence, even a subsequent unification of another state with q by Unify in a new execution point (j, 𝜎j),
i < j, cannot repeat (i, 𝜎i) because either there will be a single 𝓁-transition exiting q (rather than several
ones) or ||q′|| will differ from the extension of the target state of the (single) transition exiting q ini; in other

‡‡In other words, when the same NFA is given in input to both Subset Construction and Quick Subset Construction, the DFA generated
from scratch by Subset Construction is identical to the DFA obtained by means of the repair actions performed by Quick Subset Construction.

DUSI and LAMPERTI 2109

words, (i, 𝜎i) cannot be reached again. In conclusion, assuming that the algorithm does not terminate leads
to a contradiction; hence, Quick Subset Construction does terminate. ▪

Lemma 2. Every state in ′ is reachable from the initial state.

Proof. The proof is by induction on the (finite) path of Quick Subset Construction,
[(0, 𝜎0), (1, 𝜎1), … , (m, 𝜎m)].

(Basis) Every state in 0 is reachable from the initial state. Since 0 = , this is true by assumption.
(Induction) If every state in i, i ≥ 0, is reachable from the initial state, then every state in i+1 is reachable

from the initial state. Note that the only way to have a disconnection from the initial state q0 is by removal
of transitions, which may hold in scenarios 0 and 2 only. In scenario 0, all the 𝜀-transitions exiting q0 are
removed (line 9). Among the target states of the 𝜀-transitions removed, the states that are not unsafe keep being
reached from q0. Apparently, instead, all the (unsafe) states in ̄U (including the target states of the 𝜀-transitions
removed), might become disconnected from q0. Moreover, since all states in ̄U are removed along with their
entering/exiting transitions (line 17), the target states of these exiting transitions might be disconnected also.
However, the transitions ⟨q0,𝓁, q⟩ inserted in line 11 make these target states still reachable from q0. Finally,
the transitions ⟨q,𝓁,u⟩ removed in line 14 are irrelevant to the disconnection of the target (unsafe) states
u ∈ ̄U because these states are removed and, as shown above, the removal of their exiting transitions does
not cause any disconnection from q0. The actions performed in scenario 0 to save the connection with q0
are somewhat replicated in scenario 2, with the exception of the generation of a new transition ⟨q,𝓁, q′⟩
(line 42). In line 33, all the 𝓁-transitions exiting q are removed. Among the target states of the 𝓁-transitions
removed, the states that are not unsafe keep being reached from q and, hence, from q0. All the (unsafe) states
in ̄U (including the target states of the 𝓁-transitions removed), instead, might become disconnected from
q, and, consequently, from q0. Besides, since all states in ̄U are removed along with their entering/exiting
transitions (line 41), the target states of these exiting transitions might be disconnected also. However, the
transitions ⟨q′,𝓁′, q′′⟩ inserted in line 35 make these target states still reachable from q and, hence, from q0.
Finally, the transitions ⟨q′′,𝓁′,u⟩ removed in line 38 are irrelevant to the disconnection of the target (unsafe)
states u ∈ ̄U because these states are removed and, as shown above, the removal of their exiting transitions
does not cause any disconnection from q0. Finally, the possible unification of the new state q′ with an existing
state q′′ in line 43 by means of Unify is apparently another source of possible disconnection. Based on Unify,
the transition entering q′ as well as all the transitions exiting q′ are moved to q′′ (lines 6 and 8, respectively),
whereas q′ is eventually removed (line 13). However, since q′′ is reachable from q0, all the target states of the
transitions exiting q′ and inherited by q′′ continue being reachable from q0. ▪

Lemma 3. Every transition in ′ is complete.

Proof. Let  = [(0, 𝜎0), (1, 𝜎1), … , (m, 𝜎m)] be a path of Quick Subset Construction, which, accord-
ing to Lemma 1, is finite, in other words,m = ′ and 𝜎m is empty. We show by induction that every execution
point (i, 𝜎i), i ∈ [0 ..m], is viable (cf. Definition 4).

(Basis) Every incomplete transition in 0 is completable. In fact, 0 = and 𝜎0 is the list of initial singu-
larities (cf. Section 4.1), which are relevant to the points of nondeterminism in . Apart from the singularity
(q0, 𝜀), which is however irrelevant to the notion of completeness as it refers to 𝜀-transitions exiting q0, each
other singularity (q,𝓁) is associated with the 𝓁-transitions exiting q, which are therefore incomplete. In fact,
either several 𝓁-transitions exit q or we have ⟨q,𝓁, q′⟩ where q′ is exited by an 𝜀-transition. In either case,
||q′|| ≠ 𝓁-mapping(||q||,), that is, these transitions are incomplete. Based on Definition 3, however, these
incomplete transitions are completable owing to the initial singularities (q,𝓁).

(Induction) If every incomplete transition ini is completable, i ≥ 0, then every incomplete transition ini+1
is completable. We have to show that all incomplete𝓁-transitions ini+1 are still completable once the relevant
singularity (q,𝓁) has been processed in either scenario 1 or 2. In scenario 1, each of the two transitions
generated in line 24 and 27, respectively, is complete. In scenario 2, the transition generated in line 42 is
complete, while every incomplete transition generated in line 35 is completable, as the creation of q′ in line 32
comes with the relevant singularities. If unification comes into play (line 43), then the inheritance of the sin-
gularities (q′,𝓁) relevant to q′ by q′′ (the state that has same extension as q′) makes each incomplete transition

2110 DUSI and LAMPERTI

(q′′,𝓁) still completable. Hence, all incomplete transitions ini+1 are completable, in other words, (i+1, 𝜎i+1)
is viable.

Eventually, since in ′ = m every incomplete transition is completable and 𝜎m is empty (no singularity
exists), no transition is incomplete (otherwise a singularity would exist), in other words, every transition in
′ is complete. ▪

Lemma 4. ′ is deterministic.

Proof. This is a consequence of Lemma 3. By contradiction, assume that ′ is nondeterministic. As such,
′ either includes an 𝜀-transition or a state q that is exited by several 𝓁-transitions. But, on the one hand,
no 𝜀-transition may exist in ′ because scenario 0 removes all the 𝜀-transitions exiting the initial state q0,
while all other 𝜀-transitions in  are eliminated by the relevant initial singularities, after which no other
𝜀-transition may be generated. On the other hand, if there are in ′ two 𝓁-transitions ⟨q,𝓁, q′⟩ and ⟨q,𝓁, q′′⟩
exiting q, where ||q′|| ≠ ||q′′||, then, owing to Lemma 3, ||q′|| = ||q′′|| = 𝓁-mapping(||q||,), a contradiction.
Hence, nondeterminism cannot hold in ′, in other words, ′ is deterministic. ▪

Lemma 5. The extension of the initial state of ′ equals the extension of the initial state of .

Proof. We have to show that ||q0|| = ||d0||. Based on Subset Construction, ||d0|| = 𝜀-closure(n0,), where
n0 is the initial state of . If n0 is not exited by any 𝜀-transition in , then ||d0|| = {n0} = ||q0||, as there is
no 𝜀-singularity (q0, 𝜀) in , in other words, scenario 0 is not applicable. If, instead, n0 is exited by at least
one 𝜀-transition, then there is the initial singularity (q0, 𝜀) in , which, based on scenario 0, provokes in
line 8 the enlargement of ||q0|| to N = 𝜀-closure(n0,), as Q is the set of singleton states in  corresponding
to the states in 𝜀-closure(n0,). Since the extension of q0 cannot be changed afterwords by Quick Subset
Construction, we have in any case ||q0|| = ||d0||. ▪

Lemma 6. The transition function of ′ equals the transition function of .

Proof. Let d ∈ D and q ∈ Q, where ||d|| = ||q||. We first show that the transition function of d (set of transitions
exiting d in) equals the transition function of q (set of transitions exiting q in ′).

(Soundness) If ⟨q,𝓁, q′⟩ ∈ 𝛿q, then ⟨d,𝓁, d′⟩ ∈ 𝛿d and ||d′|| = ||q′||. Notice that, if an 𝓁-transition exits q
in ′, then ||q|| includes a state n that is exited by an 𝓁-transition in  . In fact, this is certainly true ini-
tially, when  = . Subsequently, the enlargement of ||q0|| in scenario 0 along with the generation of the
transitions exiting q0 (line 11), as well as the creation of the new state q′ in scenario 2 along with the gener-
ation of the transitions exiting q′ (line 35), preserve this property, which holds in scenario 1 also. Therefore,
based on Lemma 3, ||q′|| = 𝓁-mapping(||q||,). On the other hand, since ||d|| = ||q||, we have n ∈ ||d||; hence,
⟨d,𝓁, d′⟩ ∈ 𝛿d, where ||d′|| = ||q′||.

(Completeness) If ⟨d,𝓁, d′⟩ ∈ 𝛿d, then ⟨q,𝓁, q′⟩ ∈ 𝛿q and ||q′|| = ||d′||. If ⟨d,𝓁, d′⟩ is also in , then ||d|| =
{n} and ||d′|| = {n′}. Thus, since the transition is deterministic already, no singularity (q,𝓁) is generated by
Quick Subset Construction; hence, ⟨q,𝓁, q′⟩ ∈ 𝛿q, where ||q′|| = ||d′|| = {n′}. If, instead, either ||d|| is not
a singleton or ||d|| = {n} where 𝓁-mapping({n},) is not a singleton (nondeterminism), then notice that,
once q is generated, if a state n belonging to ||q|| is exited by an 𝓁-transition in , then either q is exited by
an 𝓁-transition or there is a singularity (q,𝓁). Hence, in any case, based on Lemma 3, ⟨q,𝓁, q′⟩ ∈ 𝛿q, where
||q′|| = ||d′||.

Since the transition function of d equals the transition function of q, based on Lemma 5, it follows
inductively that 𝛿d = 𝛿q. ▪

Lemma 7. The set of states of ′ equals the set of states of .

Proof. This is a consequence of Lemmas 5 and 6.
Based on the lemmas above, assuming that the set of final states is computed correctly by Quick Subset

Construction, the proof of Theorem 1 is eventually grounded on these facts: Quick Subset Construc-
tion always terminates (Lemma 1),′ is deterministic (Lemma 4), each state in′ is reachable from the initial
state (Lemma 2), the initial state of ′ equals the initial state of  (Lemma 5), the set of states in ′ equals
the set of states in (Lemma 7), the transition function of ′ equals the transition function of (Lemma 6).▪

DUSI and LAMPERTI 2111

6 EXPERIMENTATION

Both Subset Construction and Quick Subset Construction were implemented in a software framework by means
of the C++ programming language, under the GNU/Linux 5.4.0-42-generic x86_64 (Ubuntu 18.04.5 LTS) operating sys-
tem, on a machine with Intel(R) Xeon(R) Gold 6140M CPU (2.30GHz) and 128 GB of working memory.§§ This framework
was also required to generate pseudo-random test cases based on a variety of user-defined parameters, as well as to analyze
the aggregate data generated by the relevant experiments. The software framework was exploited mainly to:

1. Verify the equivalence of Quick Subset Construction and Subset Construction empirically;
2. Compare the performance of the two algorithms in terms of processing time;
3. Suggest the conditions under which Quick Subset Construction may perform better than Subset Construc-

tion.

The main parameters considered for the pseudo-random generation of NFAs are:

• Number of states;
• Branching factor: the average number of transitions exiting a state;
• Epsilon density: the percentage of 𝜀-transitions;
• Height: the number of strata composing a stratified NFA (cf. Section 6.1);
• Determinism: the percentage of contiguous strata with deterministic transition function in a stratified NFA (cf.

Section 6.1);¶¶

• Alphabet cardinality: the number of labels in the alphabet;
• Final density: the percentage of final states.

Once implemented the framework, a phase of experimentation was conducted in order to test the correctness of
Quick Subset Construction empirically and to compare its performance with that of Subset Construction. A
large number of experiments were carried out on various typologies of finite automata based on different parameter
configurations.

6.1 Preliminaries

A recurring conjecture of this article is that the raison d’être of Quick Subset Construction lies in its ability to out-
perform Subset Construction when the NFA is large and the nondeterminism affecting the NFA can be removed by
a limited number of repair actions (as compared to the size of the SC-equivalent DFA). Intuitively, these two conditions
combined allow Quick Subset Construction to operate more efficiently than Subset Construction does because
only a (possibly tiny) fraction of the NFA is updated, thereby leaving a (possibly large) deterministic portion of the NFA
untouched. As pointed out in Section 4.1, however, the number of repair actions actually performed (that is, the number
of singularities processed) is not directly related to the quantity of nondeterminism in the NFA (that is, the number of
initial singularities, cf. Definition 1). In other words, limited quantity of nondeterminism in an NFA does not necessarily
translate into limited processing by Quick Subset Construction: much depends on how the states are connected to one
another. For example, if a singularity affects the initial state of the NFA, in the worst case, all the states of the NFA may be
involved in the repair actions owing to the cascade effect of the generation of new singularities (cf. the experimentation
on bad NFAs illustrated in Section 6.6).

A more effective notion roughly suggesting the amount of processing required by Quick Subset Construction in
comparison with the processing required by Subset Construction is the impact.

§§The software framework is open source and available at https://github.com/MicheleDusi/QuickSubsetConstruction.
¶¶Stratified NFAs allow for tuning the degree of nondeterminism. Specifically, varying the determinism parameter in different problem configurations
is key to varying the amount of singularities processed by Quick Subset Construction, which is directly related to the processing time spent to
complete the task. This configuration parameter, however, should not be confused with the notion of quantity of nondeterminism introduced in
Section 4.1 (cf. Definition 1) which is applicable to any NFA.

https://github.com/MicheleDusi/QuickSubsetConstruction

2112 DUSI and LAMPERTI

Definition 5 (impact). Let  be an NFA and  the corresponding SC-equivalent DFA. The impact ℑ of
Quick Subset Construction to transform  into  is the ratio between the number n

𝜎
of singularities

processed and the number n
𝛿

of transitions in, namely

ℑ = n
𝜎

n
𝛿

. (7)

Roughly, the smaller the impact, the more convenient Quick Subset Construction over Subset Construc-
tion.## We can reformulate the statement above as follows: limited quantity of nondeterminism in the NFA does not
necessarily translate into limited impact.

A precise measure of the benefit (if any) in using Quick Subset Construction is provided by comparing the actual
processing time spent by both algorithms in the determinization of the same NFA. The notion of gain serves this purpose.

Definition 6 (gain). Let tSC and tQSC denote the processing time of Subset Construction and Quick
Subset Construction, respectively, for generating the DFA that is SC-equivalent to the same NFA. The gain
 of Quick Subset Construction,  ∈ [−1 .. 1], is the relative portion of processing time that is either saved
(if positive) or wasted (if negative) by Quick Subset Construction over Subset Construction, namely

 =
tSC − tQSC

max
(

tSC, tQSC
) . (8)

The gain provides a precise information on how much an algorithm outperforms the other. The convenience in using
Quick Subset Construction versus Subset Construction occurs when the gain is positive: the larger the gain, the
better the convenience. Like the impact, the gain too is measured a posteriori, after the termination of both algorithms.||||

In the experimentation, five classes of NFAs have been considered, namely random NFAs, acyclic NFAs, stratified
NFAs, weak NFAs, and Bad NFAs. Experimental results for each NFA class considered are shown hereafter.

6.2 Random NFAs

As the name suggests, a random NFA is generated (pseudo-)randomly based on given configuration parameters. We
present hereafter the results of three experiments on random NFAs, named R1, R2, and R3, respectively, where each exper-
iment is designed to compare the performance of Quick Subset Construction with that of Subset Construction
by varying one of two relevant configuration parameters, specifically the number of NFA states and the 𝜀-density, while
keeping the other parameters fixed.***

The results of each experiment are spread over two graphs (e.g., Figure 12). In the left-hand graph, the x-axis indicates
the range of the varying parameter, the y-axis on the left indicates the range of the processing time, and the y-axis on the
right indicates the range of the gain (cf. Definition 6 in Section 6.1). Three curves are plotted on that graph: the processing
time of Subset Construction, the processing time of Quick Subset Construction, and the gain. The processing
time indicated corresponds to an average of 100 different executions of the corresponding determinization algorithm (this
is true for all the experiments, not only for random NFAs), each one relevant to a different NFA that has been generated
based on the same parameter values.

In the second (right-hand) graph, which is specific to Quick Subset Construction only, the x-axis indicates the
range of the varying parameter (the same as in the left-hand graph), while the y-axis indicates the range of the singularities
processed. Displayed on the graph are the bars indicating the (average) number of singularities processed for each different
value of the varying parameter. Each bar incorporates a triangle representing the number of initial singularities. A triangle

##The impact, however, can be measured only a posteriori, when Quick Subset Construction terminates; therefore, it cannot be exploited a priori
for measuring the convenience in using that algorithm instead of Subset Construction, nor does it provide a precise measure of that convenience,
as processing a singularity requires in general more time than creating a transition by Subset Construction (cf. the discussion in Section 6.8).
||||In contrast with the gain, however, the impact requires only the execution of Quick Subset Construction, which provides both the number of
singularities processed and the number of transitions in the output DFA.
***These parameters are the branching factor (3), the alphabet cardinality (10), and the final density (0.1). Note how increasing the branching factor is
bound to increase the quantity of nondeterminism in the NFA, as well as the impact. Conversely, extending the cardinality of the alphabet is likely to
decrease the quantity of nondeterminism, as well as the impact. Instead, the percentage of final states is irrelevant to the impact.

DUSI and LAMPERTI 2113

− 1

0

1

G
ai
n

100 200 300 400 500 600 700 800 900 1,000

1

2

3

4

5

Number of NFA states

T
im

e
(s
)

SC

QSC

Gain

100 200 300 400 500 600 700 800 900 1,000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

·104

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 10 Results of experiment R1 (random NFAs): 𝜀-density = 0 and number of NFA states varying in range [100 .. 1000].

− 1

0

1

G
ai
n

100 200 300 400 500 600 700 800

2

4

6

8

10

Number of NFA states

T
im

e
(s
)

SC

QSC

Gain

100 200 300 400 500 600 700 800
0

500

1,000

1,500

2,000

2,500

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 11 Results of experiment R2 (random NFAs): 𝜀-density = 0.5 and number of NFA states varying in range [100 .. 800].

pointing upwards (as for all bars in Figure 10) indicates that the total number of singularities processed is larger than
the number of initial singularities. If, instead, the triangle points downwards, then the actual number of singularities
processed is smaller than the number of initial singularities (cf. Figure 17), a condition that may appear inconsistent. The
explanation is simple: a singularity (q,𝓁) may be removed from the singularity list before being processed owing to the
removal of state q, which comes with the removal of the associated singularities also.

The results of the first experiment (R1) are displayed in Figure 10, where the varying parameter is the number of NFA
states, while no 𝜀-transitions are involved (𝜀-density = 0). Based on the left-hand graph, Quick Subset Construction
compares with Subset Construction (the two curves are practically identical, causing the gain to be approximately
zero). Based on the right-hand graph in Figure 10, note how the amount of singularities processed by Quick Subset
Construction increases linearly with the number of NFA states, which is consistent with an increasing processing time.

Displayed in Figure 11 are the results of the second experiment (R2), where the varying parameter is again the number
of NFA states, while there are 50% of 𝜀-transitions (𝜀-density = 0.5). Similarly to the first experiment, Quick Subset
Construction compares with Subset Construction, with the gain being approximately zero. Also, the number of
singularities processed grows linearly with the number of NFA states.

Finally, shown in Figure 12 are the results of R3, the third experiment, where the varying parameter is the 𝜀-density
(percentage of 𝜀-transitions), ranging from 0 (no 𝜀-transitions) and 1 (100% of 𝜀-transitions), while the number of NFA

2114 DUSI and LAMPERTI

− 1

0

1

G
ai
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

Epsilon density

T
im

e
(s
)

SC

QSC

Gain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

·104

Epsilon density

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 12 Results of experiment R3 (random NFAs): Number of NFA states = 200 and 𝜀-density varying in range [0 .. 1].

states is fixed (200). In this case, Subset Construction performs slightly better than Quick Subset Construction.
Both time curves of the algorithms, however, grow monotonically up to a peak (when the 𝜀-density is approximately 0.3),
and then decrease almost symmetrically when the 𝜀-density grows further. Unsurprisingly, the trend of the number of
singularities processed mimics the trend of the processing time, with a peak when the 𝜀-density is 0.3.

The experimental results presented in Figure 12 raise a natural question: why the curve of the processing time of both
algorithms is spire-shaped when varying the 𝜀-density? Considering Subset Construction, when no 𝜀-transitions exist
in the NFA, nondeterminism is caused by multiple transitions with the same label 𝓁 and exiting the same state. Hence,
only the target states of these transitions (the 𝓁-mapping) will be embodied in the extension of the corresponding DFA
target state. Afterwards, inserting an increasingly percentage of 𝜀-transitions is bound to increase the quantity of nonde-
terminism and to make the extensions of the DFA states increasingly large, as the 𝓁-mapping of a DFA state is likely to
include more and more states. This results in a larger number of states as well as a larger number of transitions in the DFA.
However, after a certain threshold (about one third of 𝜀-transitions), the extensions of the DFA states are so large that
the number of actual subsets keeps decreasing until it becomes just one (when the 𝜀-density is 1), whose extension will
include the whole set of NFA states. On the other hand, considering Quick Subset Construction, we need to recall
how initial singularities are created when 𝜀-transitions occur. Based on the second rule defined in Section 4.1, if an NFA
state n′ is exited by an 𝜀-transition, then, for each transition ⟨n,𝓁,n′⟩ entering n′, where 𝓁 ≠ 𝜀, a singularity (n,𝓁) is cre-
ated. Hence, a single 𝜀-transition is bound to cause the creation of several (possibly many) singularities, whose processing
make Quick Subset Construction to slow down. Now, consider the bar graph displayed on the right side of Figure 12,
indicating the number of singularities processed when varying the 𝜀-density. Unsurprisingly, the number of singularities
grows up to the same threshold of 𝜀-density in which the processing time peaks, and then decreases monotonically when
the 𝜀-density exceeds that value. The point is, on the one hand, increasing a small 𝜀-density causes the creation of more
and more singularities (as pointed out above); on the other hand, however, the larger the number of 𝜀-transitions, the
smaller the probability that a state n′ exited by an 𝜀-transition is entered by a non 𝜀-transition ⟨n,𝓁,n′⟩, thereby causing
a continuous decrease in the number of singularities created and, hence, a shorter and shorter processing time.

In summary, the experimental results presented above suggest that there is no significant difference in the perfor-
mance of Subset Construction and Quick Subset Construction when they are applied to random NFAs. This
means that the number of singularities processed is comparable to the number of transitions in the SC-equivalent DFA
(impact ≃ 1).

6.3 Acyclic NFAs

As the name suggests, acyclic NFAs do not include any cyclic path of transitions. Two experiments have been con-
ducted on acyclic NFAs, namely A1 and A2, which are designed to compare Quick Subset Construction with Subset
Construction by varying either the number of NFA states or the 𝜀-density.

DUSI and LAMPERTI 2115

− 1

0

1

G
ai
n

200 400 600 800 1,000 1,500 2,000 2,500

1

2

3

4

5

6

Number of NFA states

T
im

e
(s
)

SC

QSC

Gain

200 400 600 800 1,000 1,500 2,000 2,500
0

0.2

0.4

0.6

0.8

1

·104

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 13 Results of experiment A1 (acyclic NFAs): 𝜀-density = 0 and number of NFA states varying in range [200 .. 2500].

− 1

0

1

G
ai
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

Epsilon density

T
im

e
(s
)

SC

QSC

Gain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Epsilon density

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 14 Results of experiment A2 (acyclic NFAs): Number of NFA states = 1000 and 𝜀-density varying in range [0 .. 1].

The results of the fist experiment (A1) are displayed in Figure 13, where no 𝜀-transitions are involved, while the number
of NFA states is varying. Based on the left-hand graph, Quick Subset Construction is invariably outperformed by
Subset Construction, with an almost constant (negative) gain. As expected, the right-hand graph in Figure 13 shows
how the number of singularities processed by Quick Subset Construction follows the trend of its processing time.

Shown in Figure 14 are the results of the second experiment (A2), where the varying parameter is the 𝜀-density ranging
from 0 (no 𝜀-transitions) to 1 (all 𝜀-transitions), while the number of states is kept constant (1000). Even in this experiment,
Quick Subset Construction is outperformed by Subset Construction, in a way similar to experiment R3 (random
NFAs), with a time peak around the middle of the 𝜀-density. The number of the singularities processed shown in the
right-hand graph is consistent with the trend of the processing time of Quick Subset Construction.

The results of the two experiments above suggests that Quick Subset Construction is not convenient when NFAs
are acyclic. But why? A plausible explanation is that Quick Subset Construction was conceived for cyclic NFAs.
In a sense, this algorithm is oversized when applied to acyclic NFAs, mainly because the determinization of an acyclic
NFA does not require the management of the level of states. For example, testing the unsafety of a state (cf. the Unsafe
function in Section 4.3.1) does not require any reasoning on the levels of the parent states: a state is unsafe simply when
it is not entered by any other transition. Also, as shown in the left-hand side of Figure 33 in Section 6.8, the impact (cf.

2116 DUSI and LAMPERTI

F I G U R E 15 Stratified NFAs.

Definition 5) is invariably high (about 0.8), which is bound to make Quick Subset Construction not so convenient
regardless of its implementation.

To possibly appreciate Quick Subset Construction over Subset Construction, we need to consider NFAs
whose determinization is low-impact. Stratified NFAs serve this purpose.

6.4 Stratified NFAs

Since Quick Subset Construction is bound to outperform Subset Construction when the impact is low, that
is, when the number of singularities processed is considerably smaller than the number of the transitions in the
SC-equivalent DFA, we have considered a class of NFAs that allows for an indirect control on the impact, called stratified
NFAs.

Definition 7 (stratified NFA). Let  be an NFA, with level of states in the range [0 ..m]. A stratum of
 at level 𝜆, namely S

𝜆

, is the set of states of  at level 𝜆. The NFA  is stratified if and only if every
transition exiting a state s enters a state s′ that is either in the same stratum of s or in the next stratum,
namely

∀⟨s,𝓁, s′⟩
(
𝜆(s′) = 𝜆(s) ∨ 𝜆(s′) = 𝜆(s) + 1

)
. (9)

The height of is the number of strata in , that is m + 1.

Example 13 (stratified NFA). Depicted on the left side of Figure 15 is the same NFA shown on the left side
of Figure 1. According to Definition 7, this NFA is stratified in four strata, namely S0, … ,S3. Notice how the
first stratum S0 involves just the initial state, a property that holds indistinctly for every stratified NFA.

Proposition 1. Let be a stratified NFA, let be the DFA SC-equivalent to , and let ⟨d,𝓁, d′⟩ be a transition
in. Then,

∀n′ ∈ ||d′||
(
𝜆(n′) ≥ min{𝜆(n) | n ∈ ||d||}

)
. (10)

This property can be proven by considering that, based on Subset Construction, ||d′|| is the 𝓁-mapping of ||d|| in
 . Owing to the property that a transition exiting a state n in cannot reach a state in an upper stratum, all the NFA
states in ||d′|| will have a level that cannot be shorter than the minimum level of the states in ||d||.

Based on Proposition 1, it follows that the actual set of states in the SC-equivalent DFA of is constrained by the con-
dition expressed in (10), which therefore is bound to limit the number of possible states, that is, the size of the equivalent
DFA and, ultimately, the impact of Quick Subset Construction. In order to actually control the impact, it suffices
confining the nondeterminism to a suffix of the stratified NFA, thereby leaving the rest of the NFA (a prefix of strata)
deterministic.

Definition 8 (determinism in a stratified NFA). Let be a stratified NFA with height h. The determinism
of  is a number Δ, 0 ≤ Δ ≤ 1, defined as follows. If there is a stratum Sk in  , 0 ≤ k < h, such that the
transition function of every state in all strata S0, … ,Sk is deterministic and either k = h − 1 or the transition

DUSI and LAMPERTI 2117

− 1

0

1

G
ai
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

1

2

3

4

5

6

Number of NFA states

T
im

e
(s
)

SC

QSC

Gain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0

200

400

600

800

1,000

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 16 Results of experiment S1 (stratified NFAs): 𝜀-density = 0, height = 100, determinism = 0, and number of NFA states
varying in range [200 .. 10,000].

function of the states in Sk+1 is in general nondeterministic, then

Δ = k + 1
h

. (11)

Otherwise, Δ = 0.

Intuitively, the determinism of is the percentage of contiguous strata composing a prefix of in which the tran-
sition function is deterministic. Consequently, that portion of  will not involve any singularities, thereby remaining
untouched by the execution of Quick Subset Construction.

Example 14 (determinism in a stratified NFA). Shown on the right side of Figure 15 is a slight variation
of the NFA on the left side, where the label of the transition ⟨2, a, 4⟩ has been replaced by b. This allows the
stratified NFA to have all states in both strata S0 and S1 with a deterministic transition function. Based on
Definition 8, the determinism of this stratified NFA is

Δ = k + 1
h

= 1 + 1
4

= 0.5. (12)

Note how the determinism of the NFA on the left side of Figure 15 is 0.25 as, based on Definition 8, we
have k = 0.

The degree of determinism in a stratified NFA is key to tuning the impact of Quick Subset Construction. Roughly,
based on Proposition 1, the larger the determinism, the smaller the number of states in the SC-equivalent DFA and,
consequently, the smaller the impact. In other words, we can indirectly have control on the impact by varying the degree
of determinism in the stratified NFA.

We present hereafter the results of five experiments on stratified NFAs, named S1, … , S5, where each experiment is
designed to compare the performance of Quick Subset Construction with that of Subset Construction by varying
one of the relevant configuration parameters, specifically the number of NFA states, the 𝜀-density, the height of the NFA
(number of strata), and the degree of determinism in the NFA, while keeping the other three parameters fixed.

Displayed in Figure 16 are the results of the first experiment (S1), where the varying parameter is the number of NFA
states, while no 𝜀-transitions are involved (𝜀-density = 0). Based on the left-hand graph, Quick Subset Construction
outperforms Subset Construction with almost constant gain of approximately 0.5. In other words, the execution of
Quick Subset Construction takes about 50% less time than Subset Construction does to perform the determiniza-
tion task. Based on the right-hand graph in Figure 16, note how the amount of singularities processed by Quick Subset
Construction increases with the number of NFA states.

2118 DUSI and LAMPERTI

− 1

0

1

G
ai
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

7

Epsilon density

T
im

e
(s
)

SC

QSC

Gain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1,000

1,500

2,000

Epsilon density

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 17 Results of experiment S2 (stratified NFAs): Number of NFA states = 10,000, height = 1000, determinism = 0, and
𝜀-density varying in range [0 .. 1].

The results of the second experiment (S2) are displayed in Figure 17, where the varying parameter is the 𝜀-density
(percentage of 𝜀-transitions), while the number of NFA states is fixed (10,000). In contrast with experiment S1 (cf.
Figure 16), Quick Subset Construction outperforms Subset Construction only up to a certain value of 𝜀-density
(approximately, 15% of 𝜀-transitions), beyond which it is increasingly outperformed by Subset Construction, as clearly
indicated by a negative gain which becomes overwhelmingly so when the 𝜀-density is approaching the maximum value
(100% of 𝜀-transitions).

Note how, in contrast with the results presented in Figure 12 of a similar experiment for random NFAs (R3),
the processing time of Subset Construction is very different from that of Quick Subset Construction, as it
decreases monotonically with increasing 𝜀-density, owing presumably to the particular topology of stratified NFAs.
In fact, according to Proposition 1, the extension of the states in the SC-equivalent DFA is constrained by con-
dition (9), which limits the number of possible subsets, a property that does not hold for random NFAs. Hence,
increasing the percentage of 𝜀-transitions is bound to generate in the equivalent DFA a smaller number of states
(with larger extension), as well as a smaller number of transitions. By contrast, the number of initial singulari-
ties created according to the second rule in Section 4.1 and processed by Quick Subset Construction does not
depend on the stratification of the NFA and, therefore, a wave-shaped curve (substantially similar to the spire-shaped
curve in Figure 12) is produced for the same reasons discussed in Section 6.2 for experiment R3. Also, based on
the bar graph displayed on the right side of Figure 17, note how there are executions of Quick Subset Con-
struction in which the number of singularities processed is smaller than the number of initial singularities, mean-
ing that a subset of the initial singularities are removed before being processed owing to the removal the states
associated.

Shown in Figure 18 are the results of S3, the third experiment, where the varying parameter is the height (ranging in
[10 .. 10,000]), while the number of NFA states is fixed (10,000), as well as the 𝜀-density (0.5). According to the left-hand
graph, Quick Subset Construction is outperformed by Subset Construction, with approximately a constant neg-
ative gain of about −0.6. Apparently, the large percentage of 𝜀-transitions (half of all transitions) is bound to degrade
the performance of Quick Subset Construction to such an extent that it is outperformed by Subset Construc-
tion considerably. This conjecture may be tested by means of a similar experiment in which 𝜀-transitions are missing (cf.
experiment S4).

Experiment S4 is very similar to experiment S3. The only difference lies in the lack of 𝜀-transitions
(𝜀-density = 0), as shown in Figure 19. Removing the 𝜀-transitions makes Quick Subset Construction to
increasingly outperform Subset Construction. This is corroborated by the right-hand side diagram, which
shows that the number of singularities processed decreases when the height increases, thereby reducing the
impact.

The last experiment (S5) is meant to have control on the impact indirectly by leveraging the degree of determinism
in the NFA. As shown in Figure 20, despite a fixed 10% of 𝜀-transitions, Quick Subset Construction outperforms

DUSI and LAMPERTI 2119

− 1

0

1

G
ai
n

101 102 103 104

1

2

3

4

5

6

Height

T
im

e
(s
)

SC

QSC

Gain

101 102 103 104
0

500

1,000

1,500

2,000

2,500

Height

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 18 Results of experiment S3 (stratified NFAs): Number of NFA states = 10,000, 𝜀-density = 0.5, determinism = 0, and height
varying in range [10 .. 10,000].

− 1

0

1

G
ai
n

101 102 103 104

1

2

3

4

5

6

7

8

Height

T
im

e
(s
)

SC

QSC

Gain

101 102 103 104
0

200

400

600

800

1,000

1,200

1,400

Height

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 19 Results of experiment S4 (stratified NFAs): Number of NFA states = 10,000, 𝜀-density = 0, determinism = 0, and height
varying in range [10 .. 10,000].

− 1

0

1

G
ai
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

7

8

Determinism

T
im

e
(s
)

SC

QSC

Gain

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1,000

1,200

1,400

Determinism

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 20 Results of experiment S5 (stratified NFAs): Number of NFA states = 10,000, 𝜀-density = 0.1, height = 1000, and
determinism varying in range [0 .. 1].

2120 DUSI and LAMPERTI

Subset Construction with increasing gain. This result is consistent with the right-hand graph, which shows how the
number of singularities processed decreases linearly with an increasing determinism. As conjectured above, a stratified
NFA with a deterministic prefix of contiguous strata is bound to reduce the set of DFA states because the extension of
these states cannot include any NFA state in the deterministic prefix. The larger the determinism, the smaller the impact
and, consequently, the shorter the processing time.

In summary, the experimental results for stratified NFAs suggest that Quick Subset Construction outperforms
Subset Construction when either 𝜀-transitions are missing or determinism in the NFA is high (cf. Definition 8).

In the next section, we consider a different class of NFAs in which the nondeterminism is localized in the transition
function of a single state, called weak NFAs.

6.5 Weak NFAs

In a weak NFA, nondeterminism is either caused by one 𝜀-transition or by two 𝓁-transitions exiting the same (single)
state. A weak NFA may be generated starting from a DFA that is extended with a single transition exiting a state d with
either label 𝜀 or with a label 𝓁 of the alphabet which is the same of another transition already exiting d. In other words,
the transition inserted is either ⟨d, 𝜀, d′⟩, where d′ ≠ d, or ⟨d,𝓁, d′⟩, where 𝓁 ≠ 𝜀 and there is another transition ⟨d,𝓁, d′′⟩
with d′ ≠ d′′.

A weak NFA is reminiscent of an environment that is continuously modeled by a learning robot (cf. Section 1), where a
DFA (the model of the environment) is extended with some transitions/states that cause the DFA to be transformed into an
NFA, thereby requiring on-the-fly determinization of an NFA at each new interaction of the robot with the environment.

The results of three experiments on weak NFAs are presented, namely W1, W2, and W3, where each experiment is
designed to compare the performance of Quick Subset Construction with that of Subset Construction by varying
the number of NFA states, while keeping the other relevant parameters fixed. Since the NFAs are weak, that is, the non-
determinism affects the transition function of a single state, a small impact of Quick Subset Construction is expected
and, hence, a large gain.

The results of experiment W1 are shown in Figure 21, where in each NFA the nondeterminism is caused by a single
𝜀-transition, while the number of NFA states ranges in [200 .. 2500]. While the processing time of Subset Construction
grows rapidly with the size of the NFA, Quick Subset Construction performs much better, with a processing time
growing slowly. This result is corroborated by the limited number of singularities processed (right side of Figure 21),
which is of the order of tens, despite the number of states reaching the order of thousands. As a result, the gain is close
to 1 (cf. the left side of Figure 21), meaning that Quick Subset Construction is actually much faster than Subset
Construction.

− 1

0

1

G
ai
n

200 400 600 800 1,000 1,500 2,000 2,500

0.5

1

1.5

2

Number of NFA states

T
im

e
(s
)

SC

QSC

Gain

200 400 600 800 1,000 1,500 2,000 2,500
0

10

20

30

40

50

60

70

80

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 21 Results of experiment W1 (weak NFAs): One 𝜀-transition, one state with nondeterministic transition function, and
number of NFA states varying in range [200 .. 2500].

DUSI and LAMPERTI 2121

− 1

0

1

G
ai
n

102 103 104

10− 2

10− 1

100

101

Number of NFA states

T
im

e
(s
)

SC

QSC

Gain

102 103 104
0

20

40

60

80

100

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 22 Results of experiment W2 (weak NFAs, processing time in logarithmic scale): One 𝜀-transition, one state with
nondeterministic transition function, and number of NFA states varying in range [100 .. 12,975].

− 1

0

1

G
ai
n

102 103 104

10− 2

10− 1

100

101

Number of NFA states

T
im

e
(s
)

SC

QSC

Gain

102 103 104
0

20

40

60

80

100

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 23 Results of experiment W3 (weak NFAs, processing time in logarithmic scale): 𝜀-density = 0, one state with
nondeterministic transition function, and number of NFA states varying in range [100 .. 12,975].

The second experiment (W2) is similar to W1, as there is just one single 𝜀-transition causing the nondeterminism in
the NFA. Now, however, the range of the number of NFA states is enlarged to [100 .. 12,975]. The results are shown in
Figure 22, where the processing time is displayed in logarithmic scale. Notice how the time of Subset Construction is
plotted as a straight line, meaning that it grows exponentially with the size of the NFA. On the other hand, the processing
time of Quick Subset Construction too seems to grow approximately linearly, but with a lower slope, thereby resulting
in better performance, which is testified by the curve of the gain growing closer and closer to 1. For example, with the
largest NFA, the processing time of Subset Construction is about 60 s, while the processing time of Quick Subset
Construction is about 0.3 s, giving rise to a gain of 0.995, in other words, generating the same equivalent DFA by saving
99.5% of the processing time. As with experiment W1, the number of singularities processed (right side of Figure 22) is
kept within a limited range despite a growing number of NFA states.

The last experiment (W3) is a variant of experiment W2, where the 𝜀-transition is substituted by an 𝓁-transition, 𝓁 ≠ 𝜀,
that causes nondeterminism owing to the existence of another 𝓁-transition exiting the same state. The results are shown
in Figure 23, where the processing time is still in logarithmic scale. Note how the evolution of both the processing time
and the number of singularities processed is similar to the corresponding evolution in W2 (cf. Figure 22), indicating that
the type of nondeterminism in a weak NFA (𝜀-transition rather than 𝓁-transition) is irrelevant to the performance of the
determinization algorithm.

2122 DUSI and LAMPERTI

F I G U R E 24 Bad NFA, with n + 1 states and just one initial singularity (0, b), whose SC-equivalent DFA includes 2n states.

− 1

0

1

G
ai
n

4 6 8 10 12 14 16 18
10− 4

10− 3

10− 2

10− 1

100

101

102

103

Number of NFA states

T
im

e
(s
)

SC

QSC

Gain

2 4 6 8 10 12 14 16 18
100

101

102

103

104

105

Number of NFA states
S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

F I G U R E 25 Results of the experiment on bad NFAs (processing time and singularities in logarithmic scale): Number of NFA states
varying in range [3 .. 18] (hence, number of states in the equivalent DFA ranging in [22

.. 217] = [4 .. 131,072]).

In summary, these experimental results show that Quick Subset Construction performs much better than Subset
Construction when applied to weak NFAs.

6.6 Bad NFAs

When the NFA is large and the impact is small, chances are that Quick Subset Construction outperforms Subset
Construction considerably. When, instead, the number of singularities processed compares with the number of transi-
tions in the DFA, that is, when the impact is high, Quick Subset Construction is likely to perform similarly to, if not
worse than Subset Construction. To illustrate this point, we have conducted an experiment on so-called bad NFAs.
Shown in Figure 24 is one generic such NFA, which includes n + 1 states, two alphabet labels, namely a and b, and just
one singularity (0, b), irrespective of the actual value of n. Notwithstanding this, it is shown in the literature††† that the
number of states in the SC-equivalent DFA is invariably 2n, thereby growing exponentially and becoming close to the
worst case of 2n+1 − 1 DFA states. Since, by increasing n, the number of DFA states becomes overwhelmingly larger than
the number of NFA states, Quick Subset Construction is required to generate the SC-equivalent DFA almost entirely
as Subset Construction does. Consequently, we expect the two algorithms to perform similarly.

The results of the experiment are shown in Figure 25, where the only varying parameter is the number of NFA states,
ranging from 3 to 18, in other words, 2 ≤ n ≤ 17; hence, the number of states in the SC-equivalent DFA will range from 22

to 217. Note how the processing time of the two algorithms (expressed in logarithmic scale) is similar and grows exponen-
tially. This result is corroborated by the bar chart on the right, which clearly show the number of singularities processed
growing exponentially (linearly in logarithmic scale).

One may ask why the processing time of Quick Subset Construction is almost identical to that of Subset Con-
struction, practically so for n ≥ 10 (the gain is approximately zero). It looks like the effort in processing a singularity
by Quick Subset Construction compares with the effort of generating a transition by Subset Construction. Why?

†††Compare Reference 9, Section 2.3.6: A bad case for the subset construction.

DUSI and LAMPERTI 2123

F I G U R E 26 Results of experiment P1 (stratified NFAs with upfront removal of 𝜀-transitions): 𝜀-density = 0.1, height = 20,
determinism = 0.5, and number of NFA states varying in range [100 .. 1000].

The reason stems from the actual scenarios involved in the processing of singularities. It turns out that only n singular-
ities are relevant to scenario S2, while all other singularities (the vast majority of them) are processed in the context of
scenario S1. The point is that processing scenario S1 roughly mimics the processing by Subset Construction, as there
is no transition exiting the current state that is marked with the label 𝓁 involved in the singularity: what is to be done is
generating the new transition (marked with 𝓁) either directed to an existing state or to a newly-created state, which is
exactly what Subset Construction does.

6.7 Upfront removal of 𝜺-transitions

The experimental results presented in Section 6.4 for stratified NFAs clearly indicate that Quick Subset Construction
underperforms when the NFA includes 𝜀-transitions: the higher the 𝜀-density, the worse its performance in compari-
son with Subset Construction.‡‡‡ A natural question arising from this behavior is whether the upfront removal of
𝜀-transitions carried out by a standard polynomial-time algorithm may improve the performance of Quick Subset Con-
struction. To answer this question, five additional experiments have been conducted, named P1, … ,P5, where Subset
Construction and Quick Subset Construction were run with and without 𝜀-transitions in the NFAs, thereby
allowing for a comparison of the processing time in both conditions.

The results of experiment P1 are shown in Figure 26, where the varying parameter is the number of NFA states.
Plotted in the graph on the left side are the curves of the processing time of the two algorithms running on both the
original NFA (embodying the 𝜀-transitions) and the NFA resulting from the elimination of the 𝜀-transitions. In the latter
case, the processing time represents the sum of the time for the elimination of the 𝜀-transitions (which is independent
of the determinization algorithm) and the time for the determinization of the resulting NFA (without 𝜀-transitions).
The curves indicate that both algorithms perform slightly better when 𝜀-transitions are removed, with Quick Subset
Construction being still outperformed by Subset Construction. The bar graph on the right side of the figure shows
the corresponding number of singularities processed by Quick Subset Construction in both conditions (with and
without 𝜀-transitions), which happen to be substantially the same.

Displayed in Figure 27 are the results of the second experiment (P2), where the varying parameter is the determinism
of the stratified NFA (cf. Definition 8). Note how, with 𝜀-transitions, Quick Subset Construction starts outperforming
Subset Construction with determinism = 0.2. Without 𝜀-transitions, the performance of Subset Construction

‡‡‡Very high-densities of 𝜀-transitions do normally not occur in classical application domains (see, for example, the domain of regular expressions
considered in Reference 35). By contrast, in our experience, high 𝜀-densities can emerge quite naturally in translated automata.36

2124 DUSI and LAMPERTI

F I G U R E 27 Results of experiment P2 (stratified NFAs with upfront removal of 𝜀-transitions): Number of NFA states = 500, 𝜀-density =
0.1, height = 100, and determinism varying in range [0 .. 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

Determinism

T
im

e
(s
)

SC

ε-rem. + SC

QSC

ε-rem. + QSC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

·104

Determinism

S
in
g
u
la
ri
ti
es

Singularities processed (QSC)

Singularities processed (ε-rem. + QSC)

Initial singularities (QSC)

Initial singularities (ε-rem. + QSC)

F I G U R E 28 Results of experiment P3 (stratified NFAs with upfront removal of 𝜀-transitions): Number of NFA states = 3000, 𝜀-density
= 0.1, height = 1000, and determinism varying in range [0 .. 1].

deteriorates, while that of Quick Subset Construction improves up to determinism = 0.8, remaining however better
than the performance of Subset Construction for every value of determinism. This improvement is corroborated
by the bar graph on the right side of Figure 27, indicating that the number of singularities processed decreases when
𝜀-transitions are removed.

Experiment P3 is a variation of P2, with the exception that the NFAs are larger (including 3000 states), with results
being shown in Figure 28. Remarkably, the time curves of Subset Construction almost coincide in both conditions,
while Quick Subset Construction improves its performance when the 𝜀-transitions are removed.

In the next experiment (P4), the varying parameter is the 𝜀-density. Notice the recurring spire-shaped curve in all
four conditions (cf. Figures 12 and 17). These curves indicate that eliminating the 𝜀-transitions causes a considerable
mitigation of the bad performance of both algorithms in the subrange of nondeterminism around 0.7, with Subset
Construction performing slightly better than Quick Subset Construction in almost the entire range.

Even in the last experiment (P5), the varying parameter is the 𝜀-density, where the NFAs considered are acyclic. As
shown in Figure 30, the results are somehow similar to those in experiment P4 (cf. Figure 29): both algorithms perform
better when 𝜀-transitions are removed, at least up to to a threshold of 𝜀-density of about 0.7, with Subset Construction
still outperforming Quick Subset Construction in all range.

DUSI and LAMPERTI 2125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

15

20

25

30

Epsilon density

T
im

e
(s
)

SC

ε-rem. + SC

QSC

ε-rem. + QSC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5
·104

Epsilon density

S
in
g
u
la
ri
ti
es

Singularities processed (QSC)

Singularities processed (ε-rem. + QSC)

Initial singularities (QSC)

Initial singularities (ε-rem. + QSC)

F I G U R E 29 Results of experiment P4 (stratified NFAs with upfront removal of 𝜀-transitions): Number of NFA states = 1000, height =
300, determinism = 0.33, and 𝜀-density varying in range [0 .. 1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

Epsilon density

T
im

e
(s
)

SC

ε-rem. + SC

QSC

ε-rem. + QSC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Epsilon density

S
in
g
u
la
ri
ti
es

Singularities processed (QSC)

Singularities processed (ε-rem. + QSC)

Initial singularities (QSC)

Initial singularities (ε-rem. + QSC)

F I G U R E 30 Results of experiment P5 (acyclic NFAs with upfront removal of 𝜀-transitions): Number of NFA states = 1000 and
𝜀-density varying in range [0 .. 1].

In summary, removing the 𝜀-transitions upfront and then applying the determinization process on the resulting NFA
seems to improve the performance of both algorithms. Moreover, assuming that the 𝜀-transitions are missing allows for
some simplifications of the outward-oriented determinization performed by Quick Subset Construction. First, the
first two rules for the creation of the initial singularities are no longer applicable (cf. Section 4.1), thereby leaving just
one rule, which applies when a state in the NFA is exited by several 𝓁-transitions. Second, scenario 0 in the algorithm
disappears, as the initial state of the NFA cannot be exited by any 𝜀-transitions, thereby leaving only two scenarios: 1
and 2. Third, the computation of an 𝓁-mapping (e.g., line 21) is simplified as there is no need for the computation of the
𝜀-closure of the set of states reached by the transitions exiting such states with the same label.

6.8 Is it all about algorithm implementation?

A natural question raised by the experimental results is whether a different implementation of the algorithms might
reduce the performance gap between them, possibly in favor of Subset Construction. For example, for supporting

2126 DUSI and LAMPERTI

the efficiency of Quick Subset Construction, the set of the entering (in addition to the exiting) transitions is
maintained for each automaton state.§§§ Also, the level associated with states is necessary to Quick Subset Construc-
tion but completely irrelevant to Subset Construction. The processing of this additional data penalize Subset
Construction, which is forced to compute something both costly and unnecessary. Other “unorthodox” implemen-
tation choices might penalize both algorithms, such as identifying a DFA state by a string representing a subset of
the NFA states rather than a vector of these states. Intuitively, when both algorithms are equally penalized, however,
the performance gap is expected to remain unchanged, although the time response may (equally) deteriorate for both
algorithms.¶¶¶

In order to test this conjecture in practice, we have developed an improved implementation of Subset Construc-
tion, namely Subset Construction′, where all irrelevant data structures specifically designed for supporting Quick
Subset Construction have been removed, thereby resulting in lighter code that has no longer the burden of pro-
cessing unnecessary information, like the entering transitions or the level attached to each automaton state. Moreover,
in order to improve the performance of both algorithms, we have also ameliorated the processing of the data struc-
tures that are necessary to both Subset Construction and Quick Subset Construction, such as the identification
of DFA states.

Then, we have performed four experiments, which are reminiscent of experiments R1 (random NFAs, cf. Figure 10),
A1 (acyclic NFAs, cf. Figure 13), S1 (stratified NFAs, cf. Figure 16), and W1 (weak NFAs, cf. Figure 21), where
the NFAs have been generated based on the same configuration parameters adopted in the corresponding original
experiments.

In each new experiment, Subset Construction, Subset Construction′, and Quick Subset Construction
were run on 100 instances of each NFA (based on the same parameters), eventually plotting the average processing time.
The results, shown in Figure 31, clearly indicate that Subset Construction is invariably outperformed by Subset
Construction′, but slightly so. This could make a difference when Quick Subset Construction compares with
Subset Construction, as in the experiment for random NFAs (A). However, when Quick Subset Construction
outperforms Subset Construction to a major extent, such as with stratified (C) and weak NFAs (D), code optimization
in Subset Construction′ is insufficient to make a practical difference.

Comparing the results of each new experiment with those of the corresponding original experiment, notice how
despite the substantial similarity of the time curves of Subset Construction and Quick Subset Construction, the
actual time values are considerably smaller than in the original experiments. This is the effect of code optimization carried
out on the data structures that keep being shared by both algorithms.

That said, our claim is that, whatever the implementation technique adopted for either algorithm, the fact remains
that Quick Subset Construction may still outperform Subset Construction when the impact is below a given
threshold; in other words, the better the implementation of Subset Construction, the lower the impact is expected to
be for Quick Subset Construction to outperform Subset Construction, and vice versa.

We first support this claim with the help a so-called lake-race metaphor. With reference to Figure 32, imagine a race in
which two competing athletes, namely SC and QSC, are expected to reach a point finish starting from a point start, both
points being on the edge of a lake (blue region). The peculiarity of the race is that there is absolutely no constraint on
the chosen path and the moving technique of each athlete. Since it turns out that SC is a runner and QSC is a swimmer,
SC is expected to run on the ground (red curved line), while QSC prefers swimming in the lake (straight blue line). The
question is: who will win the race? The answer is not obvious: even if the runner is considerably faster than the swimmer,
the path of the swimmer is considerably shorter than the path of the runner; all depends on the actual lengths of the paths
and the actual speeds of the athletes.

Let SSC be the length of the path of the runner, let SQSC be the length of the path of the swimmer, let VSC be the
(average) speed of the runner, let VQSC be the (average) speed of the swimmer, and let tSC and tQSC be the time of the runner
and the swimmer, respectively, to complete the race. The two athletes will reach finish at the same time when tSC = tQSC,
that is, when SSC∕VSC = SQSC∕VQSC, in other words, when SQSC∕SSC = VQSC∕VSC. Hence, denoting with ℑ (impact) the
ratio SQSC∕SSC, whatever the speed of the two athletes, the swimmer will outperform the runner whenℑ < VQSC∕VSC. In
other words, the faster the runner, the smallerℑ needs to be in order for the swimmer to outperform the runner and vice
versa. For example, assuming VSC = 5 m/s and VQSC = 1.25 m/s,ℑ needs to be less than 1.25∕5 = 0.25; in other words, the

§§§Typically, this extra information allows for an efficient check of the condition in line 6 of the Unsafe auxiliary function (cf. Section 4.3.1).
¶¶¶In case of DFA state identification by strings, this is questionable, as comparing two vectors of states is not necessarily more efficient than
comparing two strings.

DUSI and LAMPERTI 2127

100 200 300 400 500 600 700 800 900 1,000

0.2

0.4

0.6

0.8

1

1.2

Number of NFA states

T
im

e
(s
)

SC

SC’

QSC

(A)

200 400 600 800 1,000 1,500 2,000 2,500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of NFA states

T
im

e
(s
)

SC

SC’

QSC

(B)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·104

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of NFA states

T
im

e
(s
)

SC

SC’

QSC

(C)

200 400 600 800 1,000 1,500 2,000 2,500

0.1

0.2

0.3

0.4

0.5

0.6

Number of NFA states

T
im

e
(s
)

SC

SC’

QSC

(D)

F I G U R E 31 Results from extended experimentation with random NFAs (cf. experiment R1 in Figure 10) (A), acyclic NFAs (cf.
experiment A1 in Figure 13) (B), stratified NFAs (cf. experiment S1 in Figure 16) (C), and weak NFAs (cf. experiment W1 in Figure 21) (D),
where SC′ is a lighter implementation of Subset Construction.

F I G U R E 32 The lake-race metaphor: The QSC swimmer (blue path on the lake) against the SC runner (red path on the ground).

swimmer will outperform the runner provided that the swim path is less than a quarter of the ground path. If the runner
increases the speed to 6.25 m/s, thenℑ needs to be less than 1.25∕6.25 = 0.2. Subsequently, if the swimmer increases the
speed to 1.5 m/s, then ℑ needs to be less than 1.5∕6.25 = 0.24.

Out of metaphor, whatever the speed of the two algorithms, which partly depend on their implementation, there will
be always a threshold of the impact (cf. Definition 5) under which Quick Subset Construction outperforms Subset
Construction.

2128 DUSI and LAMPERTI

1

0.5

0.75

1.25

1.5

Im
p
ac
t

200 400 600 800 1,000 1,500 2,000 2,500
0

0.2

0.4

0.6

0.8

1

·104

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

Impact

Time impact
1

0

0.25

0.5

0.75

Im
p
ac
t

200 400 600 800 1,000 1,500 2,000 2,500
0

10

20

30

40

50

60

70

80

Number of NFA states

S
in
g
u
la
ri
ti
es

Singularities processed

Initial singularities

Impact

Time impact

F I G U R E 33 Bar charts for experiments A1 (left) and W1 (right), which are extended with the impact and the time impact.

Since the impact does not provide a precise measure of the convenience in using Quick Subset Construction,
as chances are that processing a singularity requires, on average, more time than creating a transition by Subset Con-
struction, we introduce the notion of time impact, which provides a precise measure of that convenience by comparing
the actual processing time spent by both algorithms in the determinization of the same NFA.

Definition 9 (time impact). Let  be an NFA and  the corresponding SC-equivalent DFA. The time
impact ℑt of Quick Subset Construction to transform into is the ratio between the time tQSC spent
by Quick Subset Construction to obtain and the time tSC spent by Subset Construction to generate
 from scratch, namely

ℑt =
tQSC

tSC
. (13)

Clearly, Quick Subset Construction becomes more convenient than Subset Construction when ℑt < 1.

Example 15 (impact and time impact). Shown in Figure 33 are the bar charts of the singularities processed
in experiments A1 (left) for acyclic NFAs (cf. Figure 13) and W1 (right) for weak NFAs (cf. Figure 21), which
have been extended with the curves of the impact and the time impact. In the chart on the left, the impact is
considerably high (above 0.75). Albeit the impact remains under 1, the time impact is always above 1. Conse-
quently, Quick Subset Construction is invariably outperformed by Subset Construction, as already
known from Figure 13 (left). By contrast, considering the results in the chart on the right, since the impact is
always very low, the time impact remains abundantly under the threshold of 1, thereby indicating that Quick
Subset Construction invariably outperforms Subset Construction, as already known from Figure 21
(left).

Note how, based on Definition 9, the gain (cf. Definition 6 in Section 6.1) may be expressed in terms of time impact as
follows:

 =
⎧
⎪
⎨
⎪
⎩

tSC−tQSC

tSC
= 1 − tQSC

tSC
= 1 −ℑt if tSC ≥ tQSC

tSC−tQSC

tQSC
= tSC

tQSC
− 1 = 1

ℑt
− 1 otherwise.

(14)

Assuming (reasonably) that processing a singularity requires on average more time than generating a transition by
Subset Construction, we expectℑt > ℑ. The notion of scale factor provides a quantitative relation betweenℑt andℑ.

DUSI and LAMPERTI 2129

Definition 10 (scale factor). Letℑ andℑt be the impact and the time impact, respectively, of Quick Subset
Construction for the determinization of an NFA. The scale factor is the ratio

f = ℑt

ℑ
. (15)

In other words, based on (7) and (13), the scale factor can be expressed as

f =
tQSC ⋅ n

𝛿

tSC ⋅ n
𝜎

= VSC

VQSC
, (16)

where VSC = n
𝛿
∕tSC is the speed of Subset Construction (number of transitions generated per time unit) and VQSC =

n
𝜎
∕tQSC is the speed of Quick Subset Construction (number of singularities processed per time unit). Intuitively, the

scale factor indicates how Subset Construction is faster than Quick Subset Construction and, hence, how small
the impact needs to be in order for Subset Construction to be outperformed by Quick Subset Construction. The
notion of neutral impact provides a threshold for that convenience.

Definition 11 (neutral impact). The neutral impact is the value ℑ of the impact that makes the processing
time of Quick Subset Construction equal to that of Subset Construction in the determinization of an
NFA.

Proposition 2. The neutral impact is the inverse of the scale factor, namely

ℑ = 1
f
=

VQSC

VSC
. (17)

Proof. Based on Definition 11, the neutral impact is the impact that makesℑt = 1, namelyℑt = ℑ ⋅ f = 1, that
is, ℑ = 1∕f . ▪

This means that Quick Subset Construction starts outperforming Subset Construction whenℑ < ℑ, in other
words, when ℑ < VQSC∕VSC, a result already known from our lake-race metaphor above.

Example 16 (neutral impact). Assume that Subset Construction generates 150 transitions per time unit
and Quick Subset Construction processes 90 singularities in the same time unit. The neutral impact is
ℑ = 90∕150 = 0.6. That is, Quick Subset Construction is more convenient than Subset Construction
when the number of singularities processed is smaller than 60% of the total number of transitions in the
SC-equivalent DFA. If, by code amelioration, we improve the speed of Quick Subset Construction from
90 to 105, the neutral impact will raise to ℑ = 105∕150 = 0.7, which allows for increasing the threshold of
singularities processed in order to still outperform Subset Construction. Subsequently, if we improve the
speed of Subset Construction from 150 to 175, the neutral impact returns to ℑ = 105∕175 = 0.6.

So, is it all about algorithm implementation? Apparently not: the faster Subset Construction over Quick Subset
Construction, the smaller the impact required for Quick Subset Construction to outperform Subset Construc-
tion. In other words, whatever the quality of the code implementing the two algorithms, in theory, there will be
always a threshold of the impact under which Quick Subset Construction remains more convenient than Subset
Construction.

7 CONCLUSION

In this article, we presented an algorithm for NFA determinization, named Quick Subset Construction, as an alterna-
tive to the classical Subset Construction algorithm. Although the two algorithms generate the same (SC-equivalent)
DFA when applied to the same input NFA (cf. Theorem 1), that DFA is obtained very differently. The approach of Sub-
set Construction is outward-oriented: the DFA is generated from scratch, irrespective of the nature of the NFA. The
modus operandi of Quick Subset Construction, instead, is inward-oriented: the NFA is progressively transformed
into the equivalent DFA by applying a series of repair actions on the NFA that remove the nondeterminism by changing
the transition function of the states involved.

2130 DUSI and LAMPERTI

Repairing an NFA rather than constructing a new DFA entirely may be beneficial in terms of processing time, espe-
cially so when the NFA is large and the nondeterminism can be removed by a limited number of repair actions, as the
(possibly large) portion of the NFA that is deterministic already may not be subjected to any processing. More precisely,
the degree of benefit depends on the impact of Quick Subset Construction (cf. Definition 5), that is, the ratio between
the number of singularities processed and the number of transitions in the SC-equivalent DFA. Intuitively, the smaller
the impact, the faster the processing by Quick Subset Construction. This conjecture has been confirmed by the
experimental results presented in Section 6.

Qualifying Quick Subset Construction as quick does not mean that this algorithm is invariably faster than Sub-
set Construction, as shown by the experimental results. More generally, all depends on the impact, which, on its turn,
depends on how the nondeterminism is actually distributed within the NFA. As pointed out, generally speaking, a small
quantity of nondeterminism in the NFA does not necessarily translate into a small impact. Hence, Quick Subset Con-
struction needs to be adopted with a grain of salt. Typically, it can be exploited in the application domains in which
the impact is supposedly low and just-in-time determinization is required, like we have assumed in the example of the
learning robot considered in Section 1.

It should be clear that, in the worst case, the complexity of Quick Subset Construction compares with the com-
plexity of Subset Construction, which is exponential in the number of NFA states (see the experiment presented in
Section 6.6). This is a consequence of the fact that both algorithms generate the same equivalent DFA. The gain of Quick
Subset Construction does not come from less processing on the nondeterministic part of the NFA, which has to be
fixed by both algorithms, but rather from the deterministic part of the NFA that remains untouched in the equivalent
DFA: the larger this part, the greater the gain.

A practical question that this article does not answer is: given an NFA to be determinized, how can we know in advance
whether it is more convenient using Quick Subset Construction rather than Subset Construction? Put another
way: how can we know upfront the impact of Quick Subset Construction? Any heuristics that can answer this ques-
tion would give the algorithm a more practical strength, as it might suggest the best algorithm in any application context.
Given an application domain, two approaches may be envisaged in order to evaluate the convenience in using Quick
Subset Construction rather than Subset Construction. In the first approach, called static, the experimentation of
the two algorithms on significant test cases may lead to a Boolean conclusion: either Quick Subset Construction is
more convenient than Subset Construction or it is not. In the second approach, called dynamic, there is no definitive
answer, as all depends on the particular NFA at hand. Therefore, the best algorithm needs to be chosen on the fly (dynam-
ically) based on significant characteristics of the NFA, a task that can be supported by techniques based on machine
learning.

Another interesting question is whether Quick Subset Construction may be applied to automata with attached
data. In principle, if Subset Construction is effective in the determinization of these “decorated” automata, then
Quick Subset Construction will be equally effective, as the resulting DFAs are identical (cf. Section 5). For instance, in
model-based diagnosis of discrete-event systems,3 a large NFA is generated based on a string of observations of the system,
with a diagnosis being attached to each state. When the NFA is determinized, each state d of the equivalent DFA is marked
with the set of diagnoses marking the NFA states embodied in d. Hence, both Subset Construction and Quick Subset
Construction may cope with this sort of determinization. Generally speaking, (Quick) Subset Construction is
expected to be effective in the determinization of NFAs with attached data if there is a function that maps the collection
of data attached to the NFA states embodied in a DFA state d (resulting from the NFA determinization) to exactly the data
required for d. By contrast, when the NFA states are marked with time variables, as in timed automata,37 determinization
is not always possible, as discussed in Reference 38. Even when timed automata are determinizable, a special algorithm
is applied, which differs from Subset Construction. Consequently, Quick Subset Construction cannot be applied
either. However, the fact remains that, whatever alternative outward-oriented determinization algorithm operating on
an NFA with attached data, chances are that an equivalent inward-oriented algorithm may be designed along the lines of
Quick Subset Construction. This is an interesting topic of future research.

AUTHOR CONTRIBUTIONS
Michele Dusi: Implementation of the open-access software system, experimentation, production of the results, check
of the article. Gianfranco Lamperti: conceptualization, algorithm design, formal analysis, supervision, writing of the
article.

DUSI and LAMPERTI 2131

DATA AVAILABILITY STATEMENT
The software system for the experimental results is open source at: https://github.com/MicheleDusi/
QuickSubsetConstruction.

ORCID
Gianfranco Lamperti https://orcid.org/0000-0002-1915-6932

REFERENCES
1. Rabin M, Scott D. Finite automata and their decision problems. IBM J Res Dev. 1959;3(2):114-125. doi:10.1147/rd.32.0114
2. Hamscher W, Console L, de Kleer J, eds. Readings in Model-Based Diagnosis. Morgan Kaufmann; 1992.
3. Lamperti G, Zanella M, Zhao X. Introduction to Diagnosis of Active Systems. Springer; 2018.
4. Lamperti G, Scandale M. From diagnosis of active systems to incremental determinization of finite acyclic automata. AI Commun.

2013;26(4):373-393. doi:10.3233/AIC-130574
5. Lamperti G, Scandale M, Zanella M. Determinization and minimization of finite acyclic automata by incremental techniques. Softw Pract

Exp. 2016;46(4):513-549. doi:10.1002/spe.2309
6. Brognoli S, Lamperti G, Scandale M. Incremental determinization of expanding automata. Comput J. 2016;59(12):1872-1899.

doi:10.1093/comjnl/bxw044
7. Lamperti G. Temporal determinization of mutating finite automata: reconstructing or restructuring. Softw Pract Exp. 2020;50:335-367.

doi:10.1002/spe.2776
8. Brzozowski J. Canonical regular expressions and minimal state graphs for definite events. Proceedings of the Symposium on Mathematical

Theory of Automata. MRI Symposia Series. Vol 12. Polytechnic Press, Polytechnic Institute of Brooklyn; 1962:529-561.
9. Hopcroft J, Motwani R, Ullman J. Introduction to Automata Theory, Languages, and Computation. 3rd ed. Addison-Wesley; 2006.

10. Friedl J. Mastering Regular Expressions. 3rd ed. O’Reilly Media; 2006.
11. Aho A, Lam M, Sethi R, Ullman J. Compilers—Principles, Techniques, and Tools. 2nd ed. Addison-Wesley; 2006.
12. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res.

2000;28(1):45-48.
13. Cassandras C, Lafortune S. Introduction to Discrete Event Systems. 2nd ed. Springer; 2008.
14. Brave H, Heymann M. Control of discrete event systems modeled as hierarchical state machines. IEEE Trans Automat Contr.

1993;38(12):1803-1819.
15. Sampath M, Sengupta R, Lafortune S, Sinnamohideen K, Teneketzis D. Failure diagnosis using discrete-event models. IEEE Trans Control

Syst Technol. 1996;4(2):105-124.
16. Sampath M, Lafortune S, Teneketzis D. Active diagnosis of discrete-event systems. IEEE Trans Automat Contr. 1998;43(7):908-929.
17. Yoo T, Lafortune S. Polynomial-time verification of diagnosability of partially observed discrete-event systems. IEEE Trans Automat Contr.

2002;47(9):1491-1495.
18. Lamperti G, Zanella M. Diagnosis of discrete-event systems from uncertain temporal observations. Artif Intell. 2002;137(1–2):91-163.

doi:10.1016/S0004-3702(02)00123-6
19. Benveniste A, Fabre E, Haar S, Jard C. Diagnosis of asynchronous discrete-event systems: a net unfolding approach. IEEE Trans Automat

Contr. 2003;48:714-727.
20. Pencolé Y, Cordier M. A formal framework for the decentralized diagnosis of large scale discrete event systems and its application to

telecommunication networks. Artif Intell. 2005;164(1–2):121-170.
21. Su R, Wonham W. Global and local consistencies in distributed fault diagnosis for discrete-event systems. IEEE Trans Automat Contr.

2005;50(12):1923-1935.
22. Thorsley D, Teneketzis D. Diagnosability of stochastic discrete-event systems. IEEE Trans Automat Contr. 2005;50:476-492.

doi:10.1109/TAC.2005.844722
23. Qiu W, Kumar R. Decentralized failure diagnosis of discrete event systems. IEEE Trans Syst Man Cybern Part A Syst Hum.

2006;36(2):384-395.
24. Cerutti S, Lamperti G, Scaroni M, Zanella M, Zanni D. A diagnostic environment for automaton networks. Softw Pract Exp.

2007;37(4):365-415. doi:10.1002/spe.773
25. Wonham W, Cai K. Supervisory Control of Discrete-Event Systems. Communications and Control Engineering. Springer; 2019.
26. Lamperti G, Zanella M, Zhao X. Diagnosis of deep discrete-event systems. J Artif Intell Res. 2020;69:1473-1532. doi:10.1613/jair.1.12171
27. Moore E. Gedanken-experiments on sequential machines. In: Shannon CE, McCarthy J, eds. Automata Studies. Vol 34. Princeton

University Press; 1956:129-153.
28. Hopcroft J. An n log n algorithm for minimizing states in a finite automaton. In: Kohave Z, ed. The Theory of Machines and Computations.

Academic Press; 1971:189-196.
29. Revuz D. Minimisation of acyclic deterministic automata in linear time. Theor Comput Sci. 1992;92(1):181-189.
30. Watson B. A Taxonomy of Finite Automata Minimization Algorithms. Computing Science Note. Vol 93/44. Eindhoven University of

Technology; 1995.
31. Watson B. A fast new semi-incremental algorithm for the construction of minimal acyclic DFAs. In: Champarnaud JM, Maurel D, Ziadi D,

eds. Automata Implementation. Lecture Notes in Computer Science. Vol 1660. Springer; 1999:121-132.

https://github.com/MicheleDusi/QuickSubsetConstruction
https://github.com/MicheleDusi/QuickSubsetConstruction
https://orcid.org/0000-0002-1915-6932
https://orcid.org/0000-0002-1915-6932
http://info:doi/10.1147/rd.32.0114
http://info:doi/10.3233/AIC-130574
http://info:doi/10.1002/spe.2309
http://info:doi/10.1093/comjnl/bxw044
http://info:doi/10.1002/spe.2776
http://info:doi/10.1016/S0004-3702(02)00123-6
http://info:doi/10.1109/TAC.2005.844722
http://info:doi/10.1002/spe.773
http://info:doi/10.1613/jair.1.12171

2132 DUSI and LAMPERTI

32. Watson B. A new recursive incremental algorithm for building minimal acyclic deterministic finite automata. In: Martin-Vide C,
Mitrana V, eds. Grammars and Automata for String Processing: from Mathematics and Computer Science to Biology, and Back: Essays in
Honour of Gheorghe Paun. Topics in Computer Mathematics. Taylor and Francis; 2003:189-202.

33. Watson B, Daciuk J. An efficient incremental DFA minimization algorithm. Nat Lang Eng. 2003;9(1):49-64.
doi:10.1017/S1351324903003127

34. Almeida M, Moreira N, Reis R. Incremental DFA minimisation. RAIRO - Theor Inform Appl. 2014;48:173-186. doi:10.1051/ita/2013045
35. Broda S, Machiavelo A, Moreira N, Reis R. A Hitchhiker’s guide to descriptional complexity through analytic combinatorics. Theor Comput

Sci. 2014;528:85-100.
36. Dusi M, Lamperti G. Conservative determinization of translated automata by embedded subset construction. In: Czarnowski I, Howlett R,

Jain L, eds. Intelligent Decision Technologies. Smart Innovation, Systems and Technologies. Vol 193. Springer; 2020:49-61.
37. Alur R, Dill D. A theory of timed automata. Theor Comput Sci. 1994;126(2):183-235.
38. Baier C, Bertrand N, Bouyer P, Brihaye T. When are timed automata determinizable? In: Albers S, Marchetti-Spaccamela A, Matias Y,

Nikoletseas S, Thomas W, eds. Automata, Languages and Programming. Lecture Notes in Computer Science. Vol 5556. Springer;
2009:43-54.

How to cite this article: Dusi M, Lamperti G. Quick Subset Construction. Softw Pract Exper.
2023;53(11):2092-2132. doi: 10.1002/spe.3246

http://info:doi/10.1017/S1351324903003127
http://info:doi/10.1051/ita/2013045

	Quick Subset Construction
	1 INTRODUCTION
	2 FINITE AUTOMATA
	3 OUTWARD-ORIENTED DETERMINIZATION BY <0:sc>Subset Construction</0:sc>
	4 INWARD-ORIENTED DETERMINIZATION BY <0:sc>Quick Subset Construction</0:sc>
	4.1 Singularities
	4.2 <0:sc>Quick Subset Construction</0:sc>
	4.3 Auxiliaries
	4.3.1 U<0:sc>nsafe</0:sc>
	4.3.2 E<0:sc>nlarge</0:sc>
	4.3.3 N<0:sc>ew</0:sc>
	4.3.4 L<0:sc>evel</0:sc>
	4.3.5 U<0:sc>nify</0:sc>

	5 ALGORITHM EQUIVALENCE AND DFA IDENTITY
	6 EXPERIMENTATION
	6.1 Preliminaries
	6.2 Random NFAs
	6.3 Acyclic NFAs
	6.4 Stratified NFAs
	6.5 Weak NFAs
	6.6 Bad NFAs
	6.7 Upfront removal of [[math]]-transitions
	6.8 Is it all about algorithm implementation?

	7 CONCLUSION

	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

