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Abstract. We provide the first general result for the asymptotics of the area preserving

mean curvature flow in two dimensions showing that flat flow solutions, starting from any

bounded set of finite perimeter, converge with exponential rate to a finite union of equally

sized disjoint disks. A similar result is established also for the periodic two-phase Mullins-

Sekerka flow.

1. Introduction

In this paper we address the long-time behaviour of two physically relevant area preserving

nonlocal geometric flows in the plane: the area-preserving mean curvature and the Mullins-

Sekerka flow.

We start by recalling that a smooth flow of sets (Et)t∈[0,T ) ⊂ R2, for some T > 0, is a

solution to the area preserving mean curvature flow if it satisfies

(1.1) Vt = −κEt + κEt on ∂Et ,

where Vt denotes the normal velocity, κEt the curvature and κEt := −
∫
∂Et

κEt dH1 the integral

average of the curvature of the evolving boundary ∂Et. Such a geometric flow has been

proposed in the physical literature as a model for coarsening phenomena. For example, one

can consider systems that, after a first relaxation time, can be described by two subdomains

of nearly pure phases far from equilibrium, evolving in a way to decrease the total interfacial

length between the phases while keeping their area constant (for the physical background see

[8, 40, 48, 49]). An important feature of the flow is that it can be regarded as a gradient flow

of the perimeter with respect to a suitable (formal) L2-type Riemannian structure.

The second geometric evolution we consider, the two-phase Mullins-Sekerka flow in the flat

torus T2, is governed by the law

(1.2)


Vt = [∂νtut] on ∂Et,

−∆ut = 0 in T2 \ ∂Et,

ut = κEt on ∂Et,

where νt denotes the external normal to ∂Et, [∂νtut] denotes the jump of the normal derivative

of ut at ∂Et, i.e., [∂νtut] := ∂νtu
+
t − ∂νtu

−
t , with u+

t and u−t denoting the restrictions of ut

to T2 \ Et and Et respectively, and κEt is as before the curvature of the evolving boundary.
1
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Let us notice that the choice of the flat torus T2 instead of a bounded domain Ω is made to

avoid in the first place boundary effects. The Mullins-Sekerka flow is a nonlocal geometric

flow arising from physics. It can be seen as a quasistatic variant of the Stefan problem (see

[33]) and it was originally proposed as an isotropic model for solidification and liquefaction

phenomena when the specific heat is negligible, see [42]. Moreover, it arises as a singular

limit of the Cahn-Hilliard equation, see [3, 44]. Common features with (1.1) are the area

preserving character and the gradient flow structure (this time with respect to a suitable

H−1-Riemannian structure).

It is well-known that, in general, smooth solutions of (1.1) may develop singularities in

finite time, such as disappearance and coalescence of components, pinch-offs and curvature

blow-up, even in two dimensions (see for instance [18, 36, 37]). The same can be expected for

the flow (1.2). The possible singular behaviour of (1.1) and (1.2) is even wilder than that of

the unconstrained mean curvature flow, due to their nonlocal character and the subsequent

lack of a comparison principle. Thus, for a well defined global-in-time evolution one has to

introduce suitable notion of weak solution which is capable of handling singularities, changes

in topology and, possibly, rough initial data. This is a well-established feature of curvature

flows, and for several geometric motions, different definitions of weak solutions have been

introduced in the literature.

Due to the lack of a comparison principle and based on the underlying gradient flow struc-

ture, a natural choice for (1.1) and (1.2) is the minimizing movement approach proposed for

the mean curvature flow independently by Almgren, Taylor and Wang [4] and by Luckhaus

and Sturzenhecker [34], and adapted to the volume constrained case in [41]. Note that Luck-

haus and Sturzenhecker [34] introduce a similar variational scheme for (1.2) as well, see also

[7, 45] where the same scheme is further analyzed. Recently, the first author and Niinikowski

[29] proved the consistency of the flat flow solutions for the volume preserving mean curvature

flow with the classical solutions (see also [32] for a weak-strong uniqueness result). We recall

that the minimizing movement method is based on implicit time-discretization and recursive

minimization of suitable incremental problems. The limiting time-continuous evolutions con-

structed in this way are usually referred to as flat flows. We refer to Sections 3 and 4 for the

precise definition of flat flow solution of (1.1) and (1.2), respectively.

Once a global-in-time weak solution has been constructed, it is a natural problem to in-

vestigate its asymptotics. The focus of the paper is the long-time behaviour of flat flows in

two dimensions. Previous results on the long-time convergence of volume preserving flows

are mostly confined to the case of smooth solutions starting from specific classes of initial

regular sets, see for instance [19, 27, 43] for the volume preserving mean curvature flow and

[1, 10, 20, 25] for the Mullins-Sekerka flow. For less general initial data, the long time be-

haviour of the volume preserving mean curvature flow starting from convex and star-shaped

sets (see [6, 30]) has been characterized only up to (possibly diverging in the case of [6])

translations. Finally, concerning flat flow solutions the most general result is due to [28]
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where the asymptotic convergence to finitely many disjoint balls is proven in two and three

dimensions for arbitrary bounded initial sets of finite perimeter, but only up to (possibly

diverging) translations and without a convergence rate.

In our main result we are able to rule out translations and we provide in two dimensions

the first full convergence result for the asymptotics of the area preserving mean curvature

and the Mullins-Sekerka flow. We show that every flat flow solutions of (1.1) starting from

any set of finite perimeter asymptotically converge, with exponential rate, to a finite disjoint

union of (possibly tangent) equally sized discs. Under the additional assumption that the

perimeter of the initial set is smaller than 2, we establish a similar result also for (1.2)). Note

that such an additional condition is assumed for simplicity to rule out lamellae as possible

limiting sets (see Sections 4 for further details). We refer to the next section for the precise

statements.

Let us finally mention that the analysis of this paper extends in two dimensions the results

proven in [39] (see also [14] for related results in the flat torus) for the discrete minimizing

movements of the volume preserving mean curvature flow to the time-continuous limiting

evolutions.

1.1. Statement of the main results. In the previous work [39] three of the authors prove

that in all dimensions the discrete approximate volume preserving mean curvature flow con-

verges exponentially fast to a disjoint union of balls with equal size. This is the optimal

convergence result but it leaves open the question of the convergence of the limiting flat flow.

On the other hand, in [28] the first author and Niinikoski prove that the limiting flat flow

converges in low dimensions R2 and R3 to a disjoint union of balls, up to possible translations

of the components. Again this result does not prove the full convergence nor does it provide

any rate of convergence. In both papers it was observed that a key technical issue is to prove

a quantitative version of the Alexandrov theorem, which in the classical form states that the

only compact smooth hypersurfaces with constant mean curvature are union of spheres. In

this paper we develop this idea further and observe that we may prove a geometric inequality,

very much related to the quantitative Alexandrov theorem, which implies the full convergence

of the flow and also gives the exponential rate of convergence.

There has been a lot of recent research on generalizations and quantifications of the Alexan-

drov theorem. We refer to [11] for an overview of this challenging problem, and mention the

works [15, 16, 17] on the characterization of critical sets of the isoperimetric problem and

[12, 13, 31] on quantification of the Alexandrov theorem.

We state our quantitative version in a form that is suitable for the study of the equation

(1.1). We denote the length of the boundary or more generally the perimeter of a set E by

P (E) and by |E| its area. We also denote by Pd = 2
√
πmd the perimeter of the union of d

disks with total area m. Our first result reads as follows.
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Theorem 1.1. Let m,M > 0 and let E ⊂ R2 be a bounded open set of class C2, with |E| = m

and P (E) ≤M . Then there exists a constant C(m,M) > 0 such that

min
d∈N
|P (E)− Pd| ≤ C‖κE − κE‖2L2(∂E).

Moreover, if δ0 > 0 and d ∈ N, are such that Pd ≤ P (E) ≤ Pd+1 − δ0, then it holds

(1.3) P (E)− Pd ≤ C0‖κE − κE‖2L2(∂E),

with C0 = C0(m,M, δ0).

The novelty of the above result is that on the right-hand-side we have quadratic depen-

dence on the curvature which is optimal (see Remark 2.2). One may compare this result to

the quantification of the Willmore energy [46] or to the optimal quantitative isoperimetric

inequality [24], which both have similar scaling. The inequalities in Theorem 1.1 are geomet-

ric and do not measure how close the set E is to the union of disks. In the planar case the

closeness of E to the union of disks is proven in [23] (see also Proposition 2.1 in Section 2).

The above result is proven in the planar case but it could be true also in higher dimensions.

As we already mentioned, the motivation for the geometric inequality in Theorem 1.1 is

the proof of the asymptotic convergence of the area-preserving mean curvature flow equation

(1.1).

Theorem 1.2. Let {E(t)}t≥0 be an area-preserving flat flow for (1.1) (see Definition 3.1)

starting from a bounded set of finite perimeter E(0) ⊂ R2. Then, there exist d ∈ N disjoint

open disks in the plane Dr(x1), . . . , Dr(xd), with πr2d = |E(0)|, and there exists a constant

C > 1 such that, setting E∞ =
⋃d
i=1Dr(xi), it holds

(1.4) sup
x∈E(t)∆E∞

dist(x, ∂E∞) + |P (E(t))− P (E∞)| ≤ Ce−
t
C

for all t ≥ 0.

The above theorem gives the full characterization and quantitative speed of convergence of

the equation (1.1). We expect the result to be sharp, in the sense that the flow may, indeed,

converge to a union of tangent disks. In [23, Theorem 1.4] the authors consider the case when

the initial set is a union of two ellipses and show that the equation (1.1) is well defined and

smooth for all times and converges to two tangent disks. In particular, we may not improve

the Hausdroff convergence in Theorem 1.2 to C1-convergence of the sets. The exponential

convergence rate is optimal but we note that the flow may in fact converge to the limiting

disks also in finite time. This is the case when we consider as an initial set a union of two

disks D1, D2, which are far apart and D2 is much smaller than D1. Then along the flow the

larger disk grows and the smaller one shrinks until it vanishes completely and the flow reaches

its equilibrium state in finite time. The same phenomenon occurs when D2 is only slightly

smaller than D1 but the time to reach the equilibrium state tends to infinity when the size
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of D2 gets closer to the size of D1. This shows that we cannot bound the constant C by a

universal constant, but it may depend on the initial set in a rather complicated way.

We note that our method can be also used to study asymptotic behavior of other geometric

flows, and to emphasize this we also address the asymptotics of the two-phase Mullins-Sekerka

flow (1.2). To avoid boundary effects we consider periodic conditions and set the problem

in the flat torus T2 and, as a further simplification, we consider initial configurations with

perimeter smaller than that of the single lammella (alternatively, we can think that the size

of the torus is big enough compared to the perimeter of the initial set).

The main result is the following. We denote the perimeter of a set E in the flat torus by

PT2(E).

Theorem 1.3. Let {E(t)}t≥0 be a flat flow solution to the Mullins-Sekerka flow (1.2) in the

flat torus T2 starting from a set of finite perimeter E(0) ⊂ T2, with PT2(E) < 2. Then, there

exist d ∈ N disjoint open disks Dr(x1), . . . , Dr(xd), with πr2d = |E(0)|, and there exists a

constant C > 1 such that it holds

|E(t)∆E∞|+ |P (E(t))− P (E∞)| ≤ Ce−
t
C

for all t ≥ 0, where E∞ either coincides with
⋃d
i=1Dr(xi) or with its complement in T2.

The proof of Theorem 1.3 is similar to that of the previous theorem. We use Theorem 1.1

and a result by Schätzle [47] to obtain a functional inequality (see Corollary 4.3), which is in

the spirit of the quantitative Alexandrov theorem, stated now in terms of the potential ut.

We remark that one could also consider the one-phase model for the Mullins-Sekerka as

in [9] in the whole R2 and expect the above convergence to hold also in this case. We also

expect the convergence of the sets in Theorem 1.3 to hold with respect to Hausdorff distance

but we do not prove it here.

1.2. Structure of the paper. Section 2 is purely geometric and in Proposition 2.1 we

prove our quantitative version of the Alexandrov theorem which then implies Theorem 1.1

as a corollary. In Section 3 we first introduce the incremental minimization problem for the

minimizing movements scheme, and recall some basic results related to its minimizers. Then

we recall the construction of the flat flow and give the proof of Theorem 1.2 at the end of

the section. In Section 4 we introduce the incremental minimization problem and the flat

flow for the Mullins-Sekerka equation. We then state and prove in Proposition 4.2 a crucial

functional inequality which is related to Proposition 2.1. The section concludes with the proof

of Theorem 1.3.

2. A sharp quantitative Alexandrov theorem in two-dimensions

Let us first recall that for measurable sets E ⊂ R2, the perimeter is defined by

P (E) := sup
{∫

E
divX dx : X ∈ C1

c (R2,R2), ‖X‖L∞ ≤ 1
}
.
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If P (E) < ∞ we say that E is a set of finite perimeter. We also recall that if E is regular

enough, say a domain with Lipschitz boundary, then P (E) = H1(∂E). For the general

properties of sets of finite perimeter we refer to the monographs [5, 35].

In the following we fix the prescribed area m > 0 of a set E and a constant M > 0

representing an upper bound for the perimeter of E. For d ∈ N we denote by Pd the perimeter

of any union of d disjoint disks with equal areas m/d, i.e.,

Pd := 2
√
πmd .

For a set of E ⊂ R2 of class C2 we denote by κE its curvature (with the sign defined so that

κE is positive for convex sets) and we set

κE := −
∫
∂E
κE dH1 =

1

H1(∂E)

∫
∂E
κE dH1.

In [23] it is proven that if E ⊂ R2 is a set of class C2 with area |E| = m and ‖κE−κE‖2L1(∂E) ≤
ε0, for ε0 small enough, then E is C1-diffeomorphic to a disjoint union of disks D1, . . . , Dd

and it holds

|P (E)− Pd| ≤ C‖κE − κE‖L1(∂E) .

Our first result improves the above inequality by showing that a similar estimate holds with

quadratic right-hand side, which is the optimal scaling of the quantitative Alexandrov the-

orem. We also consider L2-norms as this is more natural in our variational framework. We

state this in the following proposition.

Proposition 2.1. Let m,M > 0. There exist ε0 = ε0(m,M) ∈ (0, 1) and C0 = C0(m,M) > 1

with the following property: Let E ⊂ R2 be a bounded open set of class C2, with |E| = m

and P (E) ≤ M , such that ‖κE − κE‖L2(∂E) ≤ ε0. Then E is diffeomorphic to a union of d

disjoint disks D1, . . . , Dd, with equal areas m/d and dist(Di, Dj) > 0 for i 6= j, and

(2.1) |P (E)− Pd| ≤ C0‖κE − κE‖2L2(∂E) .

Moreover, d is bounded from above by a constant depending only on m, M .

Finally, for ε0 sufficiently small, the boundary of every connected component of the set

E can be parametrized as a normal graph over one of the discs Di with C1, 1
2 norm of the

parametrization vanishing as ε0 → 0.

Proof. Let E be as in the statement and let E1,. . . , Ed be the collection of its connected

components. For each component Ei we denote by Γi the outer component of ∂Ei and by Êi

the bounded region enclosed by Γi, i.e., the set obtained by filling the “holes” of Ei.

We split the proof into several steps. Notice that in what follows m0 ∈ (0, 1) and M0 > 1

will denote “universal” constants, i.e, constants depending only on m,M , which may change

from line to line.

Step 1. We claim that

(2.2) |Êk̄| ≥ m0 for some k̄ ∈ {1, . . . , d}.
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Indeed, by translating the components if necessary we may assume that dist(Êi, Êj) >
√

2.

Setting Q := (0, 1)× (0, 1), we may use [39, Lemma 2.1] to infer that there exist z ∈ Z2 such

that

|E ∩ (z +Q)| ≥ cmin
{m2

M2
, 1
}
,

with c > 0 a universal constant. Since z +Q can only intersect one component Êi, the claim

follows.

Step 2. We claim that

(2.3) |κE | ≤M0 .

To this aim, note that by the Isoperimetric Inequality and by (2.2), we have

(2.4) H1(∂Êk̄) ≥ 2
√
πm0 .

Now, ∫
∂Êk̄

∣∣∣κE − 2π

H1(∂Êk̄)

∣∣∣2 dH1 ≤
∫
∂E
|κE − κE |2 dH1 ≤ ε2

0 ,

where we used the simply connectedness of Êk̄ and Gauss-Bonnet Theorem to get κÊk̄
=

2π/H1(∂Êk̄). Note that here and repeatedly in the sequel we use that mina
∫
|f − a|2dH1 =∫

|f − f̄ |2dH1, with f̄ the average of f . In turn,

1

H1(∂Êk̄)

∣∣∣2π −H1(∂Êk̄)κE

∣∣∣2 =

∫
∂Êk̄

∣∣∣ 2π

H1(∂Êk̄)
− κE

∣∣∣2 dH1

≤ 2

∫
∂Êk̄

∣∣∣κE − 2π

H1(∂Êk̄)

∣∣∣2 dH1 + 2

∫
∂E

∣∣∣κE − κE∣∣∣2 dH1 ≤ 4ε2
0 ≤ 4 .

Hence
∣∣∣2π −H1(∂Êk̄)κE

∣∣∣ ≤ 2
√
H1(∂Êk̄), so that, using also (2.4),

2
√
πm0|κE | ≤ 2π + |2π −H1(∂Êk̄)κE | ≤ 2π + 2

√
H1(∂Êk̄) ≤ 2π(1 +

√
M) ,

and the claim follows.

Step 3. We claim that

(2.5) H1(Γ) ≥ m0 for any component Γ of ∂E .

Indeed, using again Gauss-Bonnet Theorem and Jensen inequality,

M |κE |2 + 1 ≥ H1(Γ)|κE |2 + ε2
0 ≥ H1(Γ)|κE |2 +

∫
Γ
|κE − κE |2 dH1

≥ 1

2

∫
Γ
|κE |2 dH1 ≥ 1

2H1(Γ)

(∫
Γ
κE dH1

)2
=

1

2H1(Γ)
4π2 ,

and the claim follows taking into account (2.3).

Step 4. We claim that if ε0 is sufficiently small, then E has d ≤ M0 connected components

which are simply connected.
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We argue by contradiction. Suppose there exists a connected component Ei which is

not simply connected. Then there exists a component Γ ⊂ ∂E contained in Êi such that∫
Γ κE dH

1 = −2π. We observe that then it holds

−
∫

Γ
κEdH1 = − 2π

H1(Γ)
and −

∫
∂Êi

κEdH1 =
2π

H1(∂Êi)

and therefore∫
Γ

∣∣∣κE +
2π

H1(Γ)

∣∣∣2dH1 +

∫
∂Êi

∣∣∣κE − 2π

H1(∂Êi)

∣∣∣2dH1 ≤
∫
∂E
|κE − κE |2dH1 ≤ ε2

0.

We then infer that by (2.5)

16π2

M2
≤

∣∣∣∣∣ 2π

H1(Γ)
+

2π

H1(∂Êi)

∣∣∣∣∣
2

≤ 2

∣∣∣∣κE +
2π

H1(Γ)

∣∣∣∣2 + 2

∣∣∣∣∣κE − 2π

H1(∂Êi)

∣∣∣∣∣
2

≤ 2−
∫

Γ

∣∣∣∣κE +
2π

H1(Γ)

∣∣∣∣2 dH1 + 2−
∫
∂Êi

∣∣∣∣∣κE − 2π

H1(∂Êi)

∣∣∣∣∣
2

dH1 ≤ 2ε2
0

m0
.

Therefore, for ε0 sufficiently small we reach a contradiction.

Every component of E is thus simply connected and by (2.5) their perimeter is bounded

from below. Therefore the number d of the components is bounded from above d ≤M0. Note

that in particular κE = 2πd
H1(∂E)

.

Step 5. Let us show that if ε0 is sufficiently small, then each connected component Ei is

a nearly spherical set, parametrized over a disks Dri(xi) with |Dri(xi)| = |Ei| and the C1, 1
2

norm of the parametrization is infinitesimal with ε0 → 0.

We adapt the argument of [23, Lemma 3.2]. Let us fix a component Ei and denote its

perimeter by li, i.e. H1(∂Ei) = li. By Gauss-Bonnet it holds κEi = 2π
li

. Since the boundary

∂Ei is connected we may parametrize it by a unit speed curve γ : [0, li] → R2, γ(s) =

(x(s), y(s)) with counterclockwise orientation. Define θ(s) :=
∫ s

0 κEi(γ(τ)) dτ so that θ(0) = 0

and θ(li) = 2π. Then, for every 0 ≤ s1 < s2 ≤ li, it holds by Hölder’s inequality

|θ(s2)− s2κE − (θ(s1)− s1κE)| ≤
∫ s2

s1

|κE − κE |

≤ ‖κE − κE‖L2(∂E)|s2 − s1|
1
2

≤ ε0|s2 − s1|
1
2 .

(2.6)

In particular, applying (2.6) to s1 = 0 and s2 = s ∈ [0, li] generic (recall that M0 > 1 denote

“universal” constants depending only on m,M , which may change from line to line)

(2.7)
∣∣θ(s)− sκE∣∣ ≤M0‖κE − κE‖L2(∂E) ≤M0ε0,

and for s2 = li it yields

(2.8) |2π − liκE | ≤M0‖κE − κE‖L2(∂E) ≤M0ε0.
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By possibly rotating the set Ei we have

x′(s) = − sin θ(s) and y′(s) = cos θ(s) for all s ∈ (0, li).

We obtain by (2.7) and (2.8) that

(2.9)
∣∣∣x′(s) + sin

(2πs

li

)∣∣∣+
∣∣∣y′(s)− cos

(2πs

li

)∣∣∣ ≤M0‖κE − κE‖L2(∂E) ≤M0ε0

for all s ∈ [0, li]. Integrating (2.9) we deduce that there are numbers a and b such that∣∣∣x(s)− a− li
2π

cos
(2πs

li

)∣∣∣+
∣∣∣y(s)− b− li

2π
sin
(2πs

li

)∣∣∣
≤M0‖κE − κE‖L2(∂E) ≤M0ε0(2.10)

for all s ∈ [0, li]. We set xi = (a, b) and note that from (2.10) we infer that

(2.11) D li
2π
−M0‖κE−κE‖L2(∂E)

(xi) ⊂ Ei ⊂ D li
2π

+M0‖κE−κE‖L2(∂E)

(xi).

In particular, if ri is chosen in such a way that |Ei| = πr2
i = |Dri(xi)|, then (2.11) yields

(2.12)
li
2π
−M0‖κE − κE‖L2(∂E) ≤ ri ≤

li
2π

+M0‖κE − κE‖L2(∂E),

and ∣∣∣x(s)− a− ri cos
(2πs

li

)∣∣∣+
∣∣∣y(s)− b− ri sin

(2πs

li

)∣∣∣
≤M0‖κE − κE‖L2(∂E) ≤M0ε0 ∀ s ∈ [0, li].(2.13)

By (2.9) and (2.13) the boundary of the component Ei is parametrized by a small perturbation

of the boundary of the disc ∂Dri(xi) given by c : [0, li]→ R2 with c(s) = ri(cos(2πs
li

), sin(2πs
li

)):

γ(s) = c(s) + σ(s)

‖σ‖L∞ + ‖σ′‖L∞ ≤M0‖κE − κE‖L2(∂E) ≤M0ε0.(2.14)

Now it is a simple consequence of (2.6), (2.9) and (2.14) to verify that ∂Ei is as nearly

spherical sets over Dri(xi), with |Dri(xi)| = |Ei|, by functions fi ∈ C1,1/2(∂Dri(xi)) with

‖fi‖C1,1/2 ≤ ω(‖κE − κE‖L2) ,

for suitable increasing modulus of continuity ω, with ω(0+) = 0.

Step 6. Quantitative Alexandrov Theorem.

We use the quantitative Alexandrov theorem proven in [39] to infer that, if fi is the

parametrization of the component Ei, then

‖fi‖2H1(∂Dri (xi))
≤ C‖κEi − κEi‖2L2(∂Ei)

.

Recall that ri is such that |Ei| = |Dri(xi)|. By the area formula, see e.g. [39, (1.3)], and a

simple linearization we infer that

0 ≤ P (Ei)− P (Dri(xi)) ≤ C‖fi‖2H1(∂Dri (xi))
.
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Summing over the connected components yields

‖κE − κE‖2L2(∂E) ≥
d∑
i=1

‖κEi − κEi‖2L2(∂Ei)
≥ c

d∑
i=1

‖fi‖2H1(∂Dri (xi))

≥ c
∣∣ d∑
i=1

P (Ei)− P (Dri(xi))
∣∣.(2.15)

Step 7. Conclusion.

Let r > 0 be such that the disk Dr(xi) has area |Dr(xi)| = m/d , where m = |E|. In other

words
∑d

i=1 P (Dr(xi)) = 2π rd = Pd. Recall that the disks Dri(xi) are defined such that

|Dri(xi)| = |Ei| for every component Ei and thus

(2.16)
d∑
i

r2
i = dr2.

Recall also that by the previous estimates it holds m0 ≤ ri, r, d ≤ M0. By (2.11) and (2.12)

we infer that

(2.17) Dri−M0‖κE−κE‖L2(∂E)
(xi) ⊂ Ei ⊂ Dri+M0‖κE−κE‖L2(∂E)

(xi).

and therefore

(2.18) |r − ri| ≤M0‖κE − κE‖L2(∂E).

Thus, by simple algebra, by (2.16) and by (2.12), if d > 1 we deduce

∣∣Pd − d∑
i=1

P (Dri(xi))
∣∣ = 2π

∣∣d r − d∑
i=1

ri
∣∣ = 2π

∣∣∣∣∣∣√d
(

d∑
i=1

r2
i

) 1
2

−
d∑
i=1

ri

∣∣∣∣∣∣
≤M0

d d∑
i=1

r2
i −

(
d∑
i=1

ri

)2


= M0

∑
1≤i<j≤d

(ri − rj)2

≤ C
d∑
i=1

(ri − r)2
(2.18)

≤ M0‖κE − κE‖2L2(∂E).

Hence, the inequality (2.1) then follows by combining the above estimate with (2.15). Finally,

by the very same argument of step 5 and by (2.18) we deduce that the connected components

Ei can be parametrized as nearly spherical sets over the discs Dr(xi). �

Proposition 2.1 immediately implies the sharp geometric inequality in the plane stated in

Theorem 1.1.
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Proof of Theorem 1.1. Let ε0 > 0 be from Proposition 2.1. If ‖κE − κ̄E‖L2(∂E) ≤ ε0 then

the inequality holds by Proposition 2.1. If ‖κE − κ̄E‖L2(∂E) ≥ ε0, then the inequality holds

trivially as

|P (E)− Pd| ≤ 3M ≤ 3M

ε2
0

‖κE − κ̄E‖2L2(∂E).

The inequality (1.3) follows similarly. �

Remark 2.2. The exponent 2 in Theorem 1.1 is optimal. Indeed, let Ef be a nearly spherical

set with same area and barycenter of the disc, parametrized (on the unitary circle) by a smooth

function f : ∂D1 → R with C1 norm small enough; then, by Fuglede inequality [22]

P (Ef )− P (D1) ≥ c‖f‖2H1(∂D1).

If in addition f is in the second eigenspace of the Laplace-Beltrami operator on the circle, as

pointed out in [39, Remark 1.5] we have

‖f‖2H1(∂D1) ≥ c‖HEf − H̄Ef ‖
2
L1(∂D1).

Combining the above inequalities, the optimality of the exponent follows.

3. The asymptotics of the area preserving curvature flow in the plane

Let us first introduce the setting for the construction of the flat flows. We use the notation

from [39] and refer to [41, 39] for a more detailed introduction. We denote the signed distance

function by dE and define it as

dE(x) = dist(x,E)− dist(x,R2 \ E).

Then clearly |dE(x)| = dist(x, ∂E).

We fix the volume m > 0 and the time step h > 0, and given a bounded set E we consider

the minimization problem

(3.1) min
{
P (F ) +

1

h

∫
F
dE dx+

1√
h

∣∣|F | −m∣∣}
and note that the minimizer exists but might not be unique. We define the dissipation of a

set F with respect to a set E as

(3.2) D(F,E) :=

∫
F∆E

dist(x, ∂E) dx

and observe that we may write the minimization problem (3.1) as

min
{
P (F ) +

1

h
D(F,E) +

1√
h

∣∣|F | −m∣∣}.
Let us then recall the construction of the flat flow for the volume preserving mean curvature

flow (1.1) from [41]. Let E(0) ⊂ R2 be a bounded set of finite perimeter which coincides



12 VESA JULIN, MASSIMILIANO MORINI, MARCELLO PONSIGLIONE, AND EMANUELE SPADARO

with its Lebesgue representative. We fix a minimizer of (3.1), with E = E(0), denote it by

E
(h)
1 and consider its Lebesgue representative. We construct the discrete-in-time evolution

{E(h)
k }k∈N by recursion such that assuming that E

(h)
k is defined we set E

(h)
k+1 to be a minimizer

of (3.1) with E = E
(h)
k . By [41, Lemma 3.1] it holds for all k = 0, 1, . . .

(3.3) P (E
(h)
k+1) +

1√
h

∣∣|E(h)
k+1| −m

∣∣+
1

h
D(E

(h)
k+1, E

(h)
k ) ≤ P (E

(h)
k ) +

1√
h

∣∣|E(h)
k | −m

∣∣.
Also the set E

(h)
k+1 is C2,α-regular and satisfies the Euler-Lagrange equation (see [41, Lemma

3.7])

(3.4)
d
E

(h)
k

h
= −κ

E
(h)
k+1

+ λ
(h)
k+1 on ∂E

(h)
k+1,

in the classical sense, where λ
(h)
k+1 is the Lagrange multiplier due to the volume penalization.

Finally we define the approximative flat flow {E(h)(t)}t≥0 by setting

E(h)(t) = E
(h)
k for t ∈ [kh, (k + 1)h).

Definition 3.1. A flat flow solution of (1.1) is any family of sets {E(t)}t≥0 which is a cluster

point of {E(h)(t)}t≥0, i.e.,

E(hn)(t)→ E(t) as hn → 0 in L1 for almost every t > 0.

By [41, Theorem 2.2] there exists a flat flow starting from E(0) such that P (E(t)) ≤
P (E(0)) and |E(t)| = m for every t ≥ 0.

We are interested in the long time behavior of the flow. To this aim we need two technical

lemmas. The first lemma is algebraic.

Lemma 3.2. Let K ∈ N and {ak}k∈{1,...,K} be a sequence of non-negative numbers and let

I ⊂ {1, . . . ,K}. Assume that there exists c > 1 such that

K∑
k=i

ak ≤ cai

for every i ∈ {1, . . . ,K} \ I. Then,

K∑
k=i+1

ak ≤
(

1− 1

c

)i−|I|
S

for every i ∈ {1, . . . ,K}, where S :=
∑K

k=1 ak and |I| denotes the cardinality of I.

Proof. Set F (i) :=
∑K

k=i ak and note that by assumption F (i) ≤ c(F (i)− F (i+ 1)) for every

i ∈ {1, . . . ,K} \ I. Hence, we have

F (i+ 1) ≤


(

1− 1
c

)
F (i) if i 6∈ I,

F (i) if i ∈ I.
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By iterating the previous estimate (note that at least K − |I| times the first instance must

hold), we conclude. �

The second lemma is in the spirit of Ekeland variational principle.

Lemma 3.3. Let d ∈ N and Dr(x1), . . . , Dr(xd) be disjoint disks and denote F =
⋃d
i=1Dr(xi).

Then there is a constant C, which depends only on d and r, such that for every set of finite

perimeter E ⊂ R2 it holds

P (F ) ≤ P (E) + C|E∆F |
1
3 .

Proof. Let us fix a set E and let ρ ≤ r/10 be a positive number which choice will be clear

later. We begin by constructing a set Fρ of class C1,1, which contains the union of disks

F ⊂ Fρ, satisfies interior and exterior ball condition with radius ρ and

(3.5) P (F ) ≤ P (Fρ) + C
√
ρ, and |F∆Fρ| ≤ Cρ

3
2 .

Let x1, . . . , xd be the centerpoints of the disks. If it holds |xi − xj | > 2r + ρ for every i 6= j

we simply choose Fρ = F . If |xi − xj | ≤ 2r + ρ for some i 6= j we connect the disks Dr(xi)

and Dr(xj) with a thin neck around the midpoint (xi + xj)/2 as follows. We first enlarge

the disks by ρ and consider the union F̃ ijρ := Dr+ρ(xi) ∪Dr+ρ(xj), which overlap around the

midpoint (xi + xj)/2 . We then decrease the union back by ρ and define

F i,jρ = {x ∈ R2 : dist(x,R2 \ F̃ ijρ ) > ρ}.

Since |xi − xj | ≤ 2r + ρ, the set F i,jρ is connected and contains the disks Dr(xi) and Dr(xj).

The part of the boundary of F i,jρ , which is not contained in D̄r(xi) ∪ D̄r(xj), consists of two

arcs, see Figure 1. In particular, the set F i,jρ satisfies interior and exterior ball condition with

radius ρ. We repeat the same construction for all disks Dr(xi) and Dr(xj) which are close to

each other in the sense that |xi − xj | ≤ 2r + ρ, and obtain Fρ which satisfies (3.5).

The rest of the proof follows from standard calibration argument (see e.g. [2, Proof of

Theorem 4.3]) and we only give the sketch of the argument. We construct a vector field

X ∈ C1,1(R2,R2) such that

X(x) = ∇dFρ(x)ζ(x)

where 0 ≤ ζ ≤ 1 is a smooth cut-off function such that ζ(x) = 1 for |dFρ(x)| ≤ ρ/4, ζ(x) = 0

for |dFρ(x)| ≥ ρ/2 and |∇ζ| ≤ C/ρ. In particular, it holds |X| ≤ 1 in R2 and X = νFρ on

∂Fρ. Moreover, since Fρ satisfies interior and exterior ball condition with radius ρ it holds

|∆dFρ(x)| ≤ C/ρ for |dFρ(x)| ≤ ρ/2. Therefore by the divergence theorem

P (Fρ)− P (E) ≤
∫
Fρ∆E

|div(X)| dx ≤ C

ρ
|Fρ∆E|.

We combine the above inequality with (3.5) and deduce

P (F ) ≤ P (E) +
C

ρ
|E∆F |+ C

√
ρ.

Choosing ρ = min{|E∆F |
2
3 , r/10} yields the claim. �
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xjxi

Figure 1. If two disks are close to each other, we connect them with a neck

given by two arcs

We may now give the proof of the convergence of the area-preserving mean curvature flow.

Proof of Theorem 1.2. Let {E(t)}t≥0 be an area-preserving flat flow and let {E(hn)(t)}t≥0

be an approximate flow converging to E(t). Set

fn(t) = P (E(hn)(t)) +
1√
hn

∣∣|E(hn)(t)| −m
∣∣.

By (3.3) the fn’s are monotone non-increasing functions which are bounded by P (E(0)).

Therefore, by Helly’s selection theorem, up to passing to a further subsequence (not relabeled),

the functions fn’s converge pointwise to some non-increasing function f∞ : [0,+∞)→ R. Set

F∞ = limt→+∞ f∞(t). In what follows we also set

v
(hn)
t =

d
E

(hn)
k

hn
, where k =

⌊
t

hn

⌋
− 1

the approximate velocity of the approximate flow at time t. Moreover, C will denote a positive

constant, which may change from line to line and might depend on the flat flow itself (but

not on hn nor on the discrete step of the minimizing movements).

We divide the proof in two cases.

Case 1: There exists d ∈ N \ {0} such that either Pd < F∞ < Pd+1 or F∞ = Pd and

f∞(t) > Pd for every t ∈ [0,+∞).

In this case, there exists t̄ > 0 such that, for every T > t̄ there exist n̄ ∈ N \ {0} such that

Pd ≤ fn(t) < Pd+1 and Pd+1 − fn(t) ≥ Pd+1 − F∞
2

=: δ0(3.6)
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for every n ≥ n̄ and t ∈ [t̄, T ]. Set I(hn) =
{
i ∈
{
b t̄hn c, . . . , b

T
hn
c
}

: |E(hn)
i | 6= m

}
. By [41,

Cor. 3.10] there exists a constant CT > 0 such that

(3.7) |I(hn)| ≤ CT

for n sufficiently large. For every i 6∈ I(hn) we have by iterating (3.3) and using (3.6)

1

hn

b T
hn
c∑

k=i+1

D(E
(hn)
k , E

(hn)
k−1 ) ≤ P (E

(hn)
i )− fn(T ) ≤ P (E

(hn)
i )− Pd.

Then by (1.3) and by the Euler-Lagrange equation (3.4)

1

hn

b T
hn
c∑

k=i+1

D(E
(hn)
k , E

(hn)
k−1 ) ≤ P (E

(hn)
i )− Pd ≤ C0‖κE(hn)

i

− κ
E

(hn)
i

‖2
L2(∂E

(hn)
i )

≤ C0‖κE(hn)
i

− λ(hn)
i ‖2

L2(∂E
(hn)
i )

=
C0

h2
n

∫
∂E

(hn)
i

d2

E
(hn)
i−1

dH1.

(3.8)

In [41] it is proven (formula after (3.25)) that

(3.9)

∫
∂E

(hn)
i

d2

E
(hn)
i−1

dH1 ≤ CD(E
(hn)
i , E

(hn)
i−1 ).

Therefore from (3.8) we conclude

b T
hn
c∑

k=i+1

D(E
(hn)
k , E

(hn)
k−1 ) ≤ C ′0

hn
D(E

(hn)
i , E

(hn)
i−1 ).

Setting a
(hn)
k = h−1

n D(E
(hn)
k , E

(hn)
k−1 ) we have that for every i ∈

{
b t̄hn c, . . . , b

T
hn
c
}
\ I(hn) it

holds
b T
hn
c∑

k=i

a
(hn)
k ≤ C ′0 + hn

hn
a

(hn)
i ≤ 2C ′0

hn
a

(hn)
i .

Moreover it holds by (3.3)
∑∞

k=1 ak ≤ P (E(0)) ≤M . By Lemma 3.2 we infer that

b T
hn
c∑

k=i+1

a
(hn)
k ≤M

(
1− hn

2C ′0

)i−CT− t̄
hn

for all i = b t̄
hn
c, . . . , b T

hn
c.

In other words for every t ∈ [t̄, T ] we have

(3.10)

b T
hn
c∑

k=b t
hn
c+1

h−1
n D(E

(hn)
k , E

(hn)
k−1 ) ≤M

(
1− hn

2C ′0

)b t
hn
c−CT− t̄

hn

≤ Ce
− t

2C′0

for hn ≤ h0(T ).

By [41, Proposition 3.4] it holds

|E(hn)
i ∆E

(hn)
i−1 | ≤ C`P (E

(hn)
i ) +

C

`

∫
E

(hn)
i ∆E

(hn)
i−1

|d
E

(hn)
i−1

| dx
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for all ` ≤ 1
C

√
hn. Therefore, by the inequality above and by (3.10) we infer that for every

t̄ ≤ t < s ≤ T we have

|E(hn)(t)∆E(hn)(s)| =
b s
hn
c∑

i=b t
hn
c+1

|E(hn)
i ∆E

(hn)
i−1 |

≤ C
b s
hn
c∑

i=b t
hn
c+1

(
`P (E

(hn)
i ) +

1

`

∫
E

(hn)
i ∆E

(hn)
i−1

|d
E

(hn)
i−1

| dx

)

≤ CP (E(0))`
s− t
hn

+
C

`

b s
hn
c∑

i=b t
hn
c+1

D(E
(hn)
i , E

(hn)
i−1 )

≤ CM`
s− t
hn

M +
C hn
`

e
− t

2C′0 ,

for all ` ≤ 1
C

√
hn and hn ≤ h0. In particular, choosing ` = hn

eαt with α = 1
4C′0

and s ≤ t + 1,

we have

|E(hn)(t)∆E(hn)(s)| ≤ CMe
− t

4C′0 .

Passing to the limit as hn → 0, we get

(3.11) |E(t)∆E(s)| ≤ CMe
− t

4C′0 for all t̄ ≤ t ≤ s ≤ t+ 1.

Hence, we deduce that E(t) converges exponentially fast to a set of finite perimeter E∞ in

L1 and |E∞| = m.

We now show that the limiting set E∞ is the union of disjoint open disks with the same

radius. Denote by S∞ the countable set of discontinuity points of f∞ and note that for any

t ∈ (0,+∞) \ S∞ and any sequence tn → t we have fn(tn)→ f∞(t).

Fix t ≥ t̄, 0 < α < 1
2C′0

, and an open set A(t) such that S∞∩[t, t+e−αt] ⊂ A(t) ⊂ [t, t+e−αt]

and |A(t)| ≤ e−α′t, with α′ > α. By (3.9) and (3.10) we have

∫
[t,t+e−αt]\A(t)

(∫
∂E(hn)(s)

(v(hn)
s )2dH1

)
ds ≤ 1

hn

b t+e
−αt
hn

c∑
i=b t

hn
c

∫
∂E

(hn)
i

d2

E
(hn)
i−1

dH1

≤ C
b t+e

−αt
hn

c∑
i=b t

hn
c

1

hn
D(E

(hn)
i , E

(hn)
i−1 ) ≤ Ce

− t
2C′0 ,

(3.12)

for n sufficiently large. By possibly increasing t̄ we have |[t, t+ e−αt]\A(t)| > 1
2e
−αt for t ≥ t̄.

Moreover by (3.7) it holds

|{s ∈ [t, t+ e−αt] : |E(hn)(s)| 6= m}| → 0 , as n→∞.
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Then by (3.12) and by the mean value theorem there exists sn ∈ [t, t+ e−αt] \A(t) such that

(3.13) ‖κE(hn)(sn) − κE(hn)(sn)‖
2
L2(∂E(hn)(sn))

≤
∫
∂E(hn)(sn)

(v(hn)
sn )2dH1 ≤ Ce

−
(

1
2C′0
−α
)
t
,

|E(hn)(sn)| = m, and thus, in particular, fn(sn) = P (E(hn)(sn)). From Proposition 2.1 and

(3.13), we infer that, for t ≥ t̃, where t̃ is sufficiently large, E(hn)(sn) is diffeomorphic to a

union of d disjoint disks and

(3.14) |P (E(hn)(sn))− Pd| ≤ Ce
−
(

1
2C′0
−α
)
t
.

In particular, passing to the limit in hn → 0 (up to a further not relabelled subsequence, if

needed), there exists st ∈ [t, t+e−αt]\A(t) such that sn → st and thus E(hn)(sn)→ E(st) in L1

and P (E(hn)(sn)) = fn(sn)→ f∞(st). In fact, by the uniform C1, 1
2 -bounds provided by (3.13)

and Proposition 2.1 we deduce that P (E(hn)(sn)) → P (E(st)) and thus f∞(st) = P (E(st)),

and that E(st) is the union of d nearly spherical sets parametrized over d disjoint open disks

Dr(xi(t)), i = 1, . . . d of volume m/d, with C1, 1
2 -norm of the parametrizations (exponentially)

small. In particular, setting F (t) := ∪di=1Dr(xi(t)), we have that supx∈E(st)∆F (t) dist(x, ∂F (t))

decays exponentially to zero as t → +∞, E∞ is a union of d disjoint open disks of volume

m/d, and F (t)→ E∞ in the Hausdorff sense exponentially fast.

Summarizing, and recalling also the first inequality in (3.6) and (3.14), we have shown that

for every t sufficiently large, there exists st ∈ [t, t + e−αt] such that E(st) is the union of d

disjoint nearly spherical sets parametrized over the disjoint open disks of E∞ and

(3.15) Pd ≤ f∞(st) = P (E(st)) ≤ Pd +Ce−(1/C−α)t , sup
x∈E(st)∆E∞

dist(x, ∂E∞) ≤ Ce−
t
C ,

for a suitable constant C > 1.

From the first inequality in (3.15) and by the monotonicity of f∞ we obtain for all s

sufficiently large that by choosing t such that s = t+ e−αt it holds

P (E(s)) ≤ f∞(s) ≤ f∞(st) ≤ Pd + Ce−(1/C−α)(s−e−αt) ≤ Pd + Ce−
(1/C−α)s

2 .

On the other hand, by Lemma 3.3 and (3.11) we obtain

Pd ≤ P (E(t)) + C|E(t)∆E∞|
1
3 ≤ P (E(t)) + C ′e

− t
12C′0 .

Hence, we have the exponential convergence of the perimeters in (1.4).

The first part of the inequality in (1.4) follows from the second inequality in (3.15) and

from [28, Lemma 4.3].

Case 2: There exist d ∈ N \ {0} and t̄ > 0 such that F∞ = Pd = f∞(t) for every t ≥ t̄.
In this case, using the monotonicity of the functions fn’s, we deduce that for every T > t̄

the functions fn converge uniformly to f∞ ≡ F∞ in [t̄, T ]. In particular, using that

1

hn
D(E

(hn)
k , E

(hn)
k−1 ) ≤ fn((k − 1)hn)− fn(khn),
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we deduce that for every t ∈ [t̄+ hn, T ] we have

b T
hn
c∑

k=b t
hn
c+1

1

hn
D(E

(hn)
k , E

(hn)
k−1 ) ≤ fn

(
b t
hn
chn
)
− fn

(
b T
hn
chn
)

=: bn → F∞ − F∞ = 0

as hn → 0. Arguing as above, for every t̄+ hn ≤ t < s ≤ T , we get

|E(hn)(t)∆E(hn)(s)| ≤ C`s− t
hn

P (E(0)) +
C

`

b s
hn
c∑

i=b t
hn
c+1

D(E
(hn)
i , E

(hn)
i−1 ),

for all ` ≤ 1
C

√
hn and, choosing ` =

√
bnhn, we conclude that

|E(hn)(t)∆E(hn)(s)| ≤ C
√
bn(s− t)P (E(0)) + C

√
bn → 0,

that is E(t) = E(s) for every t̄ < t < s < T .

The final part of the proof consists in showing that the limiting set E∞ is the union of

disjoint open disks with the same radius. We have

∫ T

t

∫
∂E(hn)(t)

(v
(hn)
t )2dH1 =

1

hn

b T
hn
c∑

i=b t
hn
c

∫
∂E

(hn)
i

d2

E
(hn)
i−1

=

b T
hn
c∑

i=b t
hn
c

1

hn
D(E

(hn)
i , E

(hn)
i−1 ) = o(1).

By the mean value theorem, for every T sufficiently large there exists tn ∈ [T, T + 1] such

that

‖κE(hn)(tn) − κE(hn)(tn)‖
2
L2(∂E(hn)(tn))

≤
∫
∂E(hn)(tn)

(v
(hn)
tn )2dH1 = o(1).

As before, by Proposition 2.1 the sets E(hn)(tn) are nearly spherical and converge to the union

of d disjoint open balls. From here the conclusion follows. �

4. The asymptotics of the 2D Mullins-Sekerka flow

Let us first construct a flat flow solution for the Mullins-Sekerka flow in the 2-dimensional

flat torus. The construction in the case of bounded domain is due to Luckhaus and Sturzen-

hecker [34] and the same construction can be applied to the periodic setting with obvious

changes. We denote the perimeter of a set E in the flat torus T2 by PT2(E) and recall that

it is defined as

PT2(E) := sup
{∫

E
divX dx : X ∈ C1(T2,R2), ‖X‖L∞ ≤ 1

}
.

Here X ∈ C1(T2,R2) means that the Z2-periodic extension of X to R2 is continuously dif-

ferentiable. For a given set of finite perimeter E ⊂ T2, with |E| = m, we consider the

minimization problem

(4.1) min
{
PT2(F ) +

h

2

∫
T2

|∇UF,E |2 dx : with |F | = |E| = m
}
,
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where the function UF,E ∈ H1(T2) is the solution of

(4.2) −∆UF,E =
1

h
(χF − χE)

with zero average. As proven in [34, 45] there exists a minimizer for (4.1), but it might not

be unique. Concerning the regularity of the minimizers we may argue as in [2, Theorem 2.8.]

(see also [39, Proposition 2.2]) to deduce that the minimizing set F is C3,α-regular. Let us

briefly sketch the argument. First, we may replace the volume constraint in (4.1) by volume

penalization as in [2, 21] and conclude that the minimizer is a Λ-minimizer of the perimeter.

This implies that the minimizer is C1,α-regular and satisfies the associated Euler-Lagrange

equation

UF,E = −κF + λ on ∂F

in a weak sense (see, for instance, [34, 45]), where λ is the Lagrange multiplier. Since UF,E

is the solution of (4.2), by standard elliptic regularity it holds UF,E ∈ C1,α(T2). Then by the

Euler-Lagrange equation we deduce that F is in fact C3,α-regular and the Euler-Lagrange

equation holds in the classical sense.

Let us denote

(4.3) D(F,E) :=

∫
T2

|∇UF,E |2 dx

where UF,E is defined in (4.2). We define the H−1-norm of a function f on the torus T2 with∫
T2 f = 0 by duality as

‖f‖H−1(T2) := sup
{∫

T2

ϕf dx : ‖∇ϕ‖L2(T2) ≤ 1
}
.

Then, integrating (4.2) by parts yields

(4.4) ‖χF − χE‖2H−1(T2) ≤ h
2 ‖∇UF,E‖2L2(T2) = h2 D(F,E).

We fix the time step h > 0 and our initial set E(0) ⊂ T2 and let E
(h)
1 be a minimizer

of (4.1) with E(0) = E. We construct the discrete-in-time evolution (E
(h)
k )k∈N as before by

induction such that, assuming that E
(h)
k is defined, we set E

(h)
k+1 to be a minimizer of (4.1)

with E = E
(h)
k and denote the associated potential for short by U

(h)
k+1, which is the solution of

(4.5) −∆U
(h)
k+1 =

1

h

(
χ
E

(h)
k+1

− χ
E

(h)
k

)
with zero average. The Euler-Lagrange equation now reads as

(4.6) U
(h)
k+1 = −κ

E
(h)
k+1

+ λ
(h)
k+1 on ∂E

(h)
k+1.

By a direct energy comparison (formula (3.6) in [45]) we obtain

(4.7) PT2(E
(h)
k+1) +

h

2
D(E

(h)
k+1, E

(h)
k ) ≤ PT2(E

(h)
k ),

where D(E
(h)
k+1, E

(h)
k ) is defined in (4.3).
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As before we define the approximative flat flow {E(h)(t)}t≥0 by setting

E(h)(t) = E
(h)
k for t ∈ [kh, (k + 1)h)

and we call a flat flow solution of (1.2) any cluster point {E(t)}t≥0 of {E(h)(t)}t≥0, as h→ 0;

i.e.,

E(hn)(t)→ E(t) in L1 for almost every t > 0 and for some hn → 0.

Arguing exactly as in [45, Proposition 3.1] we may conclude that there exists a flat flow

starting from E(0) such that PT2(E(t)) ≤ PT2(E(0)), |E(t)| = |E(0)| for every t ≥ 0 and

{E(t)}t≥0 satisfies the equation (1.2) in a weak sense.

To proceed, we need the analogue of Proposition 2.1 for the Mullins-Sekerka flow. To this

aim we first prove the following lemma, which is similar to [47, Lemma 2.1].

Lemma 4.1. Let E ⊂ T2 be a set of class C3, with |E| ≤ 1
2 and PT2(E) < 2, and let

uE ∈ C1(T2) be a function with zero average such that ‖∇uE‖L2(T2) ≤M and

(4.8) κE = −uE + λ on ∂E for some λ ∈ R.

Then it holds

(4.9) sup
x∈T2,ρ>0

H1(∂E ∩Dρ(x))

ρ
≤ K,

where the constant K > 0 depends only on |E| and M .

Proof. We note that by (4.8) for every X ∈ C1(T2;R2) it holds

(4.10)

∫
∂E

divτX dH1 =

∫
E

div
(
(−uE + λ)X

)
dx.

Therefore the statement follows from [47, Lemma 2.1] once we bound the Lagrange multiplier

λ ∈ R. To this aim, and for future purpose, we show that there is δ > 0 such that every

component Ei of E is contained in a cube Q1−δ(xi) := (1− δ)2 + {xi} for some xi.

Let us first show that every component Γi of the boundary ∂E divides the torus T2 in two

components and thus it is the boundary of a set. Indeed, if this is not the case then necessarily

H1(Γi) ≥ 1. Since Γi is not a boundary of a set then ∂E must have another component, say

Γj , such that H1(Γj) ≥ 1. But this implies PT2(E) = H1(∂E) ≥ 2, which contradicts the

assumption PT2(E) < 2.

Let us next show that Γi is contained in a cube Q1−δ(xi) for some xi. Let π1 : T2 → T
be the projection onto the x1-axis i.e., π1(x1, x2) = x1. Then we deduce from H1(Γi) < 2

and from the fact that Γi is the boundary of a set that H1(π1(Γi)) < 1. Similarly it holds

H1(π2(Γi)) < 1, where π2 is the projection onto the x2-axis. This implies that Γi ⊂ Q1−δ(xi)

for some δ > 0 and xi. Let us from now on denote the set enclosed by Γi which is inside the

cube Q1−δ(xi) by Fi.
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Let Γ1, . . . ,Γn be the components of the boundary ∂E which enclose the sets F1, . . . , Fn.

Let us show that

(4.11) E ⊂
n⋃
i=1

Fi.

Since Fi ⊂ Q1−δ(xi) we have by the Isoperimetric Inequality 2
√
π|Fi| ≤ H1(Γi). Therefore

by the assumption on the perimeter, PT2(E) < 2, we have

4π
∣∣ n⋃
i=1

Fi
∣∣ ≤ 4π

n∑
i=1

|Fi| ≤
n∑
i=1

H1(Γi)
2 ≤

( n∑
i=1

H1(Γi)
)2
≤ PT2(E)2 < 4.

Therefore
∣∣⋃n

i=1 Fi
∣∣ < 1

π <
1
3 . Since, |E| ≤ 1

2 then necessarily E ⊂
⋃n
i=1 Fi.

We conclude from (4.11) that a component Ej of E is contained in Fi for some i. Therefore

since Fi ⊂ Q1−δ(xi), then also Ej ⊂ Q1−δ(xi).

We may finally bound the Lagrange multiplier in (4.10) by a standard argument. Indeed,

let Ej be a component of E. Since Ej ⊂ Q1−δ(xj) we may define X ∈ C1
0

(
Q1−δ/3(xj)

)
such

that X(x) = x in Ej and X(x) = 0 in E \Ej . We apply (4.10) with this choice of X and have

PT2(Ej) =

∫
∂Ej

divτx dH1 =

∫
Ej

div
(
(−uE + λ)x

)
dx

= −
∫
Ej

div(uE x) dx+ 2λ|Ej |.

We have
∣∣ ∫
Ej

div(uE x) dx
∣∣ ≤ C‖uE‖H1(Ej). By repeating the argument for every component

we obtain by the Poincaré inequality

|λ||E| ≤ PT2(E) + C‖uE‖H1(E) ≤ PT2(E) + C‖uE‖H1(T2) ≤ PT2(E) + C‖∇uE‖L2(T2).

This yields the required bound on the Lagrange multiplier. �

We also recall the result by Meyers-Ziemer [38, Theorem 4.7] which implies that if E

satisfies (4.9) then for every ϕ ∈ C1(T2) it holds

(4.12)
∣∣ ∫

∂E
ϕdH1

∣∣ ≤ C‖ϕ‖W 1,1(T2) ,

with C depending on K (and thus on |E| and M).

We are now ready to state and prove the analogue of Proposition 2.1, which is suited for

the Mullins-Sekerka flow.

Proposition 4.2. Let E ⊂ T2 be a set of class C3, with |E| = m ≤ 1
2 and PT2(E) < 2, and

let uE ∈ C1(T2) be a function with zero average such that

κE = −uE + λ on ∂E

for some λ ∈ R. Then, there exist ε0 = ε0(m) ∈ (0, 1) and C0 = C0(m) > 1 such that if

‖∇uE‖L2(T2) ≤ ε0
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then E is diffeomorphic to a union of d disjoint disks D1, . . . , Dd with equal areas m/d and

dist(Di, Dj) > 0 for i 6= j. Moreover,

|PT2(E)− Pd| ≤ C0‖∇uE‖2L2(T2)

and for ε0 sufficiently small the boundary of every connected component of the set E can be

parametrized as a normal graph over one of the disc Di with C1, 1
2 norm of the parametrization

vanishing as ε0 → 0.

We note that we need the assumption PT2(E) < 2 to exclude the case when E is a strip or

a union of strips.

Proof. We recall that the argument in the proof of Lemma 4.1 implies that every component

Ei of E is contained in a cube Q1−δ(xi) for some xi. By Lemma 4.1 we can apply (4.12) with

ϕ = u2
E and obtain∫

∂E
u2
E dH1 ≤ C‖u2

E‖W 1,1(T2) ≤ C‖uE‖2H1(T2) ≤ C‖∇uE‖
2
L2(T2),

where the last inequality follows from Poincaré inequality. Since uE satisfies (4.8) we deduce

by the assumption ‖∇uE‖L2(T2) ≤ ε0 that∫
∂E
|κE − κE |2 dH1 ≤

∫
∂E
|κE − λ|2 dH1 =

∫
∂E
u2
E dH1 ≤ C‖∇uE‖2L2(T2) ≤ Cε

2
0.

Hence, the claim follows from Proposition 2.1. �

Proposition 4.2 immediately implies the following corollary.

Corollary 4.3. Let E ⊂ T2 be a set of class C3, with |E| = m ≤ 1
2 and PT2(E) < 2 and let

uE ∈ C1(T2) be a function with zero average such that κE = −uE +λ on ∂E for some λ ∈ R.

If δ0 > 0 and d ∈ N, are such that Pd ≤ P (E) ≤ Pd+1 − δ0, then it holds

P (E)− Pd ≤ C0‖∇uE‖2L2(T2)

for C0 = C0(m, δ0).

We also need the following lemma which is essentially a restatement of [34, Lemma 3.1].

The proof can also be found in [9, Lemma 2], but we recall it for the reader’s convenience.

Lemma 4.4. Let ϕ ∈ BV(T2). There is a constants C > 1 and ρ0 > 0 such for all ρ ≤ ρ0 it

holds

‖ϕ‖L1(T2) ≤ Cρ ‖ϕ‖BV (T2) + Cρ−1‖ϕ‖H−1(T2).

Proof. Let us fix ρ > 0 and let ηρ(x) = ρ−2η(xρ ) be the standard mollifier. Then we write

‖ϕ‖L1(T2) ≤
∫
T2

|ϕ− ϕ ∗ ηρ| dx+

∫
T2

|ϕ ∗ ηρ| dx.
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Let us first bound the second term on the RHS. Since ‖ηρ‖H1(T2) ≤ C/ρ we obtain by the

definition of the H−1-norm∫
T2

|ϕ ∗ ηρ| dx =

∫
T2

∣∣ ∫
T2

ϕ(y)ηρ(y − x) dy
∣∣dx ≤ ‖ϕ‖H−1(T2)‖ηρ‖H1(T2) ≤ Cρ−1 ‖ϕ‖H−1(T2).

We bound the first term by change of variables∫
T2

|ϕ− ϕ ∗ ηρ| dx =

∫
T2

∣∣ ∫
T2

(
ϕ(x)− ϕ(x+ ρy)

)
η(y) dy

∣∣ dx
=

∫
T2

∣∣ ∫
T2

∫ ρ

0
− ∂

∂τ
ϕ(x+ τy)η(y) dτdy

∣∣ dx
≤ Cρ ‖ϕ‖BV (T2) .

�

We are ready to prove the convergence of the Mullins-Sekerka flow in the flat torus T2.

Proof of Theorem 1.3. The proof is similar to the proof of Theorem 1.2 but we high-

light the main differences. Let {E(t)}t≥0 be a flat flow for the Mullins-Sekerka flow and let

{E(hn)(t)}t≥0 be an approximate flow converging to E(t). Since {T2 \ E(t)}t≥0 is a flat flow

starting from T2 \ E(0), by replacing E(0) with its complement in T2 if needed, we may

assume without loss of generality that |E(0)| ≤ 1
2 . We will show that in this case the limiting

set is a finite union of disjoint open discs with equal radii.

Arguing as before we deduce that by (4.7) the functions

fn(t) = PT2(E(hn)(t))

are monotone non-increasing with fn(t) < 2 and (possibly up to a further unrelabelled

subsequence) converge pointwise to a non-increasing function f∞ : [0,+∞) → R. Set

F∞ = limt→+∞ f∞(t). Again we divide the proof in two cases.

Case 1: There exists d ∈ N \ {0} such that either Pd < F∞ < Pd+1, or F∞ = Pd and

f∞(t) > Pd for every t ∈ [0,+∞). In this case, there exists t̄ ≥ 1 such that, for every T > t̄

there exist n̄ ∈ N \ {0} such that

Pd ≤ fn(t) < Pd+1 and Pd+1 − fn(t) ≥ Pd+1 − F∞
2

=: δ0(4.13)

for every n ≥ n̄ and t ∈ [t̄, T ]. By summing (4.7) and using (4.13) we obtain for every

i ∈
{
b t̄hn c, . . . , b

T
hn
c
}

that

(4.14)
hn
2

b T
hn
c∑

k=i+1

D(E
(hn)
k , E

(hn)
k−1 ) ≤ PT2(E

(hn)
i )− PT2

(
E

(hn)

b T
hn
c

)
≤ PT2(E

(hn)
i )− Pd,

where D(E
(hn)
k , E

(hn)
k−1 ) is defined in (4.3). Then by (4.14) and by Corollary 4.3 it holds

hn
2

b T
hn
c∑

k=i+1

D(E
(hn)
k , E

(hn)
k−1 ) ≤ PT2(E

(hn)
i )− Pd ≤ C0‖∇U (h)

i ‖
2
L2(T2) = C0D(E

(hn)
i , E

(hn)
i−1 ).
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Therefore we conclude

b T
hn
c∑

k=i+1

D(E
(hn)
k , E

(hn)
k−1 ) ≤ 2C0

hn
D(E

(hn)
i , E

(hn)
i−1 ).

Setting a
(hn)
k = hnD(E

(hn)
k , E

(hn)
k−1 ) we have that for every i ∈

{
b t̄hn c, . . . , b

T
hn
c
}

it holds

b T
hn
c∑

k=i

a
(hn)
k ≤ 2C0 + hn

hn
a

(hn)
i ≤ 3C0

hn
a

(hn)
i

and by applying (4.14) with i = b t̄hn c yields

b T
hn
c∑

k=b t̄
hn
c+1

a
(hn)
k ≤ PT2

(
E

(hn)

b t̄
hn
c

)
≤ PT2(E(0)) < 2.

Therefore Lemma 3.2, with I being the empty set this time, implies

b T
hn
c∑

k=i+1

a
(hn)
k ≤ 2

(
1− hn

3C0

)i− t̄
hn

for all i = b t̄
hn
c, . . . , b T

hn
c.

In other words for every t ∈ [t̄, T ] we have

b T
hn
c∑

k=b t
hn
c+1

hnD(E
(hn)
k , E

(hn)
k−1 ) ≤ 2

(
1− hn

3C0

)b t
hn
c− t̄

hn

≤ Ce−
t

3C0

for hn ≤ h0(T ). Then, by (4.4) and by the above inequality we have that for t̄ ≤ t < s ≤ T

with s ≤ t+ 1 it holds

‖χE(hn)(s) − χE(hn)(t)‖H−1(T2) ≤
b s
hn
c∑

k=b t
hn
c+1

‖χ
E

(hn)
k

− χ
E

(hn)
k−1

‖H−1(T2)

≤
√
s− t√
hn

( b T
hn
c∑

k=b t
hn
c+1

‖χ
E

(hn)
k

− χ
E

(hn)
k−1

‖2H−1(T2)

) 1
2

≤ 1√
hn

( b T
hn
c∑

k=b t
hn
c+1

h2
nD(E

(hn)
k , E

(hn)
k−1 )

) 1
2

≤ C e−
t

6C0 ,

(4.15)

when hn ≤ h0(T ).
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Recall for all t > 0 it holds ‖χE(hn)(t)‖BV(T2) ≤ ‖χE(0)‖BV(T2) ≤ 3. We use Lemma 4.4 and

(4.15) to deduce

‖χE(hn)(s) − χE(hn)(t)‖L1(T2)

≤ Cε ‖χE(hn)(s) − χE(hn)(t)‖BV(T2) + Cε−1‖χE(hn)(s) − χE(hn)(t)‖H−1(T2)

≤ Cε+ Cε−1e
− t

6C0 .

Choosing ε = e
− t

12C0 yields

‖χE(hn)(s) − χE(hn)(t)‖L1(T2) ≤ Ce
− t

12C0 .

Letting hn → 0 we obtain for the limit flow

|E(s)∆E(t)| ≤ C e−
t

12C0 .

From here we conclude that E(t) converges to a set of finite perimeter E∞ exponentially fast.

We may characterize the limit set E∞ as a disjoint union of open disks Dr(x1), . . . , Dr(xd)

thanks to Proposition 4.2 by arguing as in the proof of Theorem 1.2. Similarly, we obtain the

convergence of the perimeters. We leave the details for the reader.

Also the argument for the Case 2, when there exist d ∈ N \ {0} and t̄ > 0 such that F∞ =

Pd = f∞(t) for every t ≥ t̄, follows by the same argument as in the proof of Theorem 1.2. �
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