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Abstract
Oscillatory swimming of a fishlike body, whose motion is essentially promoted by the flapping tail,
has been studied almost exclusively in axial mode under an incoming uniform stream or, more
recently, self-propelled under a virtual body resistance. Obviously, both approaches do not
consider the unavoidable recoil motions of the real body which have to be necessarily accounted for
in a design procedure for technological means. Actually, once combined with the prescribed
kinematics of the tail, the recoil motions lead to a remarkable improvement on the resulting
swimming performance. An inviscid impulse model, linear in both potential and vortical
contributions, is a proper tool to obtain a deeper comprehension of the physical events with
respect to more elaborated flow interaction models. In fact, at a first look, the numerical results
seem to be quite entangled, since their trends in terms of the main flapping parameters are not easy
to be identified and a fair interpretation is obtained by means of the model capability to separate
the effects of added mass and vortex shedding. Specifically, a prevailing dependence of the
potential contribution on the heave amplitude and of the vortical contribution on the pitch
amplitude is instrumental to unravel their combined action. A further aid for a proper
interpretation of the data is provided by accounting separately for a geometrical component of the
recoil which is expected to follow from the annihilation of any spurious rigid motion in case no
fluid interactions occur. The above detailed decomposition of the recoil motions shows, through
the numerical results, how the single components are going to influence the main flapping
parameters and the locomotion performance as a guide for the design of biomimetic swimmers.

1. Introduction

Several fish species, like tunafish, are assumed to pro-
duce their locomotion almost exclusively by oscillat-
ing their caudal fin while the rest of the body should
essentially contribute to both inertial and viscous res-
istance. The performance of these oscillatory swim-
mers has been usually evaluated by the Froude effi-
ciency of the flapping foil propulsor, with assigned
heave and pitch motions, under a prescribed uni-
form stream [1–6] or by the cost of transport for the
whole body, consisting of a flapping foil plus a res-
istant virtual body, self-propelled in axial mode [7,
8]. A comparative analysis of the above two para-
meters for evaluating the swimming performance
has been deeply analyzed to prove their suitabil-
ity for different swimming gaits [9, 10]. The above

procedures are both very convenient for experimental
and numerical investigations, but unable to account
for the actual motion of the fishlike body in free
swimming mode and for its presumed impact on
the overall performance [11–14]. In fact, as firmly
stated by Lighthill [15], the locomotion is necessar-
ily accompanied by some recoil motions whose effect
has to be accounted for to satisfy the equilibrium
equations. The recoil velocity components have been
shown to modify, for undulatory swimming, the res-
ulting kinematics to reach a favorable effect on the
overall efficiency while for constrained or tethered
cases, where their influence is neglected, different
results are obtained for both locomotion speed and
expended energy so to experience a poorer swimming
performance [16–20]. The focus of the present work
is on the analysis of the recoil motions for oscillatory
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swimming with the purpose to find whether they play
a similar role also in this case. In fact, the deforma-
tion is now essentially limited to the rear end of the
body and one could expect rather small recoil reac-
tions with a presumably low impact on the overall
performance [21]. In spite of this common belief,
we claim here that the recoil induced modifications
of the flapping tail parameters cannot be neglected
and even more they produce an overall improvement
of the swimming performance. For a better compre-
hension of these large scale effects, we intend, as a
proper way, to analyze separately the different com-
ponents of the recoil motions and their influence on
the fish dynamics. Specifically, the potential and vor-
tical contributions given by the interaction with the
surrounding fluid and the geometrical component of
the recoil which instead is an a priori requirement to
satisfy the equilibrium of the fishlike body for any
given deformation.

The reported numerical results are obtained by
a simple impulse model which is able to isolate the
added mass and the vortex-shedding contributions
without using more elaborated simulations which
might obscure the essence of the problem. A detailed
analysis of the inviscid results for different values of
the prescribed kinematic parameters is instrumental
to devise the influence of the recoil motion for a suit-
able design procedure of free swimming biomimetic
means.

2. Materials andmethods

2.1. Mathematical model
The self-propelled motion of an impermeable, flex-
ible body B with bounding surface ∂B is modeled by
assuming a two-dimensional incompressible flow in
an unbounded fluid domain V with density ρ. Only
internal actions are exchanged between the swim-
ming body and the surrounding fluid, whose velocity
vanishes at the far field boundary.

By adopting the impulse formulation (see e.g.
[22–24]) for both linear and angular fluid momenta
and assuming n as the normal to ∂B pointing into the
fluid domain V , the force Fb and the momentMb act-
ing on the body are obtained as the time derivatives
of the linear impulse, p, and angular impulse, π:

Fb =−dp

dt

=− d

dt

[ˆ
V
ρx×ωdV +

ˆ
∂B

ρx× (n× u)dS

]
Mb =−dπ

dt

=
d

dt

1

2

[ˆ
V
ρ |x|2 ωdV +

ˆ
∂B

ρ |x|2(n× u)dS

]
(1)

where ω is the vorticity and u stays for the limiting
value of the fluid velocity on ∂B.

The fluid velocity field is expressed through a
Helmholtz decomposition as

u=∇ϕ+∇×Ψ=∇ϕ+ uw (2)

where the scalar potential ϕ and the (solenoidal) vec-
tor potential Ψ are easily obtained by imposing the
impermeable boundary condition on ∂B and van-
ishing velocity at infinity. According to this decom-
position, we express the linear impulse p in terms of
its potential and vortical contributions as p= pϕ +
pv, where the potential impulse pϕ and the vortical
impulse pv are given by (see [25] for further details)

pϕ =−ρ

ˆ
∂B

ϕndS

pv =

ˆ
V
ρ x×ωdV +

ˆ
∂B

ρ x× (n× uw) dS.

(3)

The same decompositionmay be used for the angular
impulse which, by using appropriate vector identit-
ies, can be split into its potential and vortical parts as
π = πϕ +πv, where

πϕ =−ρ

ˆ
∂B

x×ϕndS

πv =−1

2

ˆ
V
ρ |x|2 ωdV

− 1

2

ˆ
∂B

ρ |x|2(n× uw)dS. (4)

By combining the Newton laws with equation (1) and
by eliminating the time derivatives, we obtain, for null
initial conditions, the conservation of the linear and
angular momenta as

ˆ
B
ρbub dV + p= 0

ˆ
B
ρb x× ub dV +π = 0. (5)

The body velocity ub is given by the sum of the pre-
scribed deformation velocity ush plus the unknown
rigid motion of the body-fixed frame with origin in
the centre-of-mass (translational, ucm, and rotational,
Ω, velocity):

ub = ush + ucm +Ω× x ′ (6)

where x ′ is the position vector in the body frame, i.e.
x= xcm + x ′.

As a mandatory requirement for equation (6) to
be valid, since no rigid motions are allowed for an
isolated body, the body deformation velocity have to
satisfy the following two conditions
ˆ
B
ρbush dV= 0

ˆ
B
ρbx

′ × ush dV= 0 (7)

so as the net linear and angular momenta of the
imposed kinematics are equal to zero. Finally, by

2
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combining equations (5) and (6) with the above con-
ditions (7), we obtain:

mbucm + p= 0

IzzΩ+π ′ = 0 (8)

where the angular impulse is recast in terms of
the distance x ′ as π ′ = (π− xcm × p) · e3 and
xcm = xcme1 + ycme2 is the position of the body center
of mass.

In the most general case, especially when
designing a prescribed deformation kinematics ush,
equation (7) are very unlikely to be satisfied and they
read asˆ

B
ρbush dV=mbu0

ˆ
B
ρbx

′ × ush dV= IzzΩ0

(9)

where mb and Izz are the mass and the moment of
inertia of the body respectively and u0 and Ω0 rep-
resent spurious rigid motion embedded in the pre-
scribed kinematics. In the present approach, to obtain
directly the velocity of the body center of mass [26,
27], ush should be properly modified by accounting
for a corrective motion able to counterbalance and to
annihilate u0 and Ω0. We refer to this motion as geo-
metrical recoil correction, essential to ensure that any
deformation assigned to the body is actually viable in
the absence of the interactions with the surrounding
fluid.

The expended energy is obtained in terms of the
fluid kinetic energy released into the flow field [28] as

E=
1

2

ˆ
S
ϕ
∂ϕ

∂n
dS+

1

2

ˆ
S
(uw ×ψ) · ndS

+
1

2

ˆ
V
ψ ·ωdV (10)

where the last term is commonly known as the excess
energy while the first two integrals are usually quite
negligible at steady state conditions.

2.2. Solution procedure
Going back to the Helmholtz decomposition intro-
duced by equation (2), the scalar potentialmay be fur-
ther divided as ϕ= ϕsh +ϕloc [29], so as

∂ϕsh

∂n
= ush · n

∂ϕloc

∂n
= (ucm +Ω× x ′) · n (11)

where ϕsh and ϕloc are associated to the prescribed
deformation velocity ush and to the locomotion (lin-
ear and angular) velocity respectively, according to
the related boundary conditions on Sb. It follows that
the linear and angular impulses may be also split as

pϕ = psh + ploc π ′
ϕ = π ′

sh +π ′
loc (12)

accordingly with the above decomposition.

In line with classical treatises (see e.g. [30]), we
may express ploc and π ′

loc by defining the added mass
coefficientsmij as

mij =−ρ

ˆ
∂B

Φi
∂Φj

∂n
dS (13)

where the Kirchhoff base potentials Φj are defined
through the boundary conditions

∂Φ1

∂n
= n · e1

∂Φ2

∂n
= n · e2

∂Φ3

∂n
= x ′ × n · e3

(14)
to finally have

ϕloc = ẋcmΦ1 + ẏcmΦ2 +ΩΦ3. (15)

By using equations (12) and (15), the final system
of equations is obtained by recasting equation (8) in
a reference frame fixed to the body center of mass.
With the use of capital letters for the unknowns lin-
ear (V1,V2) and angular (Ω) velocities in this frame,
we may bring to the right hand side only the known
terms due to shape deformation and released vorti-
city, so to obtain the system

V1 (m11 +mb)+V2m12 +Ωm13 =−Psh1 − Pv1

V1m21 +V2 (m22 +mb)+Ωm23 =−Psh2 − Pv2

V1m31 +V2m32 +Ω(m33 + Izz) =−Πsh −Πv

(16)

to be solved at each time step for the unknown
velocity components. In the previous sections, to
lighten the reading, the velocity components have
been renamed as U=−V1 and V= V2, while the
mean steady-state value of the forward velocityU will
be referred to as the locomotion velocity Uloc which
identifies the locomotion frame of reference, i.e. a
reference frame moving with the locomotion velo-
city itself. The remaining lateral and angular velo-
city components V and Ω together with the forward
velocity fluctuations U ′, define the body-fixed frame
motion within the locomotion frame and will be
referred to as fluid recoil motions. Many authors (see
e.g. [17, 18, 31]), by following Lighthill’s first defin-
ition of recoil [32] as the motion to be added to a
prescribed deformation to satisfy the linear and angu-
lar momentum conservation laws, do not distinguish
between the geometrical recoil correction and the one
resulting only from the fluid-body interaction, i.e. the
fluid recoil. Although this approach substantially dif-
fers from the one proposed here, it is equally suit-
able to obtain the correct solution [26]. However, we
favour our methodology since it is able to reveal the
role of both contributions and may provide a useful
insight for the design of optimal deformation gaits.

Finally, due to the linearity of the present model,
the system of equation (16) is solved by splitting the
unknown velocity components (U,V,Ω) into their
potential contributions (Uϕ,Vϕ,Ωϕ) and their vor-
tical contributions (Uv,Vv,Ωv). The potential ones

3
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are obtained by solving the system only for the poten-
tial impulses associated to the shape deformation Psh
andΠsh, while the vortical contributions are obtained
by solving for the vortical impulses Pv and Πv.

The flow solutions are obtained by a simple 2D
inviscid model with concentrated vorticity, which
allow for neat and physically intuitive results. Spe-
cifically, we used an unsteady potential code based
on the Hess and Smith approach [33], while the vor-
tex shedding is treated by following the procedure
described in [34]. This well-known numerical pro-
cedure has been extensively used in the literature to
study rigid bodies like airfoils moving with a fully
prescribed motion [2, 4, 35–37]. Since in the present
application the linear and angular rigid body velo-
cities are unknown for free swimming of a deform-
able body (see also [11, 12]), the coupling between its
dynamics and the flow solution implies a much larger
complexity.

2.3. Caudal fin shape and kinematics
The anterior part of the two-dimensional body is
represented by a NACA0012 hydrofoil with length lb
while the caudal fin is represented by a NACA0004
with length lt. The tail length lt, illustrated in figure 1,
is equal to 1/7 of the total body length L= lb + lt, as
frequently observed in nature for oscillatory swim-
mers like tuna.

The caudal fin kinematics is fully prescribed and
its flapping motion is given by the combination of a
heaving motion of the peduncle yp(t) and a pitching
motion about the peduncle itself given by θ(t). The
pitch motion θ(t) has a phase angle ϕ=−π/2 with
respect to the heave motion, so to have

yp(t) = h0 sin(2πft)

θ(t) = θ0 sin(2πft+ϕ) (17)

where h0 is the maximum heave amplitude, θ0 is the
maximum pitch angle and f is the oscillation fre-
quency. The phase shift ϕ between these motions has
been chosen to be consistent with many observations
either in nature or in experimental investigations.
According to these assumptions, the lateral motion of
the caudal fin is finally given as

yf(sf, t) = yp(t)− sf sin(θ(t)) (18)

where sf goes from 0 to lt, i.e. from the peduncle to
the trailing edge of the tail, and θ(t) is taken positive
in the clockwise direction.

With regard to the prescribed body deformation,
we followed a path similar to the one suggested by
Li et al [38] for a pure oscillation of the rear-end of
the anterior body, but we consider a proper undu-
latory motion to better represent the shape deform-
ations observed in real fish. The procedure to obtain
the body kinematics, which is both fitting the flapping
motion of the caudal fin and satisfying the inextens-
ibility condition, is described in the appendix.

Figure 1. Sketch of the flapping caudal fin.

It is interesting to compare the flapping motion
under consideration with an undulatory motion to
look for possible similarities concerning the existence
of a phase velocity also in the present case. By consid-
ering sufficiently small values of the maximum pitch
angle θ0, the flapping motion of the tail given by
equation (18) may be approximated as

y(x, t)≈ h0 sin(2πft)− θ0xcos(2πft) 0 ⩽ x⩽ lt
(19)

where sf has been confused with the abscissa x. This
approximated expression may be assimilated to the
one for an undulatory motion of amplitude h0 with
a wavelength λ≫ lt

y(x, t) = h0 sin

(
2πft− 2π

λ
x

)
≈ h0 sin(2πft)−

2π

λ
h0xcos(2πft) 0 ⩽ x⩽ lt

(20)

and, by equating the coefficients of (19) and (20),
we may evaluate the phase velocity of the flapping
motion as

c= fλ≈ 2πf
h0
θ0
. (21)

In other words, if λ≫ lt, the flapping tail itself may
be seen as a small portion of the longer wave whose
undulating motion is perceived, instantaneously, as a
local oscillation given by the heave and pitchmotions.

The above derived equation (21) for the phase
velocity associated to the tail reminds in some
way the proportional-feathering parameter Θ=
θ0 Uloc/2πfh0, ingeniously suggested by Lighthill
[32] to qualify the propulsive performance of flap-
ping foils. It is straightforward to obtain the expres-
sion of Θ in this case simply as the ratio between
the locomotion velocity Uloc and the phase velocity
given by equation (21), usually identified as the slip
velocity [39].
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One of the main parameters characterizing the
flapping motion of the caudal fin is the peak-to-peak
oscillation amplitude of the trailing edge Ate which,
for small values of the θ0, may be approximated by
using the following expression:

Ate ≈ 2
√

h20 + 2 h0 ltθ0 cos(ϕ)+ l2t θ
2
0 (22)

valid for any value of the phase-lag. In the present
case, since the phase angle ϕ is equal to −π/2,
equation (22) reads as

Ate ≈
√

A2
h + 4 l2t θ

2
0 (23)

where the peak-to-peak heave amplitude Ah has been
defined as Ah = 2 h0. By combining equations (21)
and (23), it follows

c≈ 2πflt
Ah/Ate√

1− (Ah/Ate)2
(24)

where it can be appreciated how the phase velocity
depends only on the ratio between Ate and the max-
imum excursion of the peduncleAh. In other words, if
Ah/Ate is fixed, the phase velocity would be constant
no matter the value of Ate. From equation (24), it is
interesting to note how the phase velocity is rapidly
increasing for Ah/Ate going to one.

To restrict in a reasonable way the parameter
space to be analyzed, we fixed the value of the design
trailing edge oscillation amplitude Ate that is usu-
ally taken to be approximately 0.2 from well-known
experimental evidence [40].

3. Results

We consider a fishlike body self-propelled by an oscil-
lating caudal fin in free swimming mode with no vis-
cous resistance. This ideal case is shown to be very
useful to understand how the recoil is combined with
the prescribed caudal fin motion to obtain the result-
ing flapping kinematics.

As a first step, the time history of the forward velo-
city and of the fluid kinetic energy (see equation (10))
for different values of the design parameters in free
swimming condition are reported in figures 2(a) and
(b), respectively. After an initial transient, the forward
velocity reaches a steady-state condition characterized
by fluctuations around a mean value classically iden-
tified as the locomotion velocity Uloc. By looking at
both figures 2(a) and (b), we may observe how the
kinetic energy transferred to the fluid (see section 2)
increases for larger oscillation amplitude of the for-
ward velocity, i.e. for increasing values of the design
pitch amplitude θ0. At the same time, due to the fixed
value of the design parameter Ate, a decrease of θ0 is
accompanied by an increase of the heave amplitude
h0, which may be associated to larger value of the
locomotion velocity.

At this point it is instructive to discuss how the
phase velocity and the asymptotic locomotion speed
are related to the main parameters h0 and θ0.

A simple gait representation is given by figure 3(a)
which has been constructed by reporting a few suc-
cessive configurations of the entire body in free swim-
ming mode to highlight, with their envelope, the
wave-like character of the caudal fin motion. We may
observe how the tail trajectory follows a sinusoidal
path characterized by a wavelength λ obtained with
a good approximation as

λ=
c

f
≈ 2π

h0
θ0

(25)

where the phase velocity c has been evaluated by using
equation (21) with the flapping parameters h0 and
θ0 obtained in free swimming condition. From the
same figure and even better from the related anim-
ation (see the movie in the supplementry mater-
ial online), it appears that the caudal fin motion
drives the swimming gait along a travelingwave, while
the anterior body seems to have a neutral role with
respect to the illustrated motion. More specifically,
figure 3(b) reports a comparison between the forward
locomotion speed and the estimated phase velocity c
both for the case of a swimmer not accounting for
any recoil motion, from now on referred to as no-
recoil swimmer, and for the case of a fully free swim-
mer characterized by the same initial design paramet-
ers. In both cases the estimated value of the phase
velocity, through equation (24) with the proper val-
ues of the parameters, is quite close to the actual
value of the locomotion speed, though a large differ-
ence is observed between the two swimming condi-
tions. The mean power consumption Pm is reported
in figure 3(c) to show the different trends with respect
to design value of Ah/Ate. While Pm is decreasing as
Ah/Ate goes to one for the free swimmer, the oppos-
ite is occurring for the no-recoil swimmer. It follows
a markedly better performance in terms of cost of
transport when the fish is able to exploit the recoil
motions to line up its body to the fluid flowing about,
with a resulting more streamlined swimming style.
The focus of the paper is on the analysis of the above
differences in locomotion speed and expended power
which are clearly due to the recoil motions accounted
for only in the free mode. A careful investigation on
its effects is still not available in the literature for oscil-
latory free swimming and a further deepening on the
subject is certainly due. To this purpose, the adopted
impulse model allows for the separation of the recoil
in its geometrical, potential and vortical components
whose different impact on the tail flapping paramet-
ers in free swimming mode are going to be presented
below and carefully discussed in the next section.

Figure 4(a) shows the excursion ∆Ah of the
peak-to-peak heave amplitude induced by the differ-
ent recoil motions for all the cases under investiga-
tion. Both the geometrical and the potential recoil

5
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Figure 2. Time history of (a) the free swimming forward velocity component and (b) the fluid kinetic energy for different values
of the design parameters h0[L] and θ0[rad].

Figure 3. (a) Traveling wave trajectory of the caudal fin in free swimming mode (see the movie in thesupplementry material
online). (b) Forward locomotion speed, phase velocity and (c) mean power consumption for a free swimmer and a no-recoil
swimmer at cruising condition.

contributions are always negative and are increas-
ing in their absolute value for larger design value of
h0, consequently leading to a reduction of the free
swimming peak-to-peak peduncle amplitude Ah. On
the other hand, the vortical contribution to ∆Ah

given by the vortex shedding in the wake, shows
exactly the opposite behaviour by decreasing with
the prescribed h0, i.e. increasing with θ0 according
to equation (23), and by showing a clear tendency
to enhance the heave amplitude Ah, whose large val-
ues are commonly associated to a great propulsive
capability. The final value of Ah may be obtained by

starting from its design value and summing up all
the different contributions as reported in figure 4(b)
where the colored arrows are representative of the
bars in figure 4(a). By looking at the data obtained
in free swimming condition in comparison with the
prescribed ones, in some cases we notice an increase
while in others a decrease of the heave amplitude,
resulting in a quite unclear trend for the variation
induced by the total recoil motions. However, by isol-
ating the geometrical, potential and vortical contribu-
tions, a monotonic behaviour is clearly obtained for
each component. Specifically, the geometrical recoil

6
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Figure 4. (a) Excursion∆Ah of the peak-to-peak heave amplitude induced by the geometrical, potential and vortical recoil
contribution for all the design parameters h0[L] and θ0[rad]. (b) Comparison between the design value of Ah and the value
obtained when considering the geometrical recoil correction, the potential fluid recoil and the total recoil accounting also for the
vortical contribution. The colored arrows represent the bars in figure 4(a).

correction is always giving a decrease in the peak-to-
peak heave amplitude, followed by a further decrease
due to the pure potential flow. The final value of Ah is
reached when we consider also the vortical contribu-
tion, which always leads to its increase with respect to
the potential case.

By adopting the same representation used for Ah

(figure 4(b)), we observe how for the pitch angle
θ0, reported in figure 5(a), the influence of recoil
motions seems to be quite negligible. Actually, the
final θ0 values, obtained once the total fluid recoil
motions are considered, do not show a significant
variation with respect to the design values. Neverthe-
less, it should be noticed that in this case the geo-
metrical correction is going to increase the value of
θ0, while both fluid contributions have an opposite
effect. The estimated phase velocity c and the ratio

Ah/Ate reported in figures 5(b) and 6 show the same
behaviour observed in figure 4(b) for Ah. Namely, the
vortical fluid recoil is always contrasting the deteri-
oration generated by the geometrical recoil correc-
tion and by the potential fluid recoil to enhance the
values of the peak-to-peak values Ah/Ate and of the
phase velocity c driving the asymptotic locomotion
speed.

By comparing figures 5(b) and 6, it appears that
even if the free swimming value of the ratio Ah/Ate

is always increasing with respect to its design value,
the same is not true for the phase velocity, whose
trend follows closely the one observed in figure 4(b)
for Ah. For the sake of consistency, this is not conflict-
ing with the increase in the phase velocity withAh/Ate

suggested by equation (24) which is strictly valid for
prescribed swimming with a phase lag between the

7
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Figure 5. Comparison between the design value of (a) θ0 and (b) the phase velocity c against the respective values obtained when
considering the geometrical recoil correction, the potential fluid recoil and the total recoil accounting also for the vortical
contribution. The colored arrows have the same meaning as in figure 4(b).

Figure 6. Comparison between the design value of Ah/Ate and the value obtained when considering the geometrical recoil
correction, the potential fluid recoil and the total recoil accounting also for the vortical contribution. The colored arrows have the
same meaning as in figure 4(b).

peduncle heavemotion and the pitch of the caudal fin
equal to−π/2, conditionwhich is not usually verified
in the free swimmingmode under investigation in the
present paper.

4. Discussion

As theoretically discussed in section 2, the deforma-
tion resulting from the geometrical parameters pre-
scribed in a design procedure, in general, does not sat-
isfy the equilibrium equations in the absence of fluid

interactions as required to guarantee its feasibility in
this condition. Figure 7(a) reports an extremely sim-
plified sketch of a flapping fishlike body to attack such
a subtle issue, frequently underestimated in the liter-
ature. The first frame on the left illustrates the body
in its straight and undeformed configuration, while
the second one illustrates a deformed one where the
body rear-end representative of the tail is flexed by
a clockwise angle β. For a fixed anterior body, the
rotation of the tail is going to induce a downward
motion of the body center of mass CM and a clock-
wise rotation of the inertia principal axes. However,
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Figure 7. (a) Sketch of a flapping fishlike body illustrating the geometrical recoil correction. (b) The effect of the geometrical
recoil correction (in black) on the actual body geometry.

for an isolated body, neither the translation of its
center of mass nor the rotation of its principal axes
are allowed since no external actions are applied. In
this condition, the geometrical recoil correction is the
motion required to make this configuration feasible,
i.e. the motion required to go from the central frame
in figure 7(a) to the last frame on the right, where
the center of mass and the principal axes perfectly
match the ones for the undeformed configuration.
In this way, any spurious rigid motion introduced in
the design procedure is annihilated by the geometrical
recoil, whose impact on the actual body geometry
is illustrated by figure 7(b) that gives a qualitative
insight on its overall effects on the prescribed deform-
ation. The results reported in the previous section
show how the geometrical correction presents a gen-
eral tendency to reduce all the relevant data but the
pitch angle θ0, whose variation is very small. As a con-
sequence, the large reduction of the peduncle heave
amplitude Ah leads to a smaller value of the asymp-
totic phase velocity c, hence to a lower performance in
terms of the related locomotion speed. It follows that
the geometrical recoil correction is definitely negat-
ive for the fish propulsive capability and it should
be minimized, at least, for fully constrained motions
[19, 20] to avoid such an evident deterioration of
the performance. This last consideration is probably
the reason for the bad reputation erroneously gained

in the past by the recoil with regard to swimming
performance. Actually, the concept of recoil correc-
tion was initially introduced by Lighthill as a unique
rigid motion, not distinguishing between the correc-
tion due to the interaction with the surrounding fluid
and the geometrical one, which led subsequently to
contradictory opinions on the subject. To this regard,
a typical consideration is that some fish species have
evolved deep and heavy head to counterbalance the
rapid motions of the light caudal fin so to reduce lat-
eral and angular oscillations about the center of mass
to avoid performance deterioration, which is consist-
ent, in the framework of our model, with the results
reported in the previous section for the geometrical
recoil.

Going now to the fluid recoil contributions,
as illustrated in the section 2, the linearity of the
present model allows for the separation of the
potential-induced velocity components (Uϕ,Vϕ,Ωϕ)
from the vortical-induced velocity components
(Uv,Vv,Ωv) which, once combined, give the total
fishlike body kinematics. This particular property of
the model led to the results reported in figures 4–6
which clearly show how, even though the poten-
tial recoil gives another negative effect, the vortical
recoil contribution is always leading to a consistent
improvement of the flapping parameters. The oppos-
ite behaviour of the vortical contribution with respect

9
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Figure 8. Comparison between the time history of the potential, Ωϕ, and vortical,Ωv, contributions to the body angular velocity.

Figure 9. Flow field sketches for (a) the potential fluid recoil and (b) the vortical fluid recoil.

to the potential one is observable from the com-
parison between the time history of the potential-
induced angular velocity Ωϕ with the vortical-
induced angular velocity Ωv reported in figure 8 for
one sample case. The potential contribution Ωϕ has
an opposite phase with respect to the vortical oneΩv.
This behaviour is perfectly consistent with the phys-
ical meaning of the two contributions related to the
added mass and to the vortex shedding, respectively.
The sample flow fields reported in figure 9, inspired
by previous analyses [41, 42], may give a simple idea
to understand their counteracting role. As illustrated
in figure 9(a), the potential acyclic field uϕ gener-
ated by the caudal fin downstroke leads to a coun-
terclockwise angular velocity Ωϕ in the opposite dir-
ection with respect to tail motion. It follows that
the potential recoil contribution, increasing with the
body deformation (see figures 4–6), tends to counter-
balance and to attenuate the tail oscillation. On the
other hand, the vortical field reported in figure 9(b)
shows an opposite behaviour since the fluid vortical
velocity uv induced by the vortex cluster just released

by the body is going to enhance the tail motion via the
angular recoil velocity Ωv, as it may easily result from
figure 4(a).

As a general comment, it is worth to underline
the tendency of the fluid recoil to enhance the heave
amplitude up to a value strictly comparable with the
trailing edge excursion Ate as shown by the increase
of the ratio Ah/Ate which represents the fraction of
the trailing edge amplitude due to the heave motion
of the peduncle. The more Ah/Ate approaches unity,
the more the caudal fin is flat at its maximum lateral
position, so to lay, together with the anterior body, on
the sinusoidal trajectory and to obtain a good swim-
ming performance [9, 43]. Actually, the relationship
between a high swimming performance and a flat tail
excursion was already envisaged in the early sixties by
Lighthill [15] who suggested to annihilate the slope of
the midline amplitude modulation to maximize the
swimming efficiency. Interestingly for the no-recoil
swimmer, since the body is not able to align with
the flow, the expended energy keeps increasing with
Ah/Ate as shown in figure 3(c).
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5. Concluding remarks

The different style of swimming proper of different
fish species brought, in the past, to several specific
approximations, which in most cases are not any-
more strictly required [44]. For instance, oscillatory
swimming, classically investigated in axial motion to
look for the best propulsive efficiency of the caudal
fin, should be analyzed by considering the free mode
of the whole body, as commonly done for undu-
latory swimming. In fact, the free self-propulsion
reveals the importance of the recoil rigid motions,
given by the fluid interaction, which are essential to
guarantee the overall equilibrium and may drastic-
ally modify the kinematics of the caudal fin with
respect to the prescribed one, to finally obtain a bet-
ter swimming performance. The recoil reaction and
the locomotion speed are obtained here by a simple
impulse model able to highlight the added mass and
the released vorticity contributions, together with
their coupling terms which are especially import-
ant in transient conditions [45]. This model allows
to understand the capability of the potential terms
to attenuate the recoil reaction continuously forced
by the vortex shedding which is directly related to
the wasted energy. Since the input deformation pre-
scribed in a design procedure usually is not satisfy-
ing the equilibrium equations to guarantee null rigid
motions of the body in the absence of fluid inter-
action, the induced spurious rigid displacements are
removed by a geometrical recoil correction. The dir-
ect application of the impulsemodel to such corrected
shape deformation helps the physical interpretation
of the results since it provides a more clear pattern
from the input to the output values of the caudal
fin parameters. In fact, by combining the fluid recoil
with both heave and pitch motions modified by the
geometrical recoil, the actual features of the caudal
fin in the inertial frame are identified together with
the associated phase velocity which drives the loco-
motion speed in inviscid flows. In a few words, the
illustrated simple model may give helpful suggestions
to figure out the free motion of a biomimetic body in
water and to select a deformation able to generate the
desired swimming performance for biomimetic tech-
nological means.
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Appendix. Anterior body deformation

For the prescribed deformation of the anterior body,
we followed a path similar to the one suggested by
Li et al [38] for a pure oscillation up the peduncle,
but we consider a proper undulatory motion with
wavelength λ to better represent the shape deforma-
tions observed in real fish and to better fit the flapping
motion of the caudal fin. In details, the first third of
the anterior body midline is fixed and the remaining
rear-end of length lr = lb − 1/3 is divided intoN seg-
ments of length li. For a given penduncle oscillation
amplitude h0, the lateral motion yi(t) of the left edge
of each segment is defined as

y1(s1, t) = 0

yi(si, t) = hi sin

(
2πft− 2π

λ
si

)
i= 2, ..., N

yp(t) = hp sin

(
2πft− 2π

λ
lr

)
for the peduncle

(.1)

where the coefficients hi is the maximum lateral dis-
placement of the ith segment and si is a curvilinear
abscissa going from 0 to 1, i.e. from the first third of
the body to the penducle. The coefficients hi and the
instantaneous inclination of each segmentΨi may be
obtained as follows

h1 = 0

hi = h0

(∑i−1
j=1 lj

lr

)2

i= 2, ..., N
(.2)


Ψi(si, t) = arcsin

yi+1(si+1, t)− yi(si, t)
li

i= 1, ..., N− 1

ΨN(sN, t) = arcsin
yp(t)− yN(sN, t)

lN
.

(.3)
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