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1. Introduction

Copula models are nowadays widely used in multivariate data analysis. Major ar-
eas of application include econometrics (Huynh et al., 2015), geophysics (Scholzel
and Friederichs, 2008), quantum mechanics (Resconi and Licata, 2015) climate
prediction (Schefzik et al., 2013) genetics (He et al., 2012), actuarial science and
finance (Cherubini et al. (2004), among the others). A copula is a flexible proba-
bilistic tool that allows the researcher to model the joint distribution of a random
vector in two separate steps: the marginal distributions and a copula function
which captures the dependence structure among the vector components.

From a statistical perspective, whereas it is generally simple to produce reliable
estimates of the parameters of the marginal distributions of the data, the problem
of estimating the dependence structure, however it is modelled, is crucial and often
complex, especially in high dimensional situations. On the other hand, dependence
is one of the most fundamental features in (applied) statistics, economics and
probability. A huge list of important applications can be found in the recent
monograph by Joe (2014).

In a frequentist approach to copula models, there are no broadly satisfactory
methods for the joint estimation of marginal and copula parameters. The most
popular method is the so called Inference From the Margin (IFM) method, where
the parameters of the marginal distributions are estimated first, and then pseudo
data are obtained by plugging in the estimates of the marginal parameters. Then
inference on the copula parameters is performed using the pseudo-data: this ap-
proach obviously does not account for the uncertainty on the estimation of the
marginal parameters. Bayesian alternative are not yet fully developed, although
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Min and Czado (2010), Craiu and Sabeti (2012), Smith (2013) and Wu et al.
(2014) are remarkable exceptions.

In this work we consider the general problem of estimating some specific quan-
tities of interest of a generic copula (such as, for example, tail dependence index or
Spearman’s ρ) by adopting an approximate Bayesian approach along the lines of
Mengersen et al. (2013). In particular, we discuss the use of the BCel algorithm,
based on the empirical likelihood approximation of the marginal likelihood of the
quantity of interest. Our approach is approximate in two aspects:

i. elicitation of the prior distribution is required only on the quantity of interest.
Its prior distribution is combined with the empirical likelihood in order to
produce an approximation to the “true” posterior distribution.

ii. we do not use the “true” likelihood function, but rather an approximation
based on empirical likelihood theory (Owen, 2010). Hopefully, this will reduce
the potential bias for incorrect distributional assumptions.

Note, however, that the word “true” in the above list should be better spelled as
“true-under-the-assumed-model”. In situations where a true model is too hard to
specify, or too complex to deal with, the empirical likelihood can be an extremely
valuable tool.

Our approach can be adapted both to parametric and nonparametric mod-
elling of the marginal distributions. The method described in this paper is in the
spirit of Hoff (2007), but it is based on a different kind of approximation; the
results, although from a different perspective, can be also interpreted in the light
of Schennach (2005), where a Bayesian nonparametric interpretation of a tilted
version of the empirical likelihood is provided.

2. Preliminaries: Copulae and Empirical Likelihood

A copula model is a way of representing the joint distribution of a random vector
X = (X1, . . . , Xm). Given an m-variate cumulative distribution function (CDF)
F , it is possible to show (Sklar, 1959) that there always exists an m-variate func-
tion C : [0, 1]m → [0, 1], such that F (x1, . . . , xm) = C(F1(x1), . . . , Fm(xm)), where
Fj is the marginal CDF ofXj . In other terms, the copula function C is a CDF with
uniform margins on [0, 1]: it binds together the univariate CDF’s F1, F2, . . . , Fm in
order to produce the m-variate CDF F . The copula function C does not depend
on the marginal distributions of F , but rather it accounts for potential dependence
among the components of the random vector X.

For each pair of components of X, say Xi and Xj , let us assume that they
have continuous CDF’s Fi and Fj . It is well known that both the transformed
variables Ui = Fi(Xi) and Uj = Fj(Xj) have uniform marginal distributions. A
semiparametric copula model consists of a parametric model for the joint distri-
bution of (Ui, Uj) and no assumptions on the marginal CDF’s. A nonparametric
copula is assumed when the joint distribution of (Ui, Uj) depends on an infinite
dimensional parameter. In this paper we will allow the marginal distributions Fj ’s
to follow either a parametric or a non parametric model. For the copula function
we will not make any parametric assumption. Rather, we will limit our goal to
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the estimation of a particular function of interest of the copula C. A discussion
on the classical approaches to semiparametric estimation of copula models can be
found in Genest et al. (1995).

Empirical likelihood has been introduced by Owen: Owen (2010) is a com-
plete and recent survey; it is a way of producing a nonparametric likelihood for
a quantity of interest in an otherwise unspecified statistical model. It is particu-
larly useful when a true likelihood is not readily available either because it is too
expensive to evaluate or when the model is not completely specified. Assume that
our dataset is composed of n independent replicates (x1, . . . , xm) of some random
vector X with distribution F and corresponding density f . Rather than defining
the usual likelihood function in terms of f , the empirical likelihood is constructed
with respect to a given quantity of interest, say φ, expressed as a functional of F ,
i.e. φ(F ), and then a sort of profile likelihood of φ is computed in a nonparametric
way. More precisely, consider a given set of generalized moment conditions of the
form

EF (h(X,φ)) = 0, (1)

where h(·) is a known function, and φ is the quantity of interest. The resulting
empirical likelihood is defined as

LEL(φ;x) = maxp

n∏
i=1

pi,

where the maximum is searched over the set of vectors p such that 0 ≤ pi ≤ 1,∑n
i=1 pi = 1, and

n∑
i=1

h(xi, φ)pi = 0.

Whereas the first two conditions are obvious and independent of φ, the third one
induces a profiling of the information towards the quantity of interest, through a
sort of unbiasedness condition.

3. ABC and EL

Approximate Bayesian computation has now become an essential tool for the anal-
ysis of complex stochastic models, in the case where the likelihood function is
unavailable in closed form or it is too expensive to be repeatedly evaluated (Marin
et al., 2012). It can be considered as a class of popular algorithms that achieves
posterior simulation by avoiding the computation of the likelihood function. A
crucial condition for the use of ABC algorithms is that it must be relatively easy
to generate new pseudo-observations from the working model, for a fixed value
of the parameter vector. In its simplest form, the ABC algorithm “proposes” a
(pseudo)-randomly drawn parameter value θ∗ from the prior distribution and a
new data set is generated, conditionally on θ∗; then the value is accepted only if
the new data are “similar enough” to the actual observed data. It can be proved
that the set of accepted values represents a sample from an approximation of the
posterior distribution of θ (Sisson and Fan, 2011). However, it is often highly
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inefficient to propose values from the prior distribution, since it is generally much
more diffuse than the posterior distribution. Many more sophisticated computa-
tional strategies are available in order to avoid generating values from the prior
distribution, see Marin et al. (2012) for example; here we will not discuss these
issues and we rather concentrate on a different ABC approach, which can avoid
the most expensive step in computational time, that is the proposal of new data
sets. This method has been proposed by Mengersen et al. (2013) and it represents
a re-sampling scheme where the proposed values are re-sampled with weights pro-
portional to their empirical likelihood. In practice, the algorithm belongs to the
family of “sampling importance re-sampling” - SIR, (Rubin, 1988) - methods for
models in which the “true likelihood” evaluation is out of reach and the “true”
weights are approximated by their empirical likelihood.

for i = 1 to M do
repeat
Generate θi from the prior distribution π(θ)
Set the weight for θi as ωi = LEL(θi; data).
end for
for i = 1 to M do
Draw, with replacement, a value θi from the previous set of M values using
weights ωi, i = 1, . . . ,M .
end for

Algorithm 1: BCEL algorithm (Mengersen et al., 2013)

4. The proposed approach

In this paper we propose to adapt the BCEL algorithm of Mengersen et al. (2013)
to a situation where the statistical model is only partially specified and the main
goal is the estimation of a finite dimensional quantity of interest. In practice this
represents the prototypical semiparametric set-up, where one is mainly interested
in some meaningful characteristic of the population, although the statistical model
may contain nuisance parameters which are often introduced in order to produce
more flexible models that might better fit the data at hand. In order to make
robust inference on the quantity of interest, a reasonable model should account
for the uncertainty on the nuisance parameters, in some way. Even if some of these
additional parameters are not particularly important in terms of estimation - they
often lack of a precise physical meaning - their estimates can dramatically affect
inferences on the parameter of interest. In these circumstances it might be more
reasonable and robust to partially specify the model and adopt a semiparametric
approach.

Oh and Patton (2013) consider, in a frequentist perspective, a Simulated
Method of Moments estimation for copula models. Their paper is very close
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in spirit to what we are proposing, although their main goal is the analysis of
partially specified models rather than models with an intractable likelihood.

4.1. The algorithm in full detail

We assume that a data set is available in the form of a size n×m matrix X, where
n is the sample size and m is the number of variables, that is

X =


x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . xij . . .
xn1 xn2 . . . xnm

 .

In the following, X[·,j] will denote the j-th column (variable) and X[i,·] the i-th
row of X, respectively. For each j = 1, . . . ,m, we consider the available data
information in X[·,j] to produce an estimate of the marginal CDF of X[·,j]. Let

λj = (λ
(1)
j , λ

(2)
j , . . . λ

(S)
j )′, j = 1, 2, . . .m be the posterior sample obtained from

some Bayesian inference method for the distribution of X[·,j]. Notice that the
vector λj can be either a sample from the posterior distribution of the parameters
of the model we have adopted for X[·,j] or a posterior sample of CDF ’s in a
nonparametric set-up. Then we use a copula representation for estimating the
multivariate dependence structure of the random vector X,

F (x1, . . . , xm) = Cθ

(
F1(x1), F2(x2), . . . , Fm(xm)

)
,

where θ is the parameter related to the copula function. Since we are assuming
that one has already estimated the marginal Fj(xj)’s, j = 1, . . . ,m, one now needs
to consider the copula Cθ(·) only. This step can be managed either using some
parametric model for the copula (such as Clayton, Gaussian, Skew-t, Gumbel,
etc.) or using a nonparametric approach.

Parametric copulae in Bayesian inference have been already investigated in
several papers. Here we should mention Hoff (2007), Silva and Lopes (2008), Min
and Czado (2010), Smith et al. (2012) and Craiu and Sabeti (2012). In this paper,
we take a nonparametric route and we concentrate on some specific function of
Cθ(·), say φ = T (Cθ). This is particularly useful and meaningful in those situations
where there is no theoretical or empirical evidence that a given copula should
be preferred and we are mainly interested in some specific synthetic measure of
the multivariate dependence, like for example, the upper tail dependence index
between two components of X, that is

χ = lim
u→1

P (Uj > u|Uh > u) ≈ lim
u→1

[
2− logP (Uj < u,Uh < u)

logP (Uh < u)

]
where Ui = Fi(xi), i = j, h. Another popular quantity, which we will consider in
the final section is the Spearman’s measure of association ρ between two compo-
nents of X, say Xh and Xj , which is defined as the correlation coefficient among
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the transformed values Ui = Fi(xi), i = j, h or, in a copula language, as

ρ = 12

∫ 1

0

∫ 1

0

(
C(uj , uh)− uhuj

)
dujduh

= 12

∫ 1

0

∫ 1

0

C(uj , uh)dujduh − 3. (2)

We now describe the algorithm in a pseudo-language:

[1:] For s = 1, . . . , S, use the s-th row of the posterior simulation

λ
(s)
1 , λ

(s)
2 , . . . , λ

(s)
m to create a matrix of uniformly distributed pseudo-data

u(s) =


u
(s)
11 u

(s)
12 . . . u

(s)
1m

u
(s)
21 u

(s)
22 . . . u

(s)
2m

. . . . . . u
(s)
ij . . .

u
(s)
n1 u

(s)
n2 . . . u

(s)
nm


with u

(s)
ij = Fj

(
xij ;λ

(s)
j

)
.

[2:] Given a prior distribution π(φ) for the quantity of interest φ,
for b = 1, . . . , B,

1. draw φ(b) ∼ π(φ);

2. compute EL
(
φ(b);u(s)

)
= ωbs; s = 1, . . . , S.

3. take the average weight ωb = S−1
∑S

s=1 ωbs

end for
[3:] re-sample - with replacement - from {

(
φ(b),ωb

)
, b = 1, . . . , B}.

Algorithm 2: ABCOP algorithm

The final output of the above algorithm is then a posterior sample drawn from an
approximation of the posterior distribution of the quantity of interest φ. There
are several critical issues both in the practical implementation of the method and
in its theoretical properties. First, the empirical likelihood is based on moment
conditions of the form (1). In practical applications these conditions might hold
only asymptotically. This is the case, for example, of the Spearman’s ρ, which we
discuss in the next session. Its sample counterpart ρn is only an asymptotically
unbiased estimator of ρ so the moment condition is strictly valid only for large
samples. Also, prior information is only provided for the marginal distributions
and for φ: this, of course, has advantages and, on the other hand, poses the-
oretical issues. The main advantage is the ease of elicitation: one need not to
elicit unnecessary aspects of the prior distribution. This is mainly in the spirit of
the partially specified models, quite popular in the econometric literature. An-
other obvious advantage of the proposed approach is the implied robustness of
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the method, with respect to different prior opinions about non-essential aspects
of the dependence structure. The most important disadvantage of the method
is its inefficiency when compared to a parametric copula, under the assumption
that the parametric copula is the true model. The practical implementation of
the algorithm is quite simple in R ; it use some functions contained in the suite
gmm: see for example Chaussé (2010).

From a computational perspective the above algorithm is quite demanding,
since one needs to run a BCEL algorithm for each row of the posterior sample from
the marginals. Even though the estimation of the marginal densities of the X[·,j]’s
might not require a huge values of iterations S, still it might be very expensive
to run S different BCEL algorithms. To avoid this computational burden, we
propose to modify the above algorithm by simply performing a single run of the
BCEL algorithm, where, for each iteration b = 1, . . . , B, a randomly selected
(among the S rows) row λs is used to transform the actual data into pseudo-data
lying in [0, 1]m. With this modification the above algorithm gets transformed into
Algorithm 3.

5. A simple illustration: Spearman’s ρ

We first illustrate the method in a simple situation, withm = 2, and assuming that
the two marginal distributions of the data are known: without loss of generality
we can then assume that they are both uniform in [0, 1]; in this case there are no
practical differences between Algorithm 2 and Algorithm 3.

The Spearman’s ρ measure of dependence has been defined in (2). Starting
from a sample of size n from a bivariate distribution, say (xi, yi), i = 1, . . . , n, the
sampling counterpart of ρ, say ρn, is nothing but the correlation among ranks and
it can be written as

ρn =
1

n

n∑
i=1

(
12

n2 − 1
RiSi − 3

n+ 1

n− 1

)
, (3)

where

Ri = rank(xi) =

n∑
k=1

I(xk ≤ xi), Si = rank(yi) =

n∑
k=1

I(yk ≤ yi), i = 1, . . . , n.

Since we assume that the marginal distributions are known, pseudo-data coincide
with the actual data, and we work with a single n × 2 matrix U whose generic
element is given by uij = xij with uij ∈ [0, 1], i = 1, . . . , n, j = 1, 2. Then we
take the ranks (Ri, Si) of the original values and compute ρn. Also we are able to
evaluate the empirical likelihood of ρ for a given value of ρn as maxpi EL(ρ; ρn) =∏n

i=1 npi(ρ) under the constraints
∑n

i=1 pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . , n and

n∑
i=1

pi
(12RiSi

n2 − 1
− 3

n+ 1

n− 1
− ρ
)
= 0.
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[1:] For j = 1, . . . ,m, produce a posterior sample for the parameters of the

marginal distributions of the X[·,j]’s, say λj = λ
(1)
j , λ

(2)
j , . . . , λ

(S)
j ,

j = 1, . . . ,m. Store them into a S × k matrix λ = (λ1, . . . ,λj , . . . ,λm)
where k is the sum of the dimensions of the parameter spaces of the
marginal distributions.
[2:] Given a prior distribution π(φ) for the quantity of interest φ,
for b = 1, . . . , B,

1. draw a random uniform integer t(b) in {1, 2, . . . , S}.

2. use the t(b)-th row of λ to create a matrix of uniformly distributed
pseudo-data

u(t(b)) =


u
(t(b))
11 u

(t(b))
12 . . . u

(t(b))
1m

u
(t(b))
21 u

(t(b))
22 . . . u

(t(b))
2m

. . . . . . u
(t(b))
ij . . .

u
(t(b))
n1 u

(t(b))
n2 . . . u

(t(b))
nm


with u

(t(b))
ij = Fj

(
xij ;λ

(t(b))
j

)
.

3. draw φ(b) ∼ π(φ);

4. compute

EL
(
φ(b);u(t(b))

)
= ωb;

end for
[3.] store the values

(
φ(b), ωb

)
, b = 1, . . . , B.

[4.] re-sample - with replacement - from {
(
φ(b), ωb

)
, b = 1, . . . , B}.

Algorithm 3: Modified ABCOP algorithm

From general results on empirical likelihood (Owen, 2010), one has

EL(ρ; ρn) =
n∏

i=1

(
1 + ηg(Ri, Si; ρ)

)−1

where η is the Lagrange multiplier which can be explicitly obtained from

n∑
i=1

g(Ri, Si; ρ)

1 + ηg(Ri, Si; ρ)
= 0,

where

g(Ri, Si; ρ) =
12RiSi

n2 − 1
− 3

n+ 1

n− 1
− ρ.

We can then use Algorithm 2, with S = 1, to produce a posterior sample for the
quantity of interest ρ.
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5.1. A small scale simulation

As an illustration we have simulated 1, 000 samples of size n = 100 from a bivariate
Clayton’s Copula, whose expression is

C(u, v) =

{
uv θ = 0(
u−θ + v−θ − 1

)−1/θ
θ > 0

.

For comparative purposes we have also implemented the nonparametric frequentist
procedure described in Genest and Favre (2007), where a confidence interval for
the Spearman’s ρ is constructed based on the asymptotic sampling distribution of
ρn. In the simulation θ has been set equal to 1.076, which implies ρ ≈ 0.5. Figure
1 compares the frequentist behavior of confidence procedure and our proposal.
The first three box-plots show the sampling (over the 1, 000 generated samples)
distribution of i) the lower limit of the equal-tail confidence interval with nominal
coverage set at 0.95, ii) the point estimate ρn, and iii) the upper limit of the equal-
tail confidence interval with nominal coverage set at 0.95. The last three box-plots
show the sampling distribution of some specific quantiles (namely the 2.5th, the
median and the 97.5th percentiles) of the approximated posterior distribution.
Samples were generated by fixing θ = 1.076. The prior distribution for ρ has been
taken Unif(−1, 1). Computations were done in R , using libraries copula and gmm.

One can see that our procedure produces more precise estimates in terms of
intervals. The empirical estimate and the posterior median behave very similarly.
The average length of the confidence interval is 0.820 while the average length
of the equal-tail 0.95 credible set is 0.784 In 626 out of 1, 000 simulation, the
Approximate Bayesian interval was shorter than the classical confidence interval.

5.2. Simulated non uniform data

Here we show an example of bivariate data with non uniform marginal distribution.
Data were generated from a Clayton copula with θ = 1.076 (ρ ≈ 0.5), and the
two marginal distributions were transformed into an exponential distribution with
mean 1/3 (for X1) and a Gaussian distribution with mean 3 and variance 1 (for
X2). Figure 2 shows the scatterplot of raw and transformed data. In this particular
case the observed value for ρn was 0.568.

Figure 3 shows the histogram of the BCEL posterior sample for ρ obtained
from Algorithm 2. One can notice that the posterior mass is practically entirely
on the right of zero, and the posterior mean is 0.56, very close to the observed ρn.

5.3. An alternative estimator

From a purely pragmatic perspective, it might be tempting to follow an uncon-
ventional and “hybrid” route, which we now describe. For each s = 1, . . . , S,

1. Provide an estimate of φ, using φ̂(s) from the plugged-in model

p
(
x; marginals, φ, λ

(s)
1 , . . . , λ(s)

m

)
(4)
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Figure 1 – 1, 000 simulations from a Clayton copula: sample size is 100; the true value of ρ
is equal to 0.5. The six box-plots respectively shows the simulated sampling distribution
of: i) the lower limit of the equal-tail confidence interval with nominal coverage set at
0.95, ii) the point estimate ρn, iii) the upper limit of the equal-tail confidence interval
with nominal coverage set at 0.95. iv) the 2.5-th v) the 50-th and vi) the 95-th quantile
of the approximate posterior distribution.
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Figure 2 – Scatterplot of the simulated data and pseudo-data: X1 ∼ Exp(3); X2 ∼
N(3, 1)
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Figure 3 – Histogram of the posterior sample of values of ρ, using Algorithm 2.
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In particular, one could use a sort of maximum likelihood estimate of φ, as-
suming that the sampling distribution is given by (4).

2. Use the distribution of the φ̂(s)’s as a surrogate of the posterior distribution of
φ.

This approach is a further approximation in many ways. First, the distribution
of φ̂(s)’s in step 2 of the above procedure could not properly be treated as a
posterior distribution, since we have not introduced any prior distribution on φ.
Second, the distribution in step 2 is not a distribution on φ: rather, it can be
interpreted as the posterior distribution of the following quantity

φ̂(Λ) = argmax φp (x| marginals, φ,Λ) . (5)

Notice that

EΛ (φ̂(Λ)) ̸= argmax φ EΛ (p(x| marginals, φ,Λ)

= argmax φIL(φ;x) = φ̂(IL),

where the above expectation is taken with respect to the posterior distribution of
the marginal parameters Λ, based on the “marginal” samples and suitable prior
information, and IL represents the “correct” integrated likelihood,

IL(φ;x) =

∫
Λ

p(x;λ, φ)π(λ|φ)dλ.

Also, Var (φ̂(Λ)) under-reports the variability of the estimator, since

MSE = Var (φ̂(Λ)) +
(
EΛ (φ̂(Λ))− φ̂(IL)

)2
However, in practical applications this method works better than the IFM ap-
proach, described in §1. Figure 4 shows the behavior of this method with the data
used in Figure 2. One can notice a slight bias towards larger values of ρ and an
incorrect report of uncertainty.

6. Example: Spearman’s ρ for Student-t log-returns

We now analyze a real data-set containing the log-returns FTSE-MIB of two Italian
banks, Monte dei Paschi di Siena (BMPS) and Banco Popolare (BP), by assuming
that the log-returns for each bank may be described by a GARCH(1,1) model with
Student-t innovations for the log-returns {yt} from 01/07/2013 to 30/06/2014
(only weekdays) available on the web page https://it.finance.yahoo.com.

The GARCH(1,1) model for Student-t innovation may be rewritten via data
augmentation, following Geweke (1993):
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Hybrid estimation: pseudo ML distribution

ρ
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Figure 4 – Hybrid method: “posterior” distribution of φ̂(λ)

yt = εt

√
ν − 2

ν
ωtht t = 1, · · · , T

εt ∼ N (0, 1)

ωt ∼ IG
(ν
2
,
ν

2

)
ht = α0 + α1y

2
t−1 + βht−1 t = 1, · · · , T

where α0 > 0, α1, β >= 0 and ν > 2, N (0, 1) denotes the standard normal
distribution and IG(a, b) denotes the inverted gamma distribution with shape pa-
rameter a and scale parameter b. Figure 5 shows the scatterplot of the log-returns
and the transformed version of them, using, as a point estimate, the posterior
mean of each parameter.

For each bank, the posterior distribution of the model parameters (α0, α1, β, ν)
may be approximated by using the R package bayesGARCH (Ardia and Hooger-
heide, 2010). Once a sample from the approximated distribution is simulated for
each parameter and for each bank, Algorithm 3 is applied as follows:

for m = 1, · · · ,M

1: Simulate a value ρ(m) ∼ Unif(−1, 1).

2: Sample two integer values b
(m)
j (j = 1, 2) in {1, · · · , S}, where S is the

number of posterior simulations.

3: Consider the b
(m)
j -th row of the MCMC output for the parameters of the

j-th marginal (i.e. α0j , α1j , βj , νj), for j = 1, 2).
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Figure 5 – Scatterplot of the log-returns of the investments of Monte dei Paschi di Siena
(BMPS) and Banco Popolare (BP) on the left and of the transformed data on the right.

Figure 6 – Approximation of the posterior distribution of the Spearman’s ρ for the log-
returns of the investments of two Italian institutes based on 10, 000 simulations.
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4: Compute pseudo-data u
(m)
ij for i = 1, · · · , T and j = 1, 2 as

u
(m)
ij = Fνj

(
yi;

ν
(m)
j − 2

ν
(m)
j

h
(m)
ij

)

where Fν(x, d) is the CDF of a Student-t distribution with ν degrees of
freedom and scale parameter d.

5: Compute the estimated sample Spearman’s ρ
(m)
n as in (3) and the weight

relative to the simulated ρ(m) as ω(m) = EL(ρ
(m)
n ;u

(m)
1 ,u

(m)
2 ) as in Owen

(2010).

The output of Algorithm 3 relative to the log-returns of Monte dei Paschi di
Siena and Banco Popolare are shown in Figure 6: the estimated posterior mean
of ρ is 0.614.
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Summary

We describe a simple method for making inference on a functional of a multivariate distri-
bution. The method is based on a copula representation of the multivariate distribution
and it is based on the properties of an Approximate Bayesian MonteCarlo algorithm,
where the proposed values of the functional of interest are weighed in terms of their em-
pirical likelihood. This method is particularly useful when the “true” likelihood function
associated with the working model is too costly to evaluate or when the working model
is only partially specified.

Keywords: ABC algorithms; Multivariate distributions; Partially specified models.


