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Abstract: Eye-tracking systems have emerged as valuable tools in various research fields, including
psychology, medicine, marketing, car safety, and advertising. However, the high costs of the necessary
specialized hardware prevent the widespread adoption of these systems. Appearance-based gaze
estimation techniques offer a cost-effective alternative that can rely solely on RGB cameras, albeit with
reduced accuracy. Therefore, the aim of our work was to present a real-time eye-tracking system with
low-end hardware that leverages appearance-based techniques while overcoming their drawbacks
to make reliable gaze data accessible to more users. Our system employs fast and light machine
learning algorithms from an external library called MediaPipe to identify 3D facial landmarks.
Additionally, it uses a series of widely recognized computer vision techniques, like morphological
transformations, to effectively track eye movements. The precision and accuracy of the developed
system in recognizing saccades and fixations when the eye movements are mainly horizontal were
tested through a quantitative comparison with the EyeLink 1000 Plus, a professional eye tracker.
Based on the encouraging registered results, we think that it is possible to adopt the presented system
as a tool to quickly retrieve reliable gaze information.

Keywords: eye tracking; machine learning; artificial intelligence; eye movements; visual attention;
CNN; morphological transformations

1. Introduction

The eye-tracking problem has always attracted the attention of a high number of
researchers. Discovering where a person is looking gives insight into their cognitive
processes and can help understand what their desires, needs, and emotional states are.
Since 1879, when Louis Emile Javal discovered fixations (when the eye gaze is fixed in place
so that the visual system can take in detailed information about what is being looked at)
and saccades (eye movement between two fixations that is used to shift the eye gaze from
one point of interest to another) through naked-eye observations of the eyes’ movement [1],
a huge number of applications for tracking the eyes’ movement have been designed.
The more technology advances, the more fields of research (i.e., psychology, medicine,
marketing, advertisement, human–computer interaction, and so on) have started to use
eye trackers.

1.1. Exploring the Applications of Human Eye Attention

One of the most common and important cognitive processes analyzed thanks to the
use of eye trackers is attention [2–4]. In particular, in psychology and medicine, the analysis
of attention can be useful to infer notions about human behavior, to predict the outcome of
an intelligence test, or to analyze the cognitive functioning of patients with neurological
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diseases. For instance, in [5], the effects of computerized eye-tracking training to improve
inhibitory control in ADHD (Attention Deficit Hyperactivity Disorder) children are shown.
According to [6,7], there were about 6.1 million (9.4%) children (aged from 2 to 17 years old)
affected by ADHD in the U.S. Apart from the medical field, eye-tracking techniques are even
largely used by marketing groups to perform attention analyses with the aim of creating
effective designs in advertising or by usability researchers to define the optimum user
experience of web apps. For example, in [8], different website pages have been compared
by analyzing heat maps of the screen in order to find the main design elements or structures
that can increase usability. Moreover, the study of attention is also very important for
people’s safety while driving. As mentioned in [9], in a survey about the use of eye trackers
for analyzing distractions that affect people while driving, 90% of the information needed
for driving derives from the visual channel, and the main cause of critical situations that
potentially lead to a traffic accident derives directly from the drivers themselves. Therefore,
improving the ability to recognize when drivers get distracted may drastically improve
driving safety and consequently reduce the number of car crashes and their related deaths
(in 2018, car crashes caused the deaths of about 1.35 million people worldwide).

1.2. Motivation for Building Our Eye-Tracking System

In consideration of the high number of possible relevant applications deriving from
the study of attention, a lot of eye-tracking techniques have been developed over the years.
Nevertheless, even nowadays, the majority of these techniques use expensive tools and
hardware, making it impossible for everyone to acquire them. This was the principal reason
why we decided to develop a cheaper and more versatile real-time eye-tracking technique
that needs as little hardware as possible and that can run on a wide range of different
devices (even if they are not particularly recent or have high computational power). Our
technique is able to record a person frontally (through an RGB camera; even a cheap
webcam is enough) and consequently extract important information (collected in a JSON
file) concerning the trajectory of the eyes.

1.3. Roadmap

This paper is organized in the following way: First of all, a summary of the state-of-
the-art eye-tracker techniques is presented (see Section 2). Subsequently, a description of
the principal techniques employed for our tracking system is illustrated (see Section 3).
Following this, a detailed overview of our system is provided (see Section 4). Then, in order
to show the true potential of our work, a quantitative comparison between the outcomes
obtained by the professional eye tracker EyeLink 1000 Plus and ours is presented (see
Section 5). The results have shown that our technique is able to distinguish, even in the
module, saccades and fixations like the EyeLink when horizontal movements of the eyes
are performed. Finally, we summarize the content of the article and outline the possible
viable improvements that can be made to our application (see Section 6).

2. Related Works

Nowadays, the eye-tracking problem has been tackled in multiple ways that refer
to two main approaches: model-based or appearance-based [10–12]. In the model-based
approaches, a geometrical model representing the anatomical structure of the eyeball is
commonly used. Among those, there are two subcategories of model-based techniques:
corneal-reflection-based methods and shape-based methods.

The corneal-reflection-based methods use the corneal reflection under infrared light
to efficiently detect the iris and pupil region. Moreover, these methods are the most used
techniques for commercial eye trackers (e.g., Tobii Technologies 2022 (http://www.tobii.
com, accessed on 27 November 2023) or EyeLink 2022 (https://www.sr-research.com,
accessed on 27 November 2023), due to their simplicity and effectiveness, but they require
IR devices, which can be intrusive or expensive.

http://www.tobii.com
http://www.tobii.com
https://www.sr-research.com
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The shape-based methods exploit the shape of the human eyes in RGB images, which
are easily available. However, these methods are often not robust enough to handle
variations in lighting, subjects, head poses, and facial expressions.

2.1. Model-Based Techniques

In general, the geometric model used in the model-based techniques is used for
defining a 3D eye-gaze direction vector generated by connecting the 3D position of the
eyeball’s center and of the pupil’s center. These two 3D points are obtained, together
through the usage of the geometric model, by using the 2D eye landmarks and the 2D
position of the center of the iris in the image, respectively. Initially, the efforts were focused
on designing new effective geometric models, but then, with the spread of machine learning
algorithms, the efforts were focused on increasing the accuracy of the eye landmarks.

Ref. [13] proposed an eye-tracking system with the aim of estimating where a person
is looking on a monitor through the use of the Kinect v2. This device is provided with an
RGB camera, a depth camera, and a native function, called the high-definition face model,
for detecting facial landmarks in the image plane. The estimated positions of the gaze
on the screen are obtained by intersecting the 3D gaze vector and the plane containing
the screen (the setup is known a priori). The gaze vector is computed as the weighted
sum between the 3D facial-gaze vector representing the orientation of the face and the 3D
eye-gaze vector representing the direction in which the iris is looking.

Another remarkable work leveraging the Kinect technology is presented in [14]. In
this work, a Supervised Descent Method (SDM) is used to determine the locations of 49 2D
facial landmarks on RGB images. Utilizing the depth information from the Kinect sensor,
the 3D position of these landmarks enables the estimation of the head pose of the user.
Specifically, the eye landmarks are employed to crop the eye regions, on which a Starburst
algorithm is applied to segment the iris pixels. Subsequently, the 3D location of the pupil’s
center is estimated through a combination of a simple geometric model of the eyeball, the
2D positions of the iris landmarks, and the previously calculated person-specific 3D face
model. Finally, this pupil’s center information is employed to compute the gaze direction,
refined through a nine-point calibration process.

In [15], a system is proposed that, given the detected 2D facial landmarks and a
deformable 3D eye–face model, can effectively recover the 3D eyeball center and obtain
the final gaze direction. The 3D eye–face deformable model is learned offline and uses
personal eye parameters generated during the calibration for relating the 3D eyeball center
with 3D rigid facial landmarks. The authors showed that this system can run in real time
(30 FPS), but it requires performant hardware to work well. Moreover, with the massive
diffusion of social networks and the increasing power of smartphones, applications able
to simultaneously track the 3D gaze, head poses, and facial expressions, by using only an
RGB camera, started becoming very common.

In [16], the authors propose a first real-time system of this type, capable of working
at 25 FPS but requiring high-performing hardware (GPU included). The pipeline of this
application is the following: First of all, the facial features are identified in order to recon-
struct the 3D head pose of the user. Subsequently, a random forest classifier is trained to
detect the iris and pupil pixels. Finally, the most likely direction of the 3D eye-gaze vector is
estimated in a maximum a posterior framework through the use of the iris and pupil pixels
in the current frame and the estimated eye-gaze state in the previous frame. In addition,
because that system often fails during eye blinking, an efficient blink detection system
has been introduced to increase the overall accuracy. However, this system has two major
limitations: the overall accuracy in detecting the iris and pupil pixels, which is not so high,
and the huge memory usage.

In [17], a system is devised in order to overcome these two limitations. Even in this
case, the system uses the labeled iris and pupil pixels to sequentially track the 3D eye-
gaze state in a MAP framework, but instead of using a random forest classifier, it uses a
combination of Unet [18] and Squeezenet [19], which is much more accurate and uses way
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less memory (more suitable for running even on smartphones; on an iPhone 8, this system
achieves a framerate of 14 FPS).

In summary, the main advantages of the model-based techniques are the property of
being training-free and the capability to generalize well. However, the main disadvantages
derive from the inaccuracy of the algorithms used for estimating the facial landmarks and
the 2D position of the iris.

2.2. Appearance-Based Techniques

The appearance-based techniques aim at directly learning a mapping function from
the input image to the eye-gaze vector. In general, these techniques do not require camera
calibrations or geometry data, but, even if they are very flexible methods, they are very
sensitive to head movements. Nowadays, the most popular and effective mapping func-
tions are the convolutional neural networks (CNNs) [20] and their variants. The CNNs
achieve high accuracy on benchmark datasets, but sometimes, depending on the training
set used, they are not able to generalize well. Hence, to allow these machine learning
techniques to perform at their best, very large training datasets with eye-gaze annotations
have to be generated. The creation of these datasets is time consuming and often requires
the introduction of specialized software for speeding up the process.

In [21], the authors have created a dataset called GazeCapture containing videos of
people recorded with the frontal camera of smartphones with variable light conditions and
unconstrained head motion. The authors of this work use that dataset for training a CNN in
order to predict the screen’s coordinates that the user is looking at on a smartphone/tablet.
The input of this CNN are the segmented images of the eyes, the segmented image of
the face, and a mask representing the face location in the original image. In addition, the
authors apply dark knowledge [22] to reduce the model complexity, allowing the usage of
this system in real-time applications (10–15 FPS on modern mobile devices).

A different approach, offering an alternative mapping function to a CNN, is proposed
by [23]. In this work, the eye tracker works in a desktop environment through the use of an
RGB camera. The system tracks the eye gaze by first segmenting the eye region from the
image. Subsequently, it detects the iris center and the inner eye corner in order to generate
an eye vector representing the movement of the eye. Then, a calibration process is used
for computing a mapping function from the eye vector to the coordinates of the monitor
screen. In particular, this mapping function is a second-order polynomial function and it is
used in combination with head pose information in order to minimize the gaze error due
to uncontrolled head movements.

Recently, ref. [24] has proposed a slightly different approach from the classic appearance-
based gaze-tracking methods. Instead of focusing on the basic eye movement types, such
as saccades and fixations, the authors of this paper suggest focusing on time-varying eye
movement signals. Examples of these signals are the vertical relative displacement (the
relative displacement in pixels between the iris center and the inner corner of the eye;
insensitive to head movements) or the variation in the open width (the distance in pixels
between the centers of the upper and lower eyelid). In particular, the system estimates
five eye feature points (the iris center, the inner and outer eye corners, and the centers of
the upper and lower eyelid), rather than a single point (such as the iris center), by using
a CNN. These feature points are used for defining the eye movement signals instead of
generating a mapping function as the majority of the appearance-based methods. These
signals are used as input to a behaviors-CNN designed to extract more expressive eye
movement features for recognizing activities of the users for natural and convenient eye
movement-based applications.

Another noteworthy contribution that deserves mention is InvisibleEye [25], a sig-
nificant work in the field of mobile eye tracking. Unlike other studies, this innovative
approach is based on using eyeglasses as wearable devices. By integrating minimal and
nearly invisible cameras into standard eyeglass frames, the system tackles the challenge
of low image resolution. Through the use of multiple cameras and an intelligent gaze
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estimation method, InvisibleEye achieves a person-specific gaze estimation accuracy of
1.79◦ with a resolution of only 5 × 5 pixels. The used network is intentionally kept shallow
to minimize the training and inference times at run time. It consists of separate stacks with
two fully connected layers (512 hidden units and ReLU activation), processing input from
N eye cameras. Stack outputs are merged in another fully connected layer, and a linear
regression layer predicts the x- and y-coordinates of the gaze positions.

3. Core Techniques in Our System

The developed system aims to track the eyes’ trajectory of a person in front of
an RGB camera while executing a task on a screen. To achieve this, fast and light ma-
chine learning algorithms, implemented in an external library called MediaPipe (https:
//developers.google.com/mediapipe, accessed on 27 November 2023), and the following
image processing functions are employed: two morphological transformations (dilation
and erosion) and the median blur filter.

3.1. MediaPipe

Among all the solutions provided in this library, we employ the Face Mesh function.
It is capable of detecting 468 3D facial landmarks by combining two neural networks. The
first one is a face detection model (FDM) responsible for identifying facial regions within
the input image and six facial keypoint coordinates (eye centers, ear regions, the mouth
center, and the nose tip) for each detected face. The second one is a face landmark model
(FLM) that predicts the approximate positions of the 3D facial landmarks from a face image.
As this machine learning pipeline aims for real-time performance, instead of applying the
FDM to each new image, the facial landmarks detected in the previous frame are used to
localize the facial regions in the new one. The FDM is reintroduced into the pipeline only
when no faces are detected using this approach.

3.1.1. Face Detection Model

The FDM is employed for object detection in a manner analogous to the Single-
Shot MultiBox Detector (SSD) network [26] that uses specific anchors and feature maps
properties adapted to create a fast and accurate face detection model. Regarding the internal
structure, the FDM is a BlazeFace network that is made of two principal components: the
single BlazeBlock and the double BlazeBlock. The single BlazeBlock is a revisited version
of a residual neural network that employs depth-wise convolutional layers instead of the
classical ones in order to reduce the required parameters and speed up the learning. The
double BlazeBlock is a revisited version of the MobileNetV2 [27] bottleneck, leveraging
two single BlazeBlocks in sequence.

3.1.2. Face Landmark Model

The FLM is a custom straightforward residual neural network with aggressive sub-
sampling in the early layers of the network, allowing the neuron’s receptive fields to cover
large areas of the input image relatively earlier in the process. The input to the FLM is
the detected face obtained through the FDM, and it is rotated using the six landmarks
identified on it such that the line connecting the eye centers is aligned with the horizontal
axis of the facial rectangle. Subsequently, the facial rectangle is cropped from the original
image, resized to 256× 256 pixels, and fed into the FLM. This network produces a vector
of 468 3D landmark coordinates, which are then mapped back into the original image
coordinate system. These landmarks have the x- and y- coordinates corresponding to the
image pixel coordinates, while the z-coordinates are interpreted as the depth relative to
a reference plane (parallel to the z axis of the camera frame) passing through the mesh’s
center of mass. All these coordinates are scaled with the same aspect ratio to maintain
coherent proportions.

https://developers.google.com/mediapipe
https://developers.google.com/mediapipe
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3.2. Morphological Transformations

Morphological transformations are derived from Mathematical Morphology, which
offers a mathematical approach to processing digital images based on shape. The shape of
an object can be represented as the group composed of all the white pixels in a binary image.
Because an image exists in Euclidean 2-space (E2), this group of pixels can be denoted as a
Euclidean 2-space set with elements representing the coordinates of the white pixels that
define the object’s shape (row_index and column_index). In this context, the morphological
transformations are functions applied to these sets of pixels.

3.2.1. Dilation

The dilation (Figure 1) between the subsets A and B of E2 is defined as:

A⊕ B = {c ∈ E2|c = a + b ∃ a ∈ A and b ∈ B} (1)

In practice, the first operand A is considered the image undergoing the analysis, while the
second operand B is considered the structuring element (also known as the kernel), which
is responsible for the different types of dilation transformation.

Figure 1. Schematic representation of the application of a dilation transformation. Each matrix
represents a binary image, where empty cells correspond to black pixels and cells with circles
represent white pixels. To perform dilation, a binary image can be expressed as a set of index pairs
indicating the positions of white pixels (e.g., (0,0) denotes the upper-left corner). According to
Equation (1), the application of a dilation operation produces a new set by summing each element of
the original image A with each element of the dilation operator B. For instance, applying dilation
to the first element of A (e.g., (1,1)) yields two new elements in A ⊕ B: (1,1) (obtained through
summation with the first element of B (0,0)) and (2,1) (obtained through summation with the second
element of B (1,0)).

3.2.2. Erosion

The erosion (Figure 2) is the morphological dual of the dilation because it combines
two sets by using vector subtraction. The erosion of A by B is the set of all elements x for
which x + b ∈ A for every b:

A	 B = {x ∈ E2|x + b ∈ A ∀ b ∈ B} (2)

In practice, the morphological transformations are executed through a sort of con-
volution operation. In particular, assuming that the kernel B has an anchor point that
corresponds to the center of the kernel, then there is the following:

Dilation: As the kernel B is scanned over the image A, the pixel value of the image
A under the anchor point of the kernel B is replaced with the maximum pixel value
overlapped by B in the original input image A:

OutImg(x, y) = max
(x′ ,y′): kernel(x′ ,y′) 6=0

InImg(x + x′, y + y′) (3)

Depending on the type of kernel used, this maximizing operation causes bright regions
within the image to spread in different ways across the neighbor pixels.
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Erosion: As the kernel B is scanned over the image, the pixel value of the image A
under the anchor point of the kernel B is replaced with the minimum pixel value overlapped
by B in the original input image A:

OutImg(x, y) = min
(x′ ,y′): kernel(x′ ,y′) 6=0

InImg(x + x′, y + y′) (4)

Depending on the type of kernel used, this minimizing operation leads to bright areas of
the image getting thinner, whereas the dark zones are getting larger.

Figure 2. Schematic representation of the application of an erosion transformation. Each matrix in
this figure represents a binary image, where empty cells correspond to black pixels and cells with
circles represent white pixels. To perform erosion, a binary image can be expressed as a set of index
pairs indicating the positions of white pixels (e.g., (0,0) denotes the upper-left corner). An equivalent
procedure to equation (2) for applying erosion involves generating a new set that includes only those
elements of the original image A such that, by sliding the erosion operator B over A, the operator B
perfectly fits the shape of those elements of A.

3.3. Median Blur Filter

The median blur is a simple kernel filter that slides over the input image; instead
of computing the mean of the pixels overlapped by it, as the Gaussian blur filter does, it
calculates the median value, which represents the middle value among the overlapped
pixels (Figure 3). In general, this filter is used to preserve edges and rounded corners while
reducing noise.

Figure 3. Example of how an image (left) is modified after the application of the median blur
filter (center) and the Gaussian blur filter (right).

4. Methodology
4.1. Software Overview

The proposed system is divided into 4 main phases: Pre-Calibration (for correctly
positioning the user in the field of view of the camera), Calibration (for understanding
when the user is looking at the screen), Active Tracking (for tracking the eyes’ trajectory),
and Data Saving (for generating a JSON file containing the data collected).

4.1.1. Pre-Calibration

The main task for users during this mandatory phase is to center themselves in the
camera’s frame and align their facial orientation with the camera’s frame by adjusting the
displayed angles to zero, which represents the orientation of the face reference frame with
respect to the camera reference frame. The face’s orientation is calculated considering the
angles of displacement between the unit vectors of these two reference frames. In detail,
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the camera reference frame is oriented as the x and y axes of the image coordinate space
and the z axis is pointing inside the frame. The face reference frame is calculated by using
some of the 3D facial landmarks produced by the Face Mesh function. Specifically, the
landmarks representing the inner corners of the eyes determine the x axis, the landmarks
indicating the upper and lower bounds of the head establish the y axis, and the z axis is the
cross product between the x and y axes.

4.1.2. Calibration

In this phase, a 9-point calibration is employed to associate the eyes’ positions with
the screen’s positions. In particular, the eye position associated with the central point
of the screen is utilized as a reference point during the Active Tracking phase to mimic
the distance vector utilized in the corneal-reflection-based methods. To effectively detect
the eyes’ positions, a computer vision pipeline (shown in Figure 4) composed of widely
recognized image processing functions is utilized.

Figure 4. The Iris Detection Algorithm pipeline begins by detecting facial landmarks using the Face
Mesh function on an image captured by the webcam. It then computes the face’s orientation based
on these landmarks and, if the user is looking at the screen, uses the eyes’ landmarks to crop the eye
regions. Subsequently, each eye image is converted to grayscale, and a mask representing the internal
part of the eye is applied. On the resulting image, an adaptive threshold is employed to identify the
iris pixels, and only the largest connected region is kept. Following this step, in sequence, a dilation,
an erosion, and a median blur filter are applied to refine the iris blob. Next, the largest connected
region is selected, and the center of the minimal ellipse enclosing it represents the position of the iris
in the eye image. Finally, the detected position is normalized according to the shape of the eye image.

4.1.3. Irises Detection Algorithm (IDA)

In detail, this pipeline begins by detecting facial landmarks using the Face Mesh
function in the current analyzed frame. If these landmarks are successfully identified, they
can be utilized to calculate the face orientation with respect to the camera reference frame,
which is then employed to determine whether the user is looking at the screen. Under
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normal conditions, if any of the angles representing the face orientation are in modulo less
than 30 degrees, then it can be concluded that the user is looking at the screen. In situations
where the facial landmarks are not detected, the user’s face is not entirely within the
camera’s frame, or it is determined that the user is not looking at the screen, the currently
analyzed frame is skipped. When the user is confirmed to be looking at the screen, the
landmarks delineating the contours of the eyes are used for three purposes: cropping the
eye regions from the image, calculating the orientation of each eye in relation to the x axis of
the image, and generating one elliptical mask for each cropped eye image. The segmented
eye regions are created by employing the bounding boxes of the eye landmarks and are
then converted to grayscale. This conversion helps normalize the color information and
ensures a more consistent representation of the eyes for further processing. The orientation
of the eyes is crucial to account for users who may be looking at the screen with their head
slightly tilted. For that reason, later in the pipeline, the detected 2D positions of the irises
are rotated, ensuring that all trajectory points are computed with a consistent orientation.
The elliptical masks precisely delineate the internal components of the eye (including
the sclera, iris, and pupil) and are employed to remove extraneous skin pixels from the
grayscale eye images. After applying these masks, an adaptive threshold is generated
and used to identify the iris and pupil pixels. This threshold value, ranging from 0 to 255,
represents the pixel intensity value so that 30% of the darkest pixels within the internal
part of the eye area are kept after thresholding the image. This percentage comes from
several experiments that we have conducted with various light conditions and people with
different skin and iris colors. This thresholding process may result in multiple connected
regions in the image, which can be caused by factors such as eyelashes, makeup, or light
reflections in the iris. To address this issue, only the largest connected region is selected
to form the iris blob. To refine it, the following sequence of image processing functions
is applied: dilation, erosion, and median blur. In detail, the dilation is performed using
a vertical kernel to remove possible pixels representing eyelashes or the internal contour
of the eye. The erosion is carried out using a circular kernel to enhance the shape of the
iris, and the median blur is employed to smooth the blob. Once again, different connected
regions can be generated through the application of these three filters, and only the largest
one is selected to continue the process. In the final stage, a fitting algorithm is used to find
the minimal ellipse that encloses the chosen iris blob. The center of this minimal ellipse
represents the detected 2D position of the iris in the original eye image. This 2D position is
then rotated using the angle calculated a few steps earlier in order to align the major and
minor axes of the computed ellipse with the x and y axes of the camera’s reference frame.
This rotation ensures that all trajectory points are computed with a consistent orientation.
Additionally, the position of the iris is normalized with respect to the size of the original
eye image rather than being computed in image coordinates.

4.1.4. Active Tracking and Data Saving

After the calibration, the user can start executing the task, and for each frame captured
by the camera, the Irises Detection Algorithm is used to detect the position of the eyes.
Once the task has been completed, the acquired data are stored in a JSON file with the
following structure: The first row contains the information acquired during the Calibration
phase, which is the average positions with standard deviations of the left and right eye
and the average user’s face orientation while looking at the calibration points. After the
first one, each row of the JSON file represents the data extracted from a frame captured
during the Active Tracking phase and contains the timestep at which the frame has been
captured; the orientation of the face in the current frame; a value called inconsistency
that represents the reliability of the data calculated for this frame and computed as the
Euclidean distance between the face’s orientation during the Calibration phase and the one
in the current analyzed frame; the position of the eyes (left and right) in percentage to the
corresponding eye image shape; a distance vector from the position computed during the
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Calibration phase in which the user was looking at the screen’s center; and the distance
from the position detected in the previous frame.

4.2. Participant Demographics in the Dataset

To validate our system, we conducted an experiment involving 60 participants. They
spanned an age range from 18 to 40, with a mean average of 23.68 years. Specifically, it
was 23.57 for females and 27.8 for males. The gender distribution was balanced, with 50%
females and 50% males. The majority of participants (65%) had corrected vision, either
through glasses or contact lenses, while the remaining 35% had uncorrected vision. The
eye color percentages were distributed as follows: brown eyes (80%), blue eyes (15%), and
other colors (5%). In terms of technology familiarity, 80% of the participants reported high
levels of experience with digital devices. The remaining 20% had limited exposure to such
technology. Regarding educational backgrounds, there was variation; approximately 70%
of the participants had completed at least a bachelor’s degree, while the others held high
school diplomas or advanced degrees.

5. Results

To test the capabilities of our application in distinguishing between saccades and fixations
during eye movements, we decided to compare the trajectories obtained by our system to that
of the EyeLink 1000 Plus in a simple saccadic task composed of 60 trials. At the beginning
of each trial, the user had to look at the center of the screen for about 1.5 s. After this time
interval, a red target appeared in a random position at, more or less, the same height as the
screen’s center and stayed for 1.5 s. During this time period, the user was required to maintain
focus on the target. Subsequently, once it disappeared, the user had to look back at the center
of the screen, awaiting the beginning of the next trial. This specific experiment structure was
employed to test the precision and accuracy of the developed system in recognizing saccades
and fixations that are limited in a horizontal section of the screen. The setup used for this
experiment (Figure 5) included a monitor screen positioned approximately 50 cm from the
user’s face; the EyeLink 1000 Plus positioned below and in front of the monitor; a chin support
to stabilize the head (required by the professional eye tracker); an RGB camera (with video
resolution 2560× 1140), which is positioned as close as possible to the EyeLink’s camera in
order to provide the same view to both the eye trackers; and a laptop, on which the IDA was
running, equipped with Ubuntu 16.04 as the Operative System, Intel(R) i7-4510U (2 GHz) as
the CPU, and 4 GB RAM. In this analysis, our system demonstrated its robust capability to
adapt to diverse scenarios. For instance, it effectively identified the users’ eye focus even in
cases where they wore glasses, including those with a blue light filter; applied makeup; and
exhibited bright irises. At the conclusion of the test, all the x-axis trajectories recorded by both
the eye trackers were normalized to a range of [−1, 1] (Figure 6). In particular, the value 0
represents the position in which the user was looking at the center of the screen, while −1
and 1 represent the positions in which the user was looking at the right and left borders
of the screen. Before putting the obtained paths in relation to each other, it is necessary to
notice that our system used an RGB camera with an average of 25 fps, while the EyeLink
recorded at 500 fps. In order to have a general idea of the similarity between the obtained
trajectories, the Dynamic Time Warping (DTW) algorithm was employed.
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Figure 5. Setup of the experiment comparing the capabilities in detecting saccades and fixations
between the EyeLink 1000 Plus and our developed system.

Figure 6. This image shows the normalized trajectories obtained from the EyeLink 1000 Plus (top
image) and from our developed system employing the IDA (bottom image).

5.1. Dynamic Time Warping Algorithm

DTW is a similarity measure between time series that was extensively explored in
the 1970s, especially in applications related to speech recognition [28–30]. By considering
two time series t, t′ in the same n-dimensional space, with length l1 and l2 and elements ti
and t′j, the DTW searches for the optimal temporal alignment that minimizes the Euclidean
distance between the aligned series. The temporal alignment is the matching between the
time indexes of the two time series of the form π = [(i0, j0), ..., (ih, jh)]. The optimization
process implemented by DTW can be formalized as follows:

DTWq(t, t′) = min
π∈Π(t,t′)

( ∑
(i,j)∈π

d(ti, t′j)
q)

1
q (5)
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where Π(t, t′) is the set of all admissible paths and d(·) is the difference between the data
points ti and t′j. In the original formulation of DTW, a path π is admissible if it satisfies the
following conditions:

• π0 = (0, 0): the starting indices of both time series have to be matched together;
• πh−1 = (l1 − 1, l2 − 1): the ending indices of both time series have to be matched

together;
• ik−1 ≤ ik ≤ ik+1 + 1 and jk−1 ≤ jk ≤ jk+1 + 1: the sequence of the indices of both

time series have to be monotonically increasing and all the indices should appear at
least once.

In addition to the minimal Euclidean distance obtained by DTW, a graphical repre-
sentation of the similarity between the input time series can be generated by computing a
binary matrix whose non-zero entries are those corresponding to the matching between
the time series indices. Specifically, this binary matrix has dimensions l1 × l2, where each
element Ai,j is equal to 1 if (i, j) ∈ π or otherwise 0. This structure helps in visualizing the
aligned indices between the two series: the more the resulting curve represents a straight
line from (0, 0) to (l1, l2) and the more the similarity between the time series analyzed
is high.

As shown in Figure 7, the DTW algorithm clearly revealed that the shape of the
two trajectories matched very well. Moreover, by relying on the time stamps, a manual
comparison can be conducted by selecting for each data point generated from our system
the corresponding one generated by the EyeLink. From this comparison, it can be observed
that our system achieves a lower absolute accuracy compared to the EyeLink, which relies
on an IR camera and a chin stabilizer to restrict user movement throughout the entire
task. This difference is highlighted in the bottom-left plot in Figure 8, where the data
points tracked by our system deviate a bit from the ones produced by the professional tool.
However, this obtained accuracy is not an issue when following the eye movements. In fact,
having a high precision is good enough to distinguish between the different gaze directions.
Despite our system dealing with higher noise resulting from the use of a simple RGB
camera and allowing users to move freely during the task execution, it is still capable of
achieving elevated precision, comparable to that of the EyeLink, when the gaze movements
on the screen are executed along the x axis of the screen.

5.2. System Limitations

While the presented eye-tracking system demonstrates overall promising capabilities
and precision, it is crucial to acknowledge the potential limitations associated with this
technology. The system’s sensitivity to external factors, such as lighting conditions and
reflections, occlusions (e.g., hair partially obstructing the eyes), extensive head movements,
or errors in the initial calibration phase, can have a significant negative impact on the
eye-tracking results. Even if our system works well in static applications, the performance
in highly dynamic environments (such as unsupervised remotely executed tasks) could
decrease a bit due to the reliance on facial landmarks and the need for a consistent orien-
tation for accurate tracking. This implies that large head movements, such as substantial
head rotations or tilts, may disrupt the system’s ability to maintain precise gaze tracking,
emphasizing the need for users to maintain a relatively stable head position for optimal
performance. However, it is worth emphasizing that these identified limitations were
already taken into account during the development of the application and that the idea
behind our system was not to achieve the highest possible accuracy but rather to provide
an affordable and reliable tool compared to the existing market alternatives.
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Figure 7. A visual representation of the DTW algorithm’s output applied to the trajectories obtained
from the developed system (displayed on the x axis) and the EyeLink 1000 Plus (displayed on the y
axis) shows a nearly linear similarity between them.

Figure 8. The two top images represent the normalized trajectories obtained from the EyeLink
1000 Plus (left image) and from the developed system (right image) during the same time interval.
The two images at the bottom show both these trajectories overlapped with a dot representation
(left image) and a straight-line representation (right image).
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6. Conclusions

In this paper, we introduce an innovative real-time eye-tracking system that distin-
guishes itself on two fronts. Firstly, our approach stands out for its cost-effectiveness and
accessibility, utilizing a single RGB camera (even when not in HD) instead of more precise
yet expensive alternatives, such as IR cameras or wearable devices. Secondly, our Iris De-
tection Algorithm (IDA) features an original design. This algorithm integrates fast machine
learning models for face landmark detection with computationally efficient computer vision
techniques (e.g., morphological transformations, thresholding, histogram computation,
blob detection, and a median blur filter) strategically employed to achieve precise iris pixel
segmentation. Therefore, our unique contribution spans both the selection of economical
hardware and the intricate design of the IDA. This combined innovation transforms real-
time eye-tracking technology, making it more useful, inclusive, and affordable for a wider
range of users.

The results of a quantitative comparison show that the developed system is effectively
capable of distinguishing, in real time, saccades and fixations when the movements of the
eyes are mainly horizontal as well as the EyeLink 1000 Plus. Hence, the proposed system
could have great potential in various applications focusing on the attention mechanism,
such as psychological tests, people’s safety while driving, and website design analysis.

Looking ahead, future improvements for our system can be directed toward enhancing
the general accuracy of the detected 2D iris trajectory, particularly along the y axis of the
screen. A fundamental step in achieving this enhancement is to refine the detection of
the iris pixels within the eye regions. A possible solution entails employing a regression
model to predict the adaptive threshold to utilize. An alternative solution is the use of
a neural network to directly produce the 2D iris position within the eye image given as
input. In particular, the implementation of these models could leverage CNNs or Visual
Transformers (ViTs) that result in SOTA techniques for manipulating images.

The prevalent use of machine learning techniques is indeed a cornerstone in modern
eye-tracking systems. Specifically, the focus of these new systems is shifting from achieving
high accuracy to producing reliable, cost-effective, portable, and movement-independent
solutions. This strategic shift aims to make these systems more commonplace and affordable
tools across various fields of study, aligning with the core concept behind the development
of our system.

Author Contributions: Conceptualization, S.R. and C.N.; methodology, E.I., V.P. and S.R.; software,
E.I. and V.P.; validation, S.R.; formal analysis, C.N.; investigation, E.I., V.P. and S.R.; resources, S.R.;
data curation, S.R.; writing—original draft preparation, E.I., V.P. and S.R.; writing—review and
editing, S.R. and C.N.; supervision, C.N.; project administration, S.R.; funding acquisition, C.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This paper has been partially supported by the Age-It: Ageing Well in an ageing society
project, task 9.4.1, work package 4, spoke 9, within topic 8, extended partnership 8, under the National
Recovery and Resilience Plan (PNRR), Mission 4, Component 2, Investment 1.3—Call for tender
No. 1557 of 11/10/2022 of the Italian Ministry of University and Research funded by the European
Union—NextGenerationEU, CUP B53C22004090006.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: This work was developed at the is.Lab() Intelligent Systems Laboratory of the
Department of Computer, Control, and Management Engineering, Sapienza University of Rome.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roper-Hall, G. Louis émile javal (1839–1907): The father of orthoptics. Am. Orthopt. J. 2007, 57, 131–136. [CrossRef] [PubMed]
2. Armstrong, T.; Olatunji, B.O. Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clin.

Psychol. Rev. 2012, 32, 704–723. [CrossRef] [PubMed]

http://doi.org/10.3368/aoj.57.1.131
http://www.ncbi.nlm.nih.gov/pubmed/21149168
http://dx.doi.org/10.1016/j.cpr.2012.09.004
http://www.ncbi.nlm.nih.gov/pubmed/23059623


Information 2023, 14, 644 15 of 16

3. Pepe, S.; Tedeschi, S.; Brandizzi, N.; Russo, S.; Iocchi, L.; Napoli, C. Human Attention Assessment Using A Machine Learning
Approach with GAN-based Data Augmentation Technique Trained Using a Custom Dataset. OBM Neurobiol. 2022, 6, 17.
[CrossRef]

4. Wedel, M.; Pieters, R. Eye tracking for visual marketing. Found. Trends Mark. 2008, 1, 231–320. [CrossRef]
5. Lee, T.T.; Yeung, M.K.; Sze, S.L.; Chan, A.S. Eye tracking use in researching driver distraction: A scientometric and qualitative

literature review approach. Brain Sci. 2021, 11, 314. [CrossRef] [PubMed]
6. Danielson, M.L.; Bitsko, R.H.; Ghandour, R.M.; Holbrook, J.R.; Kogan, M.D.; Blumberg, S.J. Prevalence of Parent-Reported ADHD

Diagnosis and Associated Treatment Among U.S. Children and Adolescents, 2016. J. Clin. Child Adolesc. Psychol. 2018, 47, 199–212.
[CrossRef] [PubMed]

7. Ponzi, V.; Russo, S.; Wajda, A.; Napoli, C. A Comparative Study of Machine Learning Approaches for Autism Detection in
Children from Imaging Data. In Proceedings of the CEUR Workshop Proceedings, Catania, Italy, 26–29 August 2022; Volume 3398,
pp. 9–15.

8. T, ichindelean, M.; T, ichindelean, M.T.; Orzan, I.C.G. A Comparative Eye Tracking Study of Usability—Towards Sustainable Web
Design. Sustainability 2021, 13, 10415. [CrossRef]

9. Cvahte, O.; Darja, T.; Darja, T. Eye tracking use in researching driver distraction: A scientometric and qualitative literature review
approach. J. Eye Mov. Res. 2019, 12. [CrossRef]

10. Zhang, X.; Sugano, Y.; Bulling, A. Evaluation of appearance-based methods and implications for gaze-based applications. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–13.

11. Ponzi, V.; Russo, S.; Bianco, V.; Napoli, C.; Wajda, A. Psychoeducative Social Robots for an Healthier Lifestyle using Artificial
Intelligence: A Case-Study. In Proceedings of the CEUR Workshop Proceedings, Virtual, 20 August 2021; Volume 3118, pp. 26–33.

12. De Magistris, G.; Caprari, R.; Castro, G.; Russo, S.; Iocchi, L.; Nardi, D.; Napoli, C. Vision-Based Holistic Scene Understanding
for Context-Aware Human-Robot Interaction. In Proceedings of the 20th International Conference of the Italian Association for
Artificial Intelligence, Virtual Event, 1–3 December 2021; Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics); Volume 13196, pp. 310–325. [CrossRef]

13. Kim, B.C.; Ko, D.; Jang, U.; Han, H.; Lee, E.C. 3D Gaze tracking by combining eye- and facial-gaze vectors. J. Supercomput. 2017,
73, 3038–3052. [CrossRef]

14. Xiong, X.; Liu, Z.; Cai, Q.; Zhang, Z. Eye gaze tracking using an RGBD camera: A comparison with a RGB solution. In Proceedings
of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA,
13–17 September 2014; pp. 1113–1121.

15. Wang, K.; Ji, Q. Real time eye gaze tracking with 3d deformable eye-face model. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1003–1011. [CrossRef]

16. Wang, C.; Shi, F.; Xia, S.; Chai, J. Realtime 3D eye gaze animation using a single RGB camera. ACM Trans. Graph. (TOG) 2016,
35, 1–14. [CrossRef]

17. Wang, Z.; Chai, J.; Xia, S. Realtime and Accurate 3D Eye Gaze Capture with DCNN-Based Iris and Pupil Segmentation. IEEE
Trans. Vis. Comput. Graph. 2021, 27, 190–203. [CrossRef] [PubMed]

18. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Cham, Switzerland, 2015; pp. 234–241.

19. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360.

20. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; IEEE: Piscataway, NJ,
USA, 2017; pp. 1–6.

21. Krafka, K.; Khosla, A.; Kellnhofer, P.; Kannan, H.; Bhandarkar, S.M.; Matusik, W.; Torralba, A. Eye Tracking for Everyone.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1
July 2016.

22. Cottrell, S.S. A simple method for finding the scattering coefficients of quantum graphs. J. Math. Phys. 2015, 56, 092203. [CrossRef]
23. Cheung, Y.m.; Peng, Q. Eye Gaze Tracking With a Web Camera in a Desktop Environment. IEEE Trans. Hum. Mach. Syst. 2015,

45, 419–430. [CrossRef]
24. Meng, C.; Zhao, X. Webcam-Based Eye Movement Analysis Using CNN. IEEE Access 2017, 5, 19581–19587. [CrossRef]
25. Tonsen, M.; Steil, J.; Sugano, Y.; Bulling, A. InvisibleEye: Mobile Eye Tracking Using Multiple Low-Resolution Cameras and

Learning-Based Gaze Estimation. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies; Association
for Computing Machinery: New York, NY, USA, 2017; Volume 1. [CrossRef]

26. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I 14; Springer: Cham, Switzerland, 2016; pp. 21–37.

27. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

http://dx.doi.org/10.21926/obm.neurobiol.2204139
http://dx.doi.org/10.1561/1700000011
http://dx.doi.org/10.3390/brainsci11030314
http://www.ncbi.nlm.nih.gov/pubmed/33801559
http://dx.doi.org/10.1080/15374416.2017.1417860
http://www.ncbi.nlm.nih.gov/pubmed/29363986
http://dx.doi.org/10.3390/su131810415
http://dx.doi.org/10.16910/jemr.12.3.5
http://dx.doi.org/10.1007/978-3-031-08421-8_21
http://dx.doi.org/10.1007/s11227-016-1817-5
http://dx.doi.org/10.1109/ICCV.2017.114
http://dx.doi.org/10.1145/2897824.2925947
http://dx.doi.org/10.1109/TVCG.2019.2938165
http://www.ncbi.nlm.nih.gov/pubmed/31478861
http://dx.doi.org/10.1063/1.4931082
http://dx.doi.org/10.1109/THMS.2015.2400442
http://dx.doi.org/10.1109/ACCESS.2017.2754299
http://dx.doi.org/10.1145/3130971


Information 2023, 14, 644 16 of 16

28. Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech
Signal Process. 1978, 26, 43–49. [CrossRef]

29. Vintsyuk, T.K. Speech discrimination by dynamic programming. Cybernetics 1968, 4, 52–57. [CrossRef]
30. Myers, C.; Rabiner, L.; Rosenberg, A. Performance tradeoffs in dynamic time warping algorithms for isolated word recognition.

IEEE Trans. Acoust. Speech Signal Process. 1980, 28, 623–635. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1007/BF01074755
http://dx.doi.org/10.1109/TASSP.1980.1163491

	Introduction
	Exploring the Applications of Human Eye Attention
	Motivation for Building Our Eye-Tracking System
	Roadmap

	Related Works
	Model-Based Techniques
	Appearance-Based Techniques

	Core Techniques in Our System
	MediaPipe
	Face Detection Model
	Face Landmark Model

	Morphological Transformations
	Dilation
	Erosion

	Median Blur Filter

	Methodology
	Software Overview
	Pre-Calibration
	Calibration
	Irises Detection Algorithm (IDA)
	Active Tracking and Data Saving

	Participant Demographics in the Dataset

	Results
	Dynamic Time Warping Algorithm
	System Limitations

	Conclusions
	References

