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Abstract: We theoretically investigate the noise properties of harmonic cavity nanolasers by
introducing a model of coupled equations of evolution of the modes, taking spontaneous emission
into account. This model is used to predict the noise among the nanolaser Hermite-Gaussian
modes, both in continuous wave and mode-locked regimes. In the first case, the laser noise is
described in terms of noise modes, thus illustrating the role of the laser dynamics. In the latter
case, this leads to the calculation of the fluctuations of the pulse train parameters. The influence
of the different laser parameters, including the amount of saturated absorption and the Henry
factors, on the noise of the mode-locked regime is discussed in details.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Mode-locked (ML) lasers are powerful sources for generating extremely regular optical pulse
trains, which have attracted a lot of attention for many applications, such as for example material
processing [1], remote sensing [2,3], or photonic signal processing [4]. From the spectral point
of view, the pulse train emitted by a mode-locked laser forms an almost perfect optical frequency
comb [5,6]. Such frequency combs are used for spectroscopy [7], frequency metrology [8],
and quantum information [9,10]. Among possible ML laser technologies, semiconductor ML
lasers are attractive because they are very compact, robust, energy efficient, and low-cost devices
[11,12]. In particular, semiconductor nanolasers have attracted a lot of attention [13] due to their
ultimate compactness, integrability, and energy efficiency [14].

The noise of ML lasers [15] is generally the ultimate limitation to the precision of many of
their applications, such as pulse-timing measurements [16,17], displacement measurements [18],
and spectroscopy [7]. Theoretical investigations of noise of ML lasers are desirable in order to
minimize the noises by properly designing the lasers. For example, the noise of actively ML
lasers was the first to be treated [19]. Later, soliton perturbation theory was developed and
applied to additive pulse mode-locking and Kerr lens mode-locking [20], to stretched pulse fiber
lasers [21], and to diode lasers [22]. A comprehensive combination of analytical and numerical
techniques was also developed [23–25], which shows that perturbation theory can be applied
to other types of mode-locked lasers [23,24]. Among the different ML laser noises, the carrier
envelope offset (CEO) noise is the subject of particular attention [25–27] since it plays a major
role in the applications of frequency combs.

Recently, a new kind of compact photonic crystal microresonator sustaining oscillation of
Hermite-Gaussian (HG) modes thanks to its harmonic photonic potential has been proposed and
experimentally demonstrated [28–31]. Such a resonator can be seen as the photonic analogue

#448935 https://doi.org/10.1364/OE.448935
Journal © 2022 Received 17 Nov 2021; revised 30 Mar 2022; accepted 3 Apr 2022; published 18 May 2022

https://orcid.org/0000-0003-0676-8259
https://orcid.org/0000-0001-9769-7905
https://orcid.org/0000-0002-6457-3372
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.448935&amp;domain=pdf&amp;date_stamp=2022-05-18


Research Article Vol. 30, No. 11 / 23 May 2022 / Optics Express 19344

of a quantum mechanical harmonic oscillator. In particular, it exhibits HG modes with evenly
spaced eigenfrequencies, which is an essential requirement to achieve mode locking. A similar
photonic cavity design based on effective bichromatic potential was also proposed [32], and
a post-processing technique allowed the selective tuning of individual confined modes of this
kind of cavity [33]. A new concept of passively mode-locked lasers has thus been proposed
based on such cavities [34]. One remarkable property of such a laser is that the pulse repetition
rate depends on the curvature of the photonics potential and the effective mass instead of the
cavity length. Many different dynamical behaviors, similar to those observed in conventional
lasers, have been discussed, such as CW oscillation, Q-switching, Q-switched mode locking,
continuous-wave mode locking [35]. Robustness of mode locking to potential distortion has also
been investigated by introducing some non-parabolicity and possible random errors in the shape
of the photonic potential [36].

Like in all kinds of lasers, stimulated emission, which provides the gain necessary to reach
laser oscillation, is also unavoidably accompanied by spontaneous emission. This spontaneous
emission is at the origin of the fundamental noise limits of lasers. The aim of this paper is thus to
investigate the noise properties of harmonic cavity nanolasers in the presence of spontaneous
emission. Of course, lasers with nanometric dimensions are also well known to exhibit a strong
Purcell effect that can enhance spontaneous emission in the laser mode [37–41], and also to
exhibit peculiar noise properties, such as discretization noise, due to their small number of
emitters and photons [38,42]. However, these effects are beyond the scope of the present paper,
in which we stick to the simplest case in which Purcell effect is negligible and the number of
photons inside the cavity is supposed to be large enough to be treated as a real random variable.
This is also related to the fact that, although the technologies involved to develop the cavities we
consider here fall in the domain of nanophotonics, thus partially justifying the term “nanolasers”,
the cavity dimensions that we consider are more in the micrometer range.

Within these hypothesis, we thus provide a general investigation of the noise properties of
such a harmonic cavity nanolaser under the influence of spontaneous emission, both for CW
oscillation (without any saturable absorber) and for pulsed mode locked operation. In particular,
the model must take into account the peculiar spatial distribution of the field of HG modes,
which is completely different from the intensity distribution of conventional standing waves. This
model is then used to investigate the photon number fluctuations in each mode, total intensity
noise, and the phase and frequency noises of the modes. We also put a special emphasis on the
correlations between the mode fluctuations. Moreover, in the presence of a saturable absorber
that ensures mode-locked operation, the different noises of the pulse train emitted by the laser,
such as intensity noise, pulse duration noise, timing jitter, and phase noise, are analyzed. Their
evolution, when the absorption rate and the Henry factor are varied, are also explored.

The paper is organized as follows: Section 2 introduces the laser model including the master
equation, field normalization, spontaneous emission source, simulation parameters and calculation
method. In Section 3, we show the special noise exchanges among HG modes by investigating
the noise of photon number in each mode. Next, the different noises of the pulses created thanks
to the saturable absorption are investigated. Finally, we show the influence of Henry factor on
these noises. Section 4 gives the conclusions of the paper.

2. Laser model

In this section, we first describe the differential equations governing the evolution of the HG
modes. The mode intensities are then normalized to be easily related to the intracavity photon
number. Next, Langevin forces are introduced in the mode equations to describe spontaneous
emission. Finally, the choice of parameters is discussed and the simulation method is introduced.
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2.1. Master equation

As demonstrated earlier [28–31], a photonic crystal cavity can be designed to sustain HG modes
with equally spaced frequencies, as shown in Fig. 1(a). In this situation, the master equation
describing the evolution of the slowly-varying field envelope A(x, t) has been shown to be [34–36]:

∂A(x, t)
∂t

= −i
[︃
−

1
2
ωkk∂

2
x +

Ω2

2ωkk
x2

]︃
A(x, t) + H1A(x, t) , (1)

where ωkk = ∂
2ω/∂k2 is the group velocity dispersion of the quasi-periodic photonic structure

andΩ is the free spectrum range (FSR) of the harmonic cavity. The dissipative term H1 describes
three effects: i) the gain of the amplifying medium that sustains laser oscillation; ii) the saturable
absorption that leads to passive mode-locking and iii) the dissipative losses of the resonator. It
reads:

H1 =
1
2

g(x, t)(1 − ı̇αg) −
1
2

a(x, t)(1 − ı̇αa) −
1
2
γ0, (2)

where g(x, t) and a(x, t) are the space and time dependent gain and saturable absorber rates, with
their respective Henry factors αg and αa. The term γ0 holds for the intrinsic losses.

Fig. 1. (a) Shape of the HG modes within the parabolic potential. The semitransparent
pink area represents the active medium with width w = 5xΩ, containing both gain and/or
saturable absorption. (b) RIN of the total number of photons N for different values of the
relative gain parameter rg = g0/γ0. (c) Mean and variance of N as a function of rg. (d)
Mean value and (e) variance of the photon numbers Nn in mode n as a function of rg. There
is no saturable absorption in this case: ra = a0/γ0 = 0.

The field envelope A(x, t) can then be expanded on the basis of the HG modes of the resonator:

A(x, t) =
∞∑︂

n=0
Cn(t)e−iΩnt

Ψn(x), (3)

where the Cn(t)’s are the complex coefficients of this expansion and where the longitudinal
coordinate x has been re-normalized to the scaling factor

xΩ =
√︁
ωkk/Ω. (4)
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The amplitude of the HG mode Ψn(x) is then given by:

Ψn(x) =
1

√
2nn!
π−1/4 exp

(︂
−x2/2

)︂
Hn (x) , (5)

with Hn is the Hermite polynomial of order n. The corresponding eigenfrequency is

Ωn =

(︃
n +

1
2

)︃
Ω . (6)

Substituting Eq. (3) into Eq. (1), and projecting on the HG modes leads to a set of equations of
evolution for the mode amplitudes Cn:

dCn(t)
dt

= Mn(t), (7)

where
Mn(t) = eiΩnt

∫ +∞

−∞

H1A(x, t)Ψn(x)dx. (8)

2.2. Field normalization

In the following, we normalize the complex field envelope A(x, t) in such a way that |A(x, t)|2 is
equal to the energy density ED(x, t) along x:

ED(x, t) = |A(x, t)|2. (9)

Then the photon density per unit length along the x axis is easily expressed as

ND(x, t) = ED(x, t)/ℏω0 = |A(x, t)|2/ℏω0 , (10)

where ω0 is the light carrier frequency and where ND(x, t) is the photon density. Therefore, the
total field energy inside the cavity is

E(t) =
∫ ∞

−∞

|A(x, t)|2dx =
∞∑︂

n=−∞
|Cn(t)|2 , (11)

where the energy in mode n is
En(t) = |Cn(t)|2. (12)

Moreover, the photon number in mode n is

Nn(t) = |Cn(t)|2/ℏω0, (13)

and the total photon number in the laser is

N(t) =
∞∑︂

n=−∞
|Cn(t)|2/ℏω0. (14)

The equation of evolution (7) of the mode amplitudes is coupled to equations governing the
saturation of the gain and of the saturable absorber. Saturation of the gain is described according
to

∂g(x, t)
∂t

= −
g(x, t) − g0(x)

τg
−

ND(x, t)
Nsat,gτg

g(x, t) , (15)

where g0(x) is the unsaturated gain rate, τg is the gain lifetime, and where Nsat,g is the saturation
photon density for the gain medium. To evaluate the value of Nsat,g, we suppose that the typical
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photon number inside the cavity, which is of the order of Nsat,gL when the laser is a few times
above threshold, is of the order of 1000. This corresponds to a dissipated power of 1µW if the
intrinsic losses are equal to γ0 = 1010 s−1. As we will see in the next section, the cavity lengths
L that we consider are of the order of 50 µm. Therefore, we take in the following a saturation
photon density equal to Nsat,g = 2 × 107 m−1, which is of the same order of magnitude as in
conventional semiconductor lasers [43].

Saturation of the absorption coefficient a(x, t) is governed by an equation similar to Eq. (15),
with a saturation photon density Nsat,a, and absorber lifetime τa, and an unsaturated absorption
density a0(x). In the following, the saturation of the absorber is related to the gain saturation by
the saturation energy ratio:

RE =
Nsat,gτg

Nsat,aτa
. (16)

2.3. Spontaneous emission

As mentioned in the introduction, we treat the photon number as a continuous real variable, and
thus describe the spontaneous emission falling into each HG mode n by a Langevin force Sn(t)
added to Eq. (7), which thus becomes:

dCn(t)
dt

= Mn(t) + Sn(t) . (17)

Spontaneous emission is modeled by a complex Gaussian white noise obeying [44]

<Sn(t)> = 0, (18)

<Sn(t)S∗n(t − τ)> = (Rsp,n/2)δ(τ) , (19)

where <> holds for the ensemble average and δ(t) is the Dirac function and where Rsp,n is the
spontaneous emission rate for mode n.

In the rest of the paper, we use Eq. (17) to simulate the laser mode evolution in the presence
of spontaneous emission whose characteristics are given in Eqs. (18,19). To perform such
simulations, time needs to be discretized with a step duration ∆T . The Langevin force is then
replaced by its discretized version:

Sn(t) = χ
√︂

Rsp,n/(2∆T) , (20)

where χ is a complex Gaussian random variable with zero mean and unit variance.
The spontaneous emission rate per atom is equal to the stimulated emission rate in the presence

of one photon in the mode. Taking into account the fact that around steady-state the saturation
gain per round-trip compensates for the losses, the rate of spontaneous emission into mode n is
then equal to the intrinsic losses [45]:

Rsp,n = γ0. (21)

This expression leads to the same order of magnitude as the one calculated for conventional
semiconductor lasers and based on the evaluation of the threshold carrier density [43].

2.4. Parameters

The values of the parameters used in the simulations are given in Table 1.
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Table 1. Values of the parameters used in the simulations.

Item Notation Value Unit References

FSR Ω/2π 100 GHz

Scaling length xΩ 8.4 µm

Gain width w 5 xΩ
Gain lifetime τg 1 ns [46,47]

Absorber lifetime τa 10 ps [46,48,49]

Intrinsic loss rate γ0 1010 1/s

Saturation photon density of the gain Nsat,g 2 × 107 1/m

Saturation ratio between gain and absorber RE 25 [48]

Spontaneous emission rate Rsp,n = γ0 1/s [45]

2.5. Numerical method

The mode equations of evolution (Eq. (17)) are stochastic differential equations, which can be
numerically solved using Euler’s method [50]. To improve the accuracy in the resolution of the
deterministic part dCn(t) = Mn(t)dt of Eq. (17), we use the standard Runge-Kutta method (RKM)
with a fixed time-step ∆T = 10 fs. A random value of the Gaussian variable Sn∆T is added to the
output of the RKM iteration at every time step. In this way, we compute the time evolution of
each mode amplitude Cn(t) for 50 ns. Since the time to reach steady-state is generally shorter
than 10 ns [35], the data within the last 25 ns can be used to analyze the steady-state regime of
operation of the laser. Therefore, the fluctuations of the different laser parameters are extracted
from this integration period in the rest of the paper.

3. Results

In this section, we first consider the CW laser oscillation regime obtained in the absence of
saturable absorber inside the cavity (a0(x) = 0). In particular, we put emphasis on the role
of mode competition in the intensity fluctuations of the different resonator modes, leading to
the appearance of noise modes. In the second subsection, an intracavity saturable absorber is
supposed to be present (a0(x) ≠ 0), leading to the study of the laser noise in pulsed ML regime.
Finally, the influence of the Henry factor on the pulsed laser noise is investigated.

3.1. Noise modes in CW oscillation regime

As stated above, we start with the simplest case where the laser contains no saturable absorber
(a0 = 0) and thus oscillates in CW regime. We then first investigate the noise of the total
intracavity photon number N(t), and in particular its evolution with the laser gain. It can be
calculated using Eqs. (13,14) and the numerically computed mode amplitudes Cn(t) in steady-state.
We then separate its average value N and fluctuation δN(t):

N(t) = N + δN(t). (22)

The power spectrum density (PSD) SδN(f ) of these fluctuations is given by

SδN(f ) = |δN(f )|2, (23)

where δN(f ) is the Fourier transform of δN(t). Numerically, it is evaluated using a Hann window.
The relative intensity noise (RIN) spectrum is then obtained as

RIN(f ) =
SδN(f )

N2 . (24)
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In the following, our simulations are limited to the 10 first HG modes. Moreover, the RIN and
PSD spectra are averaged over 60 independent runs of the simulation using the same parameters
but independent drawings of the spontaneous emission noise. This averaging process will also be
used in the following sections to evaluate the noise of other laser parameters.

As a first example, the RIN spectrum for the total photon number is shown in Fig. 1(b) for
different values of the relative gain rg = g0/γ0. We observe that the relaxation oscillation peak
around 1 ∼ 2 GHz decreases and shifts to higher frequencies when the gain is increased. The
RIN also decreases, because the average photon number N increases with increasing gain. This
can be seen in Fig. 1(c). The evolution of the variance of N is also plotted in the same figure. It
is obtained by integrating the PSD of δN(f ) over the frequency range [0.12 GHz, 50 GHz]. Since
the noise variance increases with the gain slower than N, the relative intensity noise decreases
with g0.

More physical insight can be gained in the laser behavior by investigating the fluctuations
of the photon numbers Nn(t) in each individual HG mode n, which are derived from the Cn ’s
using Eq. (13). Their mean values Nn are plotted as a function of rg in Fig. 1(d). With the gain
window width we have chosen (w = 5 xΩ), only the first four modes (n = 0, 1, 2, 3) contribute.
The evolution of the variances of the Nn’s is reproduced in Fig. 1(e). Contrary to the variance
of N, the variances of the Nn’s increase with rg faster than their average values. Moreover, one
notices that the variance of the fluctuations of N2, the number of photons in mode n = 2, is even
larger than the variance of the total photon number N. We thus expect that there exist strong
correlations between the photon numbers in the different HG modes.

A first insight in these correlations can be gained by simply looking at the time evolution of the
number of photons in the laser modes, as displayed in Fig. 2(a). For example, by comparing the
fluctuations of N0 and N1, or the fluctuations of N3 and N4, it seems that adjacent mode exhibit
anti-correlated fluctuations, which is consistent with the fact that competition between adjacent
modes dominates the dynamics of such lasers based on HG modes [35].

A more quantitative investigation of these correlations is proposed in Figs. 2(b-h). First,
Fig. 2(b) reproduces the PSD of the δNn’s, together with the PSD of δN. The corresponding
variances are given as an inset. One can notice that the PSDs of the individual modes are larger
than the PSD for the total photon number for frequencies f<0.5 GHz. This is another proof that
there exist negative correlations between the fluctuations of the different modes.

To better understand why the fluctuations of the total photon number are lower than those of
the individual modes, we define the noise correlation matrix M(f ) = [Mmn(f )] as

Mmn(f ) = ⟨δNm(f )δN∗
n(f )⟩ , (25)

where δNm(f ) is the Fourier transform of δNm(t) using the Hann window and where ⟨·⟩ holds for
averaging over many independent simulations (60 in the present case). The diagonal elements of
this matrix are the PSDs of the photon number fluctuations for the individual modes while the
non-diagonal elements provide information on noise correlations between different modes.

The modulus |Mmn | of the matrix at f = 0.2 GHz is shown in Fig. 2(c). The diagonal elements
are larger than the others. However, the non-diagonal elements of |Mmn | are also large, especially
for the elements close to the diagonal. Such a noise matrix is very similar to the mode saturation
matrix of HG modes [35] due to their quite localized spatial distribution. It confirms the fact
that the competition between two HG modes labeled by integers n and m is relatively strong
when |m − n| = 1 and then progressively decreases for larger values of |m − n|. On the contrary,
the matrix |Mmn | at f = 2 GHz (Fig. 2(d)) is very different from the preceding one. The noise
correlations between the modes are very weak here. Only the diagonal elements are significant.

The diagonal elements are real, and the phases of the correlations between the modes are
directly given by the arguments of the corresponding non-diagonal elements. Figures 2(e-h)
reproduce the evolution of the argument of Mmn as a function of f . The values for m = 0 are
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Fig. 2. (a) Example of time evolution of the photon number fluctuations δNn(t) for individual
modes and δN(t) for all modes. (b) Corresponding PSDs. (c,d) Modulus of the noise
correlation matrix for (c) f = 0.2 GHz and (d) f = 2 GHz. (e-h) Phases arg(Mmn) of
noise correlation matrix elements versus f . Other parameter values are rg = g0/γ0 = 30,
ra = a0/γ0 = 0.

shown in Fig. 2(e). They indicate that the fluctuations of modes n = 1, 2 are in antiphase with
respect to those of mode m = 0 for frequencies f<1 GHz. As the difference in mode order
increases, the anti correlation is no longer obvious. For example, the fluctuations of mode n = 3
are in phase with those of mode m = 0 for f<0.3 GHz. In the region f>1 GHz, the correlations
between modes vanish and their phases thus become meaningless. The cases m = 1, 2, 3 shown
in Figs. 2(f-h) follow similar behaviors as m = 0 shown in Fig. 2(e). For example, the fluctuations
of mode m = 1 (or m = 2) are negatively correlated to those of their neighbouring modes.

Further insight can be gained into these noise correlations by deriving the eigenmodes of the
noise correlation matrix M(f ) at a given frequency f . Figure 3(a) plots the eigenvalues λi of M(f )
as a function of f . These eigenvalues λi correspond to the PSDs of the noise modes.

The four corresponding eigenvectors ei, i = 0..3, represent the four main energy exchange
mechanisms among the HG modes at a given frequency. Each eigenvector has four complex
components among the four considered HG modes, i.e., ei =

∑︁3
j=0 eijΨj. The four complex

components eij for each eigenvector i are plotted as arrows in the complex plane in Fig. 3(c) for
f = 0.2 GHz. The noise mode that carries the largest noise power is mode i = 0. We can see from
Fig. 3(c) that this mode corresponds to an exchange of photons between mode 2 on the one hand
and modes 1 and 3 on the other hand. This is consistent with the fact that neighbouring modes
should exhibit anticorrelated intensity fluctuations. Noise mode i = 1 corresponds to photon
exchanges between mode 1 on the one hand and modes 0 and 3 on the other hand. Mode i = 2
corresponds mainly to competition between modes 0 and 3. Finally, mode i = 3 corresponds to a
noise mode commmon to all the HG modes, but is completely negligible compared to the other
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Fig. 3. (a) Eigenvalues of the noise correlation matrix and (b) Schmidt number K as
a function of frequency. (c) Complex representation of the four components eij of the
four eigenvectors ei of the noise matrix for f = 0.2 GHz, Other parameter values are
rg = g0/γ0 = 30, ra = a0/γ0 = 0.

noise modes (λ3 ≪ λ0, λ1, λ2 at low frequencies). The fact that this noise mode is negligibly
small compared to the three other ones can also be seen by looking at the Schmidt number [51]
of this expansion, given by

K =
(
∑︁

i λi)
2∑︁

i λ
2
i

. (26)

This number quantifies the number of eigenmodes that significantly contribute to the physical
process described by the noise matrix. In our case, its evolution with frequency, shown in
Fig. 3(b), shows that only two to three modes significantly contribute to the laser noise at
frequencies lower than 0.5 GHz. A similar behavior is obtained when more modes are made to
contribute to the laser operation by increasing the gain width w, as shown in the Supplemental.

3.2. Noise of ML laser

In this subsection, we suppose that a saturable absorber is now also introduced inside the cavity.
It has the same width as the gain and is also located in the center of the cavity (pink region in
Fig. 1(a)). This absorber leads to mode-locked pulsed laser operation [34]. For such a solution,
we analyze the mode noises in a manner similar to the preceding subsection. Further, this also
leads to the investigation of the noise of the pulse train emitted by the laser.

3.2.1. Noise properties of the locked modes

The first interesting point is how the photon number noise evolves with the amount of saturable
absorption. By using the same methods as in the preceding subsection, the PSDs of the total
photon number for different values of the relative absorption ra = a0/γ0 are shown in Fig. 4(a).
As the absorption increases, the amplitude of the relaxation oscillation peak increases. The
frequency of this peak shifts towards lower frequencies. As previously investigated [35], when
ra = a0/γ0 increases from 0, the laser operation regime evolves from multimode unlocked
operation, to CW mode locking, then to Q-switched mode locking, and finally to passively
Q-switched regime. For example, the intensity noise spectra in Fig. 4(a) correspond to CW
mode-locking for ra = 1.0 to 6.0. Above this value, the relaxation oscillations do not longer
damp, leading to Q-switched mode-locking [52], as shown by the spectrum corresponding to
ra = 7.0. This explains why the PSD of the intensity fluctuations is much stronger in this case.

In order to try and minimize the mode-locked laser intensity fluctuations, we calculate the
variance of this noise by integrating the PSD of N over the bandwidth (0.12GHz, 50GHz). The
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Fig. 4. (a) PSD of the fluctuations in total photon number N for different values of relative
absorption ra = a0/γ0. (b) Evolution of the mean value and variance (labeled “var1”) of
the total photon number versus ra. The plot labeled “var2” is the sum of the variances
of the photon numbers in each mode. (c) Time evolution of the mode phase differences
∆ϕn = 2ϕn − ϕn−1 − ϕn+1. (d) Mean and standard deviation (SD) of ∆ϕn as a function of
ra. (e) PSD of mode frequency separations fn − fn−1. The shifts with respect to the cold
cavity FSR of 100 GHz are given in the insert. (f) Mode frequency separation fn − fn−1 as
a function of ra. The length of the error bar represents the value of the SD. In this figure,
rg = g0/γ0 = 30.

evolution of this variance with ra is plotted with blue circles in Fig. 4(b). When one increases
the amount of saturable absorption, this variance initially slightly decreases, before strongly
increasing for ra = a0/γ0>2. This shows that the value of ra should be chosen to be large enough
to stabilize mode-locked operation but should not be too large in order to avoid enhancing the
noise at the relaxation oscillation frequency.

We then compare the variance of the fluctuations of the total photon number N (blue circles
in Fig. 4(b)) with the sum of the variances of the photon numbers Ni of the individual modes,
(green crosses in Fig. 4(b)). Clearly, a large part of the noise of individual modes corresponds to
exchange of photons with the other modes, like in the case of CW operation. This similarity
with the CW regime is also shown by the analysis of the noise correlation matrix of the HG
modes, which is performed in Section 2 of the Supplemental. Here, in mode-locked regime, the
importance of the noise in photon number is reduced by increasing the absorption. However, the
price to pay is a reduction of the average number of photons in the laser (see the red triangles in
Fig. 4(b)).

Mode-locked operation relies on the locking of the relative phase between the modes. We
thus plot in Fig. 4(c) one example of the time evolution of the phase differences ∆ϕn =
2ϕn − ϕn+1 − ϕn−1 = 0 between three successive modes, where ϕn(t) is the phase of Cn(t). This
example has been obtained for rg = 30 and ra = 2. One can see that in spite of the fluctuations
induces by spontaneous emission, the laser modes remain locked. Moreover, one notices that
∆ϕn fluctuates much more for n = 4 than for n = 1, 2, 3. This is due to the relatively lower power
of mode n = 5.

This can be seen more quantitatively by plotting the mean value and the standard deviation
(SD) of ∆ϕn as a function of ra = a0/γ0, as shown in Fig. 4(d). The SDs for all values of n start
decreasing for low values of ra, reach a minimum in the vicinity of ra ≃ 2, and then increase. The
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mean values of all ∆ϕn’s approach 0 as the absorption increases, except for n = 4. Increasing the
absorption thus provides a stronger locking, leading to ∆ϕn closer to 0 on average and exhibiting
less noise. But a too large value of the absorption is not favorable as it brings the laser closer to
Q-switched operation.

An alternative view of the influence of saturable absorption and spontaneous emission on the
stability of mode locking can be obtained by looking at the mode frequency separation. The
instantaneous frequency shift fn of mode n with respect to the carrier optical frequency ω0, is the
time derivative of its phase:

fn =
1

2π

(︃
Ωn −

dϕn

dt

)︃
. (27)

We then plot the PSD of the instantaneous mode frequency separation fn− fn−1 in Fig. 4(e). This
frequency noise is white in the considered frequency domain, as expected from the characteristics
of spontaneous emission. Similarly to phase noises, higher order modes (fn ≥ 4) exhibit stronger
frequency noises because they have less power. It is worth noticing that the mode frequency
separations are reduced by approximately −0.04 GHz compared to the cold cavity free spectral
range (FSR). Further investigation of the mode separation fn − fn−1 as a function of ra = a0/γ0
is shown in Fig. 4(f). This plot shows the mean value of fn − fn−1 together with its standard
deviations corresponding to the length of the error bars. One can see that the mean value of the
frequency separation fn − fn−1 is the same for all modes n, due to stable mode-locked operation.
Moreover, it slightly decreases as ra increases. This frequency pulling effect is due to the finite
recovery time of the saturable absorber. This leads to time asymmetric losses for the pulse when
it crosses the absorber: the leading edge of the pulse is more strongly attenuated than its tail,
so that the pulse center is slightly delayed. This explains this decrease of the pulse repetition
rate. As this pulling of the mode separation increases, the noise in the mode separation slightly
increases, except for n = 4 (see Fig. 4(f)) when ra<3.

3.2.2. Noise properties of the laser pulse train

Just like any ML laser, the nanolasers we consider here need some output coupling mechanism
to emit a pulse train. For simplicity here, we suppose that this output coupling occurs at x = 0.
We thus suppose that the field at the laser output is proportional to A+(x = 0, t) propagating in
+x direction at cavity center (x = 0). The fields A+(x, t) can be derived from A(x, t) using the
following steps: (1) A(x, t) is Fourier-transformed to A(k, t) in k-space; (2) only the part of the
field A(k, t) with k>0 is kept and transformed back to A+(x, t) in real space.

In order to study the emitted pulse train, we focus on the quantity N+(t) = |A+(t)|2xΩ, where xΩ
is the scaling factor in Eq. (4), because it is dimensionless and related to the photon number inside
the laser. In steady-state CW ML operation and in the absence of spontaneous emission, the peak
value Np of N+(t) does not depend on time. But the introduction of spontaneous emission in our
model makes it vary from pulse to pulse and thus introduces some time dependence noted Np(t).
The relative noise of Np(t), defined as the PSD of its fluctuations divided by the square of its
average value, is plotted in Fig. 5(a) for several values of ra. Increasing the absorption leads to
an increase of the relaxation peak around 2 GHz. This is reminiscent of what we observed in
Fig. 4(a) for the noise of the total photon number. This also explains why the relative variance of
Np, which is the integral of the relative noise spectrum over the entire frequency band, increases
with ra, as evidenced by the blue open circles in Fig. 5(b). However, the red triangles in the same
figure, which represent the evolution of the variance of Np, show that a part of this increase has to
be attributed to the decrease of the mean value of Np induced by the increase of the absorption.

The (full-width at half maximum) pulse duration ∆t also fluctuates from pulse to pulse because
of spontaneous emission noise. We thus plot the PSD of the fluctuations of ∆t for increasing
values of ra in Fig. 5(c). Again, the stabilization of the pulse train obtained for small values of ra
can be seen by the reduction of the noise of ∆t for ra = 2 compared to ra = 1. But, here again,
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Fig. 5. (a) Relative PSD of the pulse peak Np. (b) Variance of Np and relative peak noise
var(Np)/(Np

2
) of pulse peaks as a function of ra = a0/γ0. (c) PSD of the pulse duration ∆t.

(d) Mean value and standard deviation (SD) of∆t versus ra. (e) PSD of the timing phase noise
of the pulses. (f) Corresponding timing jitter as a function of ra. (g) PSD of the weighted
phase noise. (h) Integrated weighted phase noise as a function of ra. The integration
frequency range for (b,d,f,h) is [0.12 GHz, 50 GHz]. In this figure rg = g0/γ0 = 30.

the noise increases at frequencies around the relaxation oscillation frequency when one increases
ra in such a way that the laser becomes close to Q-switched ML operation (see the spectra for
ra = 5 and 6 in Fig. 5(c)). This is confirmed by the evolution of the SD of the pulse duration
noise reported in Fig. 5(d) (blue open circles). Notice also that an increase of the amount of
saturable absorption reduces the average pulse duration.

The timing jitter noise of the pulses is an important parameter for applications such as optical
clocking. To derive it, we first calculate the noise of the instantaneous repetition rate [23]. The
fluctuation of the instantaneous repetition frequency is

δfrep,n =
1
Tn

−
1
T

, (28)

where Tn is the duration between the peaks of two successive pulses labeled by n − 1 and n, and
T is the mean value of Tn. The PSD Sφ(f ) of the timing phase noise is related to the PSD Sfrep (f )
of the instantaneous repetition frequency through [23]

Sφ(f ) =
(︃
1
f

)︃2
Sfrep (f ). (29)

Finally the PSD of the timing jitter noise is given by

SδT (f ) =

(︄
T
2π

)︄2

Sφ(f ). (30)

The PSD of the timing phase noise for different amounts of saturable absorption is shown in
Fig. 5(e). By calculating the square root of the integral of the timing jitter PSD, we obtain the
integrated timing jitter, whose evolution as a function of ra = a0/γ0 is reproduced in Fig. 5(f).
An increase of the absorption reduces the pulse timing jitter as long as a0/γ0 ≤ 3, and then
increases it due to the mode locking instability.
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With the same data, we can also investigate the phase noise of the pulse train. Since the
nanolasers that we consider emit relatively long pulses (typically 2 ps), that correspond to the
oscillation of only a few HG modes, the CEO phase noise [53] is not a relevant quantity [25,54].
In order to characterize the laser phase noise, we thus choose to focus on the average of the
phase noises of the HG modes weighted by their average numbers of photons. This leads to the
definition of the weighted frequency fluctuation as

δfw(t) =
1
N

∑︂
n

Nnδfn(t), (31)

where δfn(t) holds for the fluctuations of frequency fn of Eq. (27) and the sum runs over all
oscillating HG modes. In the following examples we take n = 0, . . . , 10. The weighted phase
noise PSD is then obtained as

Sφw (f ) =
1
f 2 Sδfw (f ). (32)

The spectra of this weighted phase noise are shown in Fig. 5(g,h). This phase noise is actually
quite small. And its value is similar to the one that is obtained by another method consisting in
monitoring the phase of A+(0, t) at every peak of the intensity, as shown in the Supplemental.
However, this phase noise is approximately 60 dB smaller than the CEO phase noise that could
be expected from the timing jitter phase noise of Fig. 5(e).

Obviously, the weighted phase noise is related to the modal frequency noise. It is minimal at
ra = 2 because the mode frequency noise n = 4 in Fig. 4(f) also reaches a minimum. The noises
of all mode frequencies increase when ra>2 due to the frequency pulling due to absorption,
leading to an increase of the weighted phase noise.

3.2.3. Pulse noise behavior in the presence of a Henry factor

The same process can be used to investigate the influence of the Henry factors αg of the gain
medium and αa of the absorber on the different noises. As a difference in the values of the Henry
factors for the gain medium and the absorber is detrimental to mode locking [36,55,56], we focus
here on the case where they are equal, i. e., α ≡ αg = αa. Furthermore, we fix the values of the
relative gain rate rg = 30 and relative absorption rate ra = 1.

The results of the simulations show that the Henry factors do not affect the noise level of the
total number of photons but modify the noises of the photon numbers of individual modes. The
details of these results for different values of the Henry factors can be seen in the Supplemental.
The result of that is a change in the noise of the pulse peak intensity at the laser output. One
example of this phenomenon can be seen in Fig. 6(a). As the Henry factor increases, a peak in
the RIN at abound 0.5 GHz appears in the PSD of Np, while its low frequency noise decreases.
This peak gives rise to the increase in total intensity noises of pulses, as can be seen as blue
circles in Fig. 6(c).

By using the same methods as in Fig. 5(c,d,f,h), the evolutions of the four kinds of noises of
the pulse train (peak number of photons, duration, timing jitter, and phase) with increasing values
of α are plotted as open circles connected by a solid blue line in Figs. 6(c-f). In general, a large
Henry factor increases the noise level of all these four quantities. Notice also that the mean value
of the pulse duration slightly reduces when α increases (see Fig. 6(d)).

To simplify the implementation of such lasers, it might be helpful to separate the gain and
absorber regions [35], as shown in Fig. 6(b). A sketch of a structure in which these two regions
are separated is shown in Fig. 6(b). The gain area is represented by the semitransparent red region
on the left side (−2.5xΩ, 0) while the absorber is represented by the semitransparent green region
on the right side (0,−2.5xΩ). In the absence of noise, the solutions for this spatially separated
scheme are very close to those for the overlapped scheme [35]. As far as the influence of the
Henry factor on the noise is concerned, we represent the results for the structure of Fig. 6(b) as
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Fig. 6. (a) RIN of intensity at pulse peak for different values of the Henry factors α. (b)
Laser structure with spatially separated gain (red region −2.5xΩ ≤ x ≤ 0) and absorber green
region between 0 ≤ x ≤ 2.5xΩ). (c-f) Laser noise evolution versus α. Open circles linked
by blue solid line: overlapped scheme of Fig. 1(a); open diamonds linked by dashed green
line: separated scheme of Fig. 6(b). (c) Relative peak intensity noise. (d) Mean value and
SD of pulse duration. (e) PSD of timing phase. (e) Integrated timing jitter. (f) Integrated
weighted phase noise. Integration bandwidth is [0.12 GHz, 50 GHz]. rg = 30, ra = 1.

green open diamonds connected by a dashed line in Figs. 6(c,d,e,f). Because the gain region
is twice smaller in this case, the laser power is smaller [35] and the amplitudes of the different
noises are larger. But the general tendency for the noise evolution with the Henry factor is similar
in both cases.

4. Conclusions

In conclusion, we have theoretically analyzed the different noise properties of harmonic cavity
nanolasers in the presence of spontaneous emission. In our model, the spontaneous emission
falling into a given laser mode is modeled as a Langevin force introduced in the differential
equation governing the mode complex amplitude.

This model based on the evolution of modes in the presence of spontaneous emission cannot
only be used to analyze the noise properties of the pulse train emitted by the ML laser as usual
methods, but also to analyze the fluctuations of the photon number, phase, and frequency in each
mode. This allows to identify the strong noise contributions consisting in photon exchange among
the HG modes. These photon number exchanges are witnesses of the particular characteristics of
mode competition is among the HG modes, which is due to the relatively localized HG mode
field distribution inside the cavity. The resulting noise correlations between the modes are well
described by defining the noise correlation matrix. The eigenvalues and eigenvectors of this
matrix permit to clearly identify the noise strength and the noise flow among the eigenmodes.
The Schmidt number related to these eigenvalues allows to determine the number of eigenmodes
that dominate the physical processes that the noise matrix describes.
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In the presence of absorption, we investigated the evolution of different noise properties of HG
modes with absorption. In terms of modes, the absorption favors mode locking, slightly reduces
the mode frequency separation. It also reduces the noisy exchanges among neighbouring modes,
and increases the noise in the frequency difference between modes.

Turning to the emitted pulse train, increasing the amount of saturable absorption contributes
to reducing the noise in the pulse intensity, duration and timing jitter. However, this absorption
should not be increased to the point where it makes mode locking unstable. Furthermore, we
evaluated the phase noise of the pulse train by calculating a weighted average of the mode phase
noises.

Moreover, the Henry factors of the gain and saturable absorption media are shown to reduce
the mean pulse duration, but to increase the noise in pulse intensity, duration, timing jitter and
phase. Finally we compared the situations where the gain and saturable absorber overlap inside
the resonator and where they are located in the two opposite sides of the resonator. The noise
level for separated media is generally found to be higher than when the gain and absorption
overlap.
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