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Optimal Back-Off Distribution for Maximum
Weighted Throughput in CSMA

Nicola Cordeschi , Member, IEEE, Floriano De Rango , Senior Member, IEEE, and Andrea Baiocchi

Abstract— We consider a generalized version of Carrier-Sense
Multiple Access (CSMA), where the contention window size is a
constant and the back-off probability distribution can be varied.
We address the optimization of a weighted throughput metric,
identifying the optimal back-off Probability Density Function
(PDF). We give a simple fixed-point algorithm to compute the
optimal PDF and prove that the solution is unique. The weighted
throughput definition caters for aspects other than the mere
channel utilization. It reduces to plain utilization (normalized
throughput) when all weights are equal to 1. We also reconnect
our result to the classic analysis of saturated non-persistent
CSMA, as introduced in the seminal paper by Tobagi and
Kleinrock, proving formally that the modeling assumptions of
that work, that lead to a Geometric PDF of back-off, actually
correspond to the throughput-optimal choice, provided that the
ratio of the Geometric PDF is suitably chosen.

Index Terms— CSMA, back-off PDF, throughput optimization,
weighted throughput.

I. INTRODUCTION

ALOT of interest has been given to scalable MAC
approaches able to present good performance in cases

where high node density needs to be supported or where nodes
send sporadic, but relevant communication due to some sensed
activity, so needing to maximize their success probability.

Carrier-Sense Multiple Access (CSMA) holds a prominent
position in the arena of MAC protocols, having been adopted
as the primary basis for the channel sharing procedure by most
versions of WiFi, by sensors networks (e.g., IEEE 802.11ah),
by vehicular networks (e.g., IEEE 802.11p/bd), and RFID
networks. Optimizing CSMA algorithms has been intensely
investigated.

Quite interesting contributions based on CSMA/CA tech-
niques for WSN or RFID systems [1], [2] have been proposed.
Some extensions of these techniques have been integrated
into industrial delay-sensitive control networks, monitoring
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applications, IoT over WiFi or vehicular networks [3], [4], [5],
[6]. A recent trend about MAC strategies is focusing on pro-
tocols where contending nodes do not change the Contention
Window (CW) after collisions, but rather dynamically change
the contention probability to improve the success probability
or the throughput [7], [8]. Even in this case, it is crucial to set
carefully the CW size and the contention probability. Both the
performance and the optimized CW size of these approaches
can be too sensitive to the number of nodes, making them
suitable for limited communication range and low deployment
densities, but not performing well in massive high-density
scenarios.

To face these problems, CSMA back-off policies based on
a slotted fixed window with uniform and non-uniform at-
tempt probability distributions have been proposed in [1], [8],
[9], and [10].

Throughput and delay performance of these approaches are
almost independent of the number of contenders, achieving
simplicity and good throughput under both low and high
contention levels, so promoting these techniques as suitable
for massive IoT and high-density WSN [11].

In this paper we derive the optimal back-off Probability
Density Function (PDF) of a CSMA protocol with fixed con-
tention size so as to maximize a notion of generalized weighted
throughput, which reduces to plain channel utilization (also
referred to as normalized throughput in the following) when
all weights are equal to 1. Specifically, the optimal PDF is
derived for the case where all contention slots are uniformly
weighted, which leads to the classic notion of normalized
throughput, and under the condition where slots can have
different weights to match different application contexts. As a
matter of example, energy-constrained scenarios require to
reduce the contention time, and this is obtained by weighting
more lower index back-off slots, i.e., stations get a higher
reward if access is attempted early. To the best of our knowl-
edge, no work focused on the optimal PDF able to maximize
the (weighted) throughput.

We define a unified framework, encompassing limited con-
tention window size (so called ‘no skip’ option) as well as the
possibility of having unlimited contention window size (‘skip’
option). We derive a fixed point algorithm yielding the optimal
back-off PDF under any contention window size, and any set
of weights. It is proved that the fixed point iteration converges
to a unique solution.

We also reconnect our result to the classic analysis of
saturated non-persistent CSMA, as introduced in the seminal
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paper by Tobagi and Kleinrock [12], proving formally that the
modeling assumptions of that work, that lead to a Geometric
PDF of back-off, actually correspond to the best possible
choice (i.e., the one maximizing channel utilization), provided
that the ratio of the Geometric PDF is suitably chosen.

The paper is organized as follows. Section II reviews the
related literature. Our proposed system model along with the
main assumptions and notation is detailed in Section III.
Section IV presents main results, stating the fixed-point al-
gorithms with uniform and not uniform weighted throughput.
Numerical and simulation results are given in Section V.
Finally, conclusions are presented in Section VI. Mathematical
details and proofs are postponed to a dedicated Appendix.

II. RELATED WORK

Many works have been proposed in literature to consider
scalable MAC strategies able to maintain good performance
even under high-density network scenarios [13], [14]. Some
of these works considered also situations where it is hard
to get accurate estimates of node density due to multiple
network events such as link-failures, node mobility, sleep
mode strategies [15]. In these cases, knowing theoretical
bounds on MAC performance in terms of throughput can be
a key point, especially to compare or integrate different tech-
nologies such as new generations of wireless interfaces (WiFi)
[16], [17], [18].

CSMA plays a prominent role in the realm of wireless
multiple access. Several variants of CSMA have been em-
ployed, e.g., CSMA with Collision Avoidance (CSMA/CA) is
the cornerstone of the MAC protocol defined for the WiFi.
Variants of the basic CSMA/CA are also used in sensor
networks (e.g., IEEE 802.15.4) or RFID networks [9], [19].
The success of CSMA and the ensuing wide availability of
low-cost chipsets is a strong motivation to continue referring
to this technology, while trying to improve its performance
especially with growing number of nodes.

Analysis and optimization of throughput in CSMA networks
has been intensely investigated, since the seminal paper of
Tobagi and Kleinrock [12] and the analysis of CSMA/CA in
Bianchi’s work [20]. Also more general optimization problems
have been addressed, e.g., optimization of throughput and
energy consumption [14], [21].

Two major approaches can be identified to the optimization
of CSMA throughput.

A first group of works follows the CSMA/CA approach and
propose ways to set the contention window size to optimize the
throughput, while the back-off probability distribution is uni-
form [19], [22], [23], [24], [25], [26], [27], [28]. An adaptive
algorithm to tune the contention window size to its optimal
value is given in [24]. The proposed algorithm is consistent
with IEEE 802.11 CSMA/CA. It is based on the estimate
of the number of consecutive idle back-off slots between
two consecutive packet transmissions. Optimal throughput is
achieved by properly setting the target contention window size,
as a function of the number of contending stations. Other
adaptation algorithm for setting the contention window size
at an optimal level are given in [25] and [26]. More recently,
machine learning and reinforcement learning approaches have

been considered as well, to adapt the contention window
size of CSMA/CA in IEEE 802.11 and thus to steer the
protocol towards optimized performance, e.g., see [27] and
[28]. Summarizing, the first group of works generally follows a
Distributed Coordination Function (DCF)-like CSMA/CA ap-
proach. They adjust the initial backoff window size or control
the amount of traffic entering the network, by proposing some
modifications to the scheme implemented by the IEEE 802.X
families. This strategy is notoriously short-term unfair, with
long transients before reaching convergence and too sensitive
to the number of nodes [16], [18]. These impairments make
these approaches generally useful for limited communication
range and low deployment densities, but not in massive high-
density scenarios. In addition, they do not relate the access
parameters to the optimization metrics in a straightforward
way prone to flexible optimized solutions.

An alternative approach, closely related to the variable
contention window size optimization, is state the CSMA model
in terms of transmission probability of a backlogged node.
Then, the transmission probability is set so as to optimize
the throughput [20], [29], [30], [31]. A key assumption of
those works is that the attempt rate of all other nodes from
the point of view of a tagged node is a constant. This
assumptions is consistent with assuming that a Geometric
probability distribution of the back-off duration.

Calì et al. [29] analyze CSMA from the standpoint of
throughput. They propose replacing the uniform-distribution
contention window of 802.11 with a p-persistent back-off pro-
tocol [29]. By estimating the population size, they maximize
system throughput when all nodes always have a packet ready
for transmission. They show that 802.11 yields sub-optimal
throughput under this workload. A fixed point equation yield-
ing the optimal transmission probability is determined in [20].
There is a strict connection between the optimal transmission
probability τ∗ and the optimal contention window size W ∗,
at least in a symmetric case (statistically equivalent nodes).
Namely, τ∗ = 2/(1 + W ∗) relates the expressions of the
saturation throughput obtained in the two cases.

A second group of works considers a fixed contention
window size and tries to find suitable back-off probability
distributions to improve CSMA performance [8], [9], [11],
[32], [33], [34]. Cai et al. [32] propose a polynomial dis-
tribution for non-persistent CSMA contention slot selection.
Their distribution is optimal over the space of all polyno-
mial functions, whereas ours is optimal over the space of
all probability density functions. An in-depth analysis of
the fixed point equation yielding the optimal transmission
probability of CSMA is presented in [30] and [31]. This
works follow the classic model of CSMA/CA, where it is
assumed that a backlogged station attempts transmission with
a fixed probability after sensing an idle back-off slot, i.e.,
the probability distribution of back-off is Geometric. While
the optimal transmission probability is found, there is no
proof that the Geometric PDF of back-off need necessarily be
the best choice for throughput. In [8] a non-uniform CSMA
distribution able to reduce the latency for the delivery of event
reports has been proposed. The scheme needs to estimate
the total number of contenders in the network and is not
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optimal in terms of throughput. In [9] authors propose a
Geometric Distribution Reader Anti-collision (GDRA) where
RFID readers used a truncated geometric distribution function
to select a contention slot, instead of the typical uniform distri-
bution function. Also approaches merging contention window
adaptation (or robustness to such a change) and non-uniform
PDFs have been proposed. Authors in [33] propose a priority
control method using non-uniform backoff probability density
to accommodate different performance metrics, such as latency
or throughput, based on the application requirements. A Bi-
nary Exponential Backoff (BEB) has been applied in [34],
where nodes intelligently determines overlapped contention
slots and probabilistically minimizes their selection chances.
Authors replace the classical uniform distribution in the BEB
with a dynamic non-uniform distribution, able to increase
the system throughput also reducing the delay for increasing
number of stations. In [11] a slotted non-persistent CSMA/CA
with nonuniform contention probability distribution has been
proposed, designed to reduce at the same time latency of
contenders and preserve a high successful access probability.
It is shown to be insensitive to the number of contenders and
very robust with respect to contention window size, packet
length, and impairments such as frame synchronization errors.

The examined works give useful insights into the need to
devise CSMA/CA strategies able to manage different targets in
a flexible way, and the possibilities provided by non-uniform
probability densities to pursue this goal.

Our work belongs to this second group of approaches. In a
nutshell, our model and analysis can accommodate a family of
metrics wider than the traditional channel utilization, providing
the optimal PDF through a simple fixed point algorithm. No-
ticeably, we highlight that the optimality results we obtain are
new even under the scope of traditional normalized throughput.

More in dept, a general framework is defined for a CSMA
network, where the back-off probability distribution can be
arbitrary, while the contention window size is fixed. We cover
both the cases of a finite contention window size and inifinite
size. The latter is obtained by introducing a model parameter
(the skip variable), that allows the contention window size to
extend without limits. We use the back-off probability distribu-
tion as the degree of freedom to optimize CSMA throughput,
providing a fixed point algorithm to compute the optimal
back-off PDF for each given number of contending stations.
Our general framework also solves a long-standing issue, i.e.,
we can prove formally the optimality of the widely used Geo-
metric PDF for back-off. Moreover, it lends itself to encompass
in a unique optimization framework additional requirements to
be traded-off with respect to throughput optimization, thanks
to the notion of weighted throughput. We present an example
of this feature of our modeling approach in Section V-B. Those
are the main new contributions that we propose, with respect
to existing literature.

III. SYSTEM MODEL AND ANALYSIS

In this section we introduce the modeling assumptions and
the notation used in the paper (Section III-A). Then, we derive
the expression of the saturation throughput in Section III-B,

introducing a notion of weighted throughput that generalizes
the usual normalized throughput definition.

The main result of the paper, the derivation of the PDF of
back-off countdown that maximizes the weighted throughput,
is presented in Section IV.

A. Assumptions and Notation

The considered CSMA framework is a generalization of
non-persistent CSMA, where a general PDF for the back-
off count is allowed, i.e., the number of back-off slot times
to be counted down by a backlogged contending station is
drawn according to a general PDF, to be defined according to
a specific target, e.g., throughput maximization.

We consider n stations sharing the wireless channel, and
we make the usual assumptions established since Bianchi’s
seminal work [20]:
• stations are saturated, i.e., they always have packets ready

to send;
• stations can hear each other, i.e., there is no hidden

station.
As a consequence of these assumptions, all stations see the
same channel status. To keep notation simple and gain the most
insight provided by models, we also assume that unlimited
retransmission is allowed and that channel holding time is the
same for all stations, once they win the contention.

Let us now outline the contention procedure adopted by a
station.

As soon as the channel gets back to idle after a transmission,
the station waits for the channel to stay idle for a fixed time
(Inter-Frame Space (IFS)). We identify this time with the
back-off slot time, denoted with δ, without loss of generality.
Then, the station draws an integer value k with probability
qk, with 1 ≤ k ≤ m. The set of probabilities {qk}1≤k≤m

is referred to as the back-off probability distribution. The
number m ≥ 2 is the contention round (CR) length, also
referred to as the contention window size. A back-off counter
is initialized to k − 1 and the transmission countdown starts.
The station decrements the back-off counter at the end of
the current back-off slot time, if the channel is sensed as
idle during that back-off slot time. The countdown continues
until the counter hits 0. When the counter hits 0, the station
starts transmitting. The channel is then held busy for a time
that includes transmission of one or more packets, inter-frame
spaces and possibly an acknowledgment. We do not enter the
details of the MAC packet format and timing, rather we define
an overall transmission time T , encompassing all activities
performed by a station when it wins the channel.

If during the countdown another transmission starts, the
station whose countdown has been interrupted by the start of
another transmission deems itself as having lost the contention,
resets its counter, waits for the end of the transmission.
When the transmission ends and the channel gets back to the
idle state, the station repeats the whole procedure anew, i.e.,
it draws another independent value of the random counter and
starts a fresh new countdown.

Note that a collision event occurs whenever two or more
stations draw the same initial back-off counter value and all
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Fig. 1. Example of time evolution of the generalized CSMA defined in
Section III-A. Examples of both Contention Cycles without and with skip
are shown on the right of the diagram. The CC ending with a skip comprises
m = 16 back-off slot times and no transmission. The ensuing CC is composed
of 8 back-off slot times, after which one or more stations start transmitting.

other stations draw a bigger back-off counter value. As a
matter of example, if there are four contending stations and
two of them draw k = 3, while the other two stations draw
k > 3, the first two stations will count off (k − 1) = 2 idle
back-off slot times after the IFS, and then they will start
transmitting, thus ending up into a collision at slot k = 3.

As a consequence of the proposed back-off procedure, the
time evolution of the channel is split in contention cycles
(CCs). A CC consists of a contention round (CR), possibly
followed by an activity time (AT). CR consists of a number
of consecutive idle back-off slot times, whereas AT lasts a
time T . Figure 1 illustrates an example of time evolution of
the CSMA protocol described in this section. On the right
of the figure, two consecutive CCs are shown, the first one
ending with a skip (no transmission attempt takes place, after
all m = 16 back-off slot times have been counted off), the
second one ending with a transmission attempt.

The slotted non-persistent CSMA introduced in the clas-
sic paper of Kleinrock and Tobagi [12] corresponds to the
contention procedure described so far with the special choice
m = ∞ and Geometric PDF for the back-off counter k.
The CSMA/CA procedure defined in WiFi assumes a uniform
probability distribution for the back-off counter. Moreover,
a backlogged node freezes its counter in case its countdown
is interrupted by other nodes’ transmissions. In that case, the
node checks the channel until transmission is over and the
channel is sensed back to idle state. At that point, the node
resumes the countdown. Eventually, the countdown expires
and the node does transmit. If successful, the node is done
and can move on to the next backlogged packet. If instead
the node runs into a collision, Binary Exponential Back-off
is used, i.e., the countdown window size is doubled before
drawing the new initial countdown value.

We will see that giving up to BEB, the simpler Geo-
metric PDF for the initial countdown selection turns out to
optimize the channel utilization (i.e., normalized throughput).
In other words, a higher saturation throughput can be achieved,
if stations follow a simpler scheme, where a new initial
countdown value is selected always from the same (Geometric)
PDF, irrespective of the number of (re-)transmission attempts
for the same packet. We will prove that a similar result
applies when the more general weighted throughput function
is introduced. In that case, not even the Geometric PDF
is optimal. Nevertheless, our approach is able to derive the

optimal scheme, customized to the given target. Moreover,
our approach lends itself to throughput optimization also in
the case where a constraint is set on the mximum back-off
window, i.e., by considering finite support back-off probability
distributions.

The multiple access algorithm defined so far corresponds
to the contention procedure described in Section II of [1].
We extend it now by considering a modified probability
distribution over m + 1 values, namely {qi}1≤i≤m+1. The
algorithm remains as stated before, except that a station
drawing the value m + 1 skips the current contention cycle,
without competing, i.e., it gives up the contention for the
current cycle. Hence, a contention cycle ends: (i) when one or
more stations start transmitting having hit 0 with their counters
(initialized at values k ≤ m); or (ii) when m idle back-off
slots go by on the channel and no transmission starts (i.e., all
backlogged stations have chosen the skip option). Whichever
of the two events occurs first will determine the end of the
current CC. As soon as the CC ends, each backlogged station
draws another random value to initialize its counter and enters
a new CC.

The motivation of the skip option is as follows. Variability
of the access delay implied by non persistent CSMA can
be mitigated by setting a limit to the maximum number of
back-off slot times to be counted down before attempting
transmission. This is done, e.g., by choosing a uniform back-
off PDF over the interval [1, m], as done in WiFi. Questions
we aim to answer in this paper are then: (i) How far is
uniform probability distribution from the optimal back-off
PDF? (ii) How does the optimal back-off PDF with a given
contention window length m look like? A further question
that arises after having introduced the optimal back-off PDF
with a limited contention window size is: How much is a
maximum contention window length m penalizing in terms
of throughput? In other words, we aim to assess the potential
throughput gain obtained by relaxing the constraint on the
maximum number of back-off slot times m. To embrace
this analysis in the same modeling framework used for finite
contention window length m, we introduced the skip option,
which essentially means extending the contention window
length to ∞.

In this paper we derive the optimal probability distributions
maximizing the system throughput for both cases with and
without skip option. To use a common framework and nota-
tion, we denote by s a 0/1 skip flag. Specifically, if s = 0 the
skip is not allowed, and qm+1 is set to 0 as a constraint. Vice
versa, if s = 1 the skip is allowed and the skip probability
qm+1 is left as an output of the optimizer. An example of a
CC with skip is shown in Figure 1.

Table I summarizes the main notation used in the paper.

B. Derivation of Throughput

Regardless of selected strategy s = 0/1, in order to derive
an expression of the system throughput, let K(ℓ) denote the
random variable representing the countdown value drawn by
station ℓ at the beginning of a new contention cycle. The
random variables K(1), . . . ,K(n) are i.i.d., namely K(ℓ) ∼
K, ∀ℓ, and qk = P(K = k) for k = 1, . . . ,m+1. The random
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TABLE I
MAIN NOTATION USED IN THE PAPER

variable K takes values in {1, . . . ,m + 1}, where the special
value K = m + 1 means that the station skips the current
contention round.

The number of idle back-off slot times making up a con-
tention round is J = min{m, min{K(1), . . . ,K(n)}}. At the
end of the contention round, either all stations choose to skip
transmission or at least one station transmits. The former event
is only possible if min{K(1), . . . ,K(n)} = m+1. If instead
min{K(1), . . . ,K(n)} ≤ m, an AT follows the CR.

Let C be the duration of a CC, δ the back-off slot time, T
the duration of the AT. We have1

C =

{
Jδ + T if at least one station transmits,
mδ otherwise.

(1)

Let Fj and Gj , for j = 1, . . . ,m+1, denote the Cumulative
Distribution Function (CDF) and Complementary Cumulative
Distribution Function (CCDF) of the random variable K, i.e.,
Fj = P(K ≤ j) =

∑j
i=1 qi, and Gj = P(K ≥ j) =∑m+1

i=j qi. It is Fm+1 = 1 and G1 = 1. For ease of notation
we also define F0 = 0 and Gm+2 = 0. Then, we have
Fj + Gj+1 = 1, j = 0, . . . ,m + 1.

1More generally, stations wait for the channel to stay idle for an IFS > δ
before starting the new CR. However, this does not affect our analysis and
derivations, since the fixed duration (IFS−δ) can be embedded as an additive
constant into the first line of Equation (1) (and, consequently, embedded in
T ). We choose IFS = δ for simplicity.

The probability of a CC ending with a successful transmis-
sion (i.e., exactly one attempt out of the possible n ones) is

Ps(n) =
m∑

i=1

nqiG
n−1
i+1 =

m∑
i=1

nqi(1− Fi)n−1 (2)

The mean duration of a CC is

E[C] = (δ E[J | E ] + T )P(E) + mδ [1− P(E)] (3)

where E is the event “at least one station transmits in this
cycle”. We have

P(E) = 1− qn
m+1 = 1−Gn

m+1 = 1− (1− Fm)n (4)

and

E[J | E ] =
m∑

i=1

i
Gn

i −Gn
i+1

1−Gn
m+1

=
∑m

i=1 Gn
i −mGn

m+1

1−Gn
m+1

where we have used the two identities Gm+1 = qm+1 and
G1 = 1. Putting pieces together, we get

E[C] = δ

m∑
i=1

Gn
i −mδGn

m+1 + T (1−Gn
m+1) + mδGn

m+1

= δ

m∑
i=1

Gn
i + T (1−Gn

m+1)

The normalized saturation throughput, briefly referred to
as simply throughput in the following, is defined by the
mean fraction of time that the channel is used for successful
transmissions. It is expressed as follows

ρn =
TPs(n)
E[C]

=
n

∑m
i=1 qiG

n−1
i+1

1−Gn
m+1 + β

∑m
i=1 Gn

i

(5)

where β = δ/T . Given β, n and m, ρn is a function of the
back-off PDF {qj}1≤j≤m+1.

We introduce also the notion of weighted saturation through-
put of the n nodes, expressed as follows:

ρ(α)
n =

TP
(α)
s (n)

E[C]
=

n
∑m

i=1 αiqiG
n−1
i+1

1−Gn
m+1 + β

∑m
i=1 Gn

i

(6)

where P
(α)
s (n) ≜ n

∑m
i=1 αiqiG

n−1
i+1 is the weighted probabil-

ity of success. In Equation (6), αj ≥ 0 is the reward obtained
by a station winning the contention at slot j. The meaning of
αj is application dependent (e.g., see Section V-B).2

Due to its versatility, in this section we aim at maximizing
Equation (6). Note that for α1 = α2 = · · · = αm =
1 the weighted throughput reduces to the plain throughput in
Equation (5), just accounting for channel utilization.

Before proceeding to derive the optimal PDF, we recall a
well-known back-off PDF commonly used in literature. Let
the back-off PDF be Geometric with ratio 1 − τ , namely
qi = (1 − τ)i−1τ , i = 1, . . . ,m, and qm+1 = (1 − τ)m.
Let us also confine ourselves to the case of non-weighted

2Throughout the paper, for the reward weight vector α ≜ [α1, . . . , αm]
we assume α ∈ (R+

0 )m − {0m}, unless otherwise specified. For the null
weight vector 0m ≜ [0, 0, . . . , 0], the weighted throughput (25) is identically
zero and the optimization is trivial.
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throughput (αj = 1, ∀j). After some calculations, it is found
from Equation (5) that

ρn,G =
nτ(1− τ)n−1

1 + β − (1− τ)n
(7)

regardless of m, which is consistent with the memoryless prop-
erty of the Geometric PDF. This last expression is reminiscent
of the saturation throughput expression holding for CSMA/CA
models [12], [20]. More in depth, according to Bianchi’s
model of CSMA/CA of WiFi [20], the saturation throughput
in a symmetric network, as assumed here, is expressed just
as in Equation (7). Bianchi’s model is known to provides
highly accurate predictions of saturated throughput, at least in
the parameter value range of interest to CSMA/CA of WiFi.
In [20], τ is found as the unique solution (fixed point) of the
equation system:

τ =
1 + p + p2 + · · ·+ pν

κ0 + κ1p + · · ·+ κνpν
(8)

p = 1− (1− τ)n−1 (9)

where ν is the maximum number of allowed re-transmissions,
κj = (Wj + 1)/2 and Wj = min{CWmax, CWmin · 2j} is the
contention window size at stage j of the binary exponential
back-off algorithm, j = 0, 1, . . . , ν. In the original Bianchi’s
model it is ν =∞ and CWmax =∞. In that case, Equation (8)
simplifies to

τ =
2

1 + CWmin
1− p

1− 2p

(10)

where CWmin is the base contention window size. The
throughput achieved by CSMA/CA of WiFi is largely sub-
optimal, especially as n grows.

IV. OPTIMIZATION OF WEIGHTED THROUGHPUT

In this section we address the identification of the PDF
{qj}1≤j≤m+1 that maximizes the weighted throughput for n
stations, referred to as the optimal PDF. In the following,
we denote by τj the hazard rate of the back-off PDF, i.e.,
τj = P(K = j |K ≥ j). We can view τj as the probability
that a backlogged station transmits at slot j, conditional on
being silent in the previous (idle) j − 1 slots. Given its
definition, we can relate τj to the PDF and CDF of the back-
off counter K as follows:

τj =
qj

1− Fj−1
, j = 1, . . . ,m. (11)

For n = 1 the optimal PDF is obviously given by qj∗ =
1 and qj = 0 for j ̸= j∗, with j∗ given by

j∗ = argmax
j=1,...,m

{
αj

jβ + 1

}
(12)

In the following we assume therefore n ≥ 2.
The main result is summarized in the following theorem.

We refer to appendices for the detailed proof.
Theorem 1: For any given n ≥ 2, s ∈ {0, 1}, m ≥

2 − s and non-negative weights αj , j = 1, . . . ,m, the
PDF {qj}1≤j≤m+1 of backoff countdown that maximizes the

weighted throughput in Equation (6) is obtained according to
Algorithm 1, where ε is the desired numerical accuracy.

Before proceeding, let us provide some insight about
Algorithm 1 and the rationale behind it. Specifically,
Algorithm 1 define an iteration of the form{

νk = Ψα(νk−1) k ≥ 1
ν0 = 0

(13)

k being the iteration index, with starting value ν0 = 0
(Algorithm 1 line 2), where the function Ψα(·) is a contin-
uous map of [0, αmax] into itself, with αmax = maxj{αj}.
Specifically, for any νk entering the Ψα(·) computation (at
Algorithm 1 lines 7 and 9), a PDF

q(νk) ≜ {qj(νk)}1≤j≤m+1 (14)

is obtained (at Algorithm 1 lines 18, 21) as a function of νk,
which works as a seed for the PDF computation. Finally, the
new value νk+1 is generated (at Algorithm 1 lines 22, 24),
and coincides with the throughput achieved by q(νk), i.e.

νk+1 = Ψα(νk) ≜ ρn

(
q(νk)

)
. (15)

Starting from νk+1, the updated PDF q(νk+1) is calculated in
the next iteration of Algorithm 1.

Note that, by construction, Ψα(ν) is the restriction of
throughput function (6) from the set of all feasible PDFs

Q ≜ {q ∈ [0, 1]m+1 | 1T q = 1} (16)

to the subset

Q′ ≜ {q(ν), ν ∈ [0, αmax]} (17)

of PDFs generated by Algorithm 1 lines 6-21 for any given
value of ν.

By inspection, it can be noticed that Algorithm 1 terminates
when a fixed-point value ν∗ of Ψα(·) is found3

ν∗ = Ψα(ν∗)

Note that throughput (6) (and, consequently, the fixed-point
function Ψα(·) in (15)) is bounded above by αmax. Thus,
we can reduce ν domain to the interval [0, αmax] (nonempty
compact convex set). Therefore, by invoking Brouwer’s fixed
point theorem, it follows that there exists at least a fixed point
ν∗. In Appendix A we prove the following result.

Theorem 2: The global optimum ρ∗n of (6) is both a fixed
point of Ψα(ν) and its maximum, i.e., any other ν ∈ [0, αmax],
with ν ̸= ρ∗n, generates a PDF q(ν) ∈ Q′ whose throughput
ρn

(
q(ν)

)
≡ Ψα(ν) satisfies

Ψα(ν) ≤ Ψα(ρ∗n) = ρ∗n. (18)

Furthermore, the optimal PDF q∗ belongs to the subset Q′
in (17) and corresponds to the seed ν := ρ∗n, i.e., q∗ ≡ q(ρ∗n).
Then, in Appendix B we prove that the derived fixed-point sys-
tem exactly admits one fixed point (i.e., the global optimum),
and Algorithm 1 converges to it.

Remark: We explicitly stress that in Appendix A we led
derivations assuming αj > 0 to be concise. In fact,

3Namely, when iteration (13) converges to a fixed point within the desired
numerical accuracy ε.
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Algorithm 1 Pseudo-Code of qj’s Computation (αj ≥ 0)
1: s← 0/1 (skip flag)
2: ν ← 0
3: E ← 1
4: τm ← 1
5: while E > ϵ do
6: j+ ← m
7: σ ← s · ν
8: for j = m + s− 1, . . . , 1 do
9: xj ← max {0, αj + νβ(j+ − j)− σ} /(n− 1)

10: τj
(lim)← xj/(αj + xj)

11: if xj > 0 then
12: j+ ← j

13: σ
(lim)← αj+

/
(1 + xj+/αj+)n−1

14: end if
15: end for
16: F0 ← 0
17: for j = 1, . . . ,m do
18: qj ← τj(1− Fj−1)
19: Fj ← qj + Fj−1

20: end for
21: qm+1 ← 1− Fm

22: ρn ←
n

∑m
i=1 αiqi(1−Fi)

n−1

1+β−qn
m+1+β

∑m−1
i=1 (1−Fi)n

23: E ← |ρn − ν|/ρn

24: ν ← ρn

25: end while

Equation (29) ceases to be useful (or even valid) when αj = 0.
Nevertheless, one can prove that Algorithm 1 continue to
achieve the optimal PDF under the more general condition
αj ≥ 0, so long as to consider the assignment statements in
line 10 and line 13 of Algorithm 1 in the limit for the weight
tending to 0, i.e.

10 : τj ← 0, if αj = xj = 0
13 : σ ← 0, if αj+ = 0

We use the symbol
(lim)← in Algorithm 1 to emphasize this point.

In the remaining part of this section we restrict ourselves
to the case of un-weighted throughput (αj = 1, ∀j). The
computation of the dummy variables xj , j = 1, . . . ,m, in this
setting is simpler than in the general case. The full specialized
algorithm, including the fixed point loop iteration, is presented
in Algorithm 2.

We prove that, in case s = 1, the optimal PDF leads to
a simple Geometric PDF for the backoff countdown. This
result proves, for the first time to the best of our knowledge,
that the typical assumption made in the analysis of non-
persistent CSMA, ever since the seminal paper by Kleinrock
and Tobagi [12], is actually the best possible choice under the
respect of throughput.

Formally, we have the following statement (see Appendix C
for its proof).

Theorem 3: The PDF of back-off that maximizes the un-
weighted throughput in Equation (5) when skip is allowed
is a Geometric distribution defined by qi = τ(1 − τ)i−1,

Algorithm 2 Pseudo-Code of xj’s Computation (αj = 1)
1: s← 0/1 (skip flag)
2: ρn ← 0
3: E ← 1
4: while E > ϵ do
5: xm+s−1 ← 1

n−1

[
1 + ρnβ − sρn(1 + β)

]
6: for j = m + s− 2, . . . , 1 do
7: xj ← 1

n−1

[
1 + ρnβ − 1

(1+xj+1)n−1

]
8: end for
9: F0 ← 0

10: for j = 1, . . . ,m + s− 1 do
11: qj ← xj

1+xj
(1− Fj−1)

12: Fj ← qj + Fj−1

13: end for
14: qm+s ← 1− Fm+s−1

15: ρ′n ←
n

∑m
i=1 qi(1−Fi)

n−1

1+β−qn
m+1+β

∑m−1
i=1 (1−Fi)n

16: E ← |ρ′n − ρn|/ρ′n
17: ρn ← ρ′n
18: end while

i = 1, . . . ,m, and qm+1 = (1 − τ)m, where τ is the unique
solution in (0, 1) of the equation

(1− τ)n = (1 + β)(1−nτ) (19)
It is an intriguing result that the possibly simplest PDF of

back-off is also the best possible choice as far as throughput
is concerned and skip allowed. Moreover, the Geometric PDF
dissipates the effect of the contention window size m, so that
the optimized normalized throughput is independent of m.
This property is consistent with the memoryless property of
the Geometric PDF. This is also quite easy to implement, since
it requires only one parameter, namely the unique solution τ∗

of Equation (19). In general, τ∗ is dependent on n. It can be
verified numerically however that τ∗ is weakly dependent on
n, except for very small values of n. Its approximation to the
leading term is expressed as τ∗ ≈ ξ/n, where ξ is the unique
solution of

e−x = (1 + β)(1−x), x ∈ [0, 1] (20)

It turns out that ξ/n provides an accurate approximation of
τ∗ for essentially all values of n and it is asymptotically sharp
as n→∞.

V. NUMERICAL RESULTS

Numerical examples to assess properties of the optimal PDF
of back-off and its impact on CSMA performance are given
in Section V-A. A specific use case of the weighted through-
put, in an energy constrained scenario, is then presented in
Section V-B.

A. Optimal PDF Performance

Figure 2 shows the normalized throughput (i.e., channel
utilization) as a function of the window size m, for different
values of β and αj = 1, j = 1, . . . ,m). Two cases are shown:
n = 30 STAs (upper plot), and n = 90 STAs (lower plot).
We compare three back-off PDFs: i) optimal PDF strategy
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with ‘skip’ possibility (s = 1) (curves labeled with s-PDF);
ii) optimal PDF strategy without ‘skip’ possibility (s = 0)
(curves labeled with s-PDF); and ii) uniform distribution
(curves labeled with u-PDF).

From Figure 2 we obtain some useful insights. First, as one
can expect, s-PDF is the best performing, due to the additional
‘skip’ degree of freedom. Second, the smaller is β, the higher
is the m value s-PDF needs to achieve performance provided
by s-PDF (to appreciate this fact, Figure 2(a) is in linear scale);
however, the sensitivity is low and convergence is achieved
within m of the order of 26 both in Figure 2(a) and Figure 2(b),
emregardless of the value of n. Noticeably, we explicitly point
out that optimal PDFs s-PDF and s-PDF equalize the n-
dependence, i.e., their performance slightly depend on n. This
is compliant with a well-known property that characterizes
optimized CSMA/CA systems [11], [20], [29]. Fourth, optimal
PDFs significantly outperform uniform distribution strategies.
This is particularly evident in Figure 2(b), where we show
performance up to m = 2048 (logarithmic scale), for n = 90.
Unlike s-PDF, the u-PDF optimized contention window size
m strongly depends on both β and n, and rapidly increases
with the latter. This confirms the discussion in Section II about
uniform distribution sensitivity to system parameters and the
need of adaptation algorithms to properly set m. In fact, this
is a (still open) issue, being adaptation algorithms notoriously
short-term unfair and with long transients. They are a major
bottleneck in random access, especially for massive scenarios.
To provide an example, the optimized m value spans from
around 64 for β = 1/10, n = 30 (beyond the range depicted
in Figure 2(a)) to more than 512 for β = 1/100, n = 90
(Figure 2(b))), and rapidly become unpractical in massive
high-density scenarios, or whenever an application-dependent
constraint on m must be considered (for instant, latency
constraints for event-driven and/or safety services).

Finally, noticeably, s-PDF’s throughput is independent of m.
This is confirmed by Figure 3, showing fixed-point function
ρout = Ψ(ρin) of Algorithm 1 and its intersection with
the bisector (namely, the fixed-points related to PDFs stable
optimized performance) for different values of m. For s = 1,
there is a common fixed-point, regardless of m (Figure 3(a)),
whereas, for s = 0, fixed-points converge to the optimal one
provided by s-PDF for increasing values of m (Figure 3(b)).

Concerning sensitivity to starting setting ρin, curves in
Figure 3(b) are approximately flat for any m, thus indicating
s-PDF is extremely robust with respect to the tentative value
ρin used to initialize Algorithm 1. Conversely, s-PDF is more
sensitive to ρin for relatively low values of m, despite its
optimal point being independent of m (see Figure 3(a)).
Hence, Figure 3 provides a trade-off among performance
and sensitivity (equivalently, time needed to converge to the
optimal distribution). Nevertheless, Table II indicates that
computational complexity to converge to fixed-point is limited
to just a few iterations of Algorithm 1, when ρin = 0 is used
as starting point and 1e−8 and 1e−12 are set as numerical
tolerance, respectively.

Moving to the case with non-uniform weights, we define
three weight vectors α(1), α(2) and α(3), each of size m = 36.
Their values are listed in Table III. The weight values can be

Fig. 2. Normalized throughput versus contention window size m. Compar-
ison among optimal PDF without and with skip (s = 0/1) and a uniform
PDF (u), in case of uniform weights (αj = 1, j = 1, . . . , m), and various
values of n and β.

Fig. 3. Fixed-point function ρout = Ψ(ρin) for: (a) s = 1, (b) s = 0, in case
of uniform weights (αj = 1, j = 1, . . . , m), β = 1/100, n = 30.

TABLE II
NUMBER OF ITERATIONS TO CONVERGE TO THE FIXED-POINT (β =

1/100, n = 30, ρIN = 0)

interpreted as rewards for winning the contention upon a given
back-off slot, and their setting is context and application de-
pendent.4 Note that α(1) corresponds to the baseline uniform

4A practical example is given in the following subsection.
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TABLE III

WEIGHT VECTORS USED FOR THE NON-UNIFORM CASE. α(1) CORRE-
SPONDS TO THE BASELINE UNIFORM WEIGHTS CASE, WHILE α(2)

AND α(3) ARE TWO BLOCK-TYPE CHANNEL-REWARDS

Fig. 4. (a) Conditional back-off probabilities τj with skip (s = 1) for
the optimal back-off PDF as a function of m, with the three different set of
weights shown in Table III, for β = 1/10 and n = 30. (b) Throughput related
to metrics α(3), achieved by the PDF optimized for channel utilization (α(1)

in the legend) and the PDF explicitly optimized for the considered scenario
(α(3) in the legend), for m = 36, n = 30.

weights case (i.e., channel utilization). From a theoretical
point of view, we say that each weight vector characterizes
a different MAC channel. For the considered weight vectors
α(1), α(2) and α(3), Figure 4(a) plots the corresponding
optimal conditional probabilities τj , j = 1, . . . ,m (see Table I
and Equation (11)) for s = 1 (skip allowed), as a function of
j, for 1 ≤ j ≤ m. Some valuable insights can be obtained
by inspecting these curves. First, for α(1) (i.e., uniform case),
we have: τ1 = τ2 = . . . = τm = τ , i.e., the Geometric PDF is
the optimal back-off distribution,5 confirming the established
theoretical results. Second, curves in Figure 4(a) show that
the Geometric PDF is no longer optimal for the block-type
channel rewards α(2) and α(3). Specifically, the optimized
conditional access probability τi is in general a function of
the slot index i.

Finally, to obtain some insights about performance gain
offered by the PDF optimized for a considered MAC channel,
Figure 4(b) shows, for different values of β, the weighted
throughput when the channel is characterized by weights α(3).
We compare the Geometric PDF (bars labeled with α(1) in
the figure), and the s-PDF explicitly optimized for the α(3)

weights (bars labeled with α(3) in the figure). More in dept,
we compare the obtained average reward achieved by the
‘general purpose’ Geometric PDF maximizing channel utiliza-
tion, and the PDF explicitly tuned for the considered reward
scenario. Accordingly, in both cases the weighted throughput
is measured using the rewards provided by the vector α(3),

5We explicitly note that this is no longer the case when s = 0.

so that the Geometric PDF is actually mismatched. From
Figure 4(b), optimal s-PDF’s throughput gain over Geometric
one spans from 9% to 53% in the considered β settings. In-
terestingly, Figure 4(b) shows that reducing β (i.e., increasing
packet length, hence the packet transmission time T ) is not
sufficient to properly boost CSMA/CA performance, unless
the optimal PDF is used. As an example, by decreasing β
from 1/10 to 1/200 (i.e., a 20× factor), Geometric throughput
increase is limited to 91%, while the optimal one is 167%.

B. Energy Consumption Use Case

As an example of applicability of the weighted throughput
in Equation (6) to a practical use case, in this subsection
we tailor the weight vector α to take account of STAs’
energy consumption in a typical IoT setting, inspired to IEEE
802.11ah. In energy sensitive application scenarios, the target
is not only to maximize network throughput, but also to min-
imize the consumed energy per successfully delivered packet.
In this regards, Table IV lists the energy consumption of a STA
in different modes, taken from [35] and [36]. Accordingly, for
i = 1, . . . ,m, let

E
(STA)
i = (i− 1)PRXδ + PTXT (21)

E
(NET )
i = n(i− 1)PRXδ + (n− 1)PRXδ

+ PTXT + (n− 1)PSL(T − δ). (22)

the energies consumed within each Contention Cycle (CC).
More in dept, Equation (21) is the energy consumed by a STA
that wins the contention at slot i, whereas Equation (22) is the
energy consumed by the whole network in case contention is
won by a STA at slot i. To take into account energy consump-
tion while maximizing throughput, we propose the following
two weight settings, α(STA) and α(NET ), so defined

α
(STA)
i = 1/E

(STA)
i , i = 1, . . . ,m (23)

α
(NET )
i = 1/E

(NET )
i , i = 1, . . . ,m. (24)

Roughly speaking, under framework (23) STAs are selfish-
oriented, only considering their own consumed energy in
throughput weighting, and always assume to be the winning
STA while planning the PDF strategy. On the contrary, under
framework (24) contention is network oriented, also account-
ing for sensing and sleeping energies of STAs that lose the
contention. We compare the three settings α(STA), α(NET ),
α(PHY ) = 1m = [1, 1, , . . . , 1], the last one corresponding to
the PDF maximizing channel utilization (and, consequently,
PHY throughput). Without ambiguity, with a slight abuse of
notation, we refer to α(STA), α(NET ), α(PHY ) also to denote
the corresponding PDF distributions. Table V lists network
parameters used in simulations, which refer to IEEE 802.11ah
technology [35]. Unless otherwise stated, each plotted point is
an average over 105 CCs.

Figure 5 and Figure 6 show throughput and energy perfor-
mance in basic access mode (no RTS/CTS), for m = 64 slots
and s = 0 (no skip allowed), in terms of successfully trans-
mitted Mbits/s (i.e., PHY throughput) and average consumed
energy per successful packet transmission. For each PDF
strategy, we test modulation and coding scheme 0 (MCS 0),
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TABLE IV
POWER CONSUMPTION VALUES IN DIFFERENT MODES

TABLE V
USED IEEE 802.11AH BASIC ACCESS SYSTEM PARAMETERS

Fig. 5. Throughput achieved by PDFs α(PHY ), α(STA) and α(NET )

versus number of stations n, for m = 64, s = 0, MCS 0 and MCS 8.

corresponding to the basic data rate, and MCS 8, correspond-
ing to 256-QAM (see Table V).

Some valuable insights can be obtained by the examination
of these results. First, throughput performance of all PDFs
are quite stable w.r.t. the number n of competing STAs,
making them particularly attractive in application scenarios
where a massive number of devices may compete for the
channel in a short period of time, as a consequence of a
triggering event (i.e., for massive machine type communication
scenarios (mMTC)). Figure 5 shows that throughput only
slightly decreases for increasing n. This is a consequence
of the proposed optimal framework, which equalizes such a
dependence. Second, α(PHY ) achieves the best throughput
performance, as expected. Nevertheless, α(STA) throughput
is almost indistinguishable, whereas α(NET ) PDF is only
slightly less efficient.

Concerning energy efficiency, Figure 6 shows that both
α(STA) and α(NET ) outperform α(PHY ). More in dept, the
energy saving is particularly relevant for α(NET ), and the
slight reduction in its throughput performance (see Figure 5)
is the price to pay for such an achievement in terms of energy
efficiency. As an insightful example, α(PHY ) consumes up to

Fig. 6. Energy consumption of PDFs α(PHY ), α(STA) and α(NET )

versus number of stations n, for m = 64, s = 0, MCS 0 and MCS 8.

TABLE VI
COLLISION PROBABILITY (Pc), NUMBER OF CCS PER SUCCESSFUL

PACKET TRANSMISSION (#CCS), AVERAGE NUMBER OF IDLE SLOTS
PER CC (#ISS) (n = 120)

TABLE VII

u-PDF THROUGHPUT LOSS AND ENERGY LOSS (W.R.T. α(PHY ) AND

α(NET ) , RESPECTIVELY), FOR m = 64, MCS 0 AND IEEE 802.11AH
PARAMETERS GIVEN IN TABLE IV

65% (MCS 8, n = 160) and 48% (MCS 0, n = 160) more as
compared to α(NET ). Despite this, throughput loss of α(NET )

in comparison with α(PHY ) is limited up to 12% (both MCS
0 and MCS 8) (see Figure 5).

Table VI provides some additional metrics to explain the
rationale behind differently optimized PDF strategies. Specif-
ically, energy consumption critically depends on the non
trivial trade-off between the number of contention cycles per
successful packet transmission #CCs, and the average CC
duration. As one can notice from Table VI, α(STA) and
α(NET ) are more aggressive compared to α(PHY ), especially
α(NET ), resulting in an increased collision probability Pc,
which negatively affects throughput and #CCs. Nevertheless,
α(STA) and α(NET ) strongly reduce the average number of
idle slots #ISs per CC, and, consequently, the average CC
duration. The optimized final trade-off is responsible for the
energy gain in Figure 6.

Finally, from Figure 5 it can be recognized that throughput
marginal loss of α(NET ) rapidly stabilizes for increasing
n (i.e., the α(NET ) curves are approximately flat for high
values of n), while the energy saving is more and more
relevant as network size increases, which makes the use of
the derived energy-oriented PDFs particularly advantageous
in massive scenarios. To conclude, for the considered system
parameters and MCS 0, Table VII provides the uniform
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distribution (u-PDF) throughput reduction w.r.t the throughput
benchmark provided by α(PHY ) (throughput loss), and the
energy consumption increase per successfully delivered packet
w.r.t. the energy benchmark provided by α(NET ) (energy
loss), respectively.

VI. CONCLUSION

A major component of multiple access system, namely
the CSMA protocol, is addressed and saturation throughput
optimization is investigated. The special perspective of this
work consists of assuming as degree of freedom in the
optimization process the probability distribution of the back-
off countdown, given the maximum size m of the contention
window. The baseline CSMA, as presented in analytical works
and as implemented in WiFi, adopts consistently a Geometric
(memoryless) distribution of back-off or a uniform probability
distribution over a variable contention window size, due to
binary exponential back-off. The aim of this paper is inves-
tigating the opportunity offered by an alternative approach to
CSMA throughput optimization.

To this end, a generalized notion of weighted throughput
is introduced, which encompasses the traditional saturation
throughput as a special case. Then, we present two major
results. The optimal PDF of back-off in the general case
of arbitrary non-negative weights is determined, providing
a numerical algorithm for its construction. Moreover, in the
particular case of weights all equal to 1, we have proved
that the optimal PDF of back-off reduces to a Geometric
distribution when contention window skip is allowed, thus
unveiling an interesting property of this popular probability
distribution of back-off, often simply justified in previous
works for easiness of analysis. Here it is formally proved
that it is actually the best possible choice, as far as saturation
throughput is concerned.

Further work in the direction of this paper can be developed
following two lines. On a practical side, distributed and
adaptive algorithms for adjusting the probability distribution of
back-off of a set of stations should be defined, to turn the result
presented in this paper into an operative algorithm in a CSMA
network where the number of contending stations varies over
time. From a modeling point of view, more general optimiza-
tion problems could be considered, involving multi-objectives,
beside saturation throughput, e.g., time deadlines, or using
utility functions to take traffic importance into account.

APPENDIX A
THE OPTIMAL THROUGHPUT AS A SOLUTION OF THE

FIXED POINT SYSTEM IN ALGORITHM 1

In this appendix we prove that the fixed point system in
Algorithm 1 derives from a one-to-one manipulation (i.e., the
pair-wise difference) of partial derivatives of the weighted
throughput objective function, and corresponds to the study
of their sign within the feasible region, in search of relative
maxima.

The countdown PDF is given by a row vector q =
[q1, . . . , qm+1] of size m+1. We first consider the case s = 1.
Since the sum of the components of the probability vector q

must be 1, we have m independent variables, composing the
vector q′ = [q1, . . . , qm], with the constraint that qi ≥ 0,
i = 1, . . . ,m and q1 + · · · + qm ≤ 1. We can re-write the
weighted throughput in the following way, so that only the
probabilities in q′ are involved:

ρ(α)
n =

n
∑m

j=1 αjqj(1− Fj)n−1

1 + β − (1− Fm)n + β
∑m−1

j=1 (1− Fj)n
. (25)

In this appendix, we omit the (α) superscript in throughput
notation without any ambiguity. We regard ρn as a function
of q′ and let

ρn =
P

(α)
s (q′)
D(q′)

(26)

where

P (α)
s (q′) = n

m∑
j=1

αjqj(1− Fj)n−1 (27)

and

D(q′) = 1 + β − (1− Fm)n + β

m−1∑
i=1

(1− Fi)n. (28)

We lead derivations assuming αj > 0 in this section, to be
concise. We now derive an algorithm producing the optimal
PDF q′ in terms of the related auxiliary variables

xj ≜
αjqj

1− Fj
(29)

for j = 1, . . . ,m, with xj ∈ [0, +∞[. Hence, once the optimal
xj are computed, from (29) and τj’s definition (11) we obtain
probabilities τj and qj as

τj =
xj

αj + xj
(30)

for j = 1, . . . ,m, and

qj = τj · (1− Fj−1). (31)

for j = 1, . . . ,m + 1, being, by position, τm+1 = 1.6

Recursion Equation (31) can be solved, yielding

qj =



x1

α1 + x1
j = 1

xj

αj + xj

j−1∏
k=1

αk

αk + xk
j = 2, . . . ,m

1−
m∑

j=1

qj j = m + 1

(32)

To maximize ρn in (25), we study the sign of its partial
derivatives, which are

∂ρn

∂qj
=

1
D(q′)

[
∂P

(α)
s

∂qj
− P

(α)
s

D(q′)
∂D

∂qj

]

=
1

D(q′)

[
∂P

(α)
s

∂qj
− ρn

∂D

∂qj

]
=

n Nj(q′)
D(q′)

(33)

6τm+1 = 1 accounts for the constraint qm+1 = 1 − (q1 + · · · + qm).
Note that for αj > 0 Equation (29) is always well defined. Furthermore,
xj = 0 iff qj = 0.
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where

Nj(q′) = αj (1− Fj)
n−1 − (n− 1)

m∑
i=j

αiqi (1− Fi)
n−2

+ ρnβ

m−1∑
i=j

(1− Fi)n−1 − ρn(1− Fm)n−1 (34)

for j = 1, . . . ,m. Note that, for any feasible q′, we have
D(q′) > 0. As a consequence, the sign of (33) only depends
on the sign of Nj(q′). We proceed backwards in the study of
it, for j = m, . . . , 1.

Base case (j = m): (34) simplifies to

Nm(q′) = αm (1− Fm)n−1 − (n− 1)αmqm (1− Fm)n−2

− ρn(1− Fm)n−1. (35)

By studying its sign, i.e., by solving the inequality Nm(q′) ≥
0, we get the following inequality

xm ≤
αm − ρn

n− 1
(36)

where we used the position (29). Therefore, at the optimal
point we have the following two possibilities: i) ρn > αm:
in this case (36) is never satisfied, Nm(q′) is always negative
and ρn is a decreasing function of xm, resulting in the optimal
value xm = 0 and, consequently, τm = 0 and qm = 0; ii) ρn ≤
αm: in order for ρn to be a maximum it has to be, strictly,
xm = (αm − ρn)/(n− 1), which results in Nm(q′) = 0 and
(see (33)) ∂ρn(q′)/∂qm = 0. Thus, in a compact notation,
at the optimum we have7

xm =
[
αm − ρn

n− 1

]
+

(37)

and

∂ρn(q′)/∂qm = 0 if xm > 0. (38)

In the following, we use (38) as base case (j = m) to induc-
tively proof backward such a result for any j = m− 1, . . . , 1.

Inductive step (j < m): let

I+
j ≜

{
i ∈ {j + 1, . . . ,m} |xi > 0

}
. (39)

By induction hypothesis, we have

∂ρn(q′)/∂qi = 0, for any i ∈ I+
j . (40)

For the given j, there are two possibilities:
i) I+

j = ∅. In such a case, since qi = 0 for any i > j, (34)
simplifies to

Nj(q′) = αj (1−Fj)
n−1−(n− 1)αjqj (1−Fj)

n−2

+ ρnβ(m− j)(1−Fj)n−1−ρn(1−Fj)n−1. (41)

Similarly to what done above for Nm(q′), by studying its sign,
at the optimal point we get

xj =
[
αj + ρnβ(m− j)− ρn

n− 1

]
+

. (42)

with Nj(q′) = 0 if xj > 0, i.e., (40) is satisfied also for i = j,
i.e., for i ∈ {j} ∪ I+

j and the induction is complete.

7By definition [a]+ ≜ max{a, 0}.

ii) I+
j ̸= ∅. Let j+ ≜ min

{
i
∣∣i ∈ I+

j

}
, i.e., let j+ > j

be the slot index closest to j such that xj+ > 0. For all
the intermediate indices i ∈ {j + 1, . . . , j+ − 1} (possibly,
an empty set of indices, in case j+ = j + 1), we have
qi = 0. By leveraging the induction hypothesis (40) (applied
to i = j+) we have Nj+(q′) = 0. Studying the sign of
∂ρn(q′)/∂qj , namely, the inequality Nj(q′) ≥ 0, is therefore
equivalent, in this case, to Nj+(q′) − Nj(q′) ≤ 0, i.e., the
difference of eq. (34) for the values j+ and j, which provides
the inequality

αj+

(
1− Fj+

)n−1 − αj (1− Fj)
n−1

+ (n− 1)αjqj (1− Fj)
n−2

− ρnβ(j+ − j)(1− Fj)n−1 ≤ 0. (43)

Re-arranging we get

αj+

(
1− Fj+

1− Fj

)n−1

+ (n− 1)
αjqj

1− Fj
≤ αj + ρnβ(j+ − j)

(44)

from which, by leveraging position (29), we get at the opti-
mum

xj =
1

n− 1

[
αj + ρnβ(j+ − j)−

αj+

(1 + xj+/αj+)n−1

]
+

.

(45)

with Nj(q′) = 0 if xj > 0, which, similarly to what done
above, confirms validity of the (40) for i = j < j+, i.e., for
i ∈ {j} ∪ I+

j , completing the proof of the inductive step.
For s = 0, the obtained results still hold, unless minor

changes. The countdown PDF is given by the row vector
q = [q1, . . . , qm+1] with the constraint qm+1 = 0. The sum
of its components must be 1. Thus, we have qm = 1−Fm−1,
i.e. Fm = 1, and m− 1 independent variables, composing the
vector q′ = [q1, . . . , qm−1], with the constraint that qi ≥ 0,
i = 1, . . . ,m − 1 and q1 + · · · + qm−1 ≤ 1. The weighted
throughput in (25) reduces to

ρn =
n

∑m−1
j=1 αjqj(1− Fj)n−1

1 + β + β
∑m−1

j=1 (1− Fj)n
. (46)

By studying the sign of the partial derivatives of ρn, we derive
the optimal working points xj , j = 1, . . . ,m− 1. For I+

j = ∅
Equation (42) changes to

xj =
[
αj + ρnβ(m− j)

n− 1

]
+

(47)

while, for I+
j ̸= ∅, Equation (45) still holds. Probability

expressions (30) and (31) apply for i = 1, . . . ,m − 1 and
i = 1, . . . ,m, respectively, with the additional position τm =
1 taking account of the constraint Fm = 1.

Algorithm 1 includes the above derived equations and both
frameworks (s = 1 and s = 0) in a single formulation. It also
includes the slightly more general setting α ∈ (R+

0 )m−{0m},
that can be derived as a limit case.

As a conclusion, eqs. (25), (30), (31), (45), and (42) (for
s = 1) or (47) (for s = 0) define a fixed-point non-linear
system of the form ρn = Ψα(ρn), that the optimal throughput
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ρ∗n has to satisfy, and q(ρ∗n) ∈ Q′ in (17) is the related optimal
PDF, obtained for the setting ν := ρ∗n. More in dept, the
generic iteration of Algorithm 1 (lines 6–24) is a function
Ψα(ν) mapping the input parameter ν (lines 7 and 9) into the
conditioned PDF τ (ν) (and q(ν)) (lines 10, 18 and 21), and
its achieved throughput (line 22)

Ψα(ν) ≜ ρn

(
q(ν)

)
. (48)

We refer to Ψα(ν) as fixed point function, and it can be
verified that is a continuous function. Ψα(ν) in (48) is,
by construction, as the restriction of the weighted throughput
function (25) to the set (17) of PDFs produced by Algorithm 1
(lines 6–24) for any given seed ν ∈ [0, αmax]. Theorem 2 is
therefore proved.

APPENDIX B
UNIQUENESS OF THE FIXED POINT AND CONVERGENCE

OF ALGORITHM 1 TO IT

We omit the n subscript in throughput notation without any
ambiguity. For α ∈ (R+

0 )m−{0m} and τ ∈ [0, 1]m, (25) can
be rewritten as a function of the conditioned probabilities τ
as

ρ ≡ ρ(α)(τ ) = P (α)
s (τ )/D(τ ) (49)

where

P (α)
s (τ ) = n

m∑
j=1

αjτj

1− τj

j∏
h=1

(1− τh)n (50)

D(τ ) = 1 + β −
m∏

h=1

(1− τh)n + β

m−1∑
j=1

j∏
h=1

(1− τh)n.

(51)

(49) is a continuous and differentiable function of both α and
τ and, for a given α, is a bounded function of τ in the compact
subset [0, 1]m of Rm. It follows that it has a global maximum
in this subset, denoted by ρ∗.

From (49) and the one-to-one mapping (30) (i.e.,
Algorithm 1 line 10), the fixed point function can written as
Ψα(ν) ≡ ρ

(
τ (x(ν))

)
, where (see Algorithm 1, line 9)

xj(ν) = max {0, yj(ν)} (52)

with

yj(ν) ≜
1

n− 1
(
αj + νβ(j+ − j)− σj(ν)

)
. (53)

By rearranging the partial derivative ∂ρ(τ )/∂τj similarly to
what we did in (33), τ (ν) satisfies, by Algorithm 1 construc-
tion, the following equation

∂P
(α)
s (τ (ν))

∂τj
− ν

∂D(τ (ν))
∂τj

= 0 (54)

for a given ν, if yj(ν) ≥ 0. Vice versa, if yj(ν) < 0, we have
∂xj(ν)/∂ν = 0. For the fixed point function derivative,
we get8

Ψ′α(ν) =
m∑

j=1

∂ρ

∂τj

∂τj

∂xj

∂xj

∂ν

8We omit the functional dependence of terms on ν to simplify notation.

=
∑

j∈I+(ν)

1
D

[
∂P

(α)
s

∂τj
−Ψα(ν)

∂D

∂τj

]
αj

(αj + xj)2
∂xj

∂ν

(55)

where

I+(ν) ≜
{
j ∈ {1, . . . ,m} |yj(ν) ≥ 0

}
. (56)

By substituting expression (54) in the derivative (55), we get

Ψ′α(ν) =
(
ν −Ψα(ν)

)
gα(ν) (57)

where

gα(ν) ≜
1

D(τ (ν))

∑
j∈I+(ν)

∂D(τ (ν))
∂τj

αj

(αj + xi(ν))2
∂xj(ν)

∂ν
.

(58)

Note that, due to the max operator in (52), which takes into
account the implicit box constraint τ ∈ [0, 1]m, left and right
derivative of xj(ν) in (58) assume finite values but may differ.
Formally, let I0(ν) ≜ {j ∈ {1, . . . ,m}|yj(ν) = 0}}, and

S ≜ {ν ∈ [0, αmax] | I0(ν) ̸= ∅}. (59)

For ν /∈ S the derivative is well defined, while for ν ∈ S we
may have gα(ν−) ̸= gα(ν+) due to the angular points in (52).
Nevertheless, by leveraging the above detailed analysis, the
following final results stem:

Theorem 4: The fixed point function Ψα(ν) has a unique
fixed point.

Proof: Let ν1 and ν2 two fixed points, with ν1 ̸= ν2. Let
ν1 < ν2. From (57) we have Ψ′α(ν1) = Ψ′α(ν2) = 0. As a
consequence, there exists a right interval of ν1 where Ψα(ν)
is below the bisector, and a left interval of ν2 where Ψα(ν)
is above the bisector. From continuity of Ψα(ν) in [0, αmax],
there exists ν ∈]ν1, ν2[ where Ψα(ν) intersects the bisector,
i.e., Ψα(ν) = ν, with Ψ′α(ν) ̸= 0 (more in dept, Ψ′α(ν) > 1),
contradicting (57). □

By leveraging Theorem 4 and Theorem 2, we conclude that
there is a unique fixed-point ρ∗, which is also the unique global
maximum of both (6) and its restriction Ψα(ν). i.e.,{

Ψα(ρ∗) = ρ∗

Ψα(ν) < ρ∗, ν ∈ [0, αmax], ν ̸= ρ∗.
(60)

We can now prove the following final result.
Theorem 5: Algorithm 1 converges to Ψα(ν) ’s fixed point.

Proof: Let ρ∗ be Ψα(·)’s fixed point. By Algorithm 1
inspection it can be verified that Ψα(0) > 0.9 Assume,
by contradiction, that there exists ν ∈]0, ρ∗[ such that ν ≥
Ψα(ν). From the uniqueness of fixed-point it must be, strictly,
ν > Ψα(ν). Let Φα(ν) ≜ Ψα(ν) − ν. We have Φα(0) >
0 and Φα(ν) < 0. Consequently, for the intermediate values
theorem, there exists ν̃ ∈]0, ν[ such that Φα(ν̃) = 0, i.e.,
Ψα(·) would have a second fixed point ν̃ < ρ∗, obtaining a
contradiction. Thus, from the above analysis and (60) we have

ν < Ψα(ν) < ρ∗, for any ν < ρ∗. (61)

9The results also follows from the uniqueness of the fixed-point ρ∗.
If Ψα(0) = 0, ν = 0 would be a second fixed-point, obtaining a
contradiction.
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As a consequence, iteration (13) leads to a monotonic increas-
ing sequence {νk}k≥0 buonded above, which converges to ρ∗.
Finally, Algorithm 1 also converges for any ν0 ∈ [0, αmax].
In fact, whether ν0 ∈]ρ∗, αmax], from (60) we have ν1 =
Ψα(ν0) < ρ∗. Consequently, from (61) we conclude that the
sequence {νk}k≥1 monotonically converges to ρ∗. □

APPENDIX C
CONCATENATED WEIGHTED THROUGHPUT PROBLEM

(s = 1)

Theorem 3 is a straightforward consequence of a more
general result standing for any given vector of weight values
α ∈ (R+

0 )m −{0m}, then applied to the standard normalized
throughput (i.e., channel utilization) as a special case. For
the given m and α, let k ∈ N be any positive integer,
and assume k = 2 for the sake of simplicity. Consider the
weighted throughput function ρ(α′)(τ ′) ≡ ρ(α,α)(τ 1, τ 2),
over a doubled contention window size m′ ≜ 2m, with weight
vector α′ ≜ [α, α] ∈ (R+

0 )m′−{0m′}, given by the repetition
of α over the slots i ∈ {m + 1, . . . , 2m}, i.e., αi = αi+m,
for i = 1, . . . ,m, and τ ′ ≜ [τ1, τ2] ∈ [0, 1]m

′
, with

τ1, τ2 ∈ [0, 1]m. We refer to the here defined 2-dimensional
weighted throughput as 2-fold concatenated throughput.10 By
rearranging terms in (49)–(51) we can write

ρ(α,α)(τ1, τ2) =
P

(α)
s (τ1) + PI(τ1)P (α)

s (τ2)
D(τ1) + PI(τ1)D(τ2)

=
D(τ1)

D(τ1) + PI(τ1)D(τ2)
ρ(α)(τ1)

+
PI(τ1)D(τ2)

D(τ1) + PI(τ1)D(τ2)
ρ(α)(τ2) (62)

with PI(τ1) ≜
∏m

h=1 (1− τh)n. Let τ ∗ ∈ [0, 1]m be the
global optimum of ρ(α)(τ ), i.e., the base maximization prob-
lem over m slots, for the given α. From (62) we conclude that
τ ′∗ ≜ [τ ∗, τ ∗] ∈ [0, 1]2m is the global optimum of the con-
catenated throughput ρ(α,α)(τ 1, τ 2), with ρ(α,α)(τ ∗, τ ∗) =
ρ(α)(τ ∗).

Theorem 3 follows as a direct application of this result to the
normalized throughput, which can be considered as the m-fold
concatenated problem of the base case m = 1, α = 1. Eq. (19)
directly follows from the study of the derivative of (7).
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