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Abstract: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a group of rare
systemic diseases affecting small-caliber vessels. The damage caused by AAV mainly involves
the lung and kidneys. AAV includes three different types: granulomatosis with polyangiitis (GPA),
microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). Although
the different phenotypic forms of AAV share common features, recent studies have shown that
there are significant differences in terms of pathogenetic mechanisms involving both the adaptive
and innate immune systems. Advances in our understanding of pathogenesis have enabled the
development of immuno-targeted therapies. This review illustrates the characteristics of the various
forms of AAV and the new therapies available for this disease that can have lethal consequences if
left untreated.
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1. Introduction

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a group
of systemic diseases affecting small vessels. AAV causes damage to several organs and
tissues, including the upper and lower respiratory tracts, kidneys, nerves, and skin [1].
AAV comprises three main forms: granulomatosis with polyangiitis (GPA), microscopic
polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA) [2]. Another
type is drug-induced AAV [3]. AAV is characterized by the presence in the serum of ANCA
specific for zymoproteins present in the cytoplasm of neutrophils, namely myeloperoxidase
(MPO) and proteinase3 (PR3) [4,5]. The frequency of the presence of these antibodies varies
widely among different types of AAV [6]. The most serious complications of AAV are
diffuse alveolar hemorrhage and renal failure, both of which can be life-threatening [7,8].
The diagnosis of this condition is still based on Watts’ criteria [9] but a new classification has
recently been proposed by ACR/EULAR [10–12] to highlight differences in pathogenesis
and response to treatment between conditions previously considered most similar. The
purpose of this review is to discuss new knowledge about the pathogenesis of different
forms of AAV and the latest therapeutic approaches for this complex disease.

2. Epidemiology

The introduction of the ANCA test about three decades ago made it possible to identify
previously undiagnosed cases of AAV. However, epidemiological data on the incidence
and prevalence of AAV have always been hampered by the rarity of the disease [13,14].
In recent years, there has been a gradual increase in the number of patients diagnosed as
having AAV. Several explanations have been proposed, including climate change, improved
classification criteria, more common use of ANCA testing, and increased awareness of
the disease. However, the epidemiology of AAV seems to have stabilized in the early
2000s [15]. The incidence of GPA and MPA seems similar, with up to 30 new cases per
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million population and a prevalence of up to 250 cases per million population according
to epidemiological studies [16,17]. EGPA is much rarer, with an incidence of up to four
cases per million population and a prevalence of up to 25 cases per million population [18].
Several studies have shown that the peak incidence of AAV occurs in the age group of
60 to 79 years [19,20]. The higher incidence of AAV in elderly individuals may be partly
explained by improved testing for ANCAs in serum, which has made it possible to detect
previously undiagnosed forms [19,21]. The ratio of male-to-female prevalence was reported
as slightly in favor of women [19,22–24]. However, this result has not been confirmed by
other studies. Therefore, the question of whether there is a sex-dependent susceptibility to
the disease has not yet been definitively answered [25].

Epigenetics and Environmental Factors

Some environmental factors have been reported to be responsible for the induction
or course of AAV. These mainly include infectious agents, drugs, and silica dust. Some
studies indicate that toxic shock syndrome toxin-1 (TSST-1) produced by some strains
of S. aureus is a risk factor for GPA recurrence [26]. It has been hypothesized that this
bacterium is involved in the pathogenesis of AAV through a mechanism of molecular
mimicry [27]. The hypothesis of the possible involvement of S. aureus in AAV is also based
on the observation of the therapeutic effect of antibiotic treatment in GPA, as reported by
some studies [28,29]. The association between silica dust exposure and the development
of AAV was first suggested by a comprehensive meta-analysis [30]. In this regard, it
was reported that the severity of the disease increased in patients with AAV after the
earthquakes in Japan [31,32]. This observation suggested that silica dust in the air due
to the destruction and reconstruction of cities may have influenced the course of AAV,
especially at the respiratory level. However, no difference was observed in the incidence
of AAV before and after the 2011 New Zealand earthquake [33]. Therefore, the role of
earthquakes in the onset or flares of AAV has not yet been conclusively demonstrated.

3. Classification and Diagnostic Criteria

The first American College of Rheumatology (ACR) criteria for vasculitis including
AAV were published in 1990 and included only GPA and EGPA, but not MPA [34]. Sub-
sequently, new definitions from the Chapel Hill Consensus Conference (CHCC) were
published in 1994 and then revised in 2012. On this occasion, the classification took into
account the new etiopathogenetic knowledge of the different types of AAV. A tree hierarchy
was developed, emphasizing that some conditions cannot be classified simply by vessel
size, but require the presence of surrogate markers of disease. AAV was recognized as
a specific type of small vessel vasculitis in which the surrogate marker is the presence
of serum ANCA [2]. This classification revision was preceded by a stepwise diagnostic
algorithm formulated by experts and widely used in clinical practice [9]. The presence
of ANCA can be assessed by several tests, the first of which to be proposed was the indi-
rect immunofluorescence test on ethanol-fixed human neutrophils [35]. Alternative and
more practical methods are enzyme immunoassay and chemiluminescence. In detail, the
c-ANCA describes an indirect immunofluorescence pattern that consists of diffuse granular
cytoplasmic staining, characteristic of PR3-ANCA, while the p-ANCA pattern consists
of perinuclear staining, typical of MPO-ANCA [36,37]. The pattern most commonly as-
sociated with GPA although not exclusively, is c-ANCA [38]. Patients with MPA often
show a p-ANCA pattern, but they can also exhibit PR3-ANCA [39]. In EGPA, <50% of
patients have detectable ANCA. If present, these are typically MPO-ANCA [40]. More
recently, diagnostic criteria for AAV have been proposed that aim to provide more accurate
distinctions of individual forms based on their clinical features [10–12]. It has also been
suggested by some authors that the classification of AAV types was based on the specificity
of circulating ANCA rather than clinical features [41].
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4. Pathogenesis
4.1. The Role of Genetic

Through genome-wide association studies (GWAS), several genes have been identified
that may be involved in AAV susceptibility. In particular, the major histocompatibility
complex class II genes appear to play a major role [42–44]. In some studies, GPA with PR3-
ANCA is significantly associated with HLA-DP genes, while the presence of MPO-ANCA
is associated with HLA-DQ genes [42,43]. It has also been reported that the HLA-DPB1*04
allele is associated with the risk of developing GPA in North America, while the HLA-
DRB1*09 allele is associated with GPA with MPO-ANCA in the Japanese population.
These differences reflect the predominance of GPA with PR3-ANCA in European white
populations, while GPA with MPO-ANCA is more common in Asian populations [45].
Several associations of AAV with non-MHC genes have also been described. These include
PTPN22 [46], SERPIN1, PRTN3, and SEMA6A genes [42–44]. It has been reported that
the frequency of a single nucleotide polymorphism (SNP) in the PTPN22 gene is higher
in patients with AAV than in healthy subjects. It has also been shown that this mutated
variant is associated with increased production of interleukin (IL)-10 characterized by
anti-inflammatory activity. This would result in decreased disease activity in patients
with AAV bearing this mutation [46]. An SNP near the SERPIN1 gene is associated with
PR3-ANCA-associated GPA resistance [47]. An SNP in the PRTN3 gene is associated with
resistance to developing PR3-ANCA AAV, while an SNP in the SEMA6A gene is associated
with resistance to developing GPA. [43,44]. Future studies are needed to better clarify how
mutations in these genes are involved in the pathogenesis of AAV. Epigenetic modifications
of histones and DNA have been implicated in the regulation of the expression of genes
encoding for MPO and PR3 [48,49]. Promoter methylation of MPO and PRTN3 genes was
found to be negatively correlated with their transcription [49] and is inversely related to
disease activity [49].

4.2. The Role of ANCA and Neutrophils

Several studies conducted initially in animal models have shown that ANCA play an
important role in the pathogenesis of AAV. For example, injection of MPO-ANCAs into
wild-type mice can induce necrotizing and crescentic glomerulonephritis (NCGN) [50]. In
other experimental models, the presence of MPO-ANCA has been shown to cause pul-
monary hemorrhage [51]. These animal models indicate the pathogenicity of ANCAs and
not only their utility as biomarkers of disease. To understand the pathogenic mechanism
of ANCAs, their interaction with neutrophils is crucial. Neutrophils play a central role in
mediating and amplifying tissue damage. In genetically predisposed individuals and with
the contribution of environmental factors, proinflammatory cytokines induce neutrophils
to express MPO and PR3 antigens on their cell surface making them visible to autoreactive
cells of the adaptive immune system [52]. These antigens can then become the target of
ANCA. Such antibodies further activate circulating neutrophils that transmigrate through
the endothelium and accumulate at the level of the vascular wall. Here, they can release
superoxide radicals and oxygen enzymes, molecules that are extremely damaging to the
vessels and can cause their necrosis [53]. Damaged vascular endothelium allows plasma
to reach perivascular tissue triggering the coagulator cascade and inducing thrombosis of
small vessels [54,55]. Neutrophil activation activates by chemotaxis the arrival of mono-
cytes into the tissue, which in turn induces the release of cytokines, other proinflammatory
mediators, reactive oxygen species, and lytic enzymes, further amplifying the inflammatory
reaction and tissue damage [56]. A key contribution to tissue damage is also made by the
formation and release of neutrophil extracellular traps (NETs) associated with neutrophil
apoptosis (NETosis). NETs are extracellular fibrillar arrays containing DNA that constitute
an important defense tool of neutrophils against extracellular pathogens [57]. Their activa-
tion is very harmful to small vessels [58] and is involved in complement activation [59] and
ANCA production [60].
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4.3. The Role of B- and T-Cells

MPO and PR3 antigens are discharged in the extracellular environment by neutrophils
dying of apoptosis after NETs release. These proteins are phagocytosed by antigen-
presenting cells for induction of MPO- and PR3-specific T lymphocytes which are then
expanded and activated in the peripheral blood [61]. Abnormal immune responses are
thus induced that promote the chronicity of the inflammatory process through the release
of cytokines, enzymes, and reactive oxygen species [62]. The T-cell response is mediated
mainly by T helper (Th)1 and Th17 cells with pro-inflammatory activity. This process is
accompanied by a decrease in circulating regulatory T cells (Tregs) that contribute to the
immune reaction against the self-antigens MPO and PR3 [63]. Th17 cells stimulate the
recruitment of neutrophils to inflamed sites with the amplification of tissue damage [64].
Conversely, neutrophils provide to induce the enrolment of effector T-cell types and ampli-
fication of T-cell memory [65]. Some of these effector T-cells also contribute to natural killer
(NK) cell proliferation [66]. Th2 cells provide to help B-cells to produce ANCA [67,68].
Several other factors have been found to contribute to the development of AAV, including
defective apoptosis or failure to eliminate apoptotic cells. These may expose self-antigens
normally invisible to the immune system [69]. It has also been observed that nasal col-
onization with S. aureus is often present in GPA, especially in relapsing patients. It has
been suggested that this pathogen might contribute to an inflammatory microenvironment
necessary for the activation of autoreactive T cells in AAV [70,71]. The direct pathogenicity
of ANCA is supported by both experimental and clinical observations [72,73]. In animal
models, ANCA have been shown to interact with neutrophils by inducing their degran-
ulation and production of oxygen radicals [74,75]. ANCA can also induce the adhesion
properties of neutrophils to the endothelial cells [76,77], inducing vessel wall inflammation
of different target organs [50,78–80]. The pathogenic role of ANCAs is also supported by
clinical data. For example, in drug-associated AAV, remission induced by drug withdrawal
is directly related to a significant reduction in circulating ANCA titer [81–83]. In support
of the pathogenetic role of ANCA, a case of neonatal pulmonary hemorrhage secondary
to transplacental passage of MPO-ANCA by the mother has been well described [84].
Another similar clinical case in which an infant of a mother with AAV developed pul-
monary hemorrhage and renal kidney damage. The MPO-ANCA assay revealed that the
antibody titer in serum was the same as that of the mother. This finding is highly suggestive
of the passive transfer of ANCAs by the placental route [85]. More evidence of ANCA
pathogenicity includes the observation that targeted therapies that reduce autoantibod-
ies depleting B-cells are effective treatments in AAV [86–88]. It is noteworthy, however,
that in a mouse model of MPA made B-cell deficient, crescentic glomerulonephritis devel-
oped equally in the absence of MPO-ANCA. Depletion of CD4+ effector cells attenuated
glomerulonephritis, demonstrating a possible ANCA-independent role of T-cells in the
immunopathogenesis of AAV [89]. It has also been reported that regulatory B cells (Breg)
induce the trans-differentiation of effector T cells into regulatory T cells (Treg), contributing
to reduced ANCA production by B cells. A defect in Breg may therefore be an additional
factor promoting the production of AAV [90]. Figure 1 illustrates the pathogenesis of AAV,
involving ANCA, neutrophils, dendritic cells, and cells of the adaptive immune system.
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Figure 1. Pathogenesis of AAV. Environmental factors induce neutrophils to express MPO and
PR3 on their surface. These cells are then further activated and induce tissue damage through the
production of reactive oxygen species (ROS) and the formation of neutrophil extracellular traps
(NETs). Exposure of NETs, through a process termed NETosis, is associated with apoptosis of the
neutrophils themselves, which release the antigens MPO and PR3 into the extracellular space. These
proteins are processed by dendritic cells and then presented to T helper cells. The latter help the B cells
to produce ANCA, which further activate the neutrophils thus maintaining the inflammatory process.

4.4. The Role of Complement

AAV is considered a pauci-immune disease because immunoglobulin and complement
deposits are absent or greatly reduced in patients with AAV [91–93]. However, recent
experimental and clinical studies suggest that the complement system is actively involved
in the pathogenesis of AAV, particularly through the alternative pathway. In this regard,
it has been shown that factor B- and C5-deficient mice do not develop the disease after
MPO-ANCA administration [94]. On the other hand, the blockade of the C5a receptor
(CD88) in mice protects animals from MPO-ANCA-induced vasculitis [95]. Many other
studies support the role of C5a factor in AAV pathogenesis [96,97]. Clinical data confirmed
that there is an activation of the alternative complement pathway in AAV. Plasma levels of
soluble C3a, C5a, C5b-9, and Bb have been described to be higher during active disease than
during remission phases [98–101]. C5a released through the action of C5 convertase can
induce mast cell degranulation. This molecule has chemoattractive properties, being able to
induce the recruitment of phagocytic cells into tissues and facilitate the migration of antigen-
presenting cells into lymph nodes resulting in the activation of the adaptive immune
response [102–104]. C5a also induces neutrophils to express PR3 on the cell membrane,
allowing specific ANCA to bind this protein [105]. In AAV in an active phase, decreased
expression of factor H was observed [106]. Factor H not only regulates the alternative
complement pathway, but can also bind neutrophils by inhibiting their activation by ANCA.
A deficiency of factor H can induce alteration in C3b production, resulting in neutrophil
activation with subsequent progression of AAV [107]. Other factors that regulate alternative
complement pathways are intercellular adhesion molecule-1 (CD54), decay-accelerating
factor (DAF or CD55), and CD59 glycoprotein. The levels of all these proteins can be altered
during AAV [108]. Another observation in favor of the role of complement is the evidence
that a condition of hypocomplementemia at diagnosis is associated with a worse prognosis
and severe renal damage in patients with AAV, due to complement deposition in the small
vessels of target organs [109,110]. Figure 2 summarizes the role of complement in the
pathogenesis of AAV.
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Figure 2. The role of complement. Activation of the alternative complement pathway results by a
cascade mechanism in the synthesis of factor C5a, which after recognition of its C5aR receptor on
the surface of leukocytes activates them to produce factors that mediate tissue damage. Avacopan, a
C5aR agonist, inhibits C5a binding thereby blocking activation of leukocytes including neutrophils.

4.5. The Role of Eosinophils

EGPA is an AAV characterized mainly by asthma associated with eosinophilia. EGPA
can affect several organs, including the skin, lungs, and peripheral nerves [2,111]. EGPA
differs mainly from GPA and MPA in the expression of ANCA, which are present in
only 30–40% of patients with EGPA [112–114]. In addition, some patients with EGPA
may not show histological signs of vasculitis and are defined by some authors as having
hyper-eosinophilic syndromes (HES) or eosinophilia or suffering from eosinophilic lung
disease [115]. EGPA is associated with several immunological dysregulations. CD4+ T-cells,
mainly of Th2 phenotype, play a pathogenic role in EGPA. In particular, eosinophils are
responsible for most tissue damage [116]. Th2-related cytokines, including IL-5, IL-10, and
IL-13, can effectively promote the maturation of eosinophils in the bone marrow and play a
key role in their activation peripherally [117]. The success of therapy based on blocking
IL-5 by monoclonal antibodies underscores the importance of Th2 cells and eosinophils
in disease pathogenesis. In addition, CD4+ T lymphocytes can protect eosinophils from
apoptosis, helping them survive longer [118]. Moreover, some studies have revealed that
eosinophil proliferation can be triggered by signaling pathways by tyrosine kinases [119].
In addition, endothelial cells can produce eotaxin-3, which can induce the eosinophils to
infiltrate tissues and release cytotoxic mediators [120]. Eosinophil cationic protein (ECP)
can promote cell death, allowing the presentation of cryptic autoantigens to Th cells, thus
perpetuating a vicious cycle [121]. Interferon produced mainly by Th1 cells may also
mediate granuloma development, and it has been reported that IL-17 levels, which promote
neutrophil recruitment and activation, are significantly increased in EGPA in the active
phase [122]. B-cells play also an important role in EGPA immunopathogenesis, as suggested
by the therapeutic success achieved with CD20+ B-cell depletion using the monoclonal
antibody (mAb) rituximab.



Antibodies 2023, 12, 25 7 of 19

5. Clinical Presentation

The clinical features of AAV are heterogeneous and depend largely on the type of AAV
considered. These include GPA which primarily affects the upper and lower respiratory
tracts, MPA which preferentially affects the kidneys, and EGPA initially characterized by
allergy-like symptoms, including asthma, which evolves into definite vasculitis [10–12].
The clinical picture and severity are associated with the number of affected vessels, target
organs, and disease activity [123]. As this is a systemic disease, patients often present with
constitutional symptoms and in particular fever, asthenia, weight loss, and arthralgias [124].
Upper respiratory tract manifestations consist of recurrent nose bleeding, damage to the
cartilage of the nasal septum which can collapse, sinusitis, and otitis media [125,126].
Pulmonary manifestations include pulmonary nodules and diffuse alveolar hemorrhage.
Alveolar hemorrhage is a particularly severe complication and presents with hemopty-
sis and dyspnea. An increased incidence of interstitial lung disease has been reported
especially in subjects with MPA and MPO-ANCA [127]. The eye can also be affected with
several manifestations, among which one of the most frequent is scleritis [128]. In some
cases, skin, neurological, or enteric involvement is present [129–131]. A more recently
recognized co-morbidity is cardiovascular involvement. Cardiovascular disease in AAV
is thought to be associated with the acceleration of atherosclerosis. It has been reported
that the incidence of cardiovascular events in patients with AAV is three times higher than
in the general population, while the risk of cerebrovascular events is increased eightfold
compared with healthy controls [132]. An important target organ of AAV is the kidney.
The renal disease typically manifests as pauci-immune NCGN. Usually, this condition is
characterized by nephritic syndrome with hematuria and proteinuria. Less frequently,
renal involvement presents as subacute or chronic nephritis. Renal disease in AAV can
progress to end-stage renal failure. Importantly, the frequency of renal involvement differs
according to the type of AAV, being higher in MPA than in GPA or EGPA, and is associated
with the presence of MPO-ANCA rather than PR3-ANCA [124]. Conversely, involvement
of the upper and lower airways is more frequent in patients with GPA than in those with
MPA [133]. EGPA presents with a characteristic picture of hypereosinophilia, respiratory
allergy, and asthma progressing toward definite vasculitis [134,135].

6. Disease Activity

To assess disease activity, the Birmingham Vasculitis Activity Score (BVAS) is com-
monly used. This score includes 10 categories of symptoms calculated differently depend-
ing on whether they are new onset or have worsened for no more than 4 weeks after
detection or are present in stable patients. A BVAS score of 0 represents remission, and a
BVAS ≥ 1 represents active disease and/or treatment-refractory disease of varying severity.
The maximum score is 63 or 33, depending on the patient category considered [136]. The
five-factor score (FFS) was validated first for MPA and EGPA and later for GPA. It includes
the calculation of serum creatinine, proteinuria, presence of cardiomyopathy, gastroin-
testinal involvement, and CNS manifestations. It is used to predict the five-year survival
rate of AAV patients [137]. The vasculitis damage index (VDI) is a useful clinical tool to
distinguish chronic vasculitis-induced damage. To obtain the score, manifestations of the
disease must have been present for at least three months. The VDI considers 11 items
referring to different organs and systems [138].

7. Treatment of AAV
7.1. Treatment with Conventional Immunosuppressants

Treatment of AAV has long depended on the use of glucocorticoids and conventional
immunosuppressive drugs [88,139]. AAV therapy consists of a first phase for induction of
remission and a second phase for maintenance of disease remission. The conventional im-
munosuppressant commonly used to induce disease remission is cyclophosphamide (CYC)
combined or not with steroids. For maintenance therapy, several immunosuppressants,
particularly azathioprine, methotrexate, and mycophenolate, are used to spare steroids.
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CYC is an alkylating agent whose inhibitory effects on B-cells have been recognized, partic-
ularly the inhibition of autoantibody production, including autoantibodies [140]. However,
serious adverse events secondary to the use of this drug have been reported, including
the occurrence of cancer [141,142]. In patients with particularly severe conditions, such as
alveolar hemorrhage and rapidly progressive glomerulonephritis, plasmapheresis, which
allows rapid and effective removal of ANCAs from serum, may be considered [88]. Re-
garding maintenance therapy, methotrexate and azathioprine have been found to have
similar safety profiles [143]. Mycophenolate was found to be superior to azathioprine in
suppressing cytokine production by B-cells in a small cohort of patients [144].

7.2. Rituximab

CYC is associated with severe side effects. Therefore, many studies have been devoted
to finding safer alternative therapies. Deletion of B lymphocytes to reduce the serum level
of ANCA has been considered critical for the treatment of the disease. Research interest
has therefore focused on rituximab (RTX), a chimeric murine/human mAb that recognizes
and deletes the B lymphocytes [145]. RTX eliminates CD20-expressing B lymphocytes
through several mechanisms, including antibody-dependent cellular cytotoxicity (ADCC),
complement-dependent cytotoxicity, and induction of apoptosis [146]. The possibility of
RTX in inducing remission in AAV has been evaluated in several clinical trials. Two random-
ized, controlled trials, RAVE and RITUXVAS evaluated the efficacy of RTX for remission
induction in GPA and MPA [87,147]. Inclusion criteria for the RAVE study included patients
with a diagnosis of GPA or MPA according to the recent AAV definition and positive serum
tests for PR3-ANCA or MPO-ANCA with the new onset and relapsing disease but without
severe renal failure. The RTX arm was combined with pulse methylprednisolone treatment,
and prednisone dosing was reduced to zero within six months. The RITUXVAS study
enrolled patients with newly diagnosed vasculitis and more severe renal disease, including
patients requiring dialysis. In the RITUXVAS study, the RTX arm received two doses of
intravenous CYC and was able to use plasmapheresis. Both studies demonstrated that
RTX therapy was non-inferior to CYC therapy for induction of remission, with comparable
mortality rates and adverse events. In addition, an analysis of secondary data from the
RAVE trial concluded that RTX was superior to CYC in patients with non-severe relapses,
who were more likely to be PR3-ANCA positive than MPO-ANCA positive, to have a
diagnosis of GPA than MPA, and to have a history of the relapsing disease at baseline [148].
Based on this evidence, current guidelines recommend RTX as the first-line treatment for
patients with PR3-ANCA, relapsed disease, refractory disease, and those with contraindi-
cations to CYC [88,149]. It should be emphasized, however, that specific measures, such
as preventing the reactivation of the hepatitis B virus in patients with occult hepatitis B,
controlling antibody production, and preventing the reactivation of latent tuberculosis,
are necessary in the case of RTX therapy [150]. In this regard, low levels of IgG class
immunoglobulin are observed after RTX therapy in an average of 50–60% of patients [151].
However, in most cases, hypogammaglobulinemia is mild and transient, and IgG levels
return to normal within six months of RTX treatment. Only in a small percentage of patients
can hypogammaglobulinemia be severe. In that case, intravenous administration of human
IgG-class immunoglobulin is required to prevent infectious diseases [152]. Finally, a rare
side effect of RTX observed in patients with AAV is sudden and severe neutropenia that
occurs within 2–6 months after the last dose of RTX. this event may require the administra-
tion of granulocyte growth factors [153]. However, it is necessary to establish the long-term
efficacy of RTX as a maintenance therapy. In addition, it should be considered that RTX
treatment does not impair the survival of long-lived plasma cells, resulting in the continued
production of ANCA, albeit in smaller amounts than in untreated patients [87]. Given the
significant toxicity associated with the use of CYC and the relapsing nature of AAV, the
use of RTX has nonetheless been approved for the treatment of MPA and GPA as both
induction and maintenance therapy [154]. To find safer treatments in AAV therapy and
possibly reduce the use of B-cell depleting agents, a study was conducted on the efficacy
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and safety of plasma exchange in combination with glucocorticoids in patients with severe
AAV (PEXIVAS study). However, this treatment approach was not found to reduce the
incidence of mortality or end-stage renal disease in treated patients. Therefore, the main
conclusion of this study was that the addition of plasma exchange to standard therapy
of severe AAV is not indicated [155]. It should be emphasized that the non-approval of
RTX for patients with EGPA was because in the studies that led to the drug’s approval
such patients were not included [87,147,156]. However, given the role of B cells in the
pathogenesis of EGPA, further case series and cohort studies were conducted. The reported
results suggest that RTX may also have a role in severe, refractory, or relapsed EGPA,
especially if ANCA-positive [157–160]. The results of two recent systematic reviews have
also confirmed the validity of the results obtained from observational studies [161,162].
Response rates similar to those of patients with MPA or GPA were found in patients with
EGPA treated with RTX in the European Collaborative Study, a retrospective review of the
use of biologics in refractory and/or relapsed EGPA [163]. It is noteworthy that, in most pa-
tients with EGPA, RTX has no significant effect on steroid-sparing if asthma is present. Also
noteworthy are the results from the REOVAS trial, a randomized, double-blind, controlled
trial of RTX in EGPA whose conflicting results still published only as congress abstracts
raise doubts about the real efficacy of RTX even in ANCA-positive patients [164]. However,
the 2021 ACR/VF guidelines recommend considering RTX for the induction of severe
new-onset or relapsing EGPA, particularly in ANCA-positive patients with active glomeru-
lonephritis or at high risk for CYC toxicity if in the absence of cardiac involvement [139].
Conventional immunosuppressants are recommended in the maintenance phase. However,
further studies are needed to clarify the role of RTX in EGPA as well as in maintaining
disease remission.

7.3. C5aR Antagonist Avacopan

Avacopan is an antagonist of C5aR. C5aR is a receptor for C5a that belongs to the
G-protein-coupled receptor family. This receptor is expressed on myeloid cells such as
granulocytes, macrophages, dendritic cells, mast cells, and various nonmyeloid tissue
cells. Activation of this receptor causes inflammation and degranulation of granulocytes,
macrophages, and mast cells and vascular permeability as well [165]. The mechanism of
action of avacopan is blocking the C11b-induced upregulation of C5a on neutrophils by
inhibiting their activation and chemotaxis [95]. In a phase I study, avacopan administered
to healthy people produced C5aR inhibition in most subjects at a dose of 30 mg orally twice
daily [166]. The phase II, double-blind, placebo-controlled CLEAR trial recruited patients
with AAV who were randomized into placebo group with high-dose prednisone, avacopan
30 mg twice daily with low-dose prednisone, or avacopan 30 mg twice daily without
prednisone. All patients received standard therapy for induction of remission. The endpoint
was a reduction of BVAS ≥ 50% at 12 weeks. This was achieved by 70%, 86%, and 81% of
patients in the three groups, respectively [167]. The CLASSIC study, a phase II, randomized,
double-blind, placebo-controlled trial, demonstrated the safety and efficacy of avacopan 10
or 30 mg twice daily when added to standard therapy [168]. The ADVOCATE, multicenter,
phase III, randomized, double-blind, placebo-controlled trial included patients with AAV
randomized to receive avacopan 30 mg twice daily or oral prednisone. These patients also
received standard therapy for induction of remission. Maintenance of remission at week
26 indicated that avacopan was non-inferior to prednisone, while sustained remission at
week 52 demonstrated the superiority of the avacopan group [169]. Avacopan has thus
been approved by the Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) for AAV in combination with standard therapy. Eculizumab, a mAb
targeting complement protein C5, although not approved for the treatment of AAV, has
been effective in refractory cases with an aggressive form of AAV [170–172]. Other agents
capable of blocking complement are currently being studied. One phase II study evaluated
the safety and tolerability of IFX-1, a mAb that binds C5a, in patients with GPA and MPA.
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The plasma C1 protease inhibitor (C1INH), currently used for the treatment of hereditary
angioedema, has also been tested in patients with AAV [173].

7.4. The Blockage of Eosinophils in EGPA

Interleukin-5 (IL-5) is a very important cytokine in the growth, maturation, and
differentiation of eosinophils [174]. Mepolizumab is a humanized monoclonal mAb specific
for the alpha subunit of IL-5. This antibody blocks the binding of the IL-5 receptor (IL-5R).
This mAb widely used in the treatment of asthma was the first drug approved by the FDA
for the exclusive treatment of EGPA and no other forms of AAV [175]. The pivotal study
that led to the approval of mepolizumab for the treatment of EPGA is the MIRRA study.
This double-blind, placebo-controlled study recruited patients with relapsed or refractory
EGPA. These were randomized to receive mepolizumab 300 mg subcutaneously every four
weeks or placebo in combination with glucocorticoids with or without immunosuppressive
therapy. Treated patients achieved the primary endpoint of at least 24 weeks of remission,
which was a BVAS of 0. In addition, a 50% lower recurrence rate was observed in the
mepolizumab-treated group compared with the placebo group, and a significant reduction
in steroid use. However, the MIRRA study included only patients with mild disease.
In addition, patients with the presence of ANCA in serum were a minority. This limits
the generalizability of the results to ANCA-positive patients. Although a substantial
percentage of patients in the treatment group did not achieve remission at 52 weeks, a
secondary analysis of the data still showed an absence of flares and confirmed the reduction
in glucocorticoid use [175,176]. Several subsequent retrospective studies have confirmed
the efficacy of mepolizumab [163,177,178] even at the lower dose of 100 mg per month,
such as that used for asthma [163,178]. Two other anti-IL-5 agents currently approved for
asthma are being studied in EGPA. Reslizumab, a mAb specific for the IL-5 alpha chain,
showed promising results in reducing glucocorticoid use in an open-label pilot study of a
small number of patients with EGPA [179]. Benralizumab, a mAb directed against IL-5R,
also showed efficacy in treating EGPA in another pilot study. Half of the treated patients
stopped taking glucocorticoids at the end of the study [180]. The MANDARA study, which
aims to compare benralizumab with mepolizumab in relapsed or refractory EGPA, is still
ongoing. Interestingly, this will be the first study to compare head-to-head two biologics
for the treatment of EGPA Table 1 shows the main clinical trials conducted on novel AAV
therapies. Table 2 shows the drugs approved for the treatment of different phenotypes of
AAV and the specific conditions for their use. Figure 3 illustrates the treatment algorithm
for the induction of AAV remission and its maintenance.

Table 1. Trials on currently approved new drugs for AAV.

Target Drug Trial Primary Endpoint Results

B cells RTX RAVE
Non inferiority to oral CYC for remission

induction, superior for relapsing or
PR3-ANCA patients

B cells RTX RITUXVAS Non inferiority to CYC in pulses for
remission induction

B cells RTX MAINRISTAN Superiority to AZA for maintenance of remission

B cells RTX MAINRITSAN 2 No difference between standard and customized
infusion based on B-cell count for relapse rate

B cells RTX REOVAS Non inferiority to conventional therapy for
remission (CYC/CS) in EGPA

C5aR AVACOPAN CLASSIC Safe and effective at day 85

C5aR AVACOPAN ADVOCATE Non inferiority to CS for remission induction

C5aR AVACOPAN CLEAR Non inferiority to CS for remission induction

IL-5 MEPO MIRRA Non inferiority to placebo for relapsing or
refractory EPGA

RTX = Rituximab; MEPO = Mepolizumab; CYC = Cyclophosphamide; AZA = Azathioprine; CS = Corticosteroids.
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Table 2. FDA approved indications for new AAV drugs.

Drug AAV Specifications

Rituximab GPA and MPA
In adult and pediatric patients 2 years of age

and older in combination
with glucocorticoids.

Avacopan GPA and MPA
As an adjunctive treatment of adult patients

with severe active GPA and MPA in
combination with standard therapy.

Mepolizumab EGPA Adult patients with EGPA.
GPA = granulomatosis with polyangiitis; MPA = microscopic polyangiitis; EPGA = eosinophilic granulomatosis
with polyangiitis.
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corticosteroids (CS) and azathioprine (AZA), new drugs that are able to selectively inhibit immuno-
logic targets such as rituximab (RTX), avacopan, and mepolizumab (MEPO) have been approved
by regulatory agencies. PLEX = plasmapheresis. Therapeutic strategies are periodically updated
according to new knowledge by EULAR and ACR.

8. Conclusions

Several forms of AAV make such vasculitis a very complex disease. Despite its rarity,
it can have lethal effects on the lung and kidneys. Fortunately, several aspects of the
immunopathogenesis of AAV have been clarified in recent years. This has led not only to
greater knowledge and earlier identification of the disease, but also to the possibility of
developing sufficiently effective and safe targeted therapies that can replace traditional
immunosuppressants characterized by high toxicity. The main target of therapy remains the
inhibition of ANCA production as these autoantibodies play a pathogenic role. RTX was
effective in both remission and maintenance of the disease, with far fewer side effects than
CYC. However, the discovery of the key role played by alternative complement pathways
in MPA and GPA has made C5aR agonist available in the treatment of these types of AAV.
Moreover, the anti-IL-5 antibody mepolizumab, already approved for asthma, has been
the first drug specifically approved for the treatment of EGPA due to its inhibitory effect
on various functions of eosinophils. Future studies will further elucidate the pathogenetic
basis of AAV, allowing the design of innovative drugs for an increasingly efficacious and
safe therapy.
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