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Abstract

This paper presents a novel numerical approach for solving Volterra-

renewal integral equations, which arise in various fields, including biol-

ogy, engineering, and economics. Traditional treatment of the Volterra-

renewal integral equations systems of this type utilises computationally

large iterative algorithms. In order to tackle these limitations, we pro-

pose a hybrid method that is numerical in nature whereby an analytic

and discretisation techniques are used to obtain accurate and efficient

solutions. Several test problems have been solved and the peculiarities

of this method demonstrated, its possibility to solve a wide class of

renewal-type problems is also presented. We have addressed a number

of obstacles, such as managing nonlinearities and memory effects over

extended periods of time, by using the Picard approach to provide a
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more accurate numerical approximation. We illustrate the benefits of

the proposed methods over closed-form solutions using numerical exam-

ples.
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1 Introduction

Volterra integral equations have proved crucial for simulating dynamic systems,

especially when the system’s whole past affects its current state. One impor-

tant family of these is Volterra-renewal integral equations (VRIEs), which

have the ability to model renewal-type processes, where the system ”resets”

or renews at intervals. The equations in question, which have originated in

Volterra’s publications, differ from ordinary differential equations in that they

account for memory implications and integrate prior conditions across a vari-

able time period [6]. VRIEs are especially applicable in circumstances when

past occurrences have an equal impact on current and future conduct. This fea-

ture has made VRIEs an important mathematical tool in the fields of popula-

tion evolving and engineering reliability [9]. The mathematical bases of VRIEs

are found in a renewal theory, a particular field of probability theory that fo-

cusses on processes that ”renew” following certain events. Combining this

with Volterra’s integral technique provides equations that precisely describe

systems with deterministic or random resets over time. In population biology,

for instance, VRIEs are used for modelling age-structured populations where

births are renewal events that affect population growth and decline in accor-

dance with historical survival rates [5]. VRIEs have been used in engineering

to predict component failures and improve maintenance plans in systems that

undergo wear and tear because of the probability of failure connected to the

whole operating history [8]. The ability of VRIEs to handle both discrete and

continuous effects offer substantial advantages for accurately capturing com-

plex, time-dependent events. The mathematical complexity associated with

VRIEs presents significant challenges in finding analytical and numerical so-

lutions, considering their wide range of applications, particularly in nonlinear

or time-dependent scenarios. Classical methods like as Laplace transforms, re-
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solvent kernels, and iterative algorithms provide a foundation for fundamental

VRIEs, but they are frequently unsuccessful or require modification for more

complicated, nonlinear forms. Advances in numerical approaches have helped

to address these issues to some extent by allowing more efficient approximation

calculations. Nonetheless, it is crucial to enhance computational approaches

in order to make VRIEs more approachable and applicable to a greater variety

of scientific and technical problems. The paper is organized as follows: we

present our algorithm in Section 2, Section 3 is devoted to some numerical

example numerical experiments while Section 4 concludes the contribution.

2 Main result

In this paper we consider a Volterra integral equation of the following form

u(x, t) = f(x, t) +

∫ t

0

k(t− η)u(g(x, t, η), η) dη (1)

where k(t), f(x, t), g(x, t, η), are known continuous functions. In addition k

and f are continuous non-negative functions in all their arguments, x ∈ I =

[a, b] (a closed real interval)and t > 0. More precisely, equation (1) is a Volterra

type integral equation respect to the variable t. As discussed in Annunziato

et al. [2] this integral equation models the distribution probability function

of a class of piecewise deterministic processes resulting from a semi-Markov

process (see Feller [4]), the kernel synthesizes the memory of the process and

g : [a, b]× [a, b]× [0,∞] is the flux.

Following Alturk [1], we report the weighted mean value theorem for inte-

grals whose proof may be found, for example, in Apostol [3]. Let us consider

a closed real interval I = [a, b].

Theorem 2.1 Le be h1 and h2 functions that are continuous in I. If h2

never changes sign in I, then exists a number ξ ∈ I such that∫ b

a

h1(t)h2(t) dt = h1(ξ)

∫ b

a

h2(t) dt.

Let us consider equation (1) and assume the integrand appearing in equa-

tion (1) satisfies the hypotheses of Theorem 2.1. For any positive integer n,

let us consider a partition of the interval I into n equally-spaced sub-interval

of length ∆ = b−a
n

, i. e. x0 = a < x1 < x2 < x3 < · · · < xn < xn+1 = b.
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In addition let t varies in the interval IT = [0, T ] and let us consider a parti-

tion of such interval in m equally-spaced sub-interval o length ∆T = T
m

, i. e.

t0 = 0 < t1 < t2 < t3 < · · · < tn < tm+1 = T . For each xi, i = 0, 1, 2, 3, . . . , n,

applying Theorem 2.1 to discretized version of equation (1), we obtain, for all

xi

u(xi, tj) = f(xi, tj) + c(xi, tj)

∫ tj

0

k(tj − η) dη (2)

where we assume u(g(xi, tj, ξ), ξ) = c(xi, tj) is a constant. Then, replacing

equation (2) in both the left and the right hand side of equation (1), we obtain

c(xi, tj)

∫ ti

0

k(ti−η) dη =

∫ ti

0

k(ti−η)(f(g(xi, ti, η), η)+c(xi, tj)

∫ η

0

k(ζ−η) dζ) dη

(3)

For each xi, for i = 1, 2, . . . , n + 1, and considering t0 = 0 it results that

u(xi, 0) = f(xi, 0) because, when ti = 0 the integral appearing in the right

side of equation (1) disappears. Instead, for each xi, when i = 1, 2, . . . , n+ 1,

quantities c(xi, tj) are calculated solving n triangular non-linear system in m

equations and m unknown that are built considering equation (3). Then, in

order to obtain an accurate numerical approximation, following Martire and

Oliva [7] we apply the Picard method using as starting quantities c(xi, tj).

3 Numerical results

In this section we show the effectiveness of our algorithm considering two

different example also considered in Annunziato et al. [2]. All experiments

are numerically solved using the Matlab software. In all experiment we choose

n = m = 40. In both cases the Picard method is iterated 30 times.

As a first example we consider, with T = 1,

u(x, t) = f(x, t) +

∫ t

0

e−(t−η)u(g(x, t, η), η) dη (4)

where

f(x, t) = e−2t((x− 1)(2x3 + et(−1− x− tx2 + (t− 2)x3)) + x4sinh(t))

and the flux

g(x, t, η) = x− x2(1− e−(x−(t−η)))

with (x, t, η) ∈ ([0, 1]× [0, 1]× [0, 1]).
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Figure 1: Numerical approximation of integral equation (4).

In figure 1 the approximated solution of integral equation (4) is depicted.

As a second example we consider, with T = 5,

u(x, t) = f(x, t) +

∫ t

0

e−(t−η)u(g(x, t, η), η) dη (5)

where

f(x, t) = sin(xπ/2)e−(x−t)2

and the flux

g(x, t, η) = 1− e−(x−(t−η)2

with (x, t, η) ∈ ([0, 1]× [0, 5]× [0, 5]) and

f(x, t) = sin(xπ/2)e−(x−t)2 (6)
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Figure 2: Numerical approximation of integral equation (5).

In figure 2 the approximated solution of integral equation (5) is depicted.

The advantage of the proposed method is computational in that the proposed

algorithm is very simple to implement and furthermore, for a high number

of iterations of the Picardo method a parallel calculation technique can be

implemented in a very simple way.

4 Conclusions

In this study, we developed and implemented a combined simplified numer-

ical technique to solve Volterra-renewal Integral Equations with the goal of

increasing the accuracy and efficiency of solutions for these difficult equations.

Next, we use the Picard technique in accordance with Martire and Oliva [6]

to get a more precise numerical estimate, we have been able to overcome

several challenges associated with VRIEs, including handling nonlinearities,
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time-dependent coefficients, and memory effects over long periods of time.

Our approach offers a workable solution to the computational limitations of

traditional methods, which often struggle with accuracy or consistency when

renewal terms are involved. In the section on numerical findings, we pro-

vide numerical examples that demonstrate the advantages of the suggested

approaches over closed-form solutions.
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