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Abstract— Nowadays, along with the trend of developing
highly autonomous satellites, there is a strong motivation
to improve real-time Precise Orbit Determination (POD), in
particular for Low Earth Orbit (LEO) satellites. The devel-
opment of Global Navigation Satellite System (GNSS) sensors
allows to obtain low-noise measurements and provide a satellite
with autonomous continuous tracking onboard. Following the
deactivation of Selective Availability, a representative real-
time positioning accuracy of 10 m is presently achieved by
means of Global Positioning System (GPS) receivers on LEO
satellites. The introduction of dynamical filtering methods has
opened a new way to improve this accuracy by making use
of measurements such as pseudorange or carrier-phase. This
paper presents a Kalman filtering approach using pseudorange
and pseudorange-rate measurements instead of pseudorange
and carrier-phase ones, with advantages in terms of storage
and processing requirements. An error of around 0.2 m and
1e-3 m/s for position and velocity is obtained, which is in line
if not better w.r.t. other approaches.

Index Terms— Precise Orbit Determination, LEO satellites,
Extended Kalman Filter, GNSS Measurements

I. INTRODUCTION

The POD problem is one of the most important aspects
characterizing satellite mission operations. It consists in the
accurate prediction of the satellite ephemeris by estimating
the satellite position and velocity based on a sequence of
GNSS observations.

GPS receivers are widely used on LEO satellites due to
the global coverage offered by the GPS constellation which
allows a wide number of observations to be processed at the
same time, differently from the Medium Earth Orbit (MEO)
and Geosynchronous Earth Orbit (GEO) orbits, in which a
reduced number of usable satellites, high values of Geometric
Diluition Of Precision (GDOP) and significant GNSS outage
periods do not allow a precise estimation of the satellite
position and velocity.

A 10 m and 0.1 m/s navigation accuracy for position
and velocity, respectively, is generally considered adequate
for Attitude and Orbit Control Systems (AOCS). Following
the deactivation of Selective Availability, this accuracy can
readily be provided by the kinematic navigation solution us-
ing a single-frequency GPS receiver. However, much higher
accuracy is required in many onboard navigation tasks, such
as SAR interferometry or atmospheric sounding. These cases
call for a sub-decimeter position accuracy and a sub-mm/s
velocity knowledge. In the past, this accuracy could be
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obtained in a ground-based reduced dynamic orbit deter-
mination using dual-frequency carrier phase measurements
along with precise GPS ephemeris products and auxiliary
environmental information. To improve the accuracy of the
onboard navigation solutions, Kalman filtering techniques
have been broadly used, finding applications in both attitude
[1], [2] and orbit propagation control schemes [3], [4]. In [5]
the author compares the use of the Unscented Kalman Filter
(UKF) approach with the Extended Kalman Filter (EKF)
one with different types of measurements: GPS navigation
solutions (position and velocity of the satellite obtained by
least squares of the GNSS measurements) and pseudorange
measurements. It is shown that the latter method improves
the accuracy: in particular, a maximum accuracy of about
12 m for the position and 0.0159 m/s for the velocity at
convergence is obtained. [6] proposes a novel approach using
the Schmidt Consider Kalman Filter (CKF). This approach
is able to obtain a high level of accuracy also in the presence
of uncertainties in the model parameters by partitioning the
filter state into actual estimation variables and uncertain
parameters variables. The latter ones are mantained constant
during the propagation and are not corrected by the measure-
ments.

In this paper, an EKF estimation algorithm has been
considered. The measurements which have been considered
are the pseudorange and the pseudorange-rate. On the one
hand, it will be shown that the use of multiple GNSS
measurements increases the accuracy by a huge margin w.r.t.
using only one of them as in [5], which uses the pseudorange
measurement only. On the other hand, [7] and [8] use the
carrier-phase instead of the pseudorange-rate since it allows
to mitigate some of the measurement errors. However, the use
of carrier-phase measures introduces new state variables to
be estimated in the form of ambiguity biases, whose number
varies at every observation instant since it corresponds to
the number of tracked satellites. The dynamic augmentation
of the filter state increases the storage and computational
load of the satellite hardware, which might be significant
in small LEO satellites. The use of the pseudorange-rate
instead (which is the Doppler signal expressed in m/s),
allows to obtain an accuracy below the 1 m threshold for
the position and below the 0.001 m/s threshold for the
velocity, without increasing the filter state dimension as in
the previous approaches, therefore reducing the storage and
computational load for the onboard processor. This is also
an improvement w.r.t. [4], where an accuracy of 10 meters
(1 σ) for the position and of 0.01 m/s (1 σ) threshold for
the velocity have been obtained by using, as measurements,



the pseudorange and the Doppler.
We note that, since the focus of this paper is to validate

the use of the GNSS measurements, no uncertainties in
the model have been considered for the sake of simplicity.
Nevertheless, in presence of uncertain parameters a robust
filter might be used, as for example the CKF (which reduces
to an EKF if no model uncertainties are considered).

The paper is organized as follows: the first section de-
scribes the mathematical model of the satellite, also used for
the simulations; the second section describes the Extended
Kalman Filter theory and the algorithm filter implementation;
the third section describes the Matlab simulation environment
and defines the GNSS measurement equations; the fourth
section presents the simulation results; the last section draws
the conclusions.

II. MATHEMATICAL MODEL OF THE SATELLITE MOTION

The equation of motion of a LEO satellite can be written in
the form of a second-order differential equation in an Earth
Centered Inertial (ECI) reference frame:

r̈ = r̈GRAV + r̈DRAG + r̈SRP , (1)

where r̈ is the satellite acceleration vector, computed as
the sum of the vectors of the accelerations due to the
gravity, r̈GRAV , the atmospheric drag, r̈DRAG, and the Solar
Radiation Pressure (SRP), r̈SRP .

In turn, r̈GRAV is the sum of three contributions:

r̈GRAV = r̈E + r̈S + r̈M , (2)

where r̈S and r̈M are third body perturbations due to the
Sun and the Moon, respectively, and r̈E = −(GM/r3)r +
gE is the gravity acceleration of the Earth, where the first
term accounts for the effect of the Earth’s central body, with
r being the satellite position vector and GM = 3.986e14
m3/s2 being the product between the universal gravitational
constant and the Earth’s mass, whereas gE is the contribution
due to the flattening and non-homogeneous mass distribution.

For the gravity modeling, the Earth Gravitational Model
(EGM) 2008 [9] has been used, that uses spherical harmonics
and associated Legendre functions to characterize the gravity
potential. In the considered model, the order n and degree
m of the harmonics have been set both to 120: this value
has been selected because, for LEO, is high enough to have
precise estimation of the gravity acceleration. We note that
the accuracy on gravity acceleration obtained with degree
and order 120 is significantly higher than the absolute value
and accuracy of other perturbation models (especially the
drag model because of the uncertainties on the atmosphere
density). The general expression for the Third Body contri-
butions, i.e., r̈S and r̈M , is given by

r̈TB = GMTB

( d − r
∥d − r∥3

− d
∥d∥3

)
, (3)

where GMTB is the product between the universal gravi-
tational constant and the mass of the third body MTB ∈
{Ms,Mm}, r and d are the position vectors of the satellite

and the third body (Sun and Moon) respectively, expressed
in the Earth-centered inertial (ECI) coordinate frames.

The atmospheric drag acceleration is modeled as

r̈DRAG = −1

2
ρCd

A

m
∥Vr∥2V̂r, (4)

where Cd is the drag coefficient, ρ is the atmospheric density,
A is the satellite equivalent drag surface, m is the satellite
mass, ∥Vr∥ and V̂r are the norm and unit vector of the
satellite velocity relative to Earth atmosphere Vr, expressed
in the ECI reference frame (under the assumption that the
atmosphere rotates with the Earth). The computation of the
drag acceleration requires the knowledge of atmospheric
density profiles, which are subjected to short-term and long-
term variations. Since complicated models for atmospheric
density cannot be used on-board, due to the limited com-
putational load, the Modified Harris-Priester model [10] has
been chosen as an alternative.

For the solar radiation pressure contribution, the following
model has been considered [10]:

r̈SRP = −PRefCsp
A

m

r̂SUN

∥rSUN∥2
d2Ref , (5)

where PRef is the reference solar radiation pressure at one
Astronomical Unit (dRef ) from the Sun, Csp is the solar
radiation coefficient, A is the satellite surface, m is the
satellite mass, ∥rSUN∥ and r̂SUN are the module and the
unit vector of the satellite-to-Sun vector rSUN .

III. ON-BOARD NAVIGATION ALGORITHM

A. Extended Kalman Filter Implementation

Fig. 1. Extended Kalman Filter Implementation Flow Chart

Necessarily, due to the large non-linearities in the GNSS
observation equations and in the dynamical model of the
satellite motion, a non-linear filter has to be applied. The
EKF is a dynamical filter which is sub-optimal, since it relies



on the linearization applied to the non-linear discrete filter
dynamics

xk = f(xk−1,uk) + wk, (6)
yk = h(xk) + vk, (7)

where f and h are the differentiable state transition and
observation functions, respectively, wk and vk are process
and measurement noises which are assumed to be zero-mean
and gaussian with covariances Qk and Rk respectively, and
xk, yk and uk are the state, output and control vectors of the
filter.

The EKF algorithm consists of two main steps: prediction
and correction.

1) Prediction Step: The prediction step relies on the
propagation process equations:

x̂f (k + 1) = f(x̂f (k),u(k)), (8)

P (k + 1) = ΦP (k)ΦT +Q, (9)

where x̂f is the estimated filter state, P is the state-error
covariance matrix, Φ is the state transition matrix and Q
is the state noise covariance matrix. In practice, both P
and Q are usually considered as diagonal or block diagonal
matrices.

2) Correction Step: The correction step is performed
when a set of measures with an associated Time Tag (time
at which the measurements have been taken) are sent to the
filter by the receiver and consists of the following equations:

z = y − h(x̂k) (10)

K = PHT (R+HPHT )−1 (11)

x̂+k = x̂−k +Kz (12)

P+ = (I −KH)P− (13)

where z is the measurement residual, y is the actual measure-

ment vector, H =
∂h(x̂k)
∂x̂k−1

is the measurement jacobian w.r.t.

the state, R is the measurement error covariance matrix, K is
the Kalman gain, x̂−k and x̂+

k are the states before and after
the correction, respectively. The algorithm implementation
logic is shown in Figure 1.

B. Filter State and State Propagation

In the orbit navigation scenario, there are a lot of pa-
rameters which need to be taken into account for a good
estimation of the satellite position and velocity. Since GNSS
measurement equations are considered in the navigation
algorithm, the time synchronization biases have to be consid-
ered. A standard solution consists in including both the GPS
clock bias ∆tR and clock drift ∆ṫR in the estimation state
[7], [11], [4] . The estimation of these two parameters allows
a more precise replica of the pseudorange and pseudorange-
rate measurements for the filter algorithm. By adding the
drag and solar coefficients ∆Cd and ∆Csp, respectively, the
filter state consists of 10 scalar variables:

x = [r, ṙ, Cd, Csp,∆tR,∆ṫR]
T . (14)

The state of the filter is propagated by numerically inte-
grating the following differential equations:

dr
dt

= ṙ (15)

dṙ
dt

= r̈E + r̈S + r̈M + r̈DRAG + r̈SRP (16)

dCd

dt
= 0 (17)

dCsp

dt
= 0 (18)

d∆tR
dt

= ∆ṫR (19)

d∆ṫR
dt

= ḋ (20)

where ḋ is the clock frequency aging, which is a commend-
able parameter and varies from receiver to receiver.

C. Measurement Equations

The filter measurement equations account for GNSS ob-
served variables which are collected by the GPS receiver,
namely, the pseudorange ρi and the pseudorange rate ρ̇i.
From this paragraph, to differentiate the GNSS quantities
from the user ones, the former will be identified by a sub-
script SV (Space-Vehicle). By denoting with N the number
of tracked satellites, the observation vector h(x̂k) has the
following form

h(x̂k) = [ρ̂1(x̂k) . . . ρ̂N (x̂k) ˆ̇ρ1(x̂k) . . . ˆ̇ρN (x̂k)]T , (21)

where the non-linear observation equations have the follow-
ing form:

ρ̂i(x̂k) =∥rSV − r̂∥+ c∆̂tR (22)
ˆ̇ρi(x̂k) = ê(ṙSV − ˆ̇r) + c∆̂ṫR (23)

where rSV and r̂ are the position vectors of the GNSS
satellite and the satellite respectively, ṙSV and ˆ̇r are the
velocity vectors of the GNSS satellite and the satellite,
respectively, ê is the estimated unit line-of-sight vector from
the user satellite to the GNSS satellite, ∆̂tR and ∆̂ṫR are the
estimated satellite clock bias and clock drift respectively, c
is the speed of light.

IV. SIMULATION ENVIRONMENT

The performance assessment of the filter is performed in
a simulated environment. A Matlab environment is used to
simulate orbital propagation, visibility analysis and GNSS
measurement equations computation. For the GPS simula-
tion, 30 GPS satellites have been considered. The orbital
propagation of the satellite is performed starting from the
associated Two-Line Elements (TLE) file data. A keplerian
propagation has been performed to align the TLE with the
simulation initial epoch chosen by the user: in particular
only the mean motion and the RAAN have been propagated
considering only the J2 effect [12].

A visibility analysis algorithm is implemented: it returns,
at every time instant, the GNSS satellites visible from the
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Fig. 2. Antenna Directivity for GPS Block IIA and Block IIR

user satellite, i.e. the ones sending the information needed for
the estimation algorithm. In order for a signal to be sent from
the GPS satellite and received from the user, two conditions
must be satisfied:

1) The GNSS-to-user satellite position vector must be
inside both the transmitter and receiver field of view
of the antennas, i.e., in their visibility cones;

2) The Carrier to Noise ratio (C/N0) must be over a
certain threshold

In particular, the C/N0 is computed in dBHz using the
following equation

C/N0 = PTX +GTX − LTX +GRX − LRX (24)
− LFSL −N0,

where: PTX is the transmission power of the GPS satellites
expressed in dBW; GTX and GRX are the satellite and
receiver antenna gains, respectively, measured in dBi (gain
w.r.t. an isotropic antenna); LTX and LRX are the trans-
mission and reception losses, respectively, measured in dB;
N0 is the Thermal Noise Density, expressed in Kelvin and
computed as N0 = KB+Tsys, where KB is the Boltzmann’s
constant and Tsys is the system noise temperature; LFSL

accounts for the Free-Space Losses, and is computed in dB
as

LFSL = 20 log10(4πd/λ), (25)

with d being the distance from GPS satellite to the user
satellite and λ being the wavelength of the GPS L1-band
(1.58 GHz).

In Figure 2 the GPS antenna gain patterns are shown, i.e.
the value of the antenna gain at different elevation values.
Since the pattern are symmetric only half of the patterns have
been showed. GPS has two patterns: one is called Legacy and
is related to a particular block of satellites (IIA) while the
other one is called Improved and is related to another block
of satellites (IIR) [13]. In the implementation it has been
assumed that the maximum gain is at 90 degrees.

For the GNSS measurement computation, the standard
formulation [14], [15] has been used for pseudorange and
pseudorange rate

ρ =∥rSV (tTX)− r(tRx)∥+ c∆tR + c∆tSV +∆I (26)
+∆MP + ϵρ,

ρ̇ = e · (ṙSV (tTx)− ṙ(tRx)) + c∆ṫR + ϵρ̇, (27)

where ∆tSV is the GPS clock bias, ∆I is the ionospheric
error, ∆MP is the Multipath error, tTX and tRx are the
transmission and reception epoch, respectively, c is the speed
of light. The contributions of these errors have been modeled
as gaussian random noises. The clock bias ∆tR and clock
drift ∆ṫR are modeled as a two-state stochastic dynamic
model [16], [17]. ϵρ and ϵρ̇ are the receiver measurement
errors which represent the errors of the recevier Lock Loops,
i.e., the Delay Lock Loop (DLL) for the code pseudorange
and Frequency Lock Loop (FLL) for the pseudorange rate.
They are modeled as white gaussian noises with standard
deviations computed in the following way [18]:

σDLL =

[
Bn

2C/N0

(
1

BfeTc
+

BfeTc

π − 1

(
D − 1

BfeTc

)2)
(28)(

1 +
2

T (C/N0)(2−D)

)]1
2

chips,

σFLL =
λ

2πT

√√√√4FBn

C/N0

[
1 +

1

TC/N0

]
m/s, (29)

where Bn is the closed loop bandwidth of the loops, C/N0

computed in Hz as C/N0 = 10 exp

(
(C/N0)dB

10

)
, Bfe

is the front-end bandwidth of the receiver, Tc is the chip
period, T is the integration time of the correlation process,
D is the correlator spacing, λ is the wavelength of the
receiver frequency, F is 1 for large C/N0 values and 2
for C/N0 values close to the threshold value. Note that the
DLL standard deviation is expressed in chips: to convert it
in meters, it has to be multiplied by the chip length which is
equal to 293.05 m/chip for C/A code and to 29.305 m/chip
for P(Y) code.

V. SIMULATION RESULTS

The achieved filter performances are presented in terms of
position and velocity estimation accuracy w.r.t. the simulated
trajectories. The initial conditions have been set starting
from the simulated satellite initial conditions, perturbed using
gaussian random errors with standard deviations in accor-
dance to the ones collected in Table I. The other states have
been initialized to zero. The frequency of GPS measurements
is 1 second. The filter propagation time-step ∆T has been
set to 0.125 seconds in order to reduce the delay between the
detection of the measurement signals and the filter correction
implementation.



TABLE I
TABLES OF FILTER PARAMETERS

State Initial
Covariance P0

Process Noise
Covariance Q0

Measurement Noise
Covariance R0

σr = 10m σr = [1 · 10−6 1 · 10−6 5 · 10−6]m σUERE = (5.2 + σDLL)m

σṙ = 0.5m/s σṙ = [1 · 10−7 1 · 10−7 5 · 10−7]m/s σUERRE = (0.33 + σFLL)m/s

σ∆Cd = 301/2 σ∆Cd = 0.005 · 10−3

σ∆Cs = 301/2 σ∆Cs = 0.005 · 10−3

σ∆tR = 100m Q∆tR,∆ṫR
=

[
1.2565 · 10−5

m 5 · 10−8

5 · 10−8 1.2565 · 10−7
m/s

]
σ∆ṫR

= 100m/s
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Fig. 3. Position Error with pseudorange measurements and 3-sigma bounds.
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Fig. 4. Position Error with both pseudorange and pseudorange-rate measurements and 3-sigma bounds
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Fig. 5. Velocity Error with only pseudorange measurements and 3-sigma bounds
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Fig. 6. Velocity Error with both pseudorange and pseudorange-rate measurements and 3-sigma bounds



The accuracy of the estimation is further analyzed by
introducing 3-σ bounds which have to be satisfied during the
whole simulation. The introduction of these bounds allows
to understand what is the estimation error with a confidence
value of 99.7.

The process noise covariance of the clock bias and clock
drift has been defined as a full matrix denoted by Q∆tR,∆ṫR

,
with cross-covariance different from zero according to [16],
[17], [19].

To validate the introduction of the pseudorange-rate mea-
surements, the algorithm is compared with the approach
used in [5], where only pseudorange measurements are used
for POD. The same filter parameters (the ones in Table I)
are used for both the algorithms. The simulation time is
1 hour. Figures 3 and 4 show the position errors with
the corresponding 3-σ bounds which are obtained by using
only pseudorange and both pseudorange and pseudorange-
rate, respectively. It can be seen how the convergence of
the algorithm is faster in the second case: there is a huge
improvement for the x axis, whose error oscillations are
minimal after 15000 iterations (about 31 minutes) while in
the first case after 1 hour the error still has some peaks. The
y component is quite similar while for the z component the
second algorithm has a better transient in particular in the
early stages of the filter.

Figures 5 and 6 show the velocity estimation errors in
the two cases. The difference in the convergence time is
improved by the proposed algorithm: the error oscillations
tend to stabilize after 5000 iterations (about 10 minutes)
when both measurements are used, while in the case of a
single measurement after 15000 iterations (about 31 min-
utes). In both cases the error stabilizes around a very small
value near zero. It is important to notice that in the first case
there are some intervals in which the error curve is out of
the covariance bounds, while in the second case the error
remains inside the 3σ bounds.

VI. CONCLUSIONS

This paper presented an Extended Kalman Filter algorithm
for Precise Orbit Determination. The algorithm uses pseudo-
range and pseudorange-rate as measurements to improve the
accuracy in position and velocity estimation error without
affecting the storage and computational complexity of the
filter, as occurs, for instance, in the solutions based on
pseudorange and carrier-phase measures. It has been shown
how the error dynamics satisfies the covariance bounds and
how the accuracy is below 1 meter for the position estimation
error and one order of magnitude below the acceptable level
(0.1 m/s) for the velocity estimation error. This is due to
the introduction of the pseudorange-rate measure along with
the pseudorange one, which guarantees a direct measure of
the velocity and has a direct impact on the H-matrix of the
filter: simulation runs show that, by adding the pseudorange
rate measure, the algorithm guarantees faster convergence in
particular for the velocity estimation which is 3 times faster.

The approach presented in this work is a simplification
of the real case scenario in the fact that some quantities in

the measurements equations (multipath, ionospheric delay,..)
have been modeled as gaussian noises. Moreover it is not
able to cope with the presence of uncertain parameters in
the model as well as the CKF. A possible future scenario
may consist into the implementation of actual models for
these errors analyzing if the pseudorange and pseudorange
rate-based EKF is able to maintain an acceptable level of
accuracy and under which conditions.
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