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H I G H L I G H T S  

• ANN, CNN, and LSTM models were tuned for a multigeneration system. 
• A composition of ANN and LSTM formed the best surrogate model. 
• Six-objective optimization was performed at four solar irradiation values. 
• All objectives were improved compared to the simulation-based optimization.  
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A B S T R A C T   

Multi-Objective Optimization (MOO) poses a computational challenge, particularly when applied to physics- 
based models. As a result, only up to three objectives are typically involved in simulation-based optimization. 
To go beyond this number, Surrogate Models (SMs) need to replace such high-fidelity models. In this exploratory 
study, the objectives are to perform comprehensive regression surrogate modeling and to conduct MOO for a 
Multi-Generation System (MGS). The most suitable SM was chosen among four neural-network models: Artificial 
Neural Network (ANN), Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), and an 
ensemble model developed through brute-force search using the three aforementioned models. The final model 
was found to be superior to others, achieving R2 values ranging from 0.9830 to 0.9999. Next, an optimization 
problem with six conflicting objectives was defined and performed at four distinct values of Direct Normal 
Irradiation (DNI), a time-dependent feature. This aimed to provide multi-criteria decision-making information 
based on atmospheric transparency. As a result, new understandings were gained: (I) exergy efficiency, pro-
duction cost, and freshwater production rate were found to be highly influenced by DNI, and (II) the critical 
range of operation was observed within the DNI interval of 100 to 400 W/m2. Furthermore, we compared the 
result of the six-objective optimization with that of the bi-objective optimization obtained in our simulation- 
based study and found that all objectives showed improvements ranging from 1.9% to 12.7%. Finally, based 
on the findings obtained in the present study, some practical recommendations were put forward for applying the 
proposed methodology to similar MGSs.   

1. Introduction 

Computer simulation of engineering processes is critical in the design 
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stage of such problems. Taking the energy systems field as an example, 
this step can shed light on the weaknesses and strengths of the system in 

question in terms of performance, economic, and environmental effi-
ciencies [1–5]. Simulations based on mathematical models, however, 
might require high computational resources depending on the degree of 
complexity associated with the problem. This issue can particularly 
manifest itself when multi-objective optimization (MOO), another key 
step in the design phase, has to be undertaken [6]. While new genera-
tions of computers have become fast and powerful, they are still inca-
pable of perfectly meeting the demands of growing CPU-intensive 
calculations. 

Alternatively, surrogate models (SMs) have been introduced to 
replace high-fidelity models with much less computationally expensive 
ones. Otherwise known as metamodeling or reduced-order modeling, 
surrogate modeling is a process that approximates underlying mathe-
matical calculations by mapping the relationship between input-output 
data extracted from the original simulation. It is also a simple tool for 
exploring the solution space. In addition to polynomial-based SMs that 
are effective for linear/first-order problems, there are other surrogate 
models that rely on supervised machine learning techniques. These 
machine learning-based SMs can handle more complex data and are 
flexible enough to capture non-linear relationships, making them suit-
able for a wider range of problems. In this category, the common 
methods are as follows: Kriging, Radial Basis Function (RBF), inverse 
distance weighting, least squares, Support Vector Regression (SVR), and 
Artificial Neural Networks (ANN) [7]. There are various computer 
packages available for surrogate modeling. The Python libraries Scikit- 
learn and TensorFlow have been developed for constructing SVR and 
ANN models, respectively, while the Surrogate Modeling Toolbox 
developed by [8] can be used to construct the remaining models. 

There are advantages and disadvantages to each of the above models. 
Regarding Kriging, its development is less time-consuming and the 

resulting surrogate model is highly flexible and suitable for problems 
with high dimensionality. However, on the downside, this model does 

not perform properly when the distance among sample points is small. 
Even though this issue can also be seen in RBF models, they are simple 
and fast for small datasets. The inverse distance weighting method re-
quires no training process, which makes it easy-to-use, but it is at the 
expense of having low efficiency. As for the least squares, they are fast, 
simple, and very accurate for linear problems, but not a good choice for 
nonlinear ones. On the other hand, both linear and nonlinear problems 
even with high dimensionality can be successfully modeled by SVR. This 
technique requires a time-consuming training process, making it a 
compromise between accuracy and high dimensionality. Concerning the 
final method, ANN is the most commonly utilized model in a wide va-
riety of research fields for its high accuracy and ability to treat problems 
with nonlinear structures. The significant shortcoming of this technique 
is, however, the need for a large-size dataset. Besides, while a high 
number of neurons is required to secure high accuracy, it must be 
executed with extra caution to prevent overfitting in solution [9–11]. 

A few essential steps for regression and time-series black-box (BB) 
modeling have been detected by Rätz et al. [12] through reviewing the 
relevant literature thoroughly. Here, we will exclusively focus on the 
steps that are pertinent to regression surrogate modeling. The following 
items provide a framework that the surrogate modeling process pre-
sented in this study is based upon:  

• Data Preprocessing: this concept can be divided into three major 
steps: (I) scaling and normalizing, (II) handling missing data, and 
(III) identifying and treating outliers. In order to mitigate the effects 
of bias in results, the former process should be applied to features. In 
other words, the impact of a single feature with a large value may 
outweigh the collective effect of multiple features with much smaller 
values. The incident of missing data usually occurs when the data is 

Nomenclature 

DNI Direct Normal Irradiation (W/m2) 
Effexe Exergy efficiency (%) 
ṁ Mass flowrate (kg/s) 
MAE Mean absolute error (− ) 
MSE Mean squared error (− ) 
n Number of observations (− ) 
Nhel Number of heliostats (− ) 
P Pressure (kPa) 
Q̇ Heat transfer rate (kW) 
R2 R-squared (− ) 
RMSE Root mean squared error (− ) 
RSS Residual sum of squares (− ) 
T Temperature (◦C) 
TSS Total sum of squares (− ) 
TUCP Total unit cost of products ($/GJ) 
Ẇnet Net electricity production (kW) 
x Data point 
x′ Z-score value (− ) 
y Actual values 
ŷ Predicted values 
ZTM Figure of merit 

Subscripts 
air Air 
c Cooling 
fw Freshwater 

geo Geothermal 
h Heating 
j Numerator 
ORC Organic Rankine Cycle 
Rank Rankine 

Greek 
ηexe Exergy efficiency (%) 
μ Mean value 
σ Standard deviation 

Abbreviation 
1D One dimensional 
ANN Artificial neural network 
BB Black box 
CNN Convolutional neural network 
EES Engineering equation solver 
FGP Forecasting Gaussian process 
LSTM Long-short term memory 
MGS Multi-generation system 
MOO Multi-objective optimization 
NSGA Non-dominated sorting genetic algorithm 
ORC Organic Rankine Cycle 
RBF Radial basis function 
RNN Recurrent neural network 
SM Surrogate model 
SVR Support vector regression  
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collected manually or by sensors. Since this does not occur in soft-
ware simulation, it cannot be considered a challenge in surrogate 
modeling. As for outliers, the presence of extreme values in a dataset 
can lead to a skewed distribution, possibly undermining the accuracy 
of the model. However, the definition of an outlier in a particular 
problem can significantly affect the number of data points, poten-
tially leading to an inaccurate model [13]. Thus, outliers must be 
treated properly.  

• Feature selection: some features are of redundant/irrelevant nature 
or have minimal effect on labels. Thus, eliminating these features not 
only produces no adverse impact on the final results but may also 
accelerate the modeling process and reduce runtime. In this regard, 
three common methods can be used: filter, embedded, and wrapper. 
Feature selection is rather implemented to less sophisticated BB 
models, such as random forest, decision tree, SVR, etc. However, for 
more sophisticated methods, such as neural networks, where feature 
weighing is already embedded, reducing the number of features 
would inevitably compromise the system’s overall performance 
[14]. 

• Hyperparameter optimization: this is a search for tailoring ma-
chine learning algorithms to the specific problem being addressed 
[15]. All BB models have hyperparameters and they can be set either 
manually (by trial and error), automatically (using grid search), 
randomly, or through more advanced methods (such as the Bayesian 
optimization algorithm). The objective is to tune hyperparameters to 
secure high-quality SM [16].  

• Model selection: depending on the inherent characteristics of a 
problem and its associated data, different BB models can be selected 
[17]. Choosing an appropriate SM for a given problem requires 
considering a few key questions including: does the dataset have a 
linear or nonlinear characteristic? Is the problem regression or time- 
series? How much control over hyperparameters is needed? What 
degree of accuracy is demanded? How computationally efficient 
does the model have to be? And so on.  

• Model evaluation: After training a model, model evaluation has to 
be conducted to figure out its fidelity. This can also help in priori-
tizing surrogate models in terms of performance. There are metrics 
available for measuring the accuracy of models that are suitable for 
regression problems, such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared 
(R2), and so forth [18]. 

As mentioned earlier, one strong motive for developing surrogate 
models is to make the multi-objective optimization process feasible. Due 
to the complexity and nonlinearity inherent in real-world problems, the 
mathematical models representing them may also exhibit intricacies, 
possibly causing increased computational costs for MOO. There are 
various challenges in the energy sector that MOO must be employed to 
address. To name a few examples: balancing the energy consumption of 
systems that utilize different renewable energy sources; determining 
optimal design points for systems with conflicting objectives, such as 
cost, efficiency, and environmental impact; and, optimally scheduling 
systems with various objectives and multiple operating processes 
[19,20]. In such cases, using white-box models would exacerbate the 
computational process. As a solution, SMs can come into play to sur-
mount this hurdle by offering computationally cheap approximations. 
Consequently, surrogate-based optimization has become increasingly 
popular among several engineering disciplines in recent years. This is 
owing to two facts: (I) locating global optimal solutions is feasible via 
SMs, and (II) coding machine learning/black-box algorithms has become 
quite manageable through open-source programming [21]. 

It can be anticipated that optimizing energy systems poses a 
computational dilemma, especially when several production rates 
should be taken into account as objectives along with other performance 
criteria. Hence, if the configuration of an energy system transitions from 

cogeneration to trigeneration or from trigeneration to multigeneration, 
one would expect a corresponding transformation in the level of diffi-
culty associated with the optimization process [22]. The present study 
seeks to investigate the surrogate modeling of a Multi-Generation Sys-
tem (MGS) according to the common framework discussed earlier, as 
well as to perform surrogate-based optimization. To delve deeply into 
the chosen topic, the following literature review exclusively focuses on 
studies related to energy conversion systems that yield more than one 
product. 

1.1. Literature review 

Since energy systems can be assessed from various perspectives (such 
as energy, exergy, emergy, economic, environmental, and production 
size), different objective functions would be available to choose from for 
carrying out a MOO process. The presence of numerous objectives 
inevitably compels researchers to employ reduced-order models to 
ensure optimization feasibility [23]. In recent years, countless studies 
have utilized SMs merely for the optimization of cogeneration/trigen-
eration/multigeneration energy systems. In these studies, a machine 
learning algorithm, mainly an ANN, is trained to construct a meta-model 
with the intention of performing MOO efficiently. A number of such 
investigations are presented in the following paragraph: 

Bahlawan et al. [24] employed life cycle energy and economic 
methods and developed an RBF-based surrogate model to optimize a 
MGS fueled by solar energy and natural gas. It was reported that the 
optimal results obtained from the MOO saved life cycle energy and costs 
by 17% and 18%, respectively. Also, they showed that making use of a 
surrogate model reduced the computation time by 78%. To optimize two 
cogeneration systems producing net electricity and cooling load, Zhou 
et al. [25] developed two SMs using Forecasting Gaussian Process (FGP) 
and SVR algorithms. In more detail, the SVR was developed to model the 
total cost rate, while the FGP was utilized for energy efficiency. The 
results demonstrated that through the MOO, a 65% increase in energy 
efficiency and a 16.32 $/h reduction in the total cost rate could be 
observed. Assareh et al. [26] evaluated an MGS from thermodynamic 
and economic standpoints and defined a two-objective optimization 
problem. They generated 700 random data points using EES to develop 
an ANN model. To analyze the surrogate model, the predictive accuracy 
and an error histogram were reported. The outcome of the MOO 
exhibited that the proposed system could attain 32.39% exergy effi-
ciency, a 34.32 $/GJ cost rate, and an 1140 kW net electricity produc-
tion rate. 

Note that these examples represent only a fraction of the extensive 
body of research available in the literature. However, these in-
vestigations mainly focused on thermodynamic, economic, and/or 
environmental modeling and hardly ever presented any details about 
the process of surrogate modeling, including model selection, pre- 
processing, data collection, hyperparameters tuning, feature impor-
tance, etc. The only step followed carefully in such studies was model 
evaluation, through which authors obtained the accuracy of their model. 

On the other hand, there are some studies on energy systems in 
which the process of surrogate modeling is elaborated in greater detail. 
It is worth mentioning that while our focus is on regression problems, 
some efforts have been concentrated on time-series problems [27–29]. 
Regarding regression surrogate modeling, a number of papers have dealt 
with evaluating single-product systems [30–32], but we aim to discuss 
only those studies on MGSs, the number of which is actually very 
limited: 

Jiang et al. [33] employed a Convolutional Neural Network (CNN) 
algorithm to model a district heating, cooling, and net electricity gen-
eration system fed by natural gas, solar energy, and an external electrical 
grid. This study primarily focused on effective data generation tech-
niques. It suggested a combination of Monte Carlo stratified sampling 
and the incorporation of various time-based scenarios into the simula-
tion software to capture all possible inputs and outputs. They also 
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carefully evaluated the performance of the SM with different sample 
sizes. Various strategies for MOO were introduced and the results were 
presented based on a scoring system that allowed a direct comparison 
between objectives (i.e., system efficiency, renewable energy penetra-
tion, and operation cost) to discover the best strategy. The results 
showed that the generated SM had a 94.34% overall accuracy. More-
over, the process of MOO using the SM took only 2.30 s compared to 
4942.94 s when the software simulation was employed instead. Tariq 
et al. [34] examined a multi-energy-source system aiming to store 
electricity and produce freshwater for a remote community located in 
Yucatan, Mexico. In more detail, different energy sources (such as wind, 
solar, and diesel fuel) along with three types of battery energy storage 
technologies were considered to create six scenarios of system config-
urations. They used the HOMER software for mathematical simulation 
and MATLAB for both surrogate modeling and MOO. A thorough 
investigation of hyperparameter tuning based on the number of hidden 
layers and epochs was given. This further elucidated the process of 
constructing independent ANN models for each objective/label (i.e., 
renewable fraction, cost of potable water, and CO2 emissions). Model 
accuracy was presented by using R2, RMSE, scatter index, and MSE as 
well as standard-error and absolute-frequency distributions. Further-
more, the authors obtained correlation coefficients and implemented a 
sensitivity analysis to rank the four features used in the modeling based 
on their impact on each objective. The best trade-off solution of the 
MOO process using Non-Dominated Sorting Genetic Algorithm II 
(NSGA-II) exhibited 98.5% for renewable fraction, 0.0447 $/m3 for the 
potable water cost, and 36,970 kg for CO2 emission. 

1.2. Motivation and novelty 

As discussed above, only two studies have provided comprehensive 
details of regression surrogate modeling for energy systems that produce 
more than one commodity. The systems evaluated in these two papers 
were, in fact, cogeneration and trigeneration, and not precisely multi-
generation, which typically involves the production of at least four 
products. This indicates the scarcity of such studies on multigeneration 
systems. Once this research gap was identified, we became inspired to 
implement detailed surrogate modeling to one of our previously studied 
MGSs (i.e., Mohammadi et al. [35]) and optimize it while incorporating 
every possible objective. In this respect, the present study is quite un-
precedented. Moreover, since using SMs overcomes the hurdle of time- 
consuming calculations, there is an opportunity to explore the impact 
of time-dependent parameters within the MOO process. In our proposed 
system, Direct Normal Irradiation (DNI), which exerts a notable influ-
ence on the total performance, is a time-varying input. With the 
groundwork provided in this research, we are able to optimize the sys-
tem for various DNIs. Thus, in addition to performing MOO with as many 
objective functions as possible, the idea of attaining optimal solutions at 
different DNI values also became a driving factor for us. 

1.3. Research objectives 

In the present study, various research objectives associated with the 
given framework of surrogate modeling have been identified by the 
authors. First, outlier removal will be taken into account within the data 
preprocessing stage to improve the accuracy of data-driven modeling. 
Here, the detection of outliers is carried out statistically by utilizing the 
Z-score method. Next, the refined data will be normalized using the 
same approach (Z-score) to eliminate bias in the modeling process. 
Along with ANN (the most common BB model used for regression 
problems), we try to examine two other well-known neural-network- 
based algorithms for the model selection step: one-dimensional (1D) 
CNN and Long Short-Term Memory (LSTM) which are particularly 
suitable for visual data analysis and time-series problems, respectively. 
Although the type of our problem is not actually image-processing or 
time-series, it is our objective to inquisitively explore the applicability of 

these two approaches to our case. We have to note that the reason why 
machine learning algorithms such as SVR are not taken into account in 
this study is that these methods have been extensively investigated in 
the literature and cannot compete well with neural network-based 
methods in terms of accuracy. Moreover, hyperparameter optimization 
is executed for all three models via a grid search. To attain even higher 
accuracy, we aim to create an ensemble model using a brute-force search 
method. Then, all these four models will be compared with each other to 
find the best one in terms of precision. Regarding feature selection, since 
neural network-based methods are employed, removing even one 
inconsequential feature would deteriorate the accuracy of these models. 
Thus, no special treatment is given to this step. Later, when the best 
model is determined, a sensitivity analysis will be performed to assess 
the importance of features based on their impact on each objective. 

The other major purpose of this study is multi-objective optimiza-
tion, for which a few goals are defined. Because of high computational 
complexity, merely two objective functions (exergy efficiency and total 
unit cost of products) were considered for the MOO process in our 
previous study [35]. With the convenience that SMs offer, performing 
MOO becomes undemanding. Having such an advantage, we aim to 
execute MOO with the highest number of objectives that can be defined 
for the investigated MGS. Hence, along with the two aforementioned 
objectives, the production rates of commodities are also included, 
making the total number of objectives six. Furthermore, since DNI is 
basically a time-dependent feature and cannot be scheduled or taken 
into account as a decision variable, the MOO is carried out at four 
distinct DNI values to encompass the entire range of this feature. This is 
owing to the fact that DNI plays a pivotal role in the performance of our 
MGS. Through this investigation, deeper insights into the optimal per-
formance of the system will be gained. Finally, the results of two- 
objective optimization and six-objective optimization will be 
compared to see if any improvement is made in the current 
investigation. 

2. Methodology 

This section explains the methodology adopted for the present study. 
The entire procedure is illustrated in Fig. 1. Since the simulation was 
performed and elaborated on in our previous study [35], this step is 
excluded here. Data sampling is the first step of the procedure through 
which two datasets are generated for the day and night (not shown in the 
figure) operation of the MGS. Next, surrogate modeling is performed 
using the existing framework that includes data preprocessing, hyper-
parameter optimization, model selection, and model evaluation, as 
explained in the introduction section. Sensitivity analysis is also con-
ducted to better understand how the outputs depend on the inputs 
within the best surrogate model. In the final step, multi-objective opti-
mization is carried out utilizing all six performance indicators. This 
process is repeated four times to cover the feasible range of direct 
normal irradiation, a time-dependent feature. All these steps were pro-
grammed in Python, for which various libraries were used, such as 
TensorFlow, Keras, and Scikit-learn for black-box modeling and 
Platypus for the optimization process. 

The schematic of the MGS is shown in Fig. 2. The system is driven by 
geothermal and solar energy sources to produce electricity, cooling load, 
heating load, and freshwater. The MGS is able to operate sustainably by 
harnessing clean energy sources, making it attractive for areas with good 
solar and geothermal energy potential. The essential requirements of the 
location where the system should be installed include:  

• Good geothermal potential for drilling a deep borehole to attain 
geothermal water temperatures up to 165 ◦C.  

• The consistency of solar energy throughout all seasons.  
• A large space for the installation of a solar tower/heliostat field.  
• A coastal area facing water scarcity or a remote coastal area without 

any potable water distribution system to reduce the cost of seawater 

P. Ghafariasl et al.                                                                                                                                                                                                                             



Applied Energy 364 (2024) 123130

5

piping to the desalination system. Alternatively, locations with poor 
water quality are also suitable because the reverse osmosis unit can 
remove impurities and contaminants from water, making it drink-
able. Not to mention that the previous conditions must also be met. 

It is worth noting that, based on a case study conducted using the 
meteorological data of Minab, a coastal city in the south of Iran, the 
system was shown to be capable of providing freshwater for an average 

of over 1200 individuals during the daytime all year long [35]. This 
example serves as an illustration of the practical benefits that the current 
MGS can provide in real-life scenarios. 

2.1. Data sampling 

Data sampling is the process of data selection from a larger dataset. 
For surrogate modeling, data sampling is defined as the process of 

Fig. 1. The methodology implemented in this study.  
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obtaining a dataset representing the behavior of a simulation experi-
ment [36]. In addition, data sampling can play a crucial role in hyper-
parameter optimization. Many techniques are being used commonly: 
uniform random sampling, grid sampling, Latin hyperbolic sampling, 
Poisson disk sampling, farthest point sampling, best candidate sampling, 
and hybrid BC-GreedyFP sampling [37]. In this study, we adopted uni-
form random sampling, the most straightforward and unbiased 
approach, which led to the generation of a large dataset to ensure 
comprehensiveness. Eight features (inputs/decision variables) were 
considered, the ranges of which are listed in Table 1. The MATLAB code 
was run based on the random selection of features within their respec-
tive ranges to generate six labels (outputs/objectives): exergy efficiency 
(Effexe or ηexe), Total Unit Cost of Products (TUCP), freshwater mass 
flowrate (ṁfw), net electricity generation (Ẇnet), hot water generation 
(Q̇h), and cooling load (Q̇c). These features and labels collectively 
formed a dataset of 23,000 data points. 

2.2. Data preprocessing 

Data preprocessing involves preparing raw datasets into a format 
that is suitable for training black-box algorithms. This step involves 
three techniques: (I) scaling/normalization, (II) handling missing data, 
and (III) identifying and addressing outliers. The second approach is not 
commonly necessary for surrogate modeling, thanks to data extraction 
from software simulations. Unlike the outputs of sensors [38,39], this 
type of data does not face malfunctions or interruptions. In this study, 
the Z-score technique is employed to handle the data preprocessing 
phase, i.e., treating outliers and normalization. This technique uses the 

statistical measures of mean and standard deviation to normalize un-
structured data [40]. The following formula calculates the Z-score value 
(x′) of a given data point (x) using its mean (μ) and standard deviation 
(σ) values: 

x′ = (x − μ)/σ (1) 

Carrying out this transformation would ensure that all data points 
take a mean of zero and a standard deviation of one [41]. 

Since the presence of outliers (out-of-range values) causes in-
efficiency during the training phase, outlier detection and removal have 
to be undertaken. The Z-score technique embraces this concept as well. 
This can be done by assigning a specific value to the standard deviation 
as a threshold to eliminate any remaining data points beyond that 
threshold. While removing more outliers may appear to offer an op-
portunity for accuracy improvement, it is not necessarily guaranteed, as 
it can lead to a lower number of data points, jeopardizing the overall 
accuracy of the trained model. Therefore, only an optimal value must be 
chosen as the threshold. 

2.3. Artificial neural network (ANN) 

An ANN is an algorithmic model, inspired by the human nervous 
system, that can build empirical and nonlinear relationships between 
the inputs and outputs of a dataset [42–44]. This supervised learning 
technique operates at high speed and demonstrates high adaptability, 
generalization, robustness, and mapping ability [45]. An ANN consists 
of three distinct layers that are sequentially connected by a number of 
neurons: an input layer, one or more hidden layers, and an output layer 
(Fig. 3). The number of hidden layers and neurons per layer can entirely 
affect the ability of the ANN in modeling intricate relationships between 
input and output data. However, an excessive number of neurons may 
end up causing overfitting, a situation where the model struggles to 
generalize well. Another important hyperparameter of ANNs, as well as 
all other types of neural networks, is the batch size. This parameter 
determines the number of training samples employed in one iteration 
within the training process. The choice of the batch size can also impact 
the learning process of a model and therefore must be tuned to secure 
high predictive power. The final hyperparameter that we deal with in 
this study is epoch. An epoch refers to the number of iterations that the 
algorithm processes through the entire dataset and updates its internal 

Fig. 2. A schematic of the MGS.  

Table 1 
The range of the features included in the data sampling process [35].  

Feature Unit Range 

Geothermal mass flowrate (ṁgeo) kg/s [2 15] 
Geothermal temperature (Tgeo) ◦C [125165] 
Number of heliostats (Nhel) − [25 65] 
Air mass flowrate (ṁair) kg/s [4 10] 
Pressure of the Ranking cycle (PRank) kPa [2000 5000] 
Pressure of ORCs (PORC) kPa [15,900 3500] 
Figure of merit (ZTM) − [0.2 2.0] 
Direct normal irradiation (DNI) W/m2 [11100]  
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parameters (i.e., weights and biases). An optimal choice of epoch would 
avoid underfitting and overfitting. The optimization of the aforemen-
tioned hyperparameters is elaborated on in the results section. 

2.4. Convolutional neural network (CNN) 

The CNN is another type of neural network that uses convolutional 
layers instead of fully connected layers (a characteristic of ANNs) to 
process grid-structured data, such as images [46]. As shown in Fig. 4, a 
CNN consists of five main layers: the input layer, convolutional layer, 
pooling layer, and fully-connected (dense) layers, and output layer. The 
convolutional layer applies filters (kernels) to the input data to extract 
features and patterns, the pooling layer is responsible for reducing the 
spatial dimension of the input data using down sampling, the fully- 
connected layers are similar to the hidden layers of ANNs in which the 
learning process occurs, and the output layer generates the final pre-
diction [47]. Since the present study deals with a one-dimensional (1D) 
problem, a 1D-CNN model is developed. The same hyperparameters as 
those used for the ANN are also tuned for the CNN, which will be pre-
sented later. 

2.5. Long-short term memory (LSTM) 

An LSTM model belongs to the Recurrent Neural Networks (RNNs) 
family, which are bi-directional neural networks designed to handle 
sequential data or time-series [48]. The advantage of LSTMs over RNNs 
is their ability to store information for a longer term. However, due to 
limited memory, the algorithm must decide which information is crucial 
to be stored in the long-term memory; otherwise, it would be placed in 
the short-term memory. Fig. 5 shows the architecture of an LSTM model, 
which has three gates to control features: the input gate, the forget gate, 
and the output gate. The input gate controls new information flowing 
into the cell state, representing the long-term memory,the forget gate 
discards unimportant previous information already saved in the cell 
state, and the output gate decides the output information from the cell 
state and then determines the next hidden state, in which the informa-
tion is stored for next iterations. An LSTM model can automatically save 

or discard stored information using these gates [49]. 

2.6. Ensemble model 

The ensemble model is developed using a brute-force search based on 
the results of the ANN, CNN, and LSTM. The brute-force search (or 
exhaustive search) is a straightforward technique for solving a problem 
by systematically considering all possible solutions [50]. In this context, 
the following formulation is considered by assigning a coefficient (a, b, 
and c) to each method: 

Ensemble = a×ANN+ b×CNN+ c×LSTM (2) 

The brute-force search goes through every combination of co-
efficients to maximize the R-squared (R2) score (see Section 2.7.1). Note 
that the sum of all three coefficients must equal one. At each iteration, 
the R2 score is computed, and, if it surpasses the current best, the co-
efficients and the R2 score will be updated. The final result is the com-
bination of coefficients yielding the highest R2 score. 

Fig. 3. Architecture of an artificial neural network (ANN).  

Fig. 4. Architecture of a convolutional neural network (CNN).  

Fig. 5. Architecture of a long-short term memory (LSTM) algorithm.  
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2.7. Model accuracy evaluation 

Different measures are available to evaluate the accuracy of SMs in 
predicting values or classes as close as possible to the observed ones. In 
this study, since the type of the problem is regression, three commonly 
used regression measures are utilized: R-Squared (R2), Mean Absolute 
Error (MAE), and Mean Squared Error (MSE). 

2.7.1. R-squared (R2) 
R-squared (R2), also referred to as the coefficient of determination, 

indicates how much variance in a label can be explained by features in a 
regression problem. The value of this measure ranges from zero to one. 
The higher the R-squared score, the better the model fits to the data. The 
typical expression for R2 is given as follows [51]: 

R2 = 1 −
RSS
TSS

(3) 

Where RSS is the residual sum of the squared differences between the 
actual and predicted values, and TSS is the total sum of the squared 
differences between the actual values and the mean of labels. 

2.7.2. Mean absolute error (MAE) 
This metric measures the average absolute differences between the 

actual and predicted values regardless of whether the error is over-
predicted or underpredicted. It can be mathematically presented as [52]: 

MAE =
1
n

∑n

j=1

⃒
⃒yj − ŷj

⃒
⃒ (4) 

Here, n is the number of observations, yj and ŷj are the actual and 
predicted values in the j-th observation, respectively. 

2.7.3. Mean squared error (MSE) 
The MSE quantifies the performance of a model based on the average 

squared differences between the actual and predicted values. In this 
way, bigger errors gain larger weights as the differences are squared. 
The formulation is as follows [53]: 

MSE =
1
n
∑n

j=1

(
yj − ŷj

)2 (5)  

2.8. Multi-objective optimization (MOO) 

As illustrated in Fig. 1, the MOO process involves setting decision 
variables, objectives, and criteria as well as applying the NSGA-II algo-
rithm. In this problem, all features can be regarded as decision variables, 
except for DNI, as this feature is inherently time-dependent and cannot 
be set manually. However, all labels can be taken into account as ob-
jectives, implying that up to six objectives are allowed to be embedded 
into the optimization process. These six objectives can be broken down 
into three major groups: the exergetic performance, total production 
cost, and production rates. Regarding optimization criteria, the exer-
getic performance and production rates must be maximized while the 
total production cost needs to be minimized. Although DNI cannot be 
regarded as a decision variable, it would be preferable to perform the 
six-objective optimization at different DNI values to cover the entire 
feasible range of this parameter. The optimal values obtained would 
assist in establishing an effective control system for the MGS to readjust 
the inputs at the selected DNI values, namely, 100, 400, 600, and 900 W/ 
m2. 

The optimization method in this study is NSGA-II, which was also 
employed for the simulation-based optimization in our simulation study 
[35]. Employing this method in the current study allows us to compare 
the results of surrogate-based and simulation-based optimization with 
each other. The other reason is the robust capability of NSGA-II in 
addressing multi-objective optimization problems, as also emphasized 

by [34]. A flowchart of this process is shown in Fig. 6, where applying 
the TOPSIS method for discovering the best solution from Pareto fron-
tiers is also a step [54,55]. NSGA II is an elitist non-dominated sorting 
genetic algorithm commonly used for MOO problems [56]. In the first 
step, a random initial population of potential solutions is generated, 
where each solution represents a set of decision variables. Next, the 
performance of the surrogate model outputs (objectives) is assessed to 
evaluate the suitability of the population. In the third step, the solutions 
are ranked using a non-dominated sorting technique according to their 
performance in improving the objectives. Now, a set of trade-off solu-
tions for all objectives is identified. If the maximum number of gener-
ations is not reached, the genetic operators (i.e., selection, crossover, 
and mutation) come into play to create a new population. The same 
procedure is iterated over and over again until reaching the maximum 
number of generations. At this point, the final Pareto frontiers of non- 
dominated solutions are obtained. Finally, the TOPSIS method is uti-
lized to locate the best trade-off solution among all the potential solu-
tions acquired in the previous step. 

3. Results and discussion 

This section is divided into two major subsections: surrogate 
modeling and multi-objective optimization. In the first part, according 
to the framework, the steps for obtaining robust and accurate SMs are 
followed to emulate the physics-based model of the MGS at hand. In this 
stage, the best model among four neural network-based models, i.e., 
ANN, CNN, LSTM, and an ensemble model, is selected. Next, the per-
formance of all models is studied through a case study. In the final step, a 
sensitivity analysis is performed for the chosen model. Regarding the 
second subsection, a six-objective optimization process using the best 
SM is performed at four DNI levels. The achieved results are then 
compared to the results of the simulation-based bi-objective optimiza-
tion obtained in [35]. 

3.1. Surrogate modeling 

3.1.1. Data preprocessing 
In addition to using the technique of Z-score for outlier detection, 

some outliers can also be identified by domain knowledge and expertise 
[57]. Given the fact that the labels of our data represent performance 
indicators, a reasonable approach to define outliers would be to set 
thresholds for labels according to our understanding of the anticipated 
behavior of the given MGS. This way of treating outliers requires expert 
knowledge. Since economic performance can be regarded as one of the 
most important criteria in the present study, it would be reasonable to 
set a threshold based on TUCP. Our understanding of the system tells us 
that the values of TUCP predominantly range up to approximately 100 
$/GJ and rarely exceed it. This value is, thus, taken as an outlier 
boundary, reflecting that any data value beyond 100 $/GJ will be 
eliminated from the dataset. As a result, out of 23,000 data points 
generated from the original simulation, 1152 data values were filtered in 
the first round before normalizing the dataset. After normalization, 
outlier detection through the Z-score technique was carried out on the 
tailored dataset containing 21,848 value points. The higher the Z-score 
value, the lower the number of outliers is. Multiplies of the standard 
deviation, such as 2 and 3, are commonly considered for the threshold 
value [58]. We started with five and came down by subtracting 0.5 each 
time. Through this trial and error process, 2.5 was recognized as the 
most affordable Z-score value, identifying 800 data points as outliers 
and leaving 21,048 for training. It should be noted that any values lower 
than 2.5 (e.g., 2) resulted in a relatively high number of outliers (e.g., 
2922). 

3.1.2. Pearson correlation coefficients 
After refining the dataset, the Pearson correlation coefficients can 

provide a holistic view of the relationships among data variables. This 
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method evaluates both the strength and direction of the linear re-
lationships among data variables. As a result, a correlation heatmap 
generated from the Pearson correlation coefficients is illustrated in 
Fig. 7. As can be seen, positively correlated elements take a value be-
tween zero and 1 (shown in red), while a value between -1 and zero 
indicates that the two elements are negatively correlated (shown in 
blue). Moreover, the stronger the correlation, the more intense the color. 

Taking these factors into account, it can be noted that the hot water 
production rate exhibits the highest correlations with features. The 
geothermal temperature (with positive impact), pressure of the Rankine 
cycle (with negative impact), and geothermal mass flowrate (with pos-
itive impact) are the top three decisive features influencing this objec-
tive in a linear manner. The second objective with high correlation 
coefficients is net electricity production, on which the air mass flowrate 

Fig. 6. Flowchart of the NSGA-II algorithm combined with TOPSIS.  

Fig. 7. A correlation heatmap obtained for all data variables.  
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of the solar circuit exerts the highest effect. In relation to the cooling 
load (Q̇c), which ranks as the third most correlated objective according 
to the heatmap, the number of heliostats exhibits the highest correlation. 
This variable, however, has no practical relationship with the cooling 
load since this objective is solely influenced by geothermal-based fea-
tures. It is worth mentioning that, due to the linearity of this measure 
and the presence of nonlinearity in our dataset, the results may be 
somewhat limited or distorted, as observed in the case of cooling load. 
Along with this, the absence of relationships (i.e., almost zero correla-
tions) for other objectives does not necessarily imply their nonexistence, 
as this method cannot detect complex and nonlinear relationships. After 
developing the surrogate model, a nonlinear sensitivity analysis will be 
conducted to address this concern. 

3.1.3. Hyperparameter optimization 
Three neural network-based methods are selected for comparison to 

determine the best one: ANN, CNN, and LSTM. However, before pro-
ceeding with this step, hyperparameter optimization has to be addressed 
to determine the optimal network structure of each method. This stage is 
of critical importance in data science, especially when it comes to neural 
network models, as they are difficult to configure, and a poor choice of 
hyperparameters may lead to slow training and inaccurate results. The 
grid search method is employed to search through a list of hyper-
parameter combinations and discover the best that returns the least 
error [59]. As can be seen in Table 2, the number of hidden layers, 
number of neurons per hidden layer, learning rate, batch size, and 
number of epochs are the considered hyperparameters, and optimal 
choices are shown in bold letters. Since high computational effort is 
required (as many times as the permutation of candidates) for the 
sequence of training to reach the best combination, only three choices 
are considered for each hyperparameter. The candidates listed in the 
table are commonly employed for such models. For more details on this 
topic, the reader is referred to the following sources: Jin et al. [60] for 
ANN, Bochinski et al. [61] for CNN, and Nakisa et al. [62] for LSTM. 

As shown in Table 2, the highest number of hidden layers brings the 
best results in each method. However, a different pattern can be 
observed for the number of neurons per hidden layer; the ANN takes the 
highest number (128), followed by the CNN and LSTM, with 64 and 32, 
respectively. Regarding the batch size, the ANN takes 32, the value of 
which is usually considered a rule of thumb for neural networks, but the 
other two approaches take fewer samples (16). For the last hyper-
parameter, all three methods prefer to employ 100 epochs, which in-
dicates the number of iterations an algorithm works through the dataset. 

3.1.4. Model selection 
After achieving the best network structure for each method, model 

evaluation is performed to figure out the best approach. As can be seen 
in Table 3, the results for all six objectives are presented. Among the 
three methods, the CNN performed poorly and failed to achieve any 
results better than 0.9560 in terms of R2 scores. As was anticipated, this 
method is less suitable for one-dimensional regression problems. On the 
other hand, as shown in Fig. 8, for R2 scores, the ANN and LSTM 
exhibited almost identical excellent results. This is somewhat surprising 
considering that the LSTM has been designed to address time-dependent 
problems rather than regression ones. Examining the obtained results in 
terms of MAE scores (Fig. 9), the ANN outperforms the LSTM in all 
objectives except for cooling load generation. Hence, the ANN can be 

selected as the most accurate method. This outcome reinforces the 
recognition of the ANN as one of the most preferred approaches for 
regression problems. 

In an effort to improve the performance of the ANN, an ensemble 
model is developed. As explained in Section 2.6, a brute-force search is 
utilized to evaluate the coefficients assigned to each neural network 
model, looking for the best combination leading to maximum R2. The 
outcome shows that the weight of the CNN is zero, while those of the 
ANN and LSTM are 0.57 and 0.43, respectively. This would make sense 
when considering the undesirable effect of the CNN, along with a 
slightly higher accuracy of the ANN than LSTM. The scores of the four 
developed models for all objectives are also given in Table 3. When 
compared to the ANN, it is evident that the ensemble model yields even 
better results except for TUCP. Plotting the scores of R2 and MAE can 
offer more clarification on the dominance of the ensemble model 
(Figs. 10–11). Specifically, from Fig. 11, it is noticeable that the MAE 
scores of the ensemble model are comparably smaller for all objectives, 
even for TUCP. Hence, this makes the ensemble model the most suitable 
surrogate model for the current study. It is worth mentioning that 
although running a model composed of two different models can be 
relatively time-consuming, obtaining the highest possible accuracy is 
our foremost concern. 

3.1.5. Case study 
The type of problem considered in this study is regression since 

almost all features are not time-dependent. In fact, the data was 
generated using random values for all features within their respective 
valid ranges to ensure the resulting dataset is comprehensive. However, 
DNI is an exception as it inherently changes over time. For this reason, 
an evaluation can be made based on the hourly changes of DNI. The 
hourly DNI values of the Reno city located in Nevada, USA, in a time 
interval between the 22nd and 28th of June 2021 are considered for this 
purpose [63]. In addition to receiving abundant solar energy all year 
long, Reno is among the best places in the US in terms of geothermal 
energy potential [64,65]. On the other hand, the poor quality of water 
from the Truckee River, which passes through Reno, has been an issue to 
the local municipality [66]. The installation of the current MGS can 
contribute to the removal of impurities and contaminants from the water 

Table 2 
Results of hyperparameters tuning via grid search.  

Hyperparameters ANN CNN LSTM 

Hidden layers 1, 2, 3 2, 3, 5 2, 3, 4 
Neurons per hidden layer 32, 64, 128 32, 64, 128 16, 32, 64 
Batch size 16, 32, 64 10, 16, 32 8, 16, 32 
Epoch 50, 100, 200 50, 100, 200 50, 100, 200  

Table 3 
Model evaluation of the four tuned models for all objectives using three common 
metrics.  

Model Objective R2 MSE MAE 

ANN 

ηexe 0.9959 0.0040 0.0396 
TUCP 0.9847 0.0149 0.0624 
ṁfw 0.9982 0.0018 0.0254 
Ẇnet 0.9973 0.0027 0.0323 
Q̇c 0.9998 0.0002 0.0114 
Q̇h 0.9994 0.0006 0.0169 

CNN 

ηexe 0.9413 0.0576 0.1717 
TUCP 0.9087 0.0889 0.2199 
ṁfw 0.9560 0.0437 0.1662 
Ẇnet 0.9322 0.0665 0.1997 
Q̇c 0.9539 0.0447 0.1659 
Q̇h 0.9485 0.0507 0.1683 

LSTM 

ηexe 0.9954 0.0045 0.0478 
TUCP 0.9827 0.0167 0.0649 
ṁfw 0.9967 0.0033 0.0395 
Ẇnet 0.9961 0.0039 0.0429 
Q̇c 0.9988 0.0012 0.0265 
Q̇h 0.9979 0.0020 0.0327 

Ensemble 

ηexe 0.9971 0.0029 0.0294 
TUCP 0.9830 0.0166 0.0568 
ṁfw 0.9982 0.0018 0.0244 
Ẇnet 0.9976 0.0024 0.0281 
Q̇c 0.9999 0.0001 0.0080 
Q̇h 0.9996 0.0004 0.0129  
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in this area. Hence, this city can be an attractive location for conducting 
a case study. 

The purpose of this subsection is to not only compare the results of 

the four surrogate models but also demonstrate the precision of the 
ensemble model by comparing it with the results obtained from the 
simulation. The hourly distributions of freshwater and net electricity 

Fig. 8. R2 scores of the ANN, CNN, and LSTM.  

Fig. 9. MAE scores of the ANN, CNN, and LSTM.  

Fig. 10. R2 scores of the ANN, CNN, LSTM, and the ensemble model.  
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production rates are shown in Fig. 12. It must be mentioned that during 
times when no solar energy is available, the system switches to the night 
mode. Thus, where DNI is zero, no freshwater is produced and net 
electricity generation stays at a minimum level. Taking a glance at the 
graphs, it is evident that the CNN lags behind other models in terms of 
accuracy. Regarding the rest of the models, their results are clustered 
together near that of the simulation as their accuracy is high. However, 
looking closely, it is clear that the ensemble model outperforms other 
methods even at zero-DNI points. 

3.1.6. Sensitivity analysis 
In this subsection, further insights into the impact of features on 

objectives are presented through a sensitivity analysis, a crucial 
assessment for understanding the behavior of a data-driven model. This 
type of analysis can have the advantage of handling non-linearity be-
tween features and objectives. The results are shown in Fig. 13 through 
bar charts and pie charts. Here, instead of presenting the net effect, both 
positive and negative impacts (given in weights) are provided in the bar 
charts to offer a more detailed view. On the other hand, the absolute 
contribution of features on each objective is presented in the provided 
pie charts. As for total exergy efficiency, most features have a negative 
overall impact on this objective as shown in the respective bar chart. 
From the pie chart, it is evident that DNI makes the most significant 
impact, followed by geothermal mass flowrate and the number of he-
liostats, having identical effects. The dominance of DNI can be witnessed 
for all other objectives except for Q̇h as it is fed merely by geothermal 
energy. Regarding the second most important feature, the number of 
heliostat comes into play for TUCP and ṁfw, while the geothermal mass 
flowrate takes effect on Ẇnet and Q̇h. The third most effective feature 
varies for each objective: the geothermal mass flowrate for TUCP, the 
mass flowrate of the solar circuit for ṁfw, the geothermal temperature for 
Ẇnet, and the number of heliostats for Q̇h. 

Through this analysis, we observed different general tendencies for 
each objective. Exergy efficiency is mainly affected by both solar and 
geothermal-related features while the weight of the former is slightly 
higher. More or less, a similar inclination can be seen for TUCP, Ẇnet, 
and Q̇h. However, the role of solar-driven features is more dominant in 
the case of ṁfw. Among operation features, the pressure of the ORC 
comparably plays a more important role, followed by the mass flowrate 
of the solar circuit and the pressure of the Ranking cycle. On the other 
hand, only features related to geothermal energy influenced the cooling 
load, with the geothermal mass flowrate being the most significant. 

3.2. Multi-objective optimization 

3.2.1. Six-objective optimization 
As surrogate models are considerably more efficient to run than 

simulation codes, there would be almost no hurdle in carrying out 
optimization with many objectives. This study aims to incorporate as 
many objectives as possible to attain a trade-off solution for a multiple- 
criteria problem. Thus, six objectives are considered, including perfor-
mance indicators of operation, cost, and production rates: overall exergy 
efficiency, total unit cost of products, freshwater mass flowrate, net 
electricity generation rate, cooling water production rate, and hot water 
production rate. Moreover, since DNI cannot be set manually despite 
being a feature in our dataset, the optimization problem is performed at 
four different DNI values (from 100 W/m2 to 900 W/m2) to cover the 
entire range of possible DNI values. The TOPSIS method is employed to 
figure out the best trade-off solution at each DNI, and the corresponding 
results for features and objectives are specified in Table 4. Before delving 
into the results of objectives, it is worth checking out the optimal values 
of decision variables (i.e., features). As can be seen, the geothermal 
water mass flowrate remains constant in all four cases at nearly the 
highest possible value (15 kg/s). The number of heliostats (Nhel) and the 
figure of merit (zTM) also remain unaltered throughout the range at their 
respective lower boundaries. However, other features exhibit irregular 
patterns, having extremum values around either DNI = 400 W/m2 or 
DNI = 600 W/m2. 

Optimal results for all objectives are plotted in Fig. 14. Regarding 
total exergy efficiency, an approximately 11% reduction can be noticed 
when DNI increases from 100 to 900 W/m2. The reason is the growth in 
the exergy destruction rate of the solar tower as solar intensity rises. In 
contrast, TUCP increases in value over the range of DNI, at 78%. This is 
largely linked to the substantial growth of freshwater production, which 
increases more than 10 times throughout the four DNI cases. It should be 
noted that there is a considerable change in the values of the three 
aforementioned objectives between DNIs of 100 and 400 W/m2. This 
may indicate a critical operating range for the system, wherein the solar 
input can induce a significant change. However, this pattern is not 
observed in the net electricity and hot water production rates, even 
though they also exhibit an increasing trend over the entire range of 
DNI. Therefore, it can be concluded that freshwater exerts the highest 
impact on both total exergy efficiency and TUCP among all products. It is 
worth mentioning that while cooling load production appears unrelated 
to DNI, slight variations in this objective can be observed at different 
DNI values. This can be justified by considering the changes occurring in 
the geothermal temperature (Table 4). 

Fig. 11. MAE scores of the ANN, CNN, LSTM, and the ensemble model.  
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3.2.2. Six-objective vs bi-objective 
After achieving the results of the six-objective optimization, it would 

be appealing to compare them with the results obtained by the bi- 
objective optimization using the simulation code [35]. For this pur-
pose, only the optimal values corresponding to DNI = 600 W/m2 are 
considered as the simulation-based optimization was performed for the 

exact same DNI value. As shown in Table 5, the range of improvements 
achieved in this study is from 1.9% to 12.7%, and the average 
improvement is 6.3%; exergy efficiency has the lowest, while TUCP 
shows the highest. In fact, the decrease of the total unit cost of products 
from 34.1 $/GJ to 29.77 $/GJ is of considerable value. This shows that 
the operation of the system at this optimal solution (obtained through 
the six-criteria scenario) would be notably more cost-effective. The 
second highest improvement is related to net electricity generation, 
showing a 9.5% increase from 423.7 kW to 463.90 kW. However, the 
enhancements of exergy efficiency and freshwater mass flowrate are 
insignificant. This implies that, in the six-objective optimization case, 
the optimal solution mostly favors TUCP and net electricity generation. 

4. Limitations 

Although this study made a pioneering effort in developing an ac-
curate surrogate model for a multigeneration system and performing 
surrogate-based optimization with six objectives, the authors have to 
acknowledge several limitations inherent to the research:  

• In this study, uniform random sampling was used for data collection. 
Considering the simplicity of this technique, a substantial amount of 
data needed to be collected to adequately capture the system’s 
behavior. Implementing more sophisticated methods, such as Latin 
hyperbolic sampling, may result in a dataset of a smaller size while 
maintaining the same level of quality.  

• When it comes to outlier detection, expert knowledge has to 
contribute along with a relevant numerical method. While general 
instructions can be suggested for numerical methods, expert 
knowledge heavily depends on the characteristics of the problem at 
hand. For the current MGS, the total unit cost of products was taken 
into account with a threshold of 100 $/GJ. However, choosing 
appropriate criteria varies from one problem to another, making 
generalization somewhat challenging.  

• While NSGA-II has been endorsed by countless studies, it would be 
valuable to explore various other optimization methods in terms of 
both speed and accuracy, comparing them to NSGA-II.  

• Since no environmental impact was analyzed in the simulation-based 
study, this crucial element was not considered in the current study as 
well, which might have yielded more insights to the MGS. 

• As emphasized several times throughout the manuscript, the pro-
posed methodology is only suited for regression analysis; thus, 
problems related to time-series analysis cannot be addressed. When 
an energy storage unit, such as flow batteries, pumped hydro storage, 
thermal energy storage, compressed air energy storage, etc., is part of 
a MGS, the problem would possess dynamic characteristics. There-
fore, the processes of data sampling, surrogate modeling, and opti-
mization must be adjusted to embrace the time-dependency of the 
problem. This also holds true when production rates fluctuate on an 
hourly, daily, or seasonal basis, requiring corresponding adjustments 
to the inputs of the system. This occurs when the demand pattern is 
changing and time-dependent. For systems exhibiting these two 
characteristics, the complexity will further increase as the interplay 
between these two cases comes into effect. While some efforts have 
been made in related research works [27–29], no specific study has 
been conducted for MGSs. This area remains open for investigation 
by future researchers. 

5. Adaptability of the methodology for other MGSs 

After pointing out the limitations of our study, exploring the adapt-
ability of the introduced methodology for other multigeneration systems 
would be a valuable consideration. The present methodology is well- 
suited for addressing MGSs having a routine operation, or, in other 
words, exhibiting a regression characteristic. This implies that systems 
with time-dependent energy storage units and/or production rates 

Fig. 12. Hourly distribution of freshwater and net electricity generation rates.  
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characterized by fluctuating patterns, for which time-series analysis 
becomes the sole viable choice, cannot be handled by the current 
approach. For MGSs with integrated energy storage, a combination of 
static features and one of time-based, event-based, systematic, or 
scenario-based data must be organized for the data sampling step and an 
appropriate SM must be taken into account for surrogate modeling. As 
for pure time-series analysis, all features are time-dependent and data 
collection occurs at each time step. It is worth mentioning that there are 
various SMs available for addressing such problems, but they fall beyond 
the scope of the present study. On the other hand, while renewable 
energy sources, such as solar and wind, exhibit time-dependent char-
acteristics, the approach to data sampling and surrogate modeling can 
remain consistent with the proposed methodology. 

To carry out a similar procedure on any valid MGS, the following 
steps/guidance must be considered:  

• For data sampling, uniform random sampling is a proper option. 
However, to be comprehensive, it is suggested to generate a large 
dataset. When the execution of the simulation code becomes 
computationally burdensome, alternative efficient methods can be 
employed to generate smaller datasets.  

• While there are other methods for detecting/removing outliers, Z- 
score is a reliable choice for this purpose. According to our finding, a 
standard deviation of 2.5 can be suggested. However, when it comes 
to expert knowledge, the authors cannot offer a general suggestion, 

Fig. 13. Results of sensitivity analysis: (left) both positive and negative impacts of features, and (right) absolute effect of features on each objective.  
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as this decision greatly depends on the characteristics of the given 
problem.  

• The hyperparameters of three commonly used neural network 
methods (i.e., ANN, LSTM, and CNN) were tuned for the current MGS 
and provided in Table 2. These findings can be applied to other 
similar cases, though the use of a CNN is not recommended for such 
problems. Moreover, an ensemble model can be developed on top of 
the first two models, where the coefficients of the ANN and LSTM 
were calculated as 0.57 and 0.43, respectively.  

• NSGA-II is a reliable optimization method, but the competence of 
other approaches can also be explored.  

• For MOO, any time-dependent feature must be included with a fixed 
value. When more than one time-dependent feature is present, the 

number of times that optimization must be performed to cover the 
entire range of each feature would significantly increase.  

• Indeed, there is no limitation on the number of objective functions 
for MOO; they can be as many as needed. 

6. Conclusion 

This study aimed to establish a pathway for developing a precise 
surrogate model tailored for multigeneration systems (MGSs) and to 
conduct surrogate-based optimization with as many objective functions 
as possible. For this purpose, a dataset containing 23,000 data points 
was generated from the simulation program we developed in our pre-
vious study [35]. Comprehensive surrogate modeling (including outlier 

Fig. 13. (continued). 
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treatment, normalization, model development, and hyperparameter 
tuning of ANN, CNN, and LSTM as well as an ensemble model composed 
of the ANN and LSTM) was performed and model evaluation was carried 
out using R2, MSE, and MAE. Through this step, specific suggestions 
were provided on how to replicate this process for other similar MGSs, as 
discussed in Section 5. The outcome showed that the ensemble model 
outperformed other models in accuracy, leading to its selection as the 
best surrogate model. This was also demonstrated in a case study using 
the meteorological data of the Reno city. In the final part of the simu-
lation section, a sensitivity analysis was performed to deepen our un-
derstanding of the nonlinear impact of features on objectives. It was 
found that DNI was the most decisive feature for all objectives except for 
cooling load, which was solely driven by the mass flowrate and tem-
perature of geothermal water. This was evident for exergy efficiency, 
TUCP, Ẇnet, and Q̇h being mainly affected by the solar-based features, 
whereas the role of the geothermal-based features could not be over-
looked. However, in the case of the freshwater mass flowrate, the 
importance of features related to geothermal energy was marginal. It is 
worth mentioning that the pressure of the ORC system (Porc) was the 

most significant feature among the operation features (i.e., features 
unrelated to solar and geothermal energy), i.e., ṁair, PRank, and ZTM. 

In the next step, a six-objective optimization problem was defined 
and performed. Since DNI was a time-dependent feature, four scenarios 
of optimization were considered based on different levels of DNI, 
covering its entire range. The results demonstrated that the value of all 
objectives grew as DNI increased, except for exergy efficiency and Q̇c. 
This implied that as solar intensity increased, the performance and 
operating costs were negatively affected. Additionally, the production 
rates of all commodities improved, except for cooling load. The possible 
explanation lies in the increase of exergy destruction, which accounts for 
the low exergetic performance. This is coupled with the rise of pro-
duction rates that, in turn, contributes to high operating costs (i.e., 
TUCP). When compared to the rate of production of other products, 
freshwater exhibited the most significant impact on exergy efficiency 
and TUCP. Moreover, the critical range of operation occurred between 
DNI values of 100 to 400 W/m2, within which major changes in the 
performance, cost, and production rates of the MGS could be observed. 
At the final step, the optimal results of the present study were compared 
to those of the two-objective optimization obtained in our simulation- 
based study. It was found that the six-objective optimization could 
identify a better operating setting compared to the two-objective case. 
Consequently, every objective was improved: TUCP and net electricity 
generation achieved substantial improvements, with 12.7% and 9.5%, 

Table 4 
Results of the six-objective optimization using eight features at four different 
DNIs.  

Feature/ 
Objective 

Unit DNI = 100 DNI = 400 DNI = 600 DNI = 900 

ṁgeo kg/s 14.99 14.94 14.99 14.98 
Tgeo 

◦C 162.77 158.21 164.94 164.89 
Nhel – 25 25 25 25 
ṁair kg/s 9.95 6.13 4.76 5.32 
PRank kPa 4976.07 2012.43 2295.65 2477.04 
PORC kPa 3459.66 3217.03 3195.70 3491.80 
zTM – 0.22 0.20 0.20 0.22 
Effexe % 35.88 28.27 25.89 22.70 
TUCP $/GJ 17.90 27.93 29.77 31.83 
ṁfw kg/s 1.24 5.42 9.45 12.48 
Ẇnet kW 422.73 418.88 463.90 487.82 
Q̇c kW 134.25 128.88 132.50 133.62 

Q̇h kW 1754.79 1786.65 1953.30 2061.93  

Fig. 14. Optimal objective values at four different DNI values.  

Table 5 
A comparison between the optimization results obtained by simulation [35] and 
that of the ensemble model developed in the present study.  

Objective Unit Bi-objective 
optimization 

Six-objective 
optimization 

Improvement 
(%) 

Effexe % 25.4 25.89 1.9 
TUCP $/GJ 34.1 29.77 12.7 
ṁfw kg/s 9.1 9.45 3.8 
Ẇnet kW 423.7 463.90 9.5 
Q̇c kW 127.1 132.50 4.2 

Q̇h kW 1846 1953.30 5.8  
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respectively, while exergy efficiency and freshwater mass flowrate 
showed least enhancement, with 1.9% and 3.8%, respectively. 
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