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Abstract
We obtain upper bounds for the first eigenvalue of the magnetic Laplacian associated to a 
closed potential 1-form (hence, with zero magnetic field) acting on complex functions of a 
planar domain Ω , with magnetic Neumann boundary conditions. It is well known that the 
first eigenvalue is positive whenever the potential admits at least one non-integral flux. By 
gauge invariance, the lowest eigenvalue is simply zero if the domain is simply connected; 
then, we obtain an upper bound of the ground state energy depending only on the ratio 
between the number of holes and the area; modulo a numerical constant the upper bound 
is sharp and we show that in fact equality is attained (modulo a constant) for Aharonov-
Bohm-type operators acting on domains punctured at a maximal �-net. In the last part, 
we show that the upper bound can be refined, provided that one can transform the given 
domain in a simply connected one by performing a number of cuts with sufficiently small 
total length; we thus obtain an upper bound of the lowest eigenvalue by the ratio between 
the number of holes and the area, multiplied by a Cheeger-type constant, which tends to 
zero when the domain is metrically close to a simply connected one.
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1 Introduction

We consider a smooth, connected and bounded domain Ω ⊂ ℝ
2 of area |Ω| . Let A be a 

closed 1-form and introduce the magnetic Neumann Laplacian ΔA with potential A acting 
on functions u ∈ C∞

(Ω,ℂ) . It is the operator ΔA = (∇
A
)
⋆
∇

A where the connection ∇A is 
defined as ∇Au = ∇u − iuA♯ and A♯ is the vector potential, dual to the 1-form A. The fol-
lowing notation is sometimes used:

We take (magnetic) Neumann boundary conditions and then we study the eigenvalue 
problem:

where N is the inner unit normal. We are interested in the ground state energy (lowest 
eigenvalue) �1(Ω,A) , which is the minimum of the Rayleigh quotient:

If A = 0 , the spectrum of ΔA coincides with the spectrum of the usual Laplacian under 
Neumann boundary conditions. The same is true when A is an exact one-form, thanks to 
the well-known gauge invariance of the magnetic Laplacian, which implies in particular 
that:

for any smooth function f. The two-form B ≐ dA is called the magnetic field associated 
to the potential A. It turns out that, even if the magnetic field is 0, the (closed) potential A 
can affect the ground state energy: this is related to a phenomenon in quantum mechan-
ics called Aharonov-Bohm effect. To see this, we introduce the flux of A across the closed 
curve (loop) c as the quantity:

(we do not specify the orientation of the loop, as it will be irrelevant for our bounds).
It turns out that �1(Ω,A) = 0 if and only if A is closed and the cohomology class of A is 

an integer, that is, the flux of A around any loop is an integer.
This fact was first observed by Shigekawa [10] for closed manifolds and then proved in 

Theorem 1.1 of [8] for manifolds with boundary. This remarkable feature of the magnetic 
Neumann Laplacian shows its deep relation with the topology of the underlying domain Ω . 
For a more detailed introduction to the magnetic Neumann Laplacian associated to a closed 
potential, see the introduction of [5] and the references therein.

It is precisely the goal of this note to investigate how the topology and the geometry of 
the domain Ω influence the ground state energy �1(Ω,A) when the magnetic field is zero. 
Therefore, from now on, unless otherwise stated:

∙ the potential A in this paper will always be a closed one-form.

ΔA = (i∇ + A♯

)
2,

(1)

{
ΔAu = �u on Ω

∇
A
N
u = 0 on �Ω

(2)�1(Ω,A) = min

{∫
Ω
|∇Au|2

∫
Ω
|u|2 ∶ u ∈ H1

(Ω) ⧵ {0}

}
.

(3)�1(Ω,A) = �1(Ω,A + df )

Φ
A
c
=

1

2� ∮c

A
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Note that, in view of Shigekawa’s remark, any lower bound of the ground state 
energy should somewhat depend on the distance of the fluxes of A to the lattice of inte-
gers which, for a single loop c, is defined as:

In our previous papers [4] and [5], we obtained lower bounds for the ground state energy. 
In [4], we proved an estimate from below of the first eigenvalue of a Riemannian cylinder; 
applied to a plane annulus Ω = F ⧵ Ḡ , with F and G smooth and convex, the lower bound 
becomes:

where Φ is the flux of A across the inner boundary component �G and � (resp. B) is the 
minimal length (resp. the maximal length) of a segment contained in Ω and hitting the 
inner boundary �G orthogonally. We call � and B the minimal, resp. maximal width of Ω , 
respectively; obviously, � is also the minimum distance between the inner and outer bound-
ary curves.

In the subsequent paper [5], we improved the result to get a lower bound depending 
on �

B
 , rather than �

2

B2
 (see Theorem 1):

where D(F) is the diameter of F; this linear dependence is in fact sharp, as shown in [5]. 
We will in fact use (5) in Sect. 5.2, formula (21). In [5], we also extend the lower bound to 
domains with an arbitrary number of holes.

Upper bounds for the spectrum of the magnetic Schrödinger operator, for an arbi-
trary potential one-form A, were considered in [2]. Some of them are consequence 
of the inequality �1(Ω,A) ≤ �1(Ω), where �1(Ω) is the lowest eigenvalue of the 
Schrödinger operator Δ + |A|2 , with Neumann boundary conditions. In particular, The-
orem 3 in [2] gives an upper bound of the first eigenvalue when the potential is a har-
monic one-form, which depends on the volume of Ω and the distance (taken in L2 ) of A 
to the lattice of integral harmonic one-forms. However, this upper bound is difficult to 
compute, in general.

The scope of this paper is to prove upper bounds of �1(Ω,A) which are computable, 
and depend explicitly on the topology and the geometry of Ω . The topology of a pla-
nar domain Ω is specified by the number n = n(Ω) of holes, and in fact our first main 
result, Theorem 1, gives an upper bound of the ground state energy depending only on 
the area of Ω and the number of holes; up to a numerical constant, the bound is sharp 
and is achieved for a certain class of punctured domains (see Theorem 3). Note that, if 
n = 0 , Ω is simply connected, A is exact and then �1(Ω,A) = 0 : One could intuitively 
argue that if it is possible to transform a domain Ω into a simply connected domain by 
deleting a family of segments of small total length, then �1(Ω,A) should be small. We 
somewhat show that in fact this is the case in our second main result, Theorem 6.

We now give the precise statements of our results.

d(ΦA
c
,�) ≐ min{|ΦA

c
− k|, k ∈ �}.

(4)�1(Ω,A) ≥ 4�2

|�F|2
�
2

B2
d(Φ,�)2

(5)�1(Ω,A) ≥ �
2

8

|F|2
|�F|2D(F)4

�(Ω)

B(Ω)
⋅ d(ΦA,�)2.
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2  Main results

We have already remarked that �k(Ω, 0) is just the k-th eigenvalue of the usual Lapla-
cian with Neumann boundary conditions. Note that, �1(Ω, 0) = 0 , the associated eigens-
pace being one-dimensional, spanned by the constant functions. Then, one could ask if 
�1(Ω,A) could be somewhat compared with the first positive Neumann eigenvalue, that 
is, to �2(Ω, 0) (but in fact we will see that there is no a priori inequality between the two 
eigenvalues, see below). To that end, recall the Szegö-Weinberger inequality, stating 
that the Neumann ground state is bounded above by that of the disk ̄Ω of the same area:

which leads to an upper bound only in terms of the area:

where C = ��2(B, 0) and B is the unit ball in �2.
Our first question was to see if a weak Szegö-Weinberger inequality could possibly 

hold for �1(Ω,A) in this context: that is, can we find an absolute constant C such that for 
every closed potential A on Ω one has:

A bit surprisingly, we find out that (7) cannot hold in that generality; the estimate must in 
fact depend on the topological complexity of Ω , that is, on the number n = n(Ω) of holes.

Theorem 1 Let Ω ⊂ ℝ
2 be a bounded domain with smooth boundary having n holes. Then, 

there exists a universal constant C > 0 such that for every closed potential A, we have:

One could take C = 544�.

The constant C is not optimal, but modulo a universal constant the upper bound is 
sharp, as the next result will show. In other words, there are examples of pairs (Ω,A) 
with Ω of fixed area, whose first eigenvalue grows proportionally to the number of holes 
n.

2.1  Punctured domains and maximal �‑nets

We introduce punctured domains: These are obtained by deleting n given points 
P = {p1,… , pn} from a given domain Ω . We define:

where P(�) is the �-neighborhood of P (it obviously consists of a finite set of closed disks 
of radius � ). It is not our scope in this paper to investigate the convergence in terms of �.

𝜆2(Ω, 0) ≤ 𝜆2(
̄Ω, 0),

(6)�2(Ω, 0) ≤ C

|Ω|

(7)�1(Ω,A) ≤ C

|Ω|?

(8)�1(Ω,A) ≤ C
n

|Ω| .

�1(Ω ⧵ P,A) = lim inf
�→0

�1(Ω ⧵ P(�),A)
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A general lower bound for the first eigenvalue of punctured domains is given in The-
orem 3 of [5]. An interesting feature of punctured domains, which we will explicit in 
Sect. 4 and which does not follow trivially from [5], is that their first eigenvalue could 
grow proportionally to the number of punctures, provided that the configuration P is a 
maximal �-net, which we are going to define.

Definition 2 Given a convex domain Ω ⊂ ℝ
2 with smooth boundary and a number 𝜖 > 0 , a 

maximal collection of points P
�
= {p1,… , pn} with the following properties:

• d(pj, pk) ≥ � for all j ≠ k,
• d(pj, �Ω) ≥ � for all j is called a maximal �-net.

One should think of a maximal �-net as an optimal way of distributing a set of points 
inside Ω with the constraint of being at distance at least � among themselves and at distance 
at least � to the boundary. Consider the harmonic 1-form A on Ω ⧵ P

�
 which has the same 

flux Φ > 0 around each of the holes p1,… , pn . We denote by

the distance of the common flux Φ to the lattice of integers. We then have:

Theorem 3 If �Ω satisfies the �-interior ball condition, then, for all 𝜖 < 𝛿 and for all maxi-
mal �-nets P

�
 , one has:

In terms of the number of points n = n(�) (hence, the number of holes), we have:

The strategy of the proof is to partition the given punctured domain in a family of con-
vex domains with only one puncture and then to apply a lower bound proved in [4] to each 
piece of the partition.

Recall that Ω satisfies the �-interior ball condition if, for any x ∈ �Ω , there exists a ball 
of radius � tangent to �Ω at x and entirely contained in Ω . This is equivalent to saying that 
the injectivity radius of the normal exponential map is at least � ; hence any point of a seg-
ment hitting the boundary orthogonally at p ∈ �Ω minimizes the distance to the boundary 
up to distance � to p.

Remark 4 The referee called our attention to the paper [1] by Balinsky, where a similar 
estimate is discussed. In fact, Balinsky uses a conformal mapping argument to obtain a 
lower bound for doubly connected domains in terms of conformal geometry. This bound is 
similar in the spirit to the lower bound in [4], which we use in our proof here, and which is 
expressed in terms of explicit geometric quantities.

The referee also pointed out to us the interesting paper [9], where the authors give sharp 
lower bounds for punctured disks. However, since in our proof, the domains are not punc-
tured disks but punctured convex sets, we have prefered to use our lower bound in [4].

More generally, the inequality holds with F2 replacing d(Φ,�)2 , where

d(Φ,�) = min{|Φ − k| ∶ k ∈ �}

�1(Ω ⧵ P
�
,A) ≥ 1

64

d(Φ,�)2

�
2

(9)�1(Ω ⧵ P
�
,A) ≥ �

256
⋅

n

|Ω| ⋅ d(Φ,�)2.
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and Φj is the flux of A around pj.
Assuming constant flux 1

2
 around every point of the net, we see that the domain Ω ⧵ P

�
 

(having n holes and area |Ω| ) satisfies the bounds:

showing that (8), modulo a numerical constant, is sharp.
A final question in this regard is the following:
∙ Is there an inequality relating �1(Ω,A) with �2(Ω, 0)?
The answer is negative. To show this, first consider that when � is sufficiently small and 

0 < 𝜂 <
𝜖

2
 , one has, in the previous notation:

where P
�
(�) is the �-neighborhood of P

�
 . In fact, as � → 0 , the left-hand side diverges to 

infinity while the right-hand side is uniformly bounded  above by the Szegö-Weinberger 
inequality (6).

In the other direction, remove from a fixed rectangle F in the plane another smaller 
rectangle G with fixed sides parallel to those of F, such that the boundary components 
of F and G get �-close to each other: see Fig. 2 in [5]. There it is proved that the result-
ing domain Ω

�
 is such that �1(Ω�

,A) converges to zero proportionally to � , where A is the 
closed potential having flux 1

2
 around the inner curve �G . Nevertheless, one observes that 

the Cheeger constant of Ω
�
 is uniformly bounded below by a positive constant C, which 

implies that 𝜆2(Ω𝜖
, 0) ≥ C > 0 . Therefore, for � , small one has 𝜆1(Ω𝜖

,A) < 𝜆2(Ω, 0).
We remark that in [6], the authors investigate the validity of the Szegö-Weinberger ine-

quality when the magnetic potential is nonzero (in particular, has constant norm).

2.2  An upper bound by a Cheeger type constant

First observe that, if Ω has n holes, one can suitably delete n segments from Ω (joining 
different connected components of the boundary) and get a simply connected domain. We 
will establish an upper bound of �1 depending on the sum of the lengths of these segments, 
denoted by h(Ω) . On one side, it will show that if h(Ω) is small enough, then the upper 
bound we get is better than the bound of Theorem 1; on the other hand, we will construct 
an example showing that even if h(Ω) goes to 0, �1(Ω,A)|Ω| may be large (and therefore 
the number of holes must be large).

Definition 5 Let Ω ⊂ ℝ
2 be a bounded domain. An admissible cut of Ω is a collection 

of segments Γ = {Γ1,… ,Γn} such that Ω ⧵ Γ is simply connected. Introduce the constant 
h(Ω):

where Γ is a admissible cut of Ω.

F
2
= min

j=1,…,n
d(Φj,�)

2

1

1024
≤ �1(Ω ⧵ P

�
,A) ⋅

|Ω|
n

≤ 544,

𝜆1(Ω ⧵ P
𝜖
(𝜂),A) > 𝜆2(Ω ⧵ P

𝜖
(𝜂), 0)

h(Ω) = min{

n∑
i=1

hi ∶ hi = length(Γi)}
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The constant h may be seen as an adapted Cheeger constant to measure how the topol-
ogy (the number n = n(Ω) of holes) and the geometry (the lengths hj of the segments Γj ) 
interact in order to affect the first eigenvalue �1(Ω,A) . A natural question is for example 
to ask how small h must be in comparison with n(Ω) in order to guarantee that �1(Ω,A) is 
uniformly bounded for a family Ω of domains of given area with a fixed number of holes.

Theorem 6 Assume that h(Ω) ≤ |Ω|
2�

 and hj ≤ 1 for each j = 1, ...n . Then:

where hj denotes the length of the j-th segment Γj associated to h and n(Ω) is the number of 
holes.

Note that, we assume bounds on h

|Ω| and on every hj : This is a technical fact needed for 
the proof. On the other hand, Theorem 6 is meaningful and improves Theorem 1 in the spe-
cial situation where hj and h are very small; the general situation is treated in Theorem 1, 
which does not follow from Theorem 6.

Corollary 7 In particular, assume that Ω is doubly connected. If h ≤ min{1,
|Ω|
2�
} , then

Note that, for doubly connected domains, one has h = � where � is the minimal width of 
Ω , and also the minimum distance between the two boundary components. The corollary 
shows that if |Ω| is fixed and the boundary components get very close (that is, h = � tends 
to zero), then �1 tends to zero, which indeed improves Theorem 1. An interesting ques-
tion is to see if the rate at which this happens, that is 1∕|ln h

2
| , is actually sharp or can be 

improved.
When there is more than one hole, it is still possible to have an upper bound directly in 

terms of h(Ω).

Corollary 8 Assume in addition that, in the definition of h, every hj ≤ e−2 . Then, we have:

For example, if Ω has area 1 and n holes, in order to guarantee that �1(Ω,A) ≤ 1 , we 
need to impose h(Ω) ≤ ne−8�n

2.
It is natural to ask what occurs when h → 0 for domains of given area. Clearly, if n(Ω) is 

fixed and h → 0 , inequality (12) implies that �1(Ω,A) → 0.
However, if n(Ω) is not fixed, the assumption h → 0 does not imply that the first 

eigenvalue tends to zero. In fact, we can have h arbitrarily small and, at the same time, 
�1(Ω,A)|Ω| as large as one wishes. The next example is an illustration of this fact.

Example 9 There exists a family of domains {Ωk}k≥1 with area |Ωk| ≥ 1 and with a fixed 
potential A of equal flux Φ > 0 around each hole such that

(10)�1(Ω,A) ≤ 8�n(Ω)

|Ω|
n∑
j=1

1

|ln hj

2
|

(11)�1(Ω,A) ≤ 8�

|Ω||ln h

2
|

(12)�1(Ω,A) ≤ 8�n(Ω)2

|Ω|
1

|ln( h(Ω))
n(Ω)

)| .
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and, at the same time:

with c = �
2

215
√
2
 . The number of holes of Ωk is n(Ωk) = k2 (hence, it grows with k).

3  Proof of Theorem 1

Recall that we want to show that if Ω ⊂ ℝ
2 is a bounded domain with smooth boundary 

having n holes then, for every closed potential A, we have:

Proof The proof consists in three steps. First, using gauge invariance, we replace the given 
potential A by a new potential having the same flux but with poles at a certain collection of 
points {p1, ...., pn} . The two corresponding magnetic Laplacians are unitarily equivalent 
and have the same spectrum. In the second step, we show the existence of a ball B(p, r) of 

radius r = 1

4
√
�

��Ω�
n

� 1

2

 such that for each i = 1, ..., n , pi ∉ B(p, 2r) . Moreover, we get a 

control of the area growth by the relation

In the last step, the fact that pi ∉ B(p, 2r) for any i will imply that A is exact on B(p, 2r), 
hence, thanks to the control of the volume growth of the balls, one can control �1(Ω,A) by 
a standard cutoff argument for the usual Laplacian.

Step 1. The domain Ω is bounded by an outer closed curve Σ0 and n closed inner curves 
Σ1, ...,Σn . We assume that our closed potential A has flux ΦA

i
 around Σi.

We choose n points p1, ..., pn so that pi is inside Σi , and we write (ai, bi) for the coordi-
nates of pi . Let Ai be the 1-form

The flux of Ai is equal to ΦA
i
 around Σi and it is 0 around Σj for j ≠ i (we assume that every 

Σi is traveled once). This implies that the fluxes associated to the 1-form Ã ≐ A1 + ... + An 
are equal to the fluxes of A, and therefore A − Ã is exact. By Gauge invariance, the oper-
ators ΔA and ΔÃ have the same spectrum, so that it suffices to find an upper bound for 
𝜆1(Ω, Ã).

Step 2. First, we prove the following estimate that will be used in the proof of Lemma 10 
below. Let a > b and consider the maximal number N = N(a, b) of points at distance at 
least b from one another which are in a ball B(a) of radius a. We find:

h(Ωk) ≤ 2√
k

�1(Ωk,A) ≥ c
√
kd(Φ,�)2

(13)�1(Ω,A) ≤ 544�
n

|Ω| .

|B(p, 2r) ∩ Ω|
|B(p, r) ∩ Ω| ≤ 34.

Ai(x, y) = Φ
A
i

(
−(y − bi)

(x − ai)
2 + (y − bi)

2
dx +

(x − ai)

(x − ai)
2 + (y − bi)

2
dy

)
.
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To see this estimate, we denote by x1, ..., xN a maximal net of points at mutual distance at 
least b in the ball B(a). The balls of center xi and radius b

2
 are disjoint and contained in the 

ball of radius a + b

2
 , so that

which means that N(a, b) b
2

4
� ≤ �

(
2a+b

2

)2

, and then:

On the other hand, by maximality, the union of the balls B(xi, b) covers B(a), and

so that �a2 ≤ N(a, b)�b2 and N(a, b) ≥ a2

b2
 as asserted. This proves (14).

In order to construct an upper bound for 𝜆1(Ω, Ã) , we will construct a test function with 
Rayleigh quotient ≤ C

n

|Ω| . This test function will be constructed geometrically with ideas 
coming from [3], but much easier to apply in our case, because we are concerned only with 
the first eigenvalue. Fix the number:

Then, we have the following fact.   ◻

Lemma 10 There exists a point p ∈ Ω such that pj ∉ B(p, 2r) for every j = 1, ..., n , and 
moreover

Proof of the lemma From the definition of r one sees that

Set

so that

(14)
(
a

b

)2 ≤ N ≤ (
2a + b

b

)2

.

N∑
i=1

|B(xi, b2 )| ≤ |B(a + b

2
)|

N(a, b) ≤ (
2a + b

b

)2

.

|B(a)| ≤
N∑
i=1

|B(xi, b)|

r ≐ 1

4
√
�

��Ω�
n

� 1

2

.

|B(p, 2r) ∩ Ω|
|B(p, r) ∩ Ω| ≤ 34.

n∑
j=1

|B(pj, 2r)| ≤ n�(2r)2 ≤ 4�n
1

16�
|Ω|1

n
=

|Ω|
4

.

Ω0 = Ω ⧵ ∪jB(pj, 2r),

(15)|Ω0| ≥ 3

4
|Ω|.
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For any q ∈ Ω0 , we have clearly pj ∉ B(q, 2r) for all j. Take a maximal r-net in Ω0 , say 
N = {q1,… , qm} , so that d(qi, qj) ≥ r for all i, j and by the maximality of the net:

This implies that

By the estimate (14), for any q ∈ Ω , the cardinality of the set N ∩ B(q, 2r) is at most 
(
2a+b

b
)
2 , with a = 2r and b = r , that is:

In other words, every point q ∈ Ω is in at most 25 balls of radius 2r centered at a point of 
the net, hence

We can now prove that there exist qj such that

Assume not. Then:

for all j. We would then have, by (15), (16) and (17):

which is a contradiction. The lemma is then proved.   ◻

Step 3. We take a ball B(p, 2r) as in Lemma 10. Then, we can conclude as follows. 
First, the restriction of Ã = A1 + ... + An to B(p, 2r) is exact, because the poles p1, ..., pn 
are not contained in the ball. Up to a Gauge transformation, we can replace the magnetic 
Laplacian ΔÃ by the usual Laplacian on B(p, 2r).

We define a function u ∶ Ω → � as follows:

Ω0 ⊂ ∪
m
j=0

B(qj, r).

(16)
m∑
j=1

|B(qj, r) ∩ Ω)| ≥ |Ω0| ≥ 3

4
|Ω|.

|N ∩ B(q, 2r)| ≤ 25.

(17)
m∑
j=0

|B(qj, 2r) ∩ Ω| ≤ 25|Ω|.

|B(qj, 2r) ∩ Ω|
|B(qj, r) ∩ Ω| ≤ 34.

|B(qj, 2r) ∩ Ω| > 34|B(qj, r) ∩ Ω|

25|Ω| ≥
m∑
j=0

|B(qj, 2r) ∩ Ω|

> 34

m∑
j=1

|B(qj, r) ∩ Ω|

≥ 34 ⋅
3

4
|Ω|

> 25|Ω|.
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Note that, u is indeed supported on B(p, 2r); extending it to zero on the complement of the 
ball, we get a well-defined test function. As |∇u| ≤ 1

r
 , we see:

On the other hand:

Hence, its Rayleigh quotient is bounded above as follows:

Recalling the definition of r, we conclude:

as asserted.

4  Proof of Theorem 3

The strategy of the proof is to partition the given punctured domain in a family of convex 
domains with only one puncture and then to apply the lower bound (4) to each piece of the 
partition.

First, we say that the family of open sets {Ω1,… ,Ωn} with piecewise-smooth boundary 
is a partition of the open set Ω if ̄Ω = ∪

n
j=1

̄Ωj ; the partition is disjoint if moreover Ωj ∩ Ωk 
is empty whenever j ≠ k . It is a simple consequence of the min-max principle that the first 
eigenvalue of Ω is controlled from below by the smallest first eigenvalue of the members of 
a disjoint partition, that is:

for any potential one-form A (for the easy proof we refer to Proposition 4 of [5]). The 
second ingredient is the estimate (4) for an annulus Ω = F ⧵ Ḡ with F and G convex with 
piecewise-smooth boundary:

where Φ is the flux of A across the inner boundary component �G and � (resp. B) is the 
minimal and maximal width of Ω , respectively.

u(x) =

⎧
⎪⎨⎪⎩

1 if d(p, x) ≤ r

−
1

r
d(p, x) + 2 if d(p, x) ≥ r

�
Ω

|∇u|2 ≤ 1

r2
|B(p, 2r) ∩ Ω|.

�
Ω

|u|2 ≥ |B(p, r) ∩ Ω|.

R(u) ≤ 1

r2

|B(p, 2r) ∩ Ω|
|B(p, r) ∩ Ω| ≤ 34

r2
.

R(u) ≤ 544�
n

|Ω|

(18)�1(Ω,A) ≥ min
j=1,…,n

�1(Ωj,A),

(19)�1(Ω,A) ≥ 4�2

|�F|2
�
2

B2
d(Φ,�)2
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Let us then start from the partition. In fact, the properties of a maximal �-net allow to 
partition the given domain in “well-balanced” convex pieces, in the following sense.

Lemma 11 Let Ω be a convex domain with smooth boundary and let P
�
= {p1,… , pn} be 

a maximal �-net in Ω . We assume that �Ω satisfies the �-interior ball condition with 𝛿 > 𝜖 . 
Then, Ω admits a disjoint partition {Ω1,… ,Ωn} with the following properties:

a) Every Ωj is convex and has piecewise-smooth boundary;
b) For each j = 1,… , n one has B(pj,

𝜖

2
) ⊆ Ωj ⊆ B(pj, 2𝜖).

We will prove the lemma below.
To finish the proof of Theorem  3, we first observe that {Ω1 ⧵ {p1},… ,Ωn ⧵ {pn}} is 

a disjoint partition of the punctured domain Ω ⧵ P
�
 and, in view of (18), it is enough to 

bound from below the ground state energy of every piece of this partition. To that end, we 
apply (19) to Ωj ⧵ {pj} , more precisely, we take F = Ωj , G = B(pj, �) and let � → 0 . Taking 
into account Lemma 11, we have, after taking the limit as � → 0:

because � and B tend, respectively, to the minimum and maximum distance of pj to �Ωj . 
Moreover, as Ωj is convex, contained in B(pj, 2�) , we have by the monotonicity of the 
perimeter: |�Ωj| ≤ 4�� . The conclusion is that, for all j = 1,… , n:

As this holds for any member of the partition, it holds a fortiori for Ω ⧵ P
�
 , which proves 

the first part of the theorem.
Finally, it is readily seen that the number of points in a maximal �-net grows propor-

tionally to �−2 . Precisely, one first observes that ∪n
j=1

B(pj,
𝜖

2
) ⊆ Ω; since the union on the 

left is disjoint (by maximality of the net) we obtain: n ⋅ ��
2

4
≤ |Ω|, that is

which proves (9).

4.1  Proof of Lemma 11

We will use the following property of maximal �-nets:
Property P. If x ∈ Ω is such that d(x, pj) > 𝜖 and d(x, �Ω) ≥ � , then there exists 

pk ≠ pj such that d(x, pk) ≤ �.
For each j = 1,… , n we consider the non-empty open set:

It is clear that ̄Ω = ∪
n
j=1

̄Ωj. If, for indices j ≠ k , we consider the open half-space

� ≥ �

2
, B ≤ 2�, hence

�

B
≥ 1

4

�1(Ωj ⧵ {pj},A) ≥ 1

64�2
d(Φ,�)2.

1

�
2
≥ �n

4|Ω| ,

Ωj = {x ∈ Ω ∶ d(x, pj) < d(x, pk) for all k ≠ j}.
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we see that we can write

which makes it clear that Ωj is convex. As the boundary of Ωj is either part of �Ω , or is part 
of �Hjk , which is a straight line, we see that �Ωj is piecewise-smooth. This proves a). We 
now prove the first inclusion in b). Assume d(x, pj) <

𝜖

2
 : it is enough to show that x ∈ ̄Ωj . In 

fact, if x ∉ ̄Ωj , there exists k ≠ j such that x ∈ ̄Ωk and, by definition, d(x, pk) ≤ d(x, pj) <
𝜖

2
 . 

This means that

which by the triangle inequality gives d(pj, pk) < 𝜖 , which is a contradiction. Hence, x ∈ ̄Ωj.
We now prove the second inclusion in b). Let x ∈ Ωj . It is enough to show that 

d(x, pj) < 2𝜖 in any of the following two cases:
Case I: d(x, �Ω) ≥ �,
Case II: d(x, 𝜕Ω) < 𝜖.
In Case I, assume that d(x, pj) ≥ 2� , so that, in particular, d(x, pj) > 𝜖 . By Property 

P above, there exists pk ≠ pj such that d(x, pk) ≤ � . As x ∈ Ωj we have, by definition, 
d(x, pj) < d(x, pk) hence a fortiori d(x, pj) < 𝜖 which is a contradiction.

Now assume we are in Case II. Let x̄ ∈ 𝜕Ω be the foot of the unique geodesic segment � 
which minimizes distance to the boundary, and let p be a point of � at distance � to x̄ . Since 
�Ω has the �-interior ball condition, and since 𝜖 < 𝛿 , it is clear that

Since in particular d(p, �Ω) ≥ � , there exists pk ∈ P
�
 such that d(p, pk) ≤ � , by the �-maxi-

mality of the net. By the triangle inequality:

On the other hand, x ∈ Ωj and because of that one has d(x, pj) < d(x, pk) . Hence, 
d(x, pj) < 2𝜖 and the proof is complete.

5  Bound of �1(Ä,A) with respect to the invariant h(Ä)

The goal of this section is to prove Theorem 6 and to construct Example 9. This example 
show that, surprisingly, when the number of holes increase, the constant h can decrease to 
0, and, at the same time, the ground state energy can increase to ∞.

5.1  Proof of Theorem 6.

Proof First, we observe that, by hypothesis, we can cut n segments Γ1, ...,Γn in Ω so that 
the complement Ω ⧵ {Γ ∶= Γ1 ∪ ... ∪ Γn} is simply connected.

Let Γ(�) be the �-neighborhood of Γ and set D = Ω ⧵ Γ(�) ; if � is small enough D is sim-
ply connected and we have, by Proposition 12 in [4]:

(20)Hjk = {x ∈ �
2
∶ d(x, pj) < d(x, pk)}

Ωj = ∩k≠j(Hjk ∩ Ω)

d(x, pj) <
𝜖

2
and d(x, pk) <

𝜖

2

d(p, �Ω) = � and d(p, x) ≤ �.

d(x, pk) ≤ d(x, p) + d(p, pk) ≤ 2�.
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where �1(D) denotes the first eigenvalue of a mixed problem on D, where we take the Dir-
ichlet condition on �D ∩ Ω and the Neumann condition on �D ∩ �Ω.

In order to control �1(D) , we will construct a test function u taking the value 0 on 
�D ∩ Ω and apply the min-max principle.

We assume �h = �

∑n

i=1
hi ≤ �Ω�

2
 and hi ≤ 1 (Fig. 1).

We consider one of the segments Γi of length hi and denote by qi the middle of Γi.
Observe that for � small enough, Γ(𝜖) ⊂ B(q1, h1) ∪ ... ∪ B(qn, hn) . We will construct a 

test-function u taking the value 0 on B(q1, h1) ∪ ... ∪ B(qn, hn) , so that it takes the value 0 
on �D ∩ Ω.

We introduce the radial function ui on D defined by

Our test function u on D will be the product:

Taking into account that |ui(x)| ≤ 1 , we have

and therefore

So it suffices to bound from above the contribution of each ∫
D
|∇ui|2 in order to control 

∫
D
|∇u|2 . In polar coordinates centered at qi , one has:

on the subset where hi ≤ r ≤ √
hi , and zero everywhere else. Then:

�1(Ω,A) ≤ �1(D)

ui(x) =

⎧
⎪⎪⎨⎪⎪⎩

0 if d(x, qi) ≤ hi,

−2

ln hi
(ln d(x, qi) − ln hi) if hi ≤ d(x, qi) ≤ √

hi,

1 if d(x, qi) ≥ √
hi.

u(x) = u1(x)⋯ un(x).

|∇u| ≤ |∇u1| + ... + |∇un|,

|∇u|2 ≤ n(|∇u1|2 + ... + |∇un|2).

|∇ui|2 = 4

ln2 hi
⋅

1

r2

Fig. 1  On the left the domain D = Ω ⧵ Γ
�
 . On the right, the ball B(qi, hi) and its intersection with Γ

�
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hence summing over i (recall that hi ≤ 1):

Taking into account that the area of a ball of radius 
√
hi is �hi and that u = 1 outside these 

balls, the L2−norm of the function u is at least

because we assume 
∑

i hi = h ≤ �Ω�
2�

 . So, by the min-max principle, we deduce

as asserted.   ◻

Proof of Corollary 8 First observe that

Then, since the function �(x) = −
1

ln x
 is concave ( ���

(x) ≤ 0 ) on the interval (0, e−2) , we 
have, by Jensen inequality:

Translated to our situation, we see that if every hj < e−2 , then:

and the upper bound (10) reads:

where h(Ω) is the Cheeger constant introduced in Definition 5.   ◻

5.2  Construction of an example

We will construct a family of domains Ωk with n(Ωk) = k2 holes; each Ωk is obtained as a 
union of k2 identical fundamental pieces Ck . Each fundamental piece Ck is a doubly convex 

�D

�∇ui�2 ≤ 2�
4

ln2 hi
�

√
hi

hi

dr

r
=

8�

ln2 hi
(ln

√
hi − ln hi) =

−4�

ln hi

�D

|∇u|2 ≤ 4�n

n∑
i=1

−1

ln hi∕2
= 4�n

n∑
i=1

1

|ln hi∕2|

�
Ω

u2 ≥ |Ω| − �

n∑
i=1

hi ≥ |Ω|
2

�1(Ω,A) ≤ 8�n

|Ω|
n∑
i=1

1

|ln hi∕2|

1

ln
2

hj

≤ −
1

ln hj
=

1

|ln hj|

n∑
j=1

�(hj) ≤ n�

(
1

n

n∑
j=1

hj

)
.

n∑
j=1

1

|ln 2

hj
| ≤

n

|ln( h(Ω)
n
)|

�1(Ω,A) ≤ 8�n2

|Ω|
1

|ln( h(Ω)
n
)| .
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domain, so that we will be able to use the inequality of Theorem 1 in [5] to bound from 
below its first eigenvalue.

Step 1: the definition of the fundamental piece Ck.
The domain Ck is determined by the exterior boundary curve, a square of sidelength 4

k
 

based on the vertices

and the inner boundary curve, a rectangle based on the vertices

We refer to the picture below (Fig. 2).
We have:

– the area of Ck is |Ck| = 8

k2
+

4

k7∕2
;

– the area of the domain Fk bounded by the outer curve is 16
k2

;
– the minimal width �k between the two boundaries is �k =

1

k5∕2
;

– the maximal width Bk between the two boundaries is Bk =
1

k

√
1 +

1

k3
;

– the diameter of Fk is Dk =
4
√
2

k
;

– the length Lk of the exterior boundary is Lk =
16

k
.

We consider a potential A with flux Φ . We can apply again Theorem 1 in [5] (see (5)) and 
we obtain:

A =

(
−
2

k
, 0
)
, B =

(
2

k
, 0
)
, C =

(
2

k
,
4

k

)
, D =

(
−
2

k
,
4

k

)
,

A�
=

(
−
1

k
,

1

k5∕2

)
, B�

=

(
1

k
,

1

k5∕2

)
, C�

=

(
1

k
,
4

k
−

1

k5∕2

)
, D�

=

(
−
1

k
,
4

k
−

1

k5∕2

)
.

(21)�1(Ck,A) ≥ c d(Φ,�)2
√
k, with c =

�
2

215
�

1 +
1

k3

≥ �
2

215
√
2
,

Fig. 2  On the left, the fundamental piece Ck constructed with the rectangles ABCD and A′B′C′D′ . On the 
right, the domain Ωk for k = 3 obtained by assembling nine fundamental pieces together
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which grows like 
√
k.

Step 2: the definition of Ωk and its first eigenvalue. The domain Ωk is a square of size 
4 filled with k2 copies of Ck as in the picture. That is:

where Ckj is congruent to Ck for all j. Ωk has k2 holes and |Ω| = k2|Ck| = 8 +
4

k3∕2
≥ 1.

We consider a potential A having fixed flux Φ around each hole. First, it is easy to show 
that

where c is the constant in Formula (21). In fact, let u be a first eigenfunction of Ωk . By 
restricting it to each piece Ckj we have, by the min-max principle:

We sum over j = 1,… , k2 and obtain

which immediately gives �1(Ωk,A) ≥ �1(Ck,A).
Step 3: calculation of h(Ωk) . Now, let us see the total length h of the segments we have 

to cut in order to make Ωk simply connected. As the holes are at distance 2

k5∕2
 , we need to 

cut (k − 1)k segments of length 2

k5∕2
 and k segments of length 1

k5∕2
.

The total length we need to cut is h(Ωk) =
2k−1

k3∕2
 . Summarizing we have, as k → ∞:

with c ≥ �
2

215
√
2
 , which in particular shows that |Ωk| is bounded from below, h(Ωk) tends to 

zero and �1(Ωk,A) tends to infinity, as requested.
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Ωk = ∪
k2

j=1
Ckj

�1(Ωk,A) ≥ �1(Ck,A) ≥ cd(Φ,�)2k
1

2

�Ckj

|∇Au|2 ≥ �1(Ckj,A)�Ckj

|u|2 = �1(Ck,A)�Ckj

|u|2.

�
Ωk

|∇Au|2 ≥ �1(Ck,A)�
Ωk

|u|2

�Ωk� ≥ 1, h(Ωk) ∼
2√
k
, �1(Ωk,A) ≥ c d(Φ,�)2

√
k,
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