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Abstract: The accurate mapping of crop types is crucial for ensuring food security. Remote Sensing
(RS) satellite data have emerged as a promising tool in this field, offering broad spatial coverage and
high temporal frequency. However, there is still a growing need for accurate crop type classification
methods using RS data due to the high intra- and inter-class variability of crops. In this vein, the
current study proposed a novel Parallel-Cascaded ensemble structure (Pa-PCA-Ca) with seven
target classes in Google Earth Engine (GEE). The Pa section consisted of five parallel branches, each
generating Probability Maps (PMs) for different target classes using multi-temporal Sentinel-1/2
and Landsat-8/9 satellite images, along with Machine Learning (ML) models. The PMs exhibited
high correlation within each target class, necessitating the use of the most relevant information to
reduce the input dimensionality in the Ca part. Thereby, Principal Component Analysis (PCA) was
employed to extract the top uncorrelated components. These components were then utilized in
the Ca structure, and the final classification was performed using another ML model referred to as
the Meta-model. The Pa-PCA-Ca model was evaluated using in-situ data collected from extensive
field surveys in the northwest part of Iran. The results demonstrated the superior performance of
the proposed structure, achieving an Overall Accuracy (OA) of 96.25% and a Kappa coefficient of
0.955. The incorporation of PCA led to an OA improvement of over 6%. Furthermore, the proposed
model significantly outperformed conventional classification approaches, which simply stack RS data
sources and feed them to a single ML model, resulting in a 10% increase in OA.

Keywords: Remote Sensing; Machine Learning; supervised classification; ensemble models; Google
Earth Engine

1. Introduction

The spatial distribution of crops has undergone significant changes on a global, na-
tional, and regional scale due to the combined impacts of climate change and anthropogenic
activities [1]. Consequently, accurate and timely mapping of crop types is crucial for en-
suring food security, effectively managing of agricultural fields, and achieving sustainable
development goals. Additionally, crop type maps provide valuable inputs for environmen-
tal models used to study agricultural responses to environmental factors [2]. In contrast
to traditional methods such as labor-intensive and time-consuming field surveys, Remote
Sensing (RS) satellite data have emerged as a promising tool in crop type mapping by offer-
ing large spatial coverage, high temporal frequency, and diverse spatial resolutions [3,4].
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RS satellite data can be divided into two main categories: Multispectral (MS) and
Synthetic Aperture Radar (SAR) data. Many crop type mapping approaches primarily
relied on MS data due to its strong ability to capture the spectral properties of crops
and track vegetation phenology. Widely used MS RS data sources include the Moderate
Resolution Imaging Spectroradiometer (MODIS) [5,6], Landsat (L) series (particularly L4, 5,
8, and 9) [7,8], and Sentinel-2 (S2) [9–13]. On the other hand, some studies focused solely on
SAR data for crop type mapping, with Sentinel-1 (S1) being the most commonly utilized one
due to its public availability [14]. This is because SAR data offer the advantage of providing
data under various weather and lighting conditions [15]. Furthermore, the backscatter SAR
signal is sensitive to surface parameters, such as crop humidity, crop biomass structure,
soil conditions, and surface roughness [16,17]. It is worth emphasizing that in the reviewed
literature, most papers utilized multi-temporal MS or SAR data to span the entire cropping
year. This methodology enables a more comprehensive understanding of phenological
changes throughout the growing season, leading to more precise identification of different
crop types [9,18].

Synergistic approaches that combine various sources of MS data demonstrated higher
overall accuracies than single source approaches in crop classification [19]. This is because
MS satellites have different temporal resolutions, which provide enhanced phenological
information and, consequently, lead to improved classification accuracy. The most common
combination of MS data involves the synergistic use of S2 and L8/9 due to their similar
characteristics [20,21]. Additionally, including S1 images in combination with MS data
in classification models has the potential to enhance crop mapping accuracies [22]. As
mentioned, SAR data capture the physical and structural properties of the crops, com-
plementing the spectral information obtained from MS sensors. In this regard, scholars
have commonly employed the combination of S1 with either S2 [23] or L8 [24]. However,
there is a limited number of studies that have classified crop types using a multi-source
combination of multi-temporal S1/2 and L8/9 data, followed by this article.

The development of multi-temporal multi-source approaches can pose serious chal-
lenges due to the substantial volume of RS data that must be stored and processed [25].
However, in recent years, the emergence of Google Earth Engine (GEE), a cloud-based pro-
cessing platform, has greatly facilitated RS applications [26,27]. GEE has been extensively
employed in various fields, including water resources management [28,29], long-term land
cover change detection [30], land cover classification [31], insect and disease monitoring [32].
With GEE, users have convenient access to Java and Python Application Programming
Interfaces (APIs), eliminating the need to download data for different tasks. As a result,
harnessing the capabilities of GEE to develop novel classification approaches with im-
proved accuracy can enable scientists to obtain more reliable results in near real-time earth
observation purposes using RS data.

Accurately mapping crop types using RS data is a challenging task due to the high
intra- and inter-class variability resulting from crop diversity, environmental conditions,
and farming practices [31,33]. To tackle this challenge, most of the articles used pixel-based
supervised Machine Learning (ML) classification algorithms which possess the ability to
capture nonlinear relationships within the data [34,35]. A significant portion of the literature
in this field relies on a single classifier to predict the target class. The commonly utilized
models encompass Support Vector Machines (SVM) [36], Random Forests (RF) [37], and
Artificial Neural Networks (ANNs) [38]. However, some scholars proposed the structure
of an ensemble of ML models, leveraging the complementary information from different
classifiers to address the aforementioned challenges, and achieved improved accuracy
levels [10,39].

These proposed ensemble structures can be categorized into Parallel (Pa) and Cascaded
(Ca) structures [40]. In Pa structures, there are multiple branches, each containing an ML
model. To predict the final class of a sample, the predictions from each ML model are
combined using simple techniques like majority voting [41]. In the existing literature,
Pa structures have primarily been implemented either at the model level or the training
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data level [42]. At the model level, ML classifiers differ across branches, but input data
are the same for each base model within each branch. However, it is important to note
that some of the ML models employed in this approach may perform much better than
others, resulting in serious uncertainties when they are combined in Pa structure. At the
training data level, techniques such as the bagging algorithm (also known as bootstrap
aggregation) are employed to train identical ML models using different training data in
each branch [43]. While this approach aims to improve performance, the use of a subset of
training samples/features prevents the ML models from fully utilizing all of the training
data to learn the underlying patterns. Moreover, this strategy required hundreds of models
to be trained. Previous scholars did not consider a Pa structure at input data level, in
which not only are the entire training data used in each branch, but also the combination of
different RS data sources can boost the classification accuracy.

In the reviewed literature, the Pa structure relied on simple techniques like majority
voting to predict the class of a sample. However, these simple approaches encounter
challenges when dealing with complex classification tasks. To address this, some of the
articles proposed a Ca structure, where the outputs of a Pa structure were directly used
by another classifier, mainly referred to Meta-model [43,44]. Since the Meta-model itself
is an ML model, the process of feature engineering becomes crucial to enhance the final
accuracy [45]. In the Ca structure, it is essential for the input features of the Meta-model to
exhibit diversity [46]. However, a notable issue arises in which the generated Probability
Maps (PM) within each branch exhibit a high correlation among the different classes.
Consequently, the direct use of Pa structure’s outputs in the Ca structure can lower the
performance of the ensemble model. Previous articles utilized feature extraction algorithms
to handle the highly correlated input features of ML models, among which the Principal
Component Analysis (PCA) technique exhibited promising performance [47,48]. However,
these techniques were used in single-model methodologies and have not yet been employed
in an ensemble model structure. Utilizing these techniques effectively mitigates undesired
correlations during the learning process of the Meta-model by eliminating redundant and
irrelevant features.

In the present work, a novel ensemble framework is proposed, namely a Parallel-
PCA-Cascaded (Pa-PCA-Ca) ensemble structure for crop type mapping, with the entire
methodology developed and implemented in GEE. In the proposed framework, the outputs
of a Pa structure at input data level, after being fed to PCA for redundant information
elimination, are used in a Ca structure by a Meta-model. Various ML models, such as
RF, SVM, Gradient Boosting Tree (GBT), and Classification And Regression Tree (CART),
were employed in the proposed methodology. Additionally, the methodology incorporates
different sources of satellite imagery to map different crop types in Mahabad city, Iran. The
main contributions of this work are summarized below:

(1) A novel ensemble ML framework is proposed based on a Pa-Ca structure combined
with PCA transformation, which integrates the outputs of MLs and multi-source
satellite data for improved crop type classification.

(2) Both MS and SAR RS satellite imageries (S1/2 and L8/9) were employed, and the
proposed method was evaluated using the Ground Truth (GT) data of different crop
types collected using extensive field surveys in Mahabad, Iran.

(3) The study involved conducting a comparative analysis of multiple ML models within
the proposed methodology, alongside a comparison between the proposed methodol-
ogy and two conventional methods used for classifying crop types.

2. Study Area and Datasets

This section introduces the study area and the data sources utilized, which include RS
satellite images and GT data.
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2.1. Study Area

In this paper, the upstream agricultural lands of Mahabad city were selected for
evaluating the proposed methodology. The study region is in the northwest part of Iran
and lies south of Lake Urmia in a fertile plain (Figure 1a,b), approximately 1400 m above
sea level (Figure 1c). The average annual temperature and rainfall of this region are 12 ◦C
and 390 mm, respectively [49]. Considering the population living in the surrounding areas
of the study site, about 200,000 people are influenced by the agricultural products of this
region. Additionally, this region’s croplands directly impact the water dynamics of Lake
Urmia, contributing to its gradual desiccation [50]. Figure 1d illustrates the 10-year average
(2013–2023) of Normalized Difference Vegetation Index (NDVI) derived from L8/9 data.
The surrounding regions of the area are mainly covered by rocks and mountains. Therefore,
the inside region of the boundary depicted in Figure 1c,d was chosen as the study site. The
majority of agricultural lands are situated in the central parts, whereas the surrounding
regions are mainly related to bare lands and urban areas. So, there is a diverse ecosystem
within the area, encompassing agricultural lands with various crop types, bare soil, and
urban areas. Various agricultural products are cultivated in this region, including both
autumn and spring crops. Wheat is the main autumn crop, while beet, alfalfa, corn, and
onion are the main spring crops. Additionally, there are extensive garden lands of apple
in this region. Following the agricultural calendar, the cultivation of autumn crops begins
in November, while the harvesting of spring crops continues until the end of December.
Consequently, the cropping year in this region spans from November of the previous year
to December of the following year.
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2.2. Datasets

Three sources of RS satellite data were utilized (S1, S2, and L8/9). Moreover, the
proposed Pa-PCA-Ca ensemble structure is a supervised classification technique, meaning
that it needed Ground Truth (GT) data for model calibration and validation.

2.2.1. Satellite RS Data

Satellite imageries of two MS Landsat (L) missions were one of the optical satellite
data sources utilized in this study. When conducting this research, only L8 and L9 satellites
were active, launched on February 11, 2013, and September 27, 2021, respectively [51]. This
study utilized the Surface Reflectance (SR) products of L8/9, which are available after the
Land SR Code (LaSRC) correction incorporating radiometric, terrain, and atmospheric
corrections [52]. L8 and L9 missions have a spatial resolution of 30 m. Besides, both
include six spectral bands, encompassing the visible, Near Infrared (NIR), and Shortwave
Infrared (SWIR) regions, with a spectral range extending from 482 to 2200 nm (Table 1).
It is important to mention that the coastal aerosol band of L8/9 was not utilized. Each of
these missions provides a temporal resolution of 16 days, which is reduced to 8 days when
combined. So, because of their similar spatial, spectral, and temporal characteristics, their
combination was considered as a single dataset, hereafter referred to as L8/9. Figure 1b
illustrates that the study site is covered by two L8/9 scenes (with a path number of 135 and
row numbers 34 and 35).

Table 1. The S2 and L8/9 spectral bands used in this study.

Collection Band Name Wavelength (nm) Resolution (m) Description

S2

B2 496.6 10 Blue (B)
B3 560 10 Green (G)
B4 664.5 10 Red (R)
B5 703.9 20 Red Edge 1 (RE1)
B6 740.2 20 Red Edge 2 (RE2)
B7 782.5 20 Red Edge 3 (RE3)
B8 835.1 10 NIR

B8A 864.8 20 Red Edge 4 (RE4)
B11 1613.7 20 SWIR 1
B12 2202.4 20 SWIR 2

L8/9

B2 482 30 Blue (B)
B3 561.5 30 Green (G)
B4 654.5 30 Red (R)
B5 865 30 NIR
B6 1608.5 30 SWIR 1
B7 2200.5 30 SWIR 2

In this paper, S2 MS images were used as another source of optical satellite data, which
are acquired through a Multi-Spectral Instrument (MSI) sensor. The S2 mission consists
of two identical satellites, S2-A and S2-B, launched on 23 June 2015, and 7 March 2017.
Each satellite has a 10-day repeat cycle, which is reduced to 5 days when both are used.
The MSI has 13 spectral bands, with three dedicated to atmospheric applications (with a
spatial resolution of 60 m). The other ten bands cover the visible, Near Infrared (NIR), and
Shortwave Infrared (SWIR) regions, spanning from 496 to 2200 nm, with spatial resolutions
of 10 and 20 m [53]. This study utilized S2 level-2A data which provide SR values after
radiometric, terrain, and atmospheric corrections using the Sen2Core algorithm [54]. As
can be seen in Figure 1b, the study site is entirely covered by a single S2 image with a
granule number of 38SNF.

This study also utilized the S1 satellite as an SAR data source. S1 is the first mission of
the Copernicus program developed by the European Space Agency (ESA). This mission
includes a constellation of two identical satellites: S1-A (launched on 3 April 2014) and S1-B
(launched on 26 April 2016). The dual-satellite constellation provides a 6-day repeat cycle.
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The S1 satellites are equipped with a C-band (5.405 GHz) SAR instrument, which can collect
data in any weather conditions and at any time of the day or night [55]. The S1 Ground
Range Detected (GRD) product is used for this study, which provides two polarizations:
Vertical-Vertical (VV) and Vertical-Horizontal (VH) in Interferometric Wide (IW) swath
mode. This product is available through GEE after being preprocessed using the S1 Toolbox
(S1TBX), providing a spatial resolution of 10 m [56]. The preprocessing includes thermal
noise removal, radiometric calibration, and terrain correction. Since the majority of the
available S1 images over the study site were acquired in an ascending orbit, this study only
utilized S1 data acquired in an ascending orbit. The study site was entirely covered by two
ascending orbits with relative orbit numbers of 72 and 174 (Figure 1b), resulting in multiple
S1 scenes capturing the study site.

2.2.2. Reference GT Data

The proposed method relies on supervised classification, which requires training data
of high reliability. Multiple field surveys were conducted in the study area between June
2022 and September 2022 to collect reliable GT data for model validation and calibration.
This period coincides with the peak growth period of autumn and spring products in
the study site. The distribution of GT samples and some images during field surveys
can be seen in Figure 2. Field visits were done so that the ground data have appropriate
distribution in the study site. During the field surveys, 315 polygons were recorded, which
were related to various classes such as ‘Wheat’, ‘Corn’, ‘Beet’, ‘Onion’, ‘Alfalfa’, ‘Garden’,
and ‘Other’. The ‘Other’ class encompasses bare soil, urban areas, and water bodies,
while the ‘Garden’ class comprises apple gardens mostly. For each polygon, the corner
coordinates of each field were recorded using a handheld GPS device (Garmin eTrex 20x)
with a spatial accuracy of less than 5 m. To prevent the mixed pixels effect, the corner
pixels were recorded with at least a 30 m distance from the surrounding landcover classes.
Table 2 indicates the number of sample points (in a 30-m resolution) in each class derived
from field surveys. Figure 2c also illustrates the NDVI behavior of randomly selected
samples from each target class derived from the monthly medians of L8/9 (as mentioned
in Section 3.1). The reference dataset was divided into two sections, 70% as training and
30% as validation. Training data were used for model calibration, while validation data
were used in the accuracy assessment with no inference in the training phase.

Table 2. The number of sample points per class.

Crop Name Training Set Validation Set Total

Wheat 589 253 842
Corn 336 144 480
Beet 413 177 630

Onion 210 90 300
Alfalfa 676 290 966
Garden 911 390 1301
Other 415 178 593
Total 3550 1522 5072
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3. Proposed Framework

As mentioned in the introduction, this study aimed to propose a novel Pa-PCA-
Ca ensemble structure for crop type classification in RS satellite data. The outline of the
proposed methodology can be seen in Figure 3, which consists of four main steps: (1) dataset
preprocessing and preparation, (2) Pa structure, (3) PCA-Ca structure, and (4) accuracy
assessment. Each of the steps is going to be elaborated more fully in the following sections.
It should be emphasized that the entire procedure was designed based on the capabilities
of GEE and fully implemented within this cloud-based platform.

3.1. Dataset Preprocessing and Preparation

As mentioned earlier, three sources of satellite data were utilized in this study: S1,
S2, and L8/9. S2 and L8/9 images belong to the optical type of satellite data, which
face limitations due to cloud coverage, which hinders the full observation of the study
site. Consequently, any images with a cloud coverage of more than 10% were excluded.
Additionally, clouds and cloud shadows were eliminated from each scene by utilizing
the pixel quality attributes which are available alongside each S2 or L8/9 image (‘QA60’
band for S2 and ‘QA_PIXEL’ for L8/9). However, the removal of cloudy pixels resulted
in data gaps within some images across the study site. Furthermore, it is important to
mention that the study area was covered with multiple image scenes in some satellite
missions like S1 and L8/9, as depicted in Figure 1b. Consequently, this study used a
monthly median compositing approach to generate the input satellite images for the ML
models. This approach has been proved to be effective in similar studies [57]. The monthly
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composites ensure the gap-free images of the study site and also aid in reducing the possible
sensor-related noises in optical datasets (S2 and L8/9) and speckle noise in S1 SAR data.

1 

Figure 3. Outline of the proposed framework (The developed JavaScript code of the proposed ensem-
ble structure of this paper in GEE and a part of GT samples can be found at Supplementary Material).

Note that multi-temporal satellite imageries were mainly utilized in the literature for
crop type classification. This is because multi-temporal data take into account crop growth
patterns and phenological information [37]. Therefore, images from ‘1 November 2021’ to
’30 December 2022’ were selected (based on the aforementioned conditions). This period
covers the entire 2022 cropping year of the study site, which is the year of GT data collection.
As a result, 14 monthly median composites were generated for each data collection (S1, S2,
and L8/9). Considering the varying spatial resolutions among the satellite data sources, all
the median composites were resampled using bilinear technique to a spatial resolution of
30 m, based on the lowest spatial resolution provided by L8/9 [58].

As mentioned in the introduction, the paper proposes a Pa structure at the data level.
This means that each prepared multi-temporal composite of S1, S2, and L8/9 data was
separately inputted into the ML models. However, for the optical datasets (S2 and L8/9), in
addition to the spectral bands, Spectral Indices (SIs) were also utilized to enhance the classi-
fication accuracy. This is because previous studies have demonstrated that SIs can improve
the identification of complex crop type classes [59,60], as they are designed to highlight
specific objects of interest in optical data [61]. In this vein, five of the most commonly used
SIs in the literature were employed: Normalized Difference Vegetation Index (NDVI) [62],
Normalized Difference Water Index (NDWI) [63], Normalized Difference Built-up Index
(NDBI) [64], Soil Adjusted Vegetation Index (SAVI) [65], and Enhanced Vegetation Index
(EVI) [66]. All of these SIs were extracted from both the monthly composites of S2 and
L8/9 data. The mathematical formulas for each index are provided in Table A1. It should
be noted that no additional features were extracted from the S1 bands (VV and VH). This is
because numerous studies have demonstrated that these specific bands contain sufficient
information for land cover mapping, making additional feature extraction from them un-
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necessary [67]. In summary, five Feature Collections (FCs) were generated as inputs to the
ML models, which are presented in Table 3.

Table 3. Five different FCs used in the branches of the Pa structure.

FC Branch Number Description

FC1 1 Only S2 spectral bands, B2 to B12 (Table 1)
FC2 2 Only S2-derived SIs: NDVI, NDBI, NDWI, SAVI, EVI (Table A1)
FC3 3 Only L8/9 spectral bands, B2 to B7 (Table 1)

FC4 4 Only L8/9-derived SIs: NDVI, NDBI, NDWI, SAVI,
EVI (Table A1)

FC5 5 Only VV and VH bands

3.2. Pa Structure

This study introduced a Pa structure at the data level. This means that, unlike previous
studies, each prepared FC in Table 3 was fed to an ML model. This approach allows for the
utilization of the strengths of different datasets simultaneously. Additionally, since there is
a specific FC in each branch, the Pa structure can achieve higher accuracies compared to
the conventional image stacking approach, which introduces unnecessary redundancy and
reduces computational efficiency during the classification process. There is a total of five
different FCs, resulting in five branches within the Pa structure.

In this study, four widely used ML models in crop classification, including CART,
SVM, RF, and GBT, were assessed to find the optimal models in each branch of Pa structure.
The CART algorithm is a statistical method which identifies target classes by finding the
common characteristics of each class [68]. This method has been widely used in land cover
classification due to its simple design and computational efficiency [69]. The tree Maximum
Nodes (MN) and Minimum Leaf Population (MLP) are two of the main parameters of this
method that must be set.

SVM is another ML method that determines the best possible hyperplane to classify
different samples into specific classes based on the input features [70]. This approach
offers remarkable advantages in dealing with complex problems, limited sample sizes, and
high-dimensional data. When using SVM, the main parameters that need to be modified
are the Gamma (G) value and the Cost (C) parameter. Based on the proven performance in
the previous articles, the kernel function was set to ‘Radial Basis Function’ (RBF) [71].

RF is an ensemble method that creates multiple decision trees to make predictions.
RF has a bagging approach, meaning each tree is built using a random subset of training
samples. During prediction, each tree in the forest independently makes a prediction,
and the final output is determined by majority voting. The Number of Trees (NT), the
Maximum Nodes (MN), and the Variables Per Split (VPS) are the parameters that must be
set in this method [72].

GBT is an ensemble algorithm that combines gradient boosting with decision trees. It
builds trees sequentially to correct errors made by previous trees. GBT captures complex
relationships, processes data sets, and handles missing values automatically [73]. The
parameters needing to be set in this classifier are the Number of Trees (NT), the Shrinkage
(SH), and the Maximum Nodes (MN).

To select the best model in each branch of the Pa structure, each of the aforementioned
ML models is separately evaluated in each branch. The model that achieves the highest
accuracy is chosen as the base model for that particular branch. This approach is adopted
because some ML models exhibit poorer performance compared to others. Consequently,
their simultaneous use alongside other ML models can negatively impact the results. To
this end, the hyperparameters of each ML model in each branch were first determined
using a five-fold cross-validation approach with the aid of a grid search technique. This
involves randomly dividing the training data into five folds. During each iteration, one-fold
is held out for validation, while the remaining k-1 folds are used to train the algorithms
in each branch using the hyperparameters from the search space. This process is repeated
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k times, and the best hyperparameters are selected based on the average classification
accuracy. The model that achieves the highest classification accuracy on the five-fold cross-
validation, along with its optimal hyperparameters, is selected as the base model in each
branch. It is important to mention that the same randomly selected five-folds of training
data were utilized in all five branches of the Pa structure. Table 4 provides an overview of
the hyperparameters of the ML models and their corresponding search space.

Table 4. Hyperparameters optimized in this study.

Model Hyper Parameters Grid Search Space

CART
MN [1–5, step = 1]
MLP [1–10, step = 2]

SVM
G [1, 5, 10, 100, 1000] × 10−4

C [1, 10, 100, 1000, 10,000] × 10−3

RF
NT [10, 50, 100, 200, 300]
MN [1–5, step = 1]
VPS [1–5, step = 1]

GBT
NT [10, 50, 100, 200, 300]
MN [1–5, step = 1]
SH [1, 10, 100, 1000] × 10−4

Pa-PCA-Ca n
(number of PCA top components) [1–5, step = 1]

After selecting the best model in each branch, each ML model is trained with the same
training dataset, which accounts for 70% of the reference dataset. The outcome of each
branch in the classification process is a Probability Map (PM) for each class. These PMs
contain bands equal to the number of classes (seven in this study). The pixel values in
the PMs represent the probability of each pixel belonging to different classes. Since there
are five branches in the proposed Pa structure, there are five sets of PMs, each consisting
of seven bands. In the next step, these PMs are utilized in the PCA-Ca structure for the
final classification.

3.3. PCA-Ca

The generated PMs from different branches within the Pa structure exhibit a strong
correlation for each class. For example, the PMs corresponding to the ‘Wheat’ class across
different branches show similarities. This can also be concluded from the previous articles
in the literature, which suggests that different RS data sources often produce similar
outcomes [74]. To address this issue, the current study incorporates Principal Component
Analysis (PCA) on the PMs of the Pa structure for each class. PCA is a linear orthogonal
transformation technique commonly used for high-dimensional datasets [75]. It involves
transforming the input feature space into a new space where the features are uncorrelated.
In this study, the bands corresponding to the same class from the five branches are stacked
(referred to as class-wise arrangement in Figure 3), resulting in seven new PMs (number of
target classes), each consisting of five bands (number of branches). PCA is then applied to
the PMs of each class, generating seven new collections, each comprising five uncorrelated
bands known as principal components. The top ‘n’ components from each new collection
are stacked together to form a probability cube, which is utilized as an input to the Meta-
model, referred to as the Ca structure, for classifying different crop types. The value of
‘n’ is determined through a grid search ranging from 1 to 5 (number of branches) using
five-fold cross validation of training data.

For the selection of the best Meta-model, the same methodology was applied as in the
Pa structure. Specifically, the PMs from the five Pa branches were fed to the four mentioned
ML models (CART, SVM, RF, and GBT). It is worth noting that PCA was not employed on
the PMs at this stage for a better evaluation of its effect on the Meta-model performance.
Using the identical methodology as described in the Pa structure, the hyperparameters
of each model were determined using a five-fold cross-validation technique and a grid
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search approach with the grid search space outlined in Table 4. The model that achieved
the highest average classification accuracy was selected as the Meta-model. Once the
best model was chosen, the Meta-model was trained using the entire training dataset,
which accounted for 70% of the reference dataset. It is important to emphasize that the
Meta-model was also trained using the same training data as the branches.

This study evaluated various model architectures to demonstrate the superior perfor-
mance of the proposed methodology. These different model architectures are outlined in
Table 5. Model No. 3 represents a conventional approach of crop type classification, where
all input FCs (FC1–FC5) were simply stacked and a single ML model was used for classifi-
cation. Additionally, to investigate the impact of PCA in traditional approaches, another
model architecture was tested (Model No. 4). In this architecture, the top components
resulting from the PCA transformation of the input FCs (FC1–FC5) were fed to a single ML
model for the final classification.

Table 5. Different model architectures tested in this article to compare with the performance of the
proposed methodology.

No Model Description

1 Pa-Ca

This is a special case of the proposed framework of
this paper without employing PCA (Figure 3). The
best models as base models in Pa branches and a
Meta-model in Ca structure were identified first.
Additionally, various combinations of input FCs

(FC1–FC5) were tested for this specific architecture.

2 Pa-PCA-Ca

This is the proposed framework of this paper (using
the same base models and Meta-models as in Model

No. 1), as PCA is applied prior to Ca structure.
FC1–FC5 were utilized in this model.

3 Statcked Features
without PCA

In this model, all of the FCs (FC1–FC5) are stacked
together without employing the PCA technique
before classification using a single ML model.

4 Statcked Features
with PCA

This model is similar to Model No. 3, employing
PCA before feeding the entire FCs (FC1–FC5) to a
single ML model for classification. The optimum
number of components was found to be six using

five-fold cross validation using training data.

3.4. Accuracy Assessment

To assess the performance of the proposed framework, the Confusion Matrix (CM)
of the classification and various CM-derived parameters were utilized. These parame-
ters included Overall Accuracy (OA), Kappa coefficient, Producer’s Accuracy (PA), and
User’s Accuracy (UA). Figure A1 (in Appendix A) illustrates a hypothetical CM for n
classes. Equations (A1)–(A4) (in Appendix A) also present the formulas for calculating the
aforementioned metrics directly from the CM. It is important to highlight that the accu-
racy assessment was performed using a validation dataset (30% of the reference dataset).
The validation dataset was not used during the training phase or model development. It
should be highlighted that the Pearson Correlation Coefficient (PCC) was also utilized to
investigate the correlation between the PMs of the Pa structure within each class. This
analysis was conducted to justify the need for employing the PCA technique in the pro-
posed methodology.

4. Results
4.1. Base Model Selection in Pa Structure

As mentioned in Section 3.2, the best base model in each branch of Pa structure was
determined through 5-fold cross-validation using the training data. The proposed Pa
structure consisted of 5 branches, each utilizing different FCs (FC1–5) for model develop-
ment. Figure 4 illustrates the averaged values of OA and Kappa for various ML models.
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The optimal hyperparameters of each model were found using the described approach
in Section 3.2. It can be observed that the RF model outperformed other ML models in
all branches. For instance, RF achieved OA values of 80.15%, 83.57%, 79.64%, 82.83%,
and 78.51% in FC1–5 branches, respectively. Similarly, the Kappa values were 0.766, 0.812,
0.754, 0.780, and 0.741, respectively. Therefore, RF was selected as the base model for all Pa
branches. Following RF, the GBT, SVM, and CART models ranked next. Moreover, among
the branches, FC2 demonstrated the highest accuracy in terms of both OA and Kappa for
each ML model. FC4, FC1, FC3, and FC5 were ranked next. The results also indicated
that the optical FCs (FC1–4) performed better compared to the SAR FC (FC5). Similarly,
the S2 FCs (FC1,2) exhibited better performance than the L8/9 FCs (FC3,4). Furthermore,
the index-based FCs (FC2 and FC4) demonstrated superior performance compared to the
spectral-based FCs (FC1 and FC3) in optical RS data. It should be noted that the optimal
hyperparameters of RF in each branch were as follows: FC1 [NT: 200, MN: 1, VPS:], FC2
[NT: 100, MN: 2, VPS: 1], FC3 [NT:300, MN: 1, VPS: 1], FC4 [NT:200, MN: 1, VPS: 1], and
FC5 [NT:200, MN: 2, VPS: 2].
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Figure 4. Performance of ML models in different branches of Pa structure in terms of OA and Kappa
using 5-fold cross validation of training data.

4.2. Meta Model Selection in Ca Structure

After selecting the base model for each branch, the Meta-model in the Ca structure
was determined using the same approach mentioned in Section 3.3. It is important to
note that in this stage, PCA was not applied to the output PMs of each branch. In other
words, PMs of all branches were directly fed to the ML model. This was done to better
show the improvements caused by PCA technique in the next sections. Figure 5 illustrates
the performance of different ML models in the Ca structure in terms of OA and Kappa.
The optimal hyperparameters of each model were found using the described approach in
Section 3.3. The RF algorithm outperformed other ML techniques as the Meta-model in
the Ca structure. It achieved an OA of 92.56% and a Kappa of 0.911. The GBT and SVM
classifiers ranked second and third, with OA values of 90.13% and 85.76%, respectively, and
Kappa values of 0.893 and 0.819, respectively. The classifier with the lowest performance
was the CART algorithm, which attained an OA of 77.32% and a Kappa of 0.726. Therefore,
RF was selected as the Meta-model in the proposed ensemble structure of this article. It
should be noted that the optimal hyperparameters of RF as the Meta-model were [NT: 300,
MN: 1, VPS: 1].
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Figure 5. Performance of different ML models as the Meta-model in the Ca structure in terms of OA
and Kappa using 5-fold cross validation of training data.

4.3. Input Data Level Ensemble in Pa-Ca Structure

As mentioned in Section 3.1, the proposed methodology used five FCs (FC1–FC5) in
the Pa structure. Figure 6 compares the performance of the Pa-Ca structure (without using
PCA technique) for different FCs based on the validation dataset. It should be highlighted
that based on the results of Sections 4.1 and 4.2, RF was selected as the base model and
Meta-model in the Pa-Ca structure. Moreover, when there is only a single FC, there would
be no Ca structure, and RF is directly implemented to obtain the results. For example, when
FC5 is used, only a single RF with optimized hyperparameters is used.
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As can be seen (Figure 6), when only a single FC is used, the lowest classification
accuracies were obtained. Among the cases of using a single FC, FC2 achieved the highest
OA (81.87%) and Kappa (0.782). In contrast, the S1-related FC (FC5) achieved the lowest
performance with an OA of 76.68% and a Kappa of 0.721. The results also indicate that
among the single FCs, FCs of SIs (FC2, FC4) generally yield better accuracies than FCs of
raw spectral bands (FC1, FC3). Additionally, S2-related FCs generally performed better
than L8/9 FCs. The same results were also achieved in Figure 4.

All the single FC cases only used the RF model for classification. It can be seen in
Figure 6 that when more FCs are used in a Pa-Ca structure, the OA and Kappa values
showed significant improvements. This proves the performance of the proposed Pa-Ca
structure, which benefits from using different satellite data sources in each branch for crop
type classification. By keeping FC5 fixed and combining it with other FCs, the combination
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of FC2+FC5 in the Pa-Ca structure achieved the highest accuracy, with an OA of 87.58%
and a Kappa of 0.851. The results also indicate that using the Pa-Ca approach with all five
designed branches achieved the highest OA (91.13%) and Kappa (0.893). As a result, the
best case (FC1+ FC2+ FC3+ FC4+ FC5) is selected as the input features of the proposed
Pa-Ca ensemble structure in the rest of the paper. In the next step, the effect of employing
the PCA technique on the outputs of the Pa section of the proposed methodology is
further discussed.

4.4. Pa-PCA-Ca Structure

As mentioned in Section 3.3, the current study employed the PCA technique on the
output PMs of different classes. This was done due to the high PCC observed between the
output PMs of different branches within each class (Figure 7). For instance, in the ‘Wheat’
class, the PM map of the FC2 branch demonstrated a PCC of 0.89 with the PM of the FC1
branch. The PCC values were 0.85, 0.91, and 0.65 when comparing the PM of FC2 with
FC3, FC4, and FC5, respectively. Notably, the optical FCs exhibited stronger correlation
among themselves compared to the SAR-based FC (FC5). The PCCs between the output
PMs of optical FCs (FC1–4) ranged from 0.71 (FC3 against FC2 and FC4 in the corn class) to
0.96 (FC3 against FC4 in the garden class). However, the PCCs between SAR-based FCs
(FC5) and optical FCs (FC1–4) ranged from 0.58 (FC5 against FC1 and FC2 in the ‘Corn’
and ‘Alfalfa’ classes, respectively) to 0.85 (FC5 against FC3 in the ‘Garden’ class). Based
on these PCCs, it can be concluded that the PMs of different branches exhibited a high
correlation, leading to redundancy in the input FCs of the RF model in the Ca structure.
Therefore, employing PCA on the outputs of the Pa structure was necessary to enhance the
performance of the Meta-model.
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To employ PCA on the output PMs of the Pa structure and feed them into the Ca
structure, the top ‘n’ components were selected for each class. To determine the optimal
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value for ‘n’, as described in Section 3.3, a grid search was conducted using 5-fold cross-
validation on the training data. Table 6 presents the effect of ‘n’ on OA and Kappa. As
shown, when ‘n’ was set to 1 (using only the first output component of PCA for each
class), the classification accuracy experienced a 4.88% increase in OA (from 92.56% to
97.44%) and 0.050 increase in Kappa (from 0.911 to 0.961) compared to the Pa-Ca structure.
This indicated that PCA led to a significant improvement in Meta-model performance.
Increasing the value of ‘n’ to values of more than 1 did not guarantee higher accuracies
compared to the Pa-Ca case. Therefore, ‘n’ was set to 1 in the proposed methodology, and
the remaining results in this article are based on this value.

Table 6. Effect of the ‘n’ (number of components) on the classification accuracy (OA and Kappa)
using 5-fold cross-validation on training data.

n 1 1–2 1–3 1–4 1–5 Pa-Ca

OA (%) 97.44 95.32 93.88 92.18 90.73 92.56
Kappa 0.961 0.937 0.915 0.909 0.887 0.911

Figure 8 compares the UA and PA of different target classes for the proposed method-
ology (Pa-PCA-Ca (n = 1)) with the Pa-Ca structure. As can be seen, considering the UA
metric, in the Pa-Ca model, the ‘Beet’ class achieved the highest UA of 94.15%, while the
‘Onion’ class achieved the lowest UA of 86.31%. However, employing the PCA technique
led to a significant increase in accuracy for all classes, where the ‘Wheat’ class achieved
the highest UA of 97.54%, while the ‘Other’ class achieved the lowest UA of 91.97%. The
highest increase was observed in the ‘Onion’ class, with an improvement of 9.29% from
86.31% to 95.60%.
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The same conclusions can also be drawn for the PA metric (Figure 8). Employing PCA
resulted in a significant improvement in accuracy for all classes, with the ‘Onion’ class
showing the highest improvement of 6.55% from 90.11% to 96.66%. The results indicate
that the PCA technique effectively improves the performance of the Meta-model in the Ca
structure, which can also be supported by the OA and Kappa values obtained using 5-fold
cross-validation of the training data in Table 6.

The final output PMs of the proposed Pa-PCA-Ca model were also compared with
the output PMs of the Pa-Ca model to investigate the effect of the PCA technique. Figure 9
illustrates the “First Max” (refers to the highest probability of each pixel belonging to
a specific target class), and the “Second Max” (refers to the second-highest probability
of each pixel belonging to another target class), along with their difference. A model is
considered to better discriminate the target classes when the highest probability of each
pixel is significantly larger than the second-highest value. In other words, the model can
assign higher certainty to each pixel when the highest probability is substantially greater
than the second highest probability.
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belonging to a specific target class, ‘Second Max’: second-highest probability of each pixel belonging
to another target class).
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As shown in Figure 9, when PCA is applied in the proposed methodology, the "First
Max" values increased in most of the study area, while the “Second Max” probabilities
decreased substantially in the region. This is further supported by the comparison of the
histogram plots of the “difference” maps. The absolute skewness value of 1.75 indicated
that the majority of the data points were concentrated towards the right side in the Pa-PCA-
Ca model, compared to the Pa-Ca model with an absolute skewness value of 0.19. This
suggests that the “difference” map between these two cases indicated larger values for the
Pa-PCA-Ca model, indicating that the PCA technique led to a decrease in classification
uncertainty, which resulted in higher classification accuracies.

The final crop type maps of the study site are presented in Figure 10, showcasing the
outcomes of the proposed method (Pa-PCA-Ca). The quantitative analysis revealed that
the proposed method outperformed the Pa-Ca structure in terms of accuracy, thanks to
the integration of PCA. The visual representations in Figure 10 also confirm the numerical
findings, demonstrating the effectiveness of the proposed methodology (Pa-PCA-Ca) in
generating more precise classification maps compared to the Pa-Ca structure. By employing
PCA, the presence of noisy points in the pixel-based classification results was notably
reduced, which can be attributed to the reduction in uncertainty, as depicted in Figure 9.
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4.5. Comparison to Conventional Approaches

As mentioned in Section 3.3 (Table 5), two additional conventional model architectures
were utilized to prove the superior performance of the proposed methodology. In these
models, RF was chosen as the ML model for classification. Figure 11 displays the CMs
of the four model architectures. It is evident that the proposed method achieved an
OA that was approximately 10% and 9% higher compared to the conventional feature
stacking approach without and with PCA, respectively. The results demonstrated that the
proposed methodology displayed improved discrimination across all targets by correctly
classifying a higher number of validation samples in each class (identified by the main
diagonal elements) compared to the other methods. This indicates that the proposed
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method effectively accounted for both intra-class and inter-class variabilities of different
crop types, resulting in its superior performance.
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5. Discussion
5.1. Base Models and Meta-Model

This study introduces a novel ensemble structure for classifying crop types using
multi-source and multi-temporal S1, S2, and L8/9 satellite data. The proposed structure
consists of two parts: Pa and PCA-Ca. The Pa structure generates inputs for the second
part, and accurate outputs from Pa enhance the inputs for PCA-Ca, leading to an improved
classification performance. To ensure optimal outputs from the Pa structure, the best
performing ML model was utilized in each branch for each specific FC (FC1–5 in Table 3).
The selection of the best performing ML model in each branch of the Pa structure mitigates
any negative impact from low-performing models when they are combined in the PCA-
Ca part. The findings in Figure 4 demonstrated that the RF model outperformed GBT,
SVM, and CART in all branches, indicating its superior accuracy in classifying crop types
across various optical and SAR-based FCs (FC1–5 in Table 3). Previous studies have also
recognized RF as the top-performing ML model for crop type classification [20,40,44,48].
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Furthermore, the Meta-model within the Ca structure directly generates the final
classification outcomes. Similar to the Pa part, the best performing model within the Ca
structure was chosen from RF, GBT, SVM, and CART. The RF model also demonstrated
superior performance among these ML models within the Ca structure as well, as indicated
in Figure 5. As a result, RF was chosen as the base model in the Pa structure and as the
Meta-model in the Ca structure. The same conclusion was mentioned by other articles in
this field for selecting the Meta-model [44]. The superior performance of RF compared to
other ML models in this study can be attributed to several reasons. Firstly, the ensemble
nature of RF combines multiple decision trees to make predictions, reducing the impact of
individual tree biases and variances [41,43,44]. Secondly, RF has the capability to capture
non-linear relationships in the data by randomly selecting subsets of features and training
decision trees on these subsets [34]. Lastly, the random feature selection and bootstrapping
techniques employed in RF help to mitigate the impact of noisy or outlier observations and
reduce the risk of overfitting to the training data [42].

5.2. Proposed Pa-PCA-Ca Structure

The proposed ensemble framework achieved higher OA and Kappa accuracies com-
pared to conventional approaches that utilize a simple stacking of FC for classification, as
shown in Figure 11. This is due to the fact that conventional approaches, which primarily
rely on a single ML model, often suffer from redundancy and correlation among input
features. This redundancy and correlation between input features leads to the occurrence of
the Hughes Phenomenon, resulting in a deterioration of the performance of ML models [34].
Even when PCA is implemented in conventional approaches to address this issue, the pro-
posed method of this article still achieved superior accuracies. The proposed method with
an OA of 96.25% also demonstrated state-of-the-art performance in the existing literature.
For instance, a novel multi-feature ensemble method based on SVM and RF was developed
in [10] which achieved an OA of 90.96%. Convolutional Neural Networks in [11] and [38]
also achieved OAs of 91.6%, and 94.6%, respectively. An iterative RF model in [14] also
achieved a maximum OA of 89.81%. The adaptive stacking of ML models in [44] also
achieved an OA of 88.53%. The superior performance of the proposed ensemble structure
can be attributed to several reasons, described below.

Firstly, the Pa part consisted of five parallel branches, each corresponding to a specific
FC (FC1–5 in Table 3). These parallel branches generate PMs for each target class, providing a
multi-view representation of the data. This allows the model to leverage the complementary
information present in each FC [54]. Additionally, it enables the model to potentially capture
a broader range of patterns and characteristics relevant to the classification problem [57].
This finding is supported by the results in Figure 6, where the simultaneous use of the five
FCs as five distinct branches in the Pa structure yielded the highest accuracy compared
to other scenarios. By utilizing multi-source data, the number of satellite observations
per cropland increases, providing more information about crops [21]. In other words,
multi-source data contain different aspects of crop types, including spectral, phenological,
physical, and structural characteristics [2,14]. All of these advantages enhance the model’s
ability to discriminate between different classes and improve the classification accuracy.
The improvement in classification accuracy by combining MS and SAR time series has also
been reported in other studies [23,24,38,67].

Secondly, the classifier in the Ca structure directly identifies the target classes from the
output PMs generated by the Pa part. As depicted in Figure 7, the output PMs from the
Pa part were highly correlated in each class. Therefore, it is crucial to select an optimal set
of PMs that effectively represents the entire PM [47]. In this regard, PCA was employed
to reduce data redundancy while preserving the most relevant information [45]. PCA
identifies the directions in the PMs where the data exhibit the most variation, known as
principal components. By selecting the top ‘n’ components (Table 6), a significant portion
of the original PMs can be retained while reducing dimensionality. This approach differs
from feature selection techniques that may not capture potentially useful information
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from the entire set of features [48]. Furthermore, by utilizing PCA, complex relationships
and interactions among the features can be captured, which may not be achievable with
simple feature selection techniques [75]. The incorporation of PCA before the Ca structure
significantly reduced uncertainty in classification, as illustrated in Figure 9. This led to a
substantial increase in classification accuracy (Figure 11).

Thirdly, the Meta-model within the Ca structure utilized the collective knowledge from
the parallel branches in Pa structure to make the final classification decision. In addition,
the ML model in the Ca structure can take into account the underlying relationships among
the inputs, unlike simple methods such as majority voting that were widely used in the
literature [44]. The significance of employing a meta-model is also evident in Figure 6,
where the lowest classification accuracies were obtained when only a single FC was utilized
without the Ca structure.

The entire methodology was developed and executed based on the capabilities of GEE.
This platform offers extensive RS datasets, substantial computational resources, and several
algorithms [26,29]. GEE enables the processing of satellite data without requiring manual
downloads. As the datasets and methods utilized in this study are publicly accessible
within GEE, the proposed method has the potential to be implemented in large-scale
and long-term studies thanks to the high-performance computing and parallel processing
capabilities of GEE [31].

6. Conclusions

Crop type mapping is essential for ensuring food security and effective agricultural
management. RS satellite data have emerged as a promising alternative to traditional
methods, such as time-consuming field surveys, for generating crop type maps. However,
accurately identifying different crops in satellite data poses challenges due to variations
within and between crop classes caused by factors like crop diversity, environmental con-
ditions, and farming practices. Consequently, there is an increasing demand for more
accurate classification algorithms. Developing these algorithms in cloud processing plat-
forms like GEE can facilitate the generation of crop type and land cover maps through
online processing, eliminating the need to download large volumes of RS data. This paper
proposed a novel ensemble structure of ML models, referred to as Pa-PCA-Ca, for crop
type classification using GEE. The Pa structure incorporated three data sources: S1, S2,
and L8/9. Within the Pa structure, PMs were generated for different target classes. These
PMs demonstrated a high correlation within each target class. Consequently, PCA was
employed to transform the PMs, and the resulting top components were inputted into
the Ca structure. The Ca structure utilizes another ML model for the final classification
decision. The proposed method demonstrated promising results, surpassing conventional
crop type classification approaches. The results also indicated a significant reduction in the
classification uncertainty of target classes compared to other structures. The proposed en-
semble structure can be scaled up to national and global levels to generate highly accurate
crop maps.

Supplementary Materials: The developed JavaScript code of the proposed ensemble structure of
this paper in GEE and a portion of ground truth samples can be found at: https://github.com/
ATDehkordi/Pa-PCA-Ca, accessed on 20 December 2023.
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Appendix A

The mathematical formulas of utilized SIs can be seen in Table A1.

Table A1. The mathematical formulas of utilized SIs.

Index Formula Description

NDVI ρNIR−ρRED
ρNIR+ρRED

ρNIR: SR values of NIR band in S2 or L8/9.
ρRED: SR values of R band in S2 or L8/9.

NDBI ρSWIR−ρNIR
ρSWIR+ρNIR

ρSWIR: SR values of SWIR band in S2 or L8/9.
ρNIR: SR values of NIR band in S2 or L8/9.

NDWI ρGREEN−ρNIR
ρGREEN+ρNIR

ρGREEN: SR values of G band in S2 or L8/9.
ρNIR: SR values of NIR band in S2 or L8/9.

SAVI (ρNIR−ρRED)(1+Lcoef)
(ρNIR+ρRED+Lcoef)

ρNIR: SR values of NIR band in S2 or L8/9.
ρRED: SR values of R band in S2 or L8/9.

Lcoef = 0.5 (soil regulation factor) [65]

EVI 2.5× ρNIR−ρRED
ρNIR+6×ρRED−7.5×ρBLUE+1

ρNIR: SR values of NIR band in S2 or L8/9.
ρRED: SR values of R band in S2 or L8/9.

ρBLUE: SR values of R band in S2 or L8/9.

A sample CM with n classes (Figure A1), and four CM-derived metrics, including OA,
Kappa, UA, and PA (Equations (A1)–(A4)), is presented below.
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where i represents the GT label and j the predicted label. aij is the number of pixels that
belong to the class i according to the ground truth but were classified to class j by the model.
So, aij is the number of correctly classified pixels for i = j. Also, n and M are the number of
classes and total number of evaluation samples, respectively.
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