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We analyze, by rigorous renormalization group methods, a Fermi model for weak forces with a single
family of leptons, one massless and the other with mass m = Me™”, with M the gauge boson mass, a
quartic nonlocal interaction with coupling 4>, and a momentum cutoff A. The magnetic moment is written

as a series in 42, with n-th coefficients bounded by C" (2)4>" (45)(1+07)(=1) if C is a constant; this implies

convergence and provides nonperturbative bounds on the higher order contributions. The fact that the
magnetic moment is associated with a dimensionally irrelevant quantity requires the implementation of

cancellations in the multiscale analysis.
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I. INTRODUCTION AND MAIN RESULTS

The anomalous magnetic moment % plays a central role
in physics since the beginning of quantum field theory [1]
and it is nowadays attracting a renewed interest [2,3]. Its
theoretical value can be computed in the Standard Model
with very high precision and comparison with experiments
provides a stringent test on the completeness of the theory.

The contributions to the anomalous magnetic moment can
be divided into the ones involving also strong forces and the
ones considering only electroweak ones. In the first case, the
nonperturbative nature of the low energy strong interactions
requires numerical lattice or data driven approaches, see,
e.g., [4-6]. In the second, an analytical perturbative approach
is, in principle, justified by the smallness (in adimensional
units) of the couplings involved; that is, « = 1/137, ... and
2 = 4za/ sin 6%, (sin? Oy = 0,2231...).

The electroweak theory allows us to write the magnetic
moment as a series Y a"A*™A,,, with coefficients A,,_,
expressed by the sum of Feynman graphs. Perturbative
renormalizability [7] (see also [8]) ensures that the ultra-
violet divergences present in the graphs can be exactly
compensated by a suitable choice of the bare parameters, so
that each coefficient A, , is finite, removing the cutoffs,
typically with a factorial growth in the order.

The coefficients A, ,, can be explicitly computed and their
evaluation becomes more and more challenging increasing
the order. In the case of the pure QED contributions A,  the
first order was computed in [1] A,y = 1/2x, the second
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in [9], and more recent computations were done up to
n =5, see,e.g.,[10,11] and the review [6]. Such coefficients
are universal numbers (if a single lepton is considered).
In contrast, the weak-interaction corrections depend on

the lepton masses; in particular, see [12-14], Ag; =
2

24\;5”2;4"—%”(1 +1(1—4s?)?), where m is the lepton mass
and My, is the W mass. The smallness of the ratio (m/My,)?
says that the weak contributions are suppressed with respect
to the electromagnetic (e.m.) ones.

The above predictions are done by “truncating” the series
expansion at a certain order n, and the effect of higher
orders is estimated to be a”*! in the case of QED or

1(4”—22/12<”+1) for weak forces, up to a constant C" with C of
w

size suggested by lowest orders. However, such series are
not convergent [if so the error would be indeed O(C"¢") if &
is the coupling], so that the truncation cannot be done at
arbitrary order; if asymptotic the error would be O(C"n!e")
(and the truncation could be done only up to a finite order),
but it is likely that, at least if one restricts to the electroweak
sector, even this is not the case [15,16] due to the triviality
phenomenon, rigorously established for ¢* [17,18]. Other
sources of nonperturbative errors in the truncation are
in [19,20].

One can compare the anomalous magnetic moment with
the Hall conductivity [21,22], as both quantities were used
as an experimental input to get the value of the fine-
structure constant. However, for the latter there is no
theoretical uncertainty due to truncation: even if, in
principle, it could acquire corrections due the presence
of many body interactions, all higher orders are exactly
vanishing due to topological protections, as recently
rigorously established [23,24]. This is, however, not the
case for the anomalous magnetic moment, and an estimate
on the higher order terms neglected in the perturbative
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approach is required. In more recent times, the independent
measurements of the parameters, like the fine-structure
constant from the atomic physics, with a precision com-
petitive with the magnetic moment of the electron, had the
effect that such a quantity can be used to test the Standard
Model, see, e.g., [25], and this again requires bounds on
truncation error or estimates of higher perturbative orders in
the electroweak sector.

A “nonperturbative” framework is obtained by express-
ing the magnetic moment in terms of functional integrals
regularized with a finite ultraviolet cutoff A in the
Euclidean setting, which is suitable for the magnetic
moment [20]. The cutoff must be much larger than the
experiment scale, so that the results are expected to be
cutoff independent. On the other hand, the cutoff cannot be
taken arbitrarily high, at least if one considers only
electroweak forces, due to the triviality. There is a well-
known relation between the renormalizability properties
and the maximal allowed cutoff. In a renormalizable model,
like the electroweak sector, one expects, in principle, that a
cutoff at least exponentially high in the inverse coupling
can be reached, ensuring, due to the smallness of the
coupling, that cutoff corrections are negligible. This,
however, requires a nonperturbative formulation of the
electroweak theory and there are well-known difficulties for
a chiral gauge theory like that [26-28].

We consider, therefore, lower values of the cutoff A
where the weak forces can be described by Fermi inter-
actions, and we restrict to a single family of leptons /, v.
The “effective potential” is given by

SViAD) / (dyp)eV D)+ BAw ) (1)

where v ;,,; are Grassmann variables, i =/, v is the
particle index, x € (0, L]* and periodic boundary conditions
are imposed, w,; = (W1 Weir)> Vai = (l//;i,R’ W;i,L),

"“\r o) T \-ie o)

and P(dy) is the fermionic integration with propagator,
i=1 v,

_ zkxv)(N(k 2
9ilx L4Ze k+m;’ 2)

where yy (k) = y(yVk), with ¥ (k) as a cutoff function such
that y = 1 for [k| < 1/y and y = O for |k| > 1 and A = ¢V,
with N a positive integer, and where y > 1 is a scaling

parameter. Moreover o} =(0¢,ic) and of =(og,—ic)
with

/01 /0 i /10
1=\1 o 2=\i o »=\o -1)

The interaction is given by

12 .
V== / dxdy[vw (x,9) i 2y +vz(x.y)jk gt (3)

with Dy (k) = k{f]{;)z and D, (k) :% The charged

w_ w_
currents are J+ l//le llvax and .]Jr l//z/Lx MWILX
and the neutral current is s = L, R,

= (e —sin? 040y ot (4)

is

withs =L, R Q;= 0,0, =0, and ¢, = —er = 1. Note
that the interaction is nonlocal in space and it decays with
inverse rate My, M.

The source term is given by B(A,y) = [ dxA,j¢%" with
= Zs ngl//x,l,x Ill//;.l,s'
The fermion [ is massive and the fermion v massless, m; =
m and m, = 0; moreover, we define My =M,M, =
cos Oy M with cos@y ~0,881.... and m/M = e™? with
f ~ 3 for muons and ~6 for electrons, and A > M.

Juy the total e.m. current j¢™

The “vertex function” is given by I',;  (z:x,y) =
P . .
W If Fﬂ is.s' (k1. ky) denotes its Fourier trans-

form, the “anomalous magnetic moment,” corresponding to
Q . . . .
aterm 5> ¢,,p,A,0,, in the Dirac action, is obtained from

G, = mdyFﬂ,,,RyL(kl,kzﬂo, while the dressed charge is

related to lA“MS,S(O, 0).

The dressed charge can be expressed by a series
expansion in 2> with nth coefficients O(C"(AA/M)>"),
see [29,30]; the series is therefore convergent provided that
AA/M is small. There is nontrivial charge renormalization,
due to the fact that the Ward identities are violated at finite
cutoff, and Z; has to be chosen so that the value of the
dressed charge is just Q. A similar convergent expansion
holds for the wave function renormalization, the chiral
anomaly, or the two-point correlations. Such quantities are
associated with terms that are relevant or marginal in the
renormalization group (RG) sense; that is, connected to
terms with positive or vanishing scaling dimension
(D=4 _%”w — p, if p is the order of derivatives
in coordinates space). They are therefore directly running
coupling constants, as in the case of the dressed charge, or
with a dominant part depending only on relevant or
marginal terms.

In contrast, the magnetic moment is associated with an
“irrelevant” term with dimension D = —1. The derivative

of I', ;s produces an extra factor 1/m, so a naive

dimensional estimate for the nth order of ayfﬂ,l'R,L is
O(m~'C"(AA/M)?"); this is of no use for estimating the
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error done truncating the series, as explicit computations of
lowest orders are # One needs, therefore, to improve the
dimensional bounds by implementing suitable cancella-
tions at any order in the convergent expansion.

Theorem. Given (1) with A > M and M/m = €/, f > 0

we can write G,, = ) ,”22" with, in the limit

L - oo,
2 2n
n) npan [\ A
Gl < I prce (M) (logﬁ) 5)

and C is a constant independent of M, m, A.
The above result proves analyticity of the magnetic
moment for ACA(A/M)'+0" < 1. Note the presence of the

small factor /’;—i on the rhs of (5), which is obtained
implementing cancellations in the expansion. C is an
O(1) constant whose value can be obtained collecting
all constants in the bounds below. In particular, it is found
that G,,, = 25 2(Af, + O(22(£5)'40)) with A}, = O(1),
from which an upper and lower bound follows (there is
no extra log% in the lowest order). One can therefore
exclude nonperturbative effects and justify truncation
providing a rigorous estimate of the error. Note also that
Al =Ax(1+ 0(1‘/(—22)) so that the result is nonsensitive to
the cutoff for ! < 1. Similar considerations can be done for
higher order truncation.

The rest of the paper is organized in the following way.
In Sec. II we perform an RG integration, in which the main
novelty is that certain irrelevant terms are renormalized to
improve the scaling dimension of the theory thanks to
cancellations. In Sec. III we introduce the tree expansion
and we get a bound for the effective potential. In Sec. IV we
show that the expansion for the anomalous magnetic factor
has suitable cancellations allowing us to get the bound ().
Finally, in Sec. V the conclusions are presented.

II. RENORMALIZATION GROUP ANALYSIS

It is convenient to introduce the “generating function”

Wa(Ad) — / (dy)e" W) +BAw) (6)
with B(A,y) = [dxA,js™ + [dx(@.p, +w,d,). The
two-point Schwinger function is Sl” (x,y) = %

Vs

and the three point is

PW,

sA. —_—.
(Zx)’) aAﬂza¢x15¢;ls

wii,s,s'

(7)

The Fourier transform is defined as S (), SI’}, s (k1 ko)

LS, S
with k = zf”n with n an integer vector. Using that
—VS(A.g*x @)+ (¢.gxp) =Wx(A,¢), obtained from the

change of variables y + g * ¢ — ¥ if gxp= [dyg(x.y)d,.
we can write

ﬂ[SS(k17k2)7gl (kl) ﬂlSSgls(k2> (8)

We compute the correlations by an exact renormalization
group analysis. The cutoff function is written as

= > fulk)falk)

h=-c0

=x(r"k) —x(y"k)  (9)

so that f, (k) is a smooth cutoff function selecting momenta
Y=l < k| < ¢ we also call y, (k) = ]__oofj( ) the
cutoff function selecting momenta |k| < y". The generic
integration step can be inductively defined in the following
way. If VV) = V 4 B and assume that we have integrated
the fields ™), y®™=D . w"+D then

/ (dyr)e¥™ ) = / P(dy!=h)e?" V2= A4)(10)

with VW (A, y(sh) =

/dxdy Z W,m

with y including also the ¢ fields and P(dy(S") has
propagator g+=" (x, y) =

H ”IHAM (11)

1,m=0

1 . Zi’ Lk my i -1
_ ezk(x—Y))(h(k)( iuu ) . (12)
L* zk: My i Zilz?t flfkﬂ

The single scale propagator is bounded by

19" (x)] < CpPhe=tE, (13)

hence [ dx|g"(x)| < Cy~

and [ |vz(x)| < C/M%.
V() is the sum of monomials of any degree in the fields,

with scaling dimension D = 4 —%l —m. We introduce a

" moreover, [ |vy(x)| < C/M3,

renormalization procedure extracting from V” not only the
terms with scaling dimension >0 (that is, only the relevant
or marginal term), but also the irrelevant terms with scaling
dimension —1.

We write, therefore,

/ P(dy =)V (VI ARV (VT A) (14)

where R = 1 — L is the renormalization operation and £
acts on the monomials in V" in the following way:
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‘CWZ,l;s,s (klv k2> = W2,1;s,s (07 O) =+ klal W2.1;s,s (0’ O)
+ k262W2,1;s.s(0’ 0)
W2,1;L.R(07 0) + k0, WZ,I;L.R(Ov (]

+ kZGZWZ.l;LﬁR(O’ 0)] =0

LWy 1 g (ki k) =

'CWZ;s,s(k> = W2;S,S<O) + kaWZ;s,s (0)
1 A
+ 5 kzaz W2;s,s (0)
LWap g(k) = Way 2(0) + koWay £(0)

1 "
+ EkzaZWZ;L,R,S(O) . (15)

Note that the propagators involving the same chirality are
odd in the exchange k — —k and the ones involving
different chiralities are even. Therefore,

WZ;S,S<O) = 02W2;s,s(0> =0 (16)

as is given by graphs with an odd number of diagonal
propagators and an even number of nondiagonal ones;
0W,.; #(0,0) = 0asis given by graphs with an even number
of diagonal propagators and an odd number of nondiagonal
ones; 0*Wa.; z(0,0),,_o = 0 as they require a nondiagonal
propagator to be nonvanishing; VAVM; 1.2(0,0) = O asthereis
an odd number of nondiagonal propagators and an odd
number of diagonal ones; dW, 1., £(0,0),,_o = 0 as they
require a nondiagonal propagator to be nonvanishing;
0W, 1.5.4(0,0) = Oas is given by graphs with an odd number
of diagonal propagators and an even number of nondiago-
nal ones.
We can write, therefore,

/ P(dy'h)e*

where for h < N —1,

N (VZyzry = A )+ RV (VZw =M A) (17)

L:Vh( Zh IW A ¢) Z/dxzﬁf lll//xls ﬂl//xls
(18)

and P(dy'=") has a propagator given by (12) with Zj, ;
replaced by Zj_1;s = Zps +6W2‘ $0), my_y =my +
Whe (0), and Zi, =2t (Z8 4+ Wy ,(0,0)). In

the case of w¢ or Ay¢ we use the fact that the £ part
is vanishing, as there is surely a propagator ¢"(0) = 0;
hence there is no running coupling constant associated.

Using that P(dy'<") = P(dyS"=D)P(dy™) with ")
given by (12) with y,, replaced f,, we get that (17) can be
written as the rhs of (10) with & — 1 replacing & and, see
Fig 1

<.
N

FIG. 1. Graphical representation of (19), that is, EF (V") +
LET (P D) + LT (0050 50) 4 wih ) — £
RV,

FIG. 2. Graphical
R%5£+1 (Vh+1 : vh+l ))

ET(Lyh;

representation of

0 1 5
=% —ENEVD + RV

n=0

S LV L RV,
(19)

where & are the fermionic truncated expectations; that
is, £1(0sn) = Zxlog [ P(dy™)e*?|,,.

The procedure can be then iterated up the scale of the
fermionic mass defined as

"= mye. (20)

At this point, one can write [ P(dy/<h*) VI (i, Ag) —
1
2

V" (A9 using that |g=" (x)| < Cy3" e=@"1¥)* . The inte-
gration of the remaining scales is done as above, the only
difference being that only the fields y, remain; the y;
has been already integrated out. Note that m,, = 0 by
symmetry.

In order to write explicitly the effective potential V=)
one has to express the R)" on the rhs of (19) in terms of the
sum of truncated expectations, while no further expansion
is done in the £V"; a graphical representation of a term is
in Fig. 2.

This procedure can be iterated up to the scale N,
resulting in a tree expansion described below.

III. RENORMALIZED EXPANSION

Iterating (19) we get an expansion for V" in terms of
“trees” [31], see Fig. 3,

i > Vi), (21)

n=17€T,,

Y (=

with 7 a tree, constructed by joining a point, the root r, with
an ordered set of n > 1 end points and associating a label
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v<//< |
rvov/.\"

<

| N

h+1 hy N N+1

FIG. 3. A labeled tree.

h < N — 1 with the root; moreover, we introduce a family
of vertical lines, labeled by an integer taking values in
[h, N + 1] intersecting all the nontrivial vertices, the end
points, and other points called trivial vertices. To each
vertex, v is associated with a scale h,; they are partially
ordered and, if v; and v, are two vertices and v; < v,, then
h,, < h,,; moreover, given v there are S, points following
v. The first vertex has scale i + 1. The end points » can be
(1) A points to which is associated V(y), or ¢ points to
which is associated B(y,0, ¢); in this case, the scale is
h,=N+1. (2) Z points, which are associated with
LYm=1 (=1 A) and in this case the scale is &, <
N + 1 and there is the constraint that i, = h, + 1 if ' is
the nontrivial vertex preceding v. Given a vertex v we call
m’ the number of 1 points following v, m? the number of ¢
points following », and m/ the number of Z points
following v.

With the above definitions, the value of V" (7) is
obtained iteratively by the relations

(_1 )SH _ _
Vi) = 0 g [0 e ()], (22)
where 7,, ..., 7, are the subtrees with root in v, V("+1) () =

RV (z) if the subtree 7; contains more then one end
point, while if z; contains only one end point V/+1)(z) is
V(psN),0,¢) if h = N orif h < N is LVH(A, y=h+D),

By (22) we see that V") (7) = >, V") (z, P), where P is
the set of all P, associated with the vertices of the tree,
corresponding to subsets of the labels of the fields
associated with the end points following ». We call V
the vertices such that P, is different with respect to the
preceding one.

The V) (z, P) can be represented as sum of renormal-
ized Feynman graphs. The difference with respect to the
usual Feynman graphs is that the scale labels of the tree ,
corresponding to vertices v € V, can be represented as a set
of clusters enclosing the end points. To each point is

AN /
N 7

N

FIG. 4. A graph with its clusters and the corresponding tree; the
smaller cluster has scale h; and the larger 4 + 1.

associated an element of V or LV, represented graphically
as a point with half lines to be contracted. To each line is
associated a scale, and there is the constraint that all the
lines inside a cluster v have scale <h,, and at least one of
them is at scale h,. The R operation is applied on the
clusters depending on the number of the external lines.
Each graph is finite but one needs that the sum over the
scale labels is finite. Let us consider, for instance, the graph
in Fig. 4; one can bound the sum over the scales by up to a
constant, if N >h; >h+1, (A’fl—zz)% > vy In this
example, there is no R operation in the subgraphs. In
contrast, the R operation is present in the graph in Fig. 5.
The effect of the 'R operation can be written as

A l A
RWY (k) = k3 / AW (1k). (23)

"
18,8
0

Therefore, the effect of R is to produce an extra k°; to the
external lines of W) is associated a propagator g (k), if
v is the vertex €V following v, with a cutoff function
restricting the value of k to ~y". Similarly, the derivatives
on W) are applied on propagators with scale >h,.
Therefore, the effect of the R operation is to produce an
extra ~y3(t/=1) factor. Regarding the terms W.z ; (k), in
addition to such term there is also a contribution of the form

2

FIG. 5. A graph requiring renormalization; the smallest cluster
has scale /, and the larger h + 1.
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1 h, 1 ,
§k202W2;",_’R(k)|m:O - EkzaZWZ;L,R(k)' (24)

Such terms are present only for i = /; by phase symmetry
when i = v there are no terms L, R, by invariance under
Wy = e'% .- The bound for the propagator involving L
and R fields has an extra factor T,—f“; and, for h, > h* (20),

m m .
# = mh < yhvho, (25)
e mye

as the smallest scale of the external fields of type i = [is h*,
that is, h,y > h*.

Without the R operation, the graph in Fig. 5 is bounded
by h; > h, (11’14—72)3 >, vMy"; the R operation adds an

extra y3 (=),

A finite bound for any graph is still not sufficient for
getting convergence; the number of graphs has a factorial
growth. Therefore, it is convenient to represent the truncated
expectation as [32] E7 (F") (P)); M (Py); ...; 5" (Py)) =

S T G =w) / dPr detG"T, (26)

T leT

where (") (P) are monomials in the y, T is a set of lines
forming an “anchored tree graph” connecting the set
Py,....P,, and det G"T is a matrix containing the fields
not belonging to 7. The crucial point is that, using Gram
inequality, the det G™T can be bounded by a constant times
the number of fields. This is a way to implement the well-
known fact that fermionic series expansion can be conver-
gent, in contrast to bosonic ones. Using (26) one gets for a
class of graph with a chosen tree 7 and P the same bound as
for a single graph, without factorials. If ||V (z, P)|| denotes
the integral of the modulus over all the coordinates except
one, then (see, e.g., [30]) [|V(z, P)| <

cn H 7/4}1“(5‘1.—1)},—3h,,n,, H }/11-(]%’—}11:) (AZ/MZ)n’ (27)

veV veV

where n,, is the number of propagators in the cluster » and not
in any smaller one, ¢’ is the vertex in V preceding v, and S,
are the vertices following v (or the maximal clusters in v).
The factor [, y%!/~) is the effect of the renormalization
procedure; z,, = 3 in the terms yy or w¢ and z, = 2 in the
terms Ayy or Aw¢g. We use the relations ),y (h,

h)(S, = 1) :Evev(hv_hv’)(mi_"mﬁ_"mf_1) and
Zvev(hv_h)nv:Z@ev(hv_h'v’><2m/;+m?+m(5_n5/2)’
where n¢ is the number of external vy, ¢ lines from the
cluster v. Therefore, the bound becomes, if D, =

4—3n¢/242mt —mA —m?, ||V(z,P)| <

Cny(4—3/2l+2m‘—mA—m¢)h H 7/(ht.—h,,/)(f),—zy) (12/M2>n’ (28)

veV

where [ are the external y, ¢ lines associated with V(z, P)
and z,, = 3 for the » with two external y lines and z,, = 2 for
the » with two external y lines and one A line. We use now
the relation i = ¢, Ay [T, <y 7" =TT, cv ¥™™,
where m! is the number of end points of type i con-
tained in » and not in any smaller cluster. Therefore, if
D, =4-3n/2 —m},

||V(’Z', P)H < Cn},h(4—3/21—mA) Hy(h”_h”’)(D"_z”)

vevV

gpreme e [T

veWw, veEW,

(29)

where W; and Wy, are the end points of 4 or ¢ type and v* is
the first nontrivial vertex preceding v. Note that if v€ W,
then h,~ = hy, h; + 1; the reason is that the corresponding
contribution is of the form ¢" (k)W, and hence is non-
vanishing only for such scales.

We consider first the contribution to the effective
potential when there are no ¢ end points. The scale % is
fixed so that the sum over all the possible scales can be
done summing over all the possible scale differences (the
scale h is fixed); hence, if D, = D, — z, > 2,

SILr el ()

Wy v
as —D, —y(n¢ > 8)n%|/4>2. The factor y~I""l/4 is
used to sum over P. Then > > ,|V(z.P)|<
Cryh(4=3/21=m) (322N / M2)" implying summability over n
if (A%y*N/M?) is small enough.

Asanexample, the bound (29) for the graph in Fig. 4 is given
by up to the factor ( Lry3 =2 S op, v 2=y AU=N) 2(h=N)

Similarly, the bound for the graph in Fig. 5 is ), y~ "=
y3 (=) 401 =N}, 2(h=N)

IV. THE ANOMALOUS MAGNETIC MOMENT

The three-point function SA s (z;x,y) with external
fields of type / can be written as S s => .2 pS(.P),
where the sum is over all the trees with two ¢ end points
and a Z end point. We choose the momentum of the
external fermionic lines as |k,

We can distinguish between trees with no A end points
and at least a 4 end point. In the first case, one has only a

contribution to Su 1s.s/(ki,ky) of the form, see the first
graph in Fig. 6,

ZZA*jgé,ssh*) (kl)"ig;ifﬁ) (ky). (31)
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3

\ -

FIG. 6. Some graphs contributing to the functions I'; the ¢ lines
are not represented (they are meant as external to all clusters). In
the first, the scale of the cluster is 4*; in the second, the smallest
has scale h; and the larger #*; in the third, the smaller /4, the
medium /%, and the larger h.

In the second case, there is at least a 4 end point, like in the
second and third graph in Fig. 6. Let us consider the
smallest cluster v, containing the point v, associated with
the ¢ end point; note that 2, = h* as the momentum of the

external lines is assumed <y”’, and the contraction of the y
field produces a propagator with the same momentum as
the external one. In the cluster v there is also surely a 4 end
point ¥, (there is at least either a A or Z point, and there is
only one Z), and ?; is the smallest cluster containing ¥,
contained in wv;.

In terms of trees, there is a path from 7, to v,, vy being
the first vertex belonging to V (or a sequence of clusters,
one enclosed in the other) vy < v| < ...v, < V... < Dy,
an h, <...h, <..hy with h, = h*, see Fig. 7.

We get therefore the bound if D,=D,—z,<-2
[1Su(z. P)I| <

cn H y (=)D 200

veV

N) (/lzyZN/Mz)ny—Zh*’ (32)

which implies

I8, (z.P) | < Cr [ Pttt
veV
O(h, —hy,),,2

xy U @2N M)y (33)

where 0, =60 < 2 for v = vy, vy, ...,
otherwise. Therefore,

V.., g and 0, =0

FIG. 7. A tree with the path from 7, to v,.

U
Us
Vs g
Vo
V0

vA
FIG. 8. The tree corresponding to the third graph in Fig. 6;
hy, = h, h, =h*, hy = hy.

I8y, P < -
x C" H 7/(h,,—ht,/)([3,,4»9,,)

veV

<y (2 M) (34)

The sum over all the scale difference is done again using the
factors y (=) (P:+0.); the sum over h,,, is controlled by the
factor 7’ ") hence the bound for the contributions to

Sﬁlqsis,(qukz) with at least a A term is

ZZHSTP ||<Cn —2h* ﬁh*

T

M@peN/myr. o (35)

Note that such terms are subdominant due to the extra
factor y?""~N), The three-point function is equal to the free
one with renormalized parameters, up to more regular terms
containing at least an irrelevant 1 interaction. A similar
result holds for the two-point function.

As an example, the second graph in Fig. 6 is bounded by
[up to a factor (A2y2N /M?)] y=2" Zhlzh* 2 =)y 2(hi=N)
where the factor y2*'~1) is produced by the R operation:
hence it is bounded by y=2#"y?(n"=N),

The third graph gives [up to a factor (12y*N/M?)?]
for hy > h*>h y2 37, L y*yMy~*N, which can be
written as y~2"" Zhl,h y2h=1) 20 =h1) A(hi=N) and finally
by y2"y?0"=N)_ see Fig. 8. Finally, for the graph in
Fig. 5 (if the external lines are propagators, and there
is an extra R), one gets for hy>h>h* y2I
S oy Py A =N 2(h=N) which is surely smaller

than 2" yo(h"=N).

We arrive finally to the bound for G, =m} _pdls(7.P).
By (8) and (31) we see that the contribution from the
dominant term to S, as the derivative is vanishing. One has
therefore to consider the derivative of the amputated
contributions with at least a 4 end point. Moreover, we
consider the term with s # s’, which are the only contrib-
uting at zero momentum. We get m||ol4(z, P)|| <

m2y—hl,0},—h* cn Hy(hv—h/ DLyZ (hy, — (/12 2N/M2> (36)

veV
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where with respect to (32) there is an extra y "o from the
derivative and a missing y 2. The above expression can be
rewritten as

m||OC 4 (7. P)|| < m2y ™oy yilheg=h")
x 20 =iy ) on T o) (Bt )

veV
N2 ) 37)
where 0, =3/2 for v = vy, v,,...,v, and 6, =2 for
V= 7Vg1,..., U5, and 6, = 0 otherwise. Therefore,
y oy 320y =) 2 =N) < 1/ 20y =h")) 2N (38)

and finally we get

|| (7, P)|| < 7'/ 0™ m2y =2
x C" H}, h,~h,)(D,+0,) (/127/2N/M2)n. (39)

veV

Now the sum over h,, is done using the factor yl/ 2o =h"),
the sum over the difference of scales is done using
yh=h)(DA0.) for any v except the ones between v, and
D; there are at most 2n of such vertices so that there is an
extra factor [N — h*|*". The same over P is done in the same
way as we can extract a factor y~"#/% for n¢ > 8. Therefore.
the bound is n > 1

mIIOFA(T,P)IISAnj;lz(10g(m/7’v))2”(/1272N/M2)”‘1- (40)

For instance, the bound for the second graph in Fig. 6 is,
obtaining y=2"" by the derivatives m? 4557, o 1 hence it

is bounded by |h* — | > In the case of the third graph in

Fig. 6 for hy > h* > h it can be written as up to

2(722,2N /1122 =y 201 2=y A =N)
m (/1 y /M ) Zhl ( )7/ ( ‘11)]/ (11 )’
moreover, we can write y‘h ”"y ””" as y~2(h"=hi)y
so that we get >, ,7")y=?" which is bounded by
|N — h*|y=2N. The contribution of the graph in Fig. 5 is
hy > h>h y 2 S y 205 =h) y2(=h) 4y =N) , 2(=N)
bounded by |N — h*|?y=2N times m?(A%y*N /M?)3.

Moreover, (logA/m)z’1 (logA/M +logM /m)*" which
is equal to pr iy (log A/M)P (log M /m)*—r <
(logA/M)z”(logM/m)z’Qz".

The lowest order contribution to the magnetic moment is
given by the second graph in Fig. 6 and the difference
between the finite and infinite A is bounded by (the R

disappears with the derivative) m* [ dk kl4 yRayel M7 which is

—h+h*

O(l’gf A;) this follows from the nonlocality of the inter-

action which was not used in the bounds.

Finally, we have to study the flow of the running
coupling constants. They verify recursive equations in
which there is at least a A end point so that proceeding
Tl — 1 4 B with Bl =
O(y?h=N)()2y>N /M?)?). This implies that lim;,_, Z; ), =
Z,, is finite and Z;; = 1 + O(A%y*N /M?); the fermionic
wave function renormalization depends on the particle and
chiral index. In the same way lim;,_, Z%, = Z# with Z{ =
1+ 0(%*N /M?) and my. = m(1 + O(2*y* /M?)). Note
that ZA and Z are different, due to violation of Ward

identities due to momentum regularization which produces
an extra term in the Ward identities,

as above we can write

p}ll:‘,l/,l\,[,x(k’ k + p) = Q(Si\s s(k) Si\\ \(k + p))
+5Fl‘, (41)

where 7, is defined as I},

with Z, =1, and
ST s s1m11ar to F/[4\ls with the current replaced by

8ji=.,0 [dkdpC(k, p)y ;0. p.1s» Where C(k, p) =
k(y '(k)=1) = (k+ p)(x ' (k+ p) — 1). We have there-
fore to choose Z, to impose

Z{/Z=1. (42)

With this condition the effective potential has the form
fAﬂ ky— kz s_zl/z _1/2¢k| K l¢k2 sV i s(kl’k2> and Vy iss —
Zl/'221/2 /uss (k17k2) with V;tlss(o 0)

S,1 5[

0 and the mag-

1/2.,1/2
netic moment obtained by Z / Zs,{ FGuiss-

V. CONCLUSIONS

The series for the magnetic moment is expected to be
nonconvergent and even not asymptotic, and this makes it
unclear how to evaluate the error introduced by truncation.
We consider a nonperturbative framework expressing the
magnetic moment in terms of Euclidean functional inte-
grals with a finite ultraviolet cutoff, considering a Fermi
description for weak forces, that is integrating out the gauge
bosons at tree level. The fact that the magnetic moment is
associated with an irrelevant quantity in the RG sense
requires careful estimates and the implementation of
previously unknown cancellations. We get that the mag-
netic moment is expressed by series which are analytic for

i(ﬁ’%)(”m) small, with relative error due to truncation at
order n 0(/12(”")(A%)W‘l)(”m)). In addition, the lowest
order coincides with its A — oo limit up to an error term
O(%—f) This excludes nonperturbative phenomena in the
regime of parameters where such two errors are small, that
is, 12 < ZXI—; < 1, and it justifies the validity of truncation of
the series expansion with no cutoff in this regime.

073003-8
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An important open question is if a similar approach
based on rigorous RG and Euclidean functional integrals
with cutoff can be repeated keeping the gauge interaction
(and loosing analyticity), and if an estimate for the relative
error due to the truncation is obtained with a weaker
logarithmic dependence, that is, O(22"~")(log 45)("~1)),
up to a constant depending on the order with some
factorial. This could allow one to include larger and more
realistic values of the coupling and also to include
massless photons. Technical difficulties to be solved
include, however, the need of an extra decomposition

in the gauge boson fields and the fact that one cannot
expand in the coupling, as well as the understanding of the
interplay of the anomaly cancellations in a nonperturba-
tive setting.
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