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We analyze, by rigorous renormalization group methods, a Fermi model for weak forces with a single
family of leptons, one massless and the other with mass m ¼ Me−β, with M the gauge boson mass, a
quartic nonlocal interaction with coupling λ2, and a momentum cutoff Λ. The magnetic moment is written

as a series in λ2, with n-th coefficients bounded by Cnðm2

M2Þβ2nðΛ2

M2Þð1þ0þÞðn−1Þ if C is a constant; this implies
convergence and provides nonperturbative bounds on the higher order contributions. The fact that the
magnetic moment is associated with a dimensionally irrelevant quantity requires the implementation of
cancellations in the multiscale analysis.

DOI: 10.1103/PhysRevD.110.073003

I. INTRODUCTION AND MAIN RESULTS

The anomalous magnetic moment g−2
2
plays a central role

in physics since the beginning of quantum field theory [1]
and it is nowadays attracting a renewed interest [2,3]. Its
theoretical value can be computed in the Standard Model
with very high precision and comparison with experiments
provides a stringent test on the completeness of the theory.
The contributions to the anomalous magnetic moment can

be divided into the ones involving also strong forces and the
ones considering only electroweak ones. In the first case, the
nonperturbative nature of the low energy strong interactions
requires numerical lattice or data driven approaches, see,
e.g., [4–6]. In the second, an analytical perturbative approach
is, in principle, justified by the smallness (in adimensional
units) of the couplings involved; that is, α ¼ 1=137;… and
λ2 ¼ 4πα= sin θ2W (sin2 θW ¼ 0; 2231…).
The electroweak theory allows us to write the magnetic

moment as a series
P

αnλ2mAn;m with coefficients An;m
expressed by the sum of Feynman graphs. Perturbative
renormalizability [7] (see also [8]) ensures that the ultra-
violet divergences present in the graphs can be exactly
compensated by a suitable choice of the bare parameters, so
that each coefficient An;m is finite, removing the cutoffs,
typically with a factorial growth in the order.
The coefficientsAn;m can be explicitly computed and their

evaluation becomes more and more challenging increasing
the order. In the case of the pure QED contributions An;0 the
first order was computed in [1] A1;0 ¼ 1=2π, the second

in [9], and more recent computations were done up to
n ¼ 5, see, e.g., [10,11] and the review [6]. Such coefficients
are universal numbers (if a single lepton is considered).
In contrast, the weak-interaction corrections depend on
the lepton masses; in particular, see [12–14], A0;1 ¼

5

24
ffiffi
2

p
π2

m2

M2
W
ð1þ 1

5
ð1 − 4s2Þ2Þ, where m is the lepton mass

andMW is theW mass. The smallness of the ratio ðm=MWÞ2
says that the weak contributions are suppressed with respect
to the electromagnetic (e.m.) ones.
The above predictions are done by “truncating” the series

expansion at a certain order n, and the effect of higher
orders is estimated to be αnþ1 in the case of QED or
m2

M2
W
λ2ðnþ1Þ for weak forces, up to a constant Cn with C of

size suggested by lowest orders. However, such series are
not convergent [if so the error would be indeedOðCnεnÞ if ε
is the coupling], so that the truncation cannot be done at
arbitrary order; if asymptotic the error would beOðCnn!εnÞ
(and the truncation could be done only up to a finite order),
but it is likely that, at least if one restricts to the electroweak
sector, even this is not the case [15,16] due to the triviality
phenomenon, rigorously established for ϕ4 [17,18]. Other
sources of nonperturbative errors in the truncation are
in [19,20].
One can compare the anomalous magnetic moment with

the Hall conductivity [21,22], as both quantities were used
as an experimental input to get the value of the fine-
structure constant. However, for the latter there is no
theoretical uncertainty due to truncation: even if, in
principle, it could acquire corrections due the presence
of many body interactions, all higher orders are exactly
vanishing due to topological protections, as recently
rigorously established [23,24]. This is, however, not the
case for the anomalous magnetic moment, and an estimate
on the higher order terms neglected in the perturbative
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approach is required. In more recent times, the independent
measurements of the parameters, like the fine-structure
constant from the atomic physics, with a precision com-
petitive with the magnetic moment of the electron, had the
effect that such a quantity can be used to test the Standard
Model, see, e.g., [25], and this again requires bounds on
truncation error or estimates of higher perturbative orders in
the electroweak sector.
A “nonperturbative” framework is obtained by express-

ing the magnetic moment in terms of functional integrals
regularized with a finite ultraviolet cutoff Λ in the
Euclidean setting, which is suitable for the magnetic
moment [20]. The cutoff must be much larger than the
experiment scale, so that the results are expected to be
cutoff independent. On the other hand, the cutoff cannot be
taken arbitrarily high, at least if one considers only
electroweak forces, due to the triviality. There is a well-
known relation between the renormalizability properties
and the maximal allowed cutoff. In a renormalizable model,
like the electroweak sector, one expects, in principle, that a
cutoff at least exponentially high in the inverse coupling
can be reached, ensuring, due to the smallness of the
coupling, that cutoff corrections are negligible. This,
however, requires a nonperturbative formulation of the
electroweak theory and there are well-known difficulties for
a chiral gauge theory like that [26–28].
We consider, therefore, lower values of the cutoff Λ

where the weak forces can be described by Fermi inter-
actions, and we restrict to a single family of leptons l, ν.
The “effective potential” is given by

eV
e
ΛðA;ϕÞ ¼

Z
PðdψÞeVðψþϕÞþB̄ðA;ψþϕÞ ð1Þ

where ψx;i; ψ̄x;i are Grassmann variables, i ¼ l, ν is the
particle index, x∈ ð0; L�4 and periodic boundary conditions
are imposed, ψx;i ¼ ðψ−

x;i;L;ψ
−
x;i;RÞ, ψ̄x;i ¼ ðψþ

x;i;R;ψ
þ
x;i;LÞ,

γ0 ¼
�
0 I

I 0

�
γj ¼

�
0 iσj

−iσj 0

�
;

and PðdψÞ is the fermionic integration with propagator,
i ¼ l, ν,

giðx − yÞ ¼ 1

L4

X
k

eikðx−yÞ
χNðkÞ
kþmi

; ð2Þ

where χNðkÞ ¼ χðγ−NkÞ, with χðkÞ as a cutoff function such
that χ ¼ 1 for jkj ≤ 1=γ and χ ¼ 0 for jkj ≥ 1 and Λ ¼ γN ,
with N a positive integer, and where γ > 1 is a scaling
parameter. Moreover σLμ ¼ðσ0;iσÞ and σRμ ¼ðσ0;−iσÞ
with

σ1 ¼
�
0 1

1 0

�
σ2 ¼

�
0 −i
i 0

�
σ3 ¼

�
1 0

0 −1

�
:

The interaction is given by

V ¼ λ2

2

Z
dxdy½vWðx; yÞjþW

μ;x j−Wμ;y þ vZðx; yÞjZμ;xjZμ;y� ð3Þ

with v̂WðkÞ ¼ χNðkÞ
k2þM2

W
and v̂ZðkÞ ¼ χNðkÞ

k2þM2
Z
. The charged

currents are jþW
μ;x ¼ψþ

l;L;xσ
L
μψ

−
ν;L;x and jþW

μ;x ¼ψþ
ν;L;xσ

L
μψ

−
l;L;x

and the neutral current is s ¼ L, R,

jZμ;x ¼
X
i;s

ðεs − sin2 θWQiÞψþ
x;i;sσ

s
μψ

−
x;i;s; ð4Þ

with s ¼ L, R Ql ¼ Q;Qν ¼ 0, and εL ¼ −εR ¼ 1. Note
that the interaction is nonlocal in space and it decays with
inverse rate MW , MZ.
The source term is given by B̄ðA;ψÞ ¼ R

dxAμje:m:
μ;x with

je:m:
μ;x the total e.m. current je:m:

x ¼ P
sZsQψþ

x;l;sσ
s
μψ

−
x;l;s.

The fermion l is massive and the fermion ν massless, ml ¼
m and mν ¼ 0; moreover, we define MW ¼ M;MZ ¼
cos θWM with cos θW ∼ 0; 881…: and m=M ¼ e−β with
β ∼ 3 for muons and ∼6 for electrons, and Λ ≥ M.
The “vertex function” is given by Γμ;i;s;s0 ðz; x; yÞ ¼
∂
3Ve

Λ
∂Aμ;z∂ϕ

−
x;i;sϕ

þ
y;i;s0

���
0
. If Γ̂μ;i;s;s0 ðk1; k2Þ denotes its Fourier trans-

form, the “anomalous magnetic moment,” corresponding to
a term Q

2m εμ;νpνAμσμν in the Dirac action, is obtained from
Gμ;ν ¼ m∂νΓ̂μ;l;R;Lðk1; k2Þj0, while the dressed charge is
related to Γ̂μ;l;s;sð0; 0Þ.
The dressed charge can be expressed by a series

expansion in λ2 with nth coefficients OðCnðλΛ=MÞ2nÞ,
see [29,30]; the series is therefore convergent provided that
λΛ=M is small. There is nontrivial charge renormalization,
due to the fact that the Ward identities are violated at finite
cutoff, and Zs has to be chosen so that the value of the
dressed charge is just Q. A similar convergent expansion
holds for the wave function renormalization, the chiral
anomaly, or the two-point correlations. Such quantities are
associated with terms that are relevant or marginal in the
renormalization group (RG) sense; that is, connected to
terms with positive or vanishing scaling dimension
(D ¼ 4 − 3

2
nψ − nA − p, if p is the order of derivatives

in coordinates space). They are therefore directly running
coupling constants, as in the case of the dressed charge, or
with a dominant part depending only on relevant or
marginal terms.
In contrast, the magnetic moment is associated with an

“irrelevant” term with dimension D ¼ −1. The derivative
of Γ̂μ;l;s;s0 produces an extra factor 1=m, so a naive
dimensional estimate for the nth order of ∂νΓ̂μ;l;R;L is
Oðm−1CnðλΛ=MÞ2nÞ; this is of no use for estimating the
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error done truncating the series, as explicit computations of
lowest orders are m

M2. One needs, therefore, to improve the
dimensional bounds by implementing suitable cancella-
tions at any order in the convergent expansion.
Theorem. Given (1) with Λ > M and M=m ¼ eβ, β > 0

we can write Gμ;ν ¼
P∞

n¼1G
ðnÞ
μ;νλ2n with, in the limit

L → ∞,

jGðnÞ
μ;ν j ≤ m2

M2
β2nC2n

�
Λ2

M2

�
n−1

�
log

Λ
M

�
2n

ð5Þ

and C is a constant independent of M, m, Λ.
The above result proves analyticity of the magnetic

moment for λCβðΛ=MÞ1þ0þ < 1. Note the presence of the
small factor m2

M2 on the rhs of (5), which is obtained
implementing cancellations in the expansion. C is an
Oð1Þ constant whose value can be obtained collecting
all constants in the bounds below. In particular, it is found
that Gμ;ν ¼ m2

M2 λ2ðAΛ
μν þOðλ2ðΛ2

M2Þ1þ0þÞÞ with AΛ
μν ¼ Oð1Þ,

from which an upper and lower bound follows (there is
no extra log Λ

m in the lowest order). One can therefore
exclude nonperturbative effects and justify truncation
providing a rigorous estimate of the error. Note also that
AΛ
μν ¼ A∞

μνð1þOðM2

Λ2 ÞÞ so that the result is nonsensitive to
the cutoff for MΛ ≪ 1. Similar considerations can be done for
higher order truncation.
The rest of the paper is organized in the following way.

In Sec. II we perform an RG integration, in which the main
novelty is that certain irrelevant terms are renormalized to
improve the scaling dimension of the theory thanks to
cancellations. In Sec. III we introduce the tree expansion
and we get a bound for the effective potential. In Sec. IV we
show that the expansion for the anomalous magnetic factor
has suitable cancellations allowing us to get the bound (5).
Finally, in Sec. V the conclusions are presented.

II. RENORMALIZATION GROUP ANALYSIS

It is convenient to introduce the “generating function”

eWΛðA;ϕÞ ¼
Z

PðdψÞeVðψÞþBðA;ψÞ ð6Þ

with BðA;ψÞ ¼ R
dxAμje:m:

μ;x þ R
dxðψ̄xϕx þ ψxϕ̄xÞ. The

two-point Schwinger function is SΛi;s;s0 ðx; yÞ ¼ ∂
2WΛ

∂ϕ−
x;i;sϕ

þ
y;i;s0

���
0

and the three point is

SΛμ;i;s;s0 ðz; x; yÞ ¼
∂
3WΛ

∂Aμ;z∂ϕ
−
x;i;sϕ

þ
y;i;s0

: ð7Þ

The Fourier transform is defined as ŜΛi;s;s0 ðkÞ, ŜΛμ;i;s;s0 ðk1; k2Þ
with k ¼ 2π

L n, with n an integer vector. Using that
−Ve

ΛðA;g �ϕÞþ ðϕ; g �ϕÞ ¼WΛðA;ϕÞ, obtained from the

change of variables ψ þ g � ϕ → ψ̃ if g�ϕ¼R
dygðx;yÞϕy,

we can write

Γ̂μ;l;s;s0 ðk1; k2Þ ¼ ĝ−1l;s ðk1ÞŜμ;l;s;s0 ĝ−1l;s0 ðk2Þ: ð8Þ

We compute the correlations by an exact renormalization
group analysis. The cutoff function is written as

χNðkÞ ¼
XN
h¼−∞

fhðkÞfhðkÞ ¼ χðγ−hkÞ − χðγ−hþ1kÞ ð9Þ

so that fhðkÞ is a smooth cutoff function selecting momenta
γh−1 ≤ jkj ≤ γhþ1; we also call χhðkÞ ¼

P
h
j¼−∞ fjðkÞ the

cutoff function selecting momenta jkj ≤ γh. The generic
integration step can be inductively defined in the following
way. If VðNÞ ¼ V þ B and assume that we have integrated
the fields ψ ðNÞ;ψ ðN−1Þ;…;ψ ðhþ1Þ, then

Z
PðdψÞeVðNÞðψ ;A;ϕÞ ¼

Z
Pðdψ ð≤hÞÞeVðhÞð ffiffiffiffi

Zh
p

ψ ð≤hÞ;A;ϕÞ ð10Þ

with VðhÞðA;ψ ð≤hÞÞ ¼

X∞
l;m¼0

Z
dxdy

X
s;ε

WðhÞ
l;mðx; yÞ

Yl
j¼1

ψ
εj;ð≤hÞ
sj;ij;xj

Ym
j¼1

A
εj
μj;yj ð11Þ

with ψ including also the ϕ fields and Pðdψ ð≤hÞÞ has

propagator gð≤hÞi ðx; yÞ ¼

1

L4

X
k

eikðx−yÞχhðkÞ
�ZL

h;iσ
L
μkμ mh;i

mh;i ZR
h;iσ

R
μkμ

�−1

: ð12Þ

The single scale propagator is bounded by

jgðhÞðxÞj ≤ Cγ3he−ðγhjxjÞ
1
2 ; ð13Þ

hence
R
dxjgðhÞðxÞj ≤ Cγ−h; moreover,

R jvWðxÞj ≤ C=M2
W

and
R jvZðxÞj ≤ C=M2

Z.
VðhÞ is the sum of monomials of any degree in the fields,

with scaling dimension D ¼ 4 − 3
2
l −m. We introduce a

renormalization procedure extracting from Vh not only the
terms with scaling dimension ≥0 (that is, only the relevant
or marginal term), but also the irrelevant terms with scaling
dimension −1.
We write, therefore,

Z
Pðdψ ð≤hÞÞeLVðhÞð ffiffiffiffi

Zh
p

ψ ð≤hÞ;A;ϕÞþRVðhÞð ffiffiffiffi
Zh

p
ψ ð≤hÞ;A;ϕÞ; ð14Þ

where R ¼ 1 − L is the renormalization operation and L
acts on the monomials in Vh in the following way:
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LŴ2;1;s;sðk1; k2Þ ¼ Ŵ2;1;s;sð0; 0Þ þ k1∂1Ŵ2;1;s;sð0; 0Þ
þ k2∂2Ŵ2;1;s;sð0; 0Þ

LŴ2;1;L;Rðk1; k2Þ ¼ Ŵ2;1;L;Rð0; 0Þ þ k1∂1Ŵ2;1;L;Rð0; 0Þjm¼0

þ k2∂2Ŵ2;1;L;Rð0; 0Þjm¼0

LŴ2;s;sðkÞ ¼ Ŵ2;s;sð0Þ þ k∂Ŵ2;s;sð0Þ

þ 1

2
k2∂2Ŵ2;s;sð0Þ

LŴ2;L;RðkÞ ¼ Ŵ2;L;Rð0Þ þ k∂Ŵ2;L;Rð0Þ

þ 1

2
k2∂2Ŵ2;L;R;sð0Þ

���
m¼0

: ð15Þ

Note that the propagators involving the same chirality are
odd in the exchange k → −k and the ones involving
different chiralities are even. Therefore,

Ŵ2;s;sð0Þ ¼ ∂
2Ŵ2;s;sð0Þ ¼ 0 ð16Þ

as is given by graphs with an odd number of diagonal
propagators and an even number of nondiagonal ones;
∂Ŵ2;L;Rð0; 0Þ ¼ 0 as is given by graphswith an even number
of diagonal propagators and an odd number of nondiagonal
ones; ∂2Ŵ2;L;Rð0; 0Þm¼0 ¼ 0 as they require a nondiagonal
propagator to be nonvanishing; Ŵ2;1;L;Rð0; 0Þ ¼ 0 as there is
an odd number of nondiagonal propagators and an odd
number of diagonal ones; ∂Ŵ2;1;L;Rð0; 0Þm¼0 ¼ 0 as they
require a nondiagonal propagator to be nonvanishing;
∂Ŵ2;1;s;sð0; 0Þ ¼ 0 as is given by graphs with an odd number
of diagonal propagators and an even number of nondiago-
nal ones.
We can write, therefore,

Z
P̃ðdψ ð≤hÞÞeL̃VðhÞð ffiffiffiffiffiffiffi

Zh−1
p

ψ ð≤hÞ;A;ϕÞþRVðhÞð ffiffiffiffiffiffiffi
Zh−1

p
ψ ð≤hÞ;A;ϕÞ ð17Þ

where for h ≤ N − 1,

LVhð
ffiffiffiffiffiffiffiffiffiffi
Zh−1

p
ψ ð≤hÞ; A;ϕÞ ¼

X
s

Z
dxZA

h;sAμψ
þ
x;l;sσ

s
μψ

þ
x;l;s

ð18Þ

and P̃ðdψ ð≤hÞÞ has a propagator given by (12) with Zh;i;s

replaced by Zh−1;i;s ¼ Zh;i;s þ ∂Wh
2;s;sð0Þ, mh−1 ¼ mh þ

Wh
2;R;Lð0Þ, and ZA

h−1;s ¼ Zh−1;l;s
Zh;l;s

ðZA
h;s þW2;1;s;sð0; 0ÞÞ. In

the case of ψϕ or Aψϕ we use the fact that the L part
is vanishing, as there is surely a propagator ghð0Þ ¼ 0;
hence there is no running coupling constant associated.
Using that P̃ðdψ ð≤hÞÞ ¼ Pðdψ ð≤h−1ÞÞPðdψ ðhÞÞ with gðhÞ

given by (12) with χh replaced fh, we get that (17) can be
written as the rhs of (10) with h − 1 replacing h and, see
Fig 1

Vh−1 ¼
X∞
n¼0

1

n!
ET
hðL̃VðhÞ þRVðhÞ;…; L̃VðhÞ þRVðhÞÞ;

ð19Þ

where ET
h are the fermionic truncated expectations; that

is, ET
hðO; nÞ ¼ ∂

n

∂λn log
R
PðdψhÞeλOj0.

The procedure can be then iterated up the scale of the
fermionic mass defined as

γh
� ¼ mh� : ð20Þ

At this point, one can write
R
Pðdψ≤h�

l ÞeVh� ðψ l;ψν;A;ϕÞ ¼
eV

h� ðψν;A;ϕÞ using that jg≤h� ðxÞj ≤ Cγ3h
�
e−ðγh

� jxjÞ12 . The inte-
gration of the remaining scales is done as above, the only
difference being that only the fields ψν remain; the ψ l
has been already integrated out. Note that mh;ν ¼ 0 by
symmetry.
In order to write explicitly the effective potential Vðh−1Þ

one has to express theRVh on the rhs of (19) in terms of the
sum of truncated expectations, while no further expansion
is done in the LVh; a graphical representation of a term is
in Fig. 2.
This procedure can be iterated up to the scale N,

resulting in a tree expansion described below.

III. RENORMALIZED EXPANSION

Iterating (19) we get an expansion for Vh in terms of
“trees” [31], see Fig. 3,

VðhÞðψ ð≤hÞ; A;ϕÞ ¼
X∞
n¼1

X
τ∈ T h;n

VðhÞðτÞ; ð21Þ

with τ a tree, constructed by joining a point, the root r, with
an ordered set of n ≥ 1 end points and associating a label

FIG. 1. Graphical representation of (19), that is, ET
h ðṼðhÞÞþ

1
2
ET
h ðṼðhÞ; ṼðhÞÞþ 1

3!
ET
h ðṼðhÞ; ṼðhÞ; ṼðhÞÞþ… with ṼðhÞ ¼ L̃VðhÞþ

RVðhÞ.

FIG. 2. Graphical representation of 1
2
ET
h ðL̃VðhÞ;

R 1
2
ET
hþ1ðVhþ1;Vhþ1ÞÞ.
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h ≤ N − 1 with the root; moreover, we introduce a family
of vertical lines, labeled by an integer taking values in
½h;N þ 1� intersecting all the nontrivial vertices, the end
points, and other points called trivial vertices. To each
vertex, v is associated with a scale hv; they are partially
ordered and, if v1 and v2 are two vertices and v1 < v2, then
hv1 < hv2 ; moreover, given v there are Sv points following
v. The first vertex has scale hþ 1. The end points v can be
(1) λ points to which is associated VðψÞ, or ϕ points to
which is associated Bðψ ; 0;ϕÞ; in this case, the scale is
hv ¼ N þ 1. (2) Z points, which are associated with
LVhv−1ðψ ð≤hv−1Þ; AÞ and in this case the scale is hv ≤
N þ 1 and there is the constraint that hv ¼ hv0 þ 1 if v0 is
the nontrivial vertex preceding v. Given a vertex v we call
mλ

v the number of λ points following v,mϕ
v the number of ϕ

points following v, and mA
v the number of Z points

following v.
With the above definitions, the value of VðhÞðτÞ is

obtained iteratively by the relations

VðhÞðτÞ ¼ ð−1Þsþ1

s!
ET
hþ1½V̄ðhþ1Þðτ1Þ; ::; V̄ðhþ1ÞðτsÞ�; ð22Þ

where τ1;…; τs are the subtrees with root in v, V̄ðhþ1ÞðτÞ ¼
RVðhþ1ÞðτÞ if the subtree τi contains more then one end
point, while if τi contains only one end point V̄ðhþ1ÞðτÞ is
Vðψ ð≤NÞ; 0;ϕÞ if h ¼ N or if h ≤ N is LVhþ1ðA;ψ ð≤hþ1ÞÞ.
By (22) we see that VðhÞðτÞ ¼ P

P V
ðhÞðτ; PÞ, where P is

the set of all Pv associated with the vertices of the tree,
corresponding to subsets of the labels of the fields
associated with the end points following v. We call V
the vertices such that Pv is different with respect to the
preceding one.
The VðhÞðτ; PÞ can be represented as sum of renormal-

ized Feynman graphs. The difference with respect to the
usual Feynman graphs is that the scale labels of the tree τ,
corresponding to vertices v∈V, can be represented as a set
of clusters enclosing the end points. To each point is

associated an element of V or LVh, represented graphically
as a point with half lines to be contracted. To each line is
associated a scale, and there is the constraint that all the
lines inside a cluster v have scale ≤hv, and at least one of
them is at scale hv. The R operation is applied on the
clusters depending on the number of the external lines.
Each graph is finite but one needs that the sum over the

scale labels is finite. Let us consider, for instance, the graph
in Fig. 4; one can bound the sum over the scales by up to a
constant, if N ≥ h1 ≥ hþ 1, ð λ2M2Þ3

P
h1 γ

2h1γ2h. In this
example, there is no R operation in the subgraphs. In
contrast, the R operation is present in the graph in Fig. 5.
The effect of the R operation can be written as

RŴðhvÞ
2;s;sðkÞ ¼ k3

Z
1

0

dt∂3ŴðhvÞ
2;s;sðtkÞ: ð23Þ

Therefore, the effect of R is to produce an extra k3; to the
external lines of ŴðhvÞ is associated a propagator gðhv0 ÞðkÞ, if
v0 is the vertex ∈V following v, with a cutoff function
restricting the value of k to ∼γhv0 . Similarly, the derivatives
on ŴðhvÞ are applied on propagators with scale ≥hv.
Therefore, the effect of the R operation is to produce an
extra ∼γ3ðhv0−hvÞ factor. Regarding the terms W2;R;LðkÞ, in
addition to such term there is also a contribution of the form

FIG. 3. A labeled tree.
FIG. 4. A graph with its clusters and the corresponding tree; the
smaller cluster has scale h1 and the larger hþ 1.

FIG. 5. A graph requiring renormalization; the smallest cluster
has scale h1 and the larger hþ 1.
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1

2
k2∂2Whv

2;L;RðkÞjm¼0 −
1

2
k2∂2Whv

2;L;RðkÞ: ð24Þ

Such terms are present only for i ¼ l; by phase symmetry
when i ¼ ν there are no terms L, R, by invariance under
ψs;ν → eiαsψ s;ν. The bound for the propagator involving L
and R fields has an extra factor mhv

γhv
and, for hv ≥ h� (20),

mhv

γhv
¼ mhv

mh�

mh�

γhv
≤ γhv0−hv ; ð25Þ

as the smallest scale of the external fields of type i ¼ l is h�,
that is, hv0 ≥ h�.
Without the R operation, the graph in Fig. 5 is bounded

by h1 ≥ h2 ð λ2M2Þ3
P

h1 γ
5h1γh; the R operation adds an

extra γ3ðh−h1Þ.
A finite bound for any graph is still not sufficient for

getting convergence; the number of graphs has a factorial
growth. Therefore, it is convenient to represent the truncated
expectation as [32] ET

hðψ̃ ðhÞðP1Þ; ψ̃ ðhÞðP2Þ;…; ψ̃ ðhÞðPsÞÞ ¼
X
T

Y
l∈T

gðhÞðxl − ylÞ
Z

dPT detGh;T; ð26Þ

where ψ̃ ðhÞðPÞ are monomials in the ψ , T is a set of lines
forming an “anchored tree graph” connecting the set
P1;…; Ps, and detGh;T is a matrix containing the fields
not belonging to T. The crucial point is that, using Gram
inequality, the detGh;T can be bounded by a constant times
the number of fields. This is a way to implement the well-
known fact that fermionic series expansion can be conver-
gent, in contrast to bosonic ones. Using (26) one gets for a
class of graph with a chosen tree τ and P the same bound as
for a single graph, without factorials. If kVðτ; PÞk denotes
the integral of the modulus over all the coordinates except
one, then (see, e.g., [30]) kVðτ; PÞk ≤

Cn
Y
v∈V

γ4hvðSv−1Þγ−3hvnv
Y
v∈V

γzvðhv0−hvÞðλ2=M2Þn; ð27Þ

wherenv is the number of propagators in the cluster v and not
in any smaller one, v0 is the vertex in V preceding v, and Sv
are the vertices following v (or the maximal clusters in v).
The factor

Q
v γ

zvðhv0−hvÞ is the effect of the renormalization
procedure; zv ¼ 3 in the terms ψψ or ψϕ and zv ¼ 2 in the
terms Aψψ or Aψϕ. We use the relations

P
v∈Vðhv −

hÞðSv − 1Þ ¼ P
v∈Vðhv − hv0 Þðmλ

v þmA
v þmϕ

v − 1Þ andP
v∈Vðhv−hÞnv¼

P
v∈Vðhv−hv0 Þð2mλ

vþmA
vþmϕ

v−nev=2Þ,
where nev is the number of external ψ ;ϕ lines from the
cluster v. Therefore, the bound becomes, if D̄v ¼
4 − 3nev=2þ 2mλ

v −mA
v −mϕ

v , kVðτ; PÞk ≤

Cnγð4−3=2lþ2mλ−mA−mϕÞhY
v∈V

γðhv−hv0 ÞðD̄z−zvÞðλ2=M2Þn; ð28Þ

where l are the external ψ ;ϕ lines associated with Vðτ; PÞ
and zv ¼ 3 for the vwith two external ψ lines and zv ¼ 2 for
the v with two external ψ lines and one A line. We use now
the relation i ¼ ϕ; λγhm

i
v0
Q

v∈V γ
ðhv−hv0 Þmi

v ¼ Q
v∈V γ

hvm̄i
v ,

where m̄i
v is the number of end points of type i con-

tained in v and not in any smaller cluster. Therefore, if
Dv ¼ 4 − 3nev=2 −mA

v ,

kVðτ; PÞk ≤ Cnγhð4−3=2l−mAÞY
v∈V

γðhv−hv0 ÞðDv−zvÞ

×

� Y
v∈Wλ

γ2ðhv�−NÞðλ2γ2N=M2Þn
� � Y

v∈Wϕ

γ−hv�
�
;

ð29Þ

whereWλ andWϕ are the end points of λ or ϕ type and v� is
the first nontrivial vertex preceding v. Note that if v∈Wϕ

then hv� ¼ hk; hk þ 1; the reason is that the corresponding
contribution is of the form ghv� ðkÞW, and hence is non-
vanishing only for such scales.
We consider first the contribution to the effective

potential when there are no ϕ end points. The scale h is
fixed so that the sum over all the possible scales can be
done summing over all the possible scale differences (the
scale h is fixed); hence, if D̃v ¼ Dv − zv ≥ 2,

X
fhg

Y
v

γðhv−hv0 ÞD̃v ≤ Cn
Y
v

γ−jnevj=4
�X∞

q¼1

γ−2q
�

4n
ð30Þ

as −D̃v − χðnev ≥ 8Þjnevj=4 ≥ 2. The factor γ−jn
ψ
v j=4 is

used to sum over P. Then
P

τ

P
P jVðτ; PÞj ≤

Cnγhð4−3=2l−mÞðλ2γ2N=M2Þn implying summability over n
if ðλ2γ2N=M2Þ is small enough.
Asanexample, thebound (29) for thegraph inFig.4 isgiven

by up to the factor ðλ2γ2NM2 Þ3 γ−2h
P

h1 γ
−2ðh1−hÞγ4ðh1−NÞγ2ðh−NÞ.

Similarly, the bound for the graph in Fig. 5 is
P

h1 γ
−ðh−h1Þ

γ3ðh−h1Þγ4ðh1−NÞγ2ðh−NÞ.

IV. THE ANOMALOUS MAGNETIC MOMENT

The three-point function SΛμ;l;s;s0 ðz; x; yÞ with external

fields of type l can be written as SΛμ;l;s;s0 ¼
P

τ

P
P Sμðτ; PÞ,

where the sum is over all the trees with two ϕ end points
and a Z end point. We choose the momentum of the
external fermionic lines as jk1j; jk2j ≤ γh

�
.

We can distinguish between trees with no λ end points
and at least a λ end point. In the first case, one has only a
contribution to ŜΛμ;l;s;s0 ðk1; k2Þ of the form, see the first
graph in Fig. 6,

X
s̄

ZA
h�;s̄g

ð≤h�Þ
s̄;s ðk1Þσs̄μgð≤h

�Þ
s̄;s0 ðk2Þ: ð31Þ
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In the second case, there is at least a λ end point, like in the
second and third graph in Fig. 6. Let us consider the
smallest cluster vs containing the point vϕ associated with
the ϕ end point; note that hvs ¼ h� as the momentum of the
external lines is assumed ≤γh� , and the contraction of the ψ
field produces a propagator with the same momentum as
the external one. In the cluster vs there is also surely a λ end
point ṽλ (there is at least either a λ or Z point, and there is
only one Z), and ṽs is the smallest cluster containing ṽλ
contained in vs.
In terms of trees, there is a path from ṽλ to v0, v0 being

the first vertex belonging to V (or a sequence of clusters,
one enclosed in the other) v0 < v1 < …vs < vsþ1… < ṽs,
an hv0 ≤ …hvs < …hṽs with hvs ¼ h�, see Fig. 7.
We get therefore the bound, if D̃v ¼ Dv − zv ≤ −2

kSμðτ; PÞk ≤

Cn
Y
v∈V

γðhv−hv0 ÞD̃vγ2ðhṽs−NÞðλ2γ2N=M2Þnγ−2h� ; ð32Þ

which implies

kSμðτ;PÞk≤Cn
Y
v∈V

γðhv−hv0 ÞðD̃vþθvÞγθðhv0−hvs Þ

× γθðhvs−hṽs Þγ2ðhṽs−NÞðλ2γ2N=M2Þnγ−2h� ; ð33Þ

where θv ¼ θ < 2 for v ¼ v0; v1;…; vs::; ṽs and θv ¼ 0
otherwise. Therefore,

kSμðτ; PÞk ≤ γθðhv0−h
�Þγθðh�−NÞ

× Cn
Y
v∈V

γðhv−hv0 ÞðD̃vþθvÞ

× γ−2h
� ðλ2γ2N=M2Þn: ð34Þ

The sum over all the scale difference is done again using the
factors γðhv−hv0 ÞðD̃vþθvÞ; the sum over hv0 is controlled by the

factor γθðhv0−h
�Þ, hence the bound for the contributions to

ŜΛμ;l;s;s0ðk1;k2Þ with at least a λ term is

X
τ

X
P

kSðτ; PÞk ≤ Cnγ−2h
�
γθðh�−NÞðλ2γ2N=M2Þn: ð35Þ

Note that such terms are subdominant due to the extra
factor γθðh�−NÞ. The three-point function is equal to the free
one with renormalized parameters, up to more regular terms
containing at least an irrelevant λ interaction. A similar
result holds for the two-point function.
As an example, the second graph in Fig. 6 is bounded by

[up to a factor ðλ2γ2N=M2Þ] γ−2h� Ph1≥h� γ
2ðh�−h1Þγ2ðh1−NÞ,

where the factor γ2ðh�−h1Þ is produced by the R operation:
hence it is bounded by γ−2h

�
γθðh�−NÞ.

The third graph gives [up to a factor ðλ2γ2N=M2Þ2]
for h1 ≥ h� ≥ h γ−2h

� P
h1;h γ

2hγ2h1γ−4N, which can be

written as γ−2h
� P

h1;h γ
2ðh−h�Þγ2ðh�−h1Þγ4ðh1−NÞ and finally

by γ−2h
�
γθðh�−NÞ, see Fig. 8. Finally, for the graph in

Fig. 5 (if the external lines are propagators, and there
is an extra R), one gets for h1 ≥ h ≥ h� γ−2h

�P
h1;h γ

2ðh�−hÞγ2ðh−h1Þγ4ðh1−NÞγ2ðh−NÞ, which is surely smaller

than γ−2h
�
γθðh�−NÞ.

We arrive finally to the bound forGμν¼m
P

τ;P∂ΓAðτ;PÞ.
By (8) and (31) we see that the contribution from the
dominant term to Sμ as the derivative is vanishing. One has
therefore to consider the derivative of the amputated
contributions with at least a λ end point. Moreover, we
consider the term with s ≠ s0, which are the only contrib-
uting at zero momentum. We get mk∂ΓAðτ; PÞk ≤

m2γ−hv0 γ−h
�
Cn

Y
v∈V

γðhv−hv0 ÞD̃vγ2ðhṽs−NÞðλ2γ2N=M2Þn; ð36Þ

FIG. 6. Some graphs contributing to the functions Γ; the ϕ lines
are not represented (they are meant as external to all clusters). In
the first, the scale of the cluster is h�; in the second, the smallest
has scale h1 and the larger h�; in the third, the smaller h1, the
medium h�, and the larger h.

FIG. 7. A tree with the path from ṽλ to v0.

FIG. 8. The tree corresponding to the third graph in Fig. 6;
hv0 ¼ h, hvs ¼ h�, hṽs ¼ h1.
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where with respect to (32) there is an extra γ−hv0 from the
derivative and a missing γ−2h

�
. The above expression can be

rewritten as

mk∂ΓAðτ; PÞk ≤ m2γ−hv0 γ−h
�
γ
3
2
ðhv0−h�Þ

× γ2ðh�−hṽs ÞCn
Y
v∈V

γðhv−hv0 ÞðD̃vþθ̄vÞ

× γ2ðhṽs−NÞðλ2γ2N=M2Þn; ð37Þ

where θ̄v ¼ 3=2 for v ¼ v0; v1;…; vs and θ̄v ¼ 2 for
v ¼ vsþ1;…; ṽs, and θv ¼ 0 otherwise. Therefore,

γ−hv0 γ−h
�
γ3=2ðhv0−h

�Þγ2ðh�−NÞ ≤ γ1=2ðhv0−h
�Þγ−2N ð38Þ

and finally we get

mk∂ΓAðτ;PÞk≤γ1=2ðhv0−h
�Þm2γ−2N

×Cn
Y
v∈V

γðhv−hv0 ÞðD̃vþθ̄vÞðλ2γ2N=M2Þn: ð39Þ

Now the sum over hv0 is done using the factor γ1=2ðhv0−h
�Þ;

the sum over the difference of scales is done using
γðhv−hv0 ÞðD̃vþθ̄vÞ for any v except the ones between vs and
ṽs; there are at most 2n of such vertices so that there is an
extra factor jN − h�j2n. The same overP is done in the same
way as we can extract a factor γ−n

e
v=6 for nev ≥ 8. Therefore.

the bound is n ≥ 1

mk∂ΓAðτ;PÞk≤
m2

M2
λ2ðlogðm=γNÞÞ2nðλ2γ2N=M2Þn−1: ð40Þ

For instance, the bound for the second graph in Fig. 6 is,
obtaining γ−2h

�
by the derivatives, m2 λ2

M2

P
h1≥h� 1; hence it

is bounded by jh� − Nj m2λ2

M2 . In the case of the third graph in
Fig. 6 for h1 ≥ h� ≥ h, it can be written as up to
m2ðλ2γ2N=M2Þ2 P

h1;h γ
−h�γ−hγ2ðh−h�Þγ2ðh�−h1Þγ4ðh1−NÞ;

moreover, we can write γ−h
�þh1γ−hþh1 as γ−2ðh�−h1Þγ−hþh�

so that we get
P

h1;h γ
ðh−h�Þγ−2N which is bounded by

jN − h�jγ−2N . The contribution of the graph in Fig. 5 is
h1 ≥ h ≥ h� γ−2h

� P
h1;h γ

2ðh�−hÞγ2ðh−h1Þγ4ðh1−NÞγ2ðh−NÞ

bounded by jN − h�j2γ−2N times m2ðλ2γ2N=M2Þ3.
Moreover, ðlogΛ=mÞ2n¼ðlogΛ=Mþ logM=mÞ2n which

is equal to
P

p
2n!

p!ð2n−pÞ! ðlogΛ=MÞpðlogM=mÞ2n−p ≤
ðlogΛ=MÞ2nðlogM=mÞ2n22n.
The lowest order contribution to the magnetic moment is

given by the second graph in Fig. 6 and the difference
between the finite and infinite Λ is bounded by (the R
disappears with the derivative) m2

R∞
Λ dk 1

k4
1

k2þM2
Z
which is

Oðm2

M2
Z

M2
Z

Λ2 Þ; this follows from the nonlocality of the inter-

action which was not used in the bounds.

Finally, we have to study the flow of the running
coupling constants. They verify recursive equations in
which there is at least a λ end point so that proceeding
as above we can write Zi;s;h−1

Zi;s;h
¼ 1þ βhz with βhz ¼

Oðγθðh−NÞðλ2γ2N=M2Þ2Þ. This implies that limh→∞ Zi;s;h ¼
Zl;s is finite and Zi;s ¼ 1þOðλ2γ2N=M2Þ; the fermionic
wave function renormalization depends on the particle and
chiral index. In the same way limh→∞ ZA

s;h ¼ ZA
s with ZA

s ¼
1þOðλ2γ2N=M2Þ and mh� ¼ mð1þOðλ2γ2N=M2ÞÞ. Note
that ZA and Z are different, due to violation of Ward
identities due to momentum regularization which produces
an extra term in the Ward identities,

pμΓ̃Λ
μ;l;sðk; kþ pÞ ¼ QðSΛl;s;sðkÞ − SΛl;s;sðkþ pÞÞ

þ δΓΛ
l;s; ð41Þ

where Γ̃Λ
μ;l;s is defined as ΓΛ

μ;l;s with Zl;s ¼ 1, and

δΓΛ
l;s is similar to Γ̃Λ

μ;l;s with the current replaced by
δjl¼

P
sQ

R
dkdpCðk;pÞψ̄k;l;sσ

s
μψkþp;l;s, whereCðk; pÞ ¼

kðχ−1ðkÞ − 1Þ − ðkþ =pÞðχ−1ðkþ pÞ − 1Þ. We have there-
fore to choose Zs to impose

ZA
s =Zl;s ¼ 1: ð42Þ

With this condition the effective potential has the formR
Âμ;k1−k2Z

−1=2
s;i Z−1=2

s0;i ϕ̄k1;s;iϕk2;s0;iV̂μ;i;sðk1;k2Þ and Vμ;i;s;s0 ¼
Z1=2
s;i Z

1=2
s0;i Γ̂μ;i;s;s0 ðk1; k2Þ with Vμ;l;s;sð0; 0Þ ¼ Q and the mag-

netic moment obtained by Z1=2
s;i Z

1=2
s0;i Gμ;i;s;s0.

V. CONCLUSIONS

The series for the magnetic moment is expected to be
nonconvergent and even not asymptotic, and this makes it
unclear how to evaluate the error introduced by truncation.
We consider a nonperturbative framework expressing the
magnetic moment in terms of Euclidean functional inte-
grals with a finite ultraviolet cutoff, considering a Fermi
description for weak forces, that is integrating out the gauge
bosons at tree level. The fact that the magnetic moment is
associated with an irrelevant quantity in the RG sense
requires careful estimates and the implementation of
previously unknown cancellations. We get that the mag-
netic moment is expressed by series which are analytic for
λðΛ2

M2Þð1þ0þÞ small, with relative error due to truncation at

order n Oðλ2ðn−1ÞðΛ2

M2Þðn−1Þð1þ0þÞÞ. In addition, the lowest
order coincides with its Λ → ∞ limit up to an error term
OðM2

Λ2 Þ. This excludes nonperturbative phenomena in the
regime of parameters where such two errors are small, that
is, λ2 ≪ M2

Λ2 ≪ 1, and it justifies the validity of truncation of
the series expansion with no cutoff in this regime.
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An important open question is if a similar approach
based on rigorous RG and Euclidean functional integrals
with cutoff can be repeated keeping the gauge interaction
(and loosing analyticity), and if an estimate for the relative
error due to the truncation is obtained with a weaker
logarithmic dependence, that is, Oðλ2ðn−1Þðlog Λ2

M2Þðn−1ÞÞ,
up to a constant depending on the order with some
factorial. This could allow one to include larger and more
realistic values of the coupling and also to include
massless photons. Technical difficulties to be solved
include, however, the need of an extra decomposition

in the gauge boson fields and the fact that one cannot
expand in the coupling, as well as the understanding of the
interplay of the anomaly cancellations in a nonperturba-
tive setting.
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