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Abstract: It is known that the presence of microstructures in solids such as joints and interfaces has
an essential influence on the studies of the development of advanced materials, rock mechanics,
civil engineering, and so on. However, microstructures are often neglected in the classical local
(Cauchy) continuum model, resulting in inaccurate descriptions of the behavior of microstructured
materials. In this work, in order to show the impact of microstructures, an implicit ‘non-local’ model,
i.e., micropolar continuum (Cosserat), is used to numerically investigate the effects of direction
and scale of microstructures on the tension problem of a composite plate with a circular hole. The
results show that distributions of field variables (such as displacements and stresses) have an obvious
directionality with respect to the microstructures’ direction. As the scale of microstructures increases,
such a direction effect becomes more evident. Unlike the isotropic material where stress concentration
occurs at the vertex of the hole and the stress concentration factor is close to 3, for the microstructured
composite, the stress concentration can be observed at any location depending on the microstructures’
directions, and the concentration factor can exceed 3 to a maximum close to 9 as the increasing
scale of microstructures. In addition, differences in the mechanical behavior between Cosserat and
Cauchy models can be also observed; such differences are more evident for the material showing a
pronounced orthotropic nature.

Keywords: composite materials; microstructure direction; Cosserat continuum; stress concentration;
scale effect

1. Introduction

Microstructure is one of the most critical factors that involves many kinds of materials
such as rock, ceramic, alloy, human cortical bone, etc. [1–4]. As an internal structure,
microstructure can play a crucial role in determining the gross behavior and mechanical
response of materials [5]. However, the microstructures in materials distribute randomly
with different lengths and directions, which complicates the understanding of the material’s
response. In general, materials with microstructure have weaker strength than in intact
materials [6,7]. Guo et al. [8] experimentally investigated the effect of bedding angle
in phyllite under unloading confining pressures, where the rock bedding joints can be
regarded as microstructures. They found that the rock shows different strengths as the
bedding angle changes. Numerical research on the tunnel surrounding rocks with different
inclination angles also shows a directional effect on the distributions of displacements
and stress around the tunnel [9]. By reviewing indentation tests at the micron scale,
Bauer et al. [10] demonstrate that an obvious length scale effect (i.e., non-locality) can be
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found when the material’s intrinsic length scales are comparable with the dimension of
specimens. Therefore, it is of importance to describe the macroscopic response of these
materials by considering the influences of the microstructures.

The existence of microstructure results in the heterogeneity characteristic of materials.
There are various methods that can be used to model the behavior of microstructured
materials. Discrete modeling with interactions of each constituent in materials is a good
option because it can produce an accurate result; however, this approach is often compu-
tationally cumbersome [11–13]. Alternatively, homogenizing the heterogeneous material
as an equivalent continuum could be an efficient approach because it is faster and takes
less computational cost [14]. Nevertheless, the application of this approach depends on
selections of the homogenization method and macroscopic continuum theory that need to
reveal the presence of microstructures. As is known, the classical Cauchy continuum may
have disadvantages in describing the gross behavior of microstructured materials since it
lacks in internal length descriptions [15,16]. This calls for the application of the non-local
continuum theory, as this approach can reveal the presence of internal lengths [17]. In the
non-local theory, internal lengths can be represented by adding extra degrees of freedom
or parameter as internal variables, corresponding to the so-called implicit and explicit
non-local descriptions, respectively [18,19].

The Cosserat continuum theory is a widely used implicit non-local model to investigate
the microstructured material’s behavior. After the completed mathematical foundations of
the micropolar continuum was achieved, this theory became very popular (since the 70s).
The Cosserat model introduces to each material point an extra degree of freedom, termed
microrotation, which is different from the local rigid rotation (i.e., macrorotation). As a
result, the stress and strain fields become asymmetric in this model, which is different from
the classical Cauchy model with symmetric measurements. Moraes et al. [1] found that the
asymmetrical property in the Cosserat model can be helpful to improve the description
of the mechanical behavior of the materials such as rocks. The asymmetric strains also
correspond to the relative rotation between the microrotation and macrorotation. Pau
and Trovalusci [20] found that the relative rotation is significant in anisotropic materials,
whereas it can be negligible in orthotetragonal materials where the internal length trends
to vanish. With the advantage of keeping the memory of the microstructure, the Cosserat
continuum was used to study many kinds of materials such as layered materials [21,22],
fiber-reinforced materials [23,24], granular materials [25], and composites [26–28]. Using a
homogenization process for the Cosserat continuum, Trovalusci and Masiani [29] numeri-
cally and experimentally studied the mechanical behavior of an inclined masonry structure
in which microstructures (interfaces) show a different direction from the ordinary masonry
structure. However, the results of this literature only showed the micropolar effect resulted
from the Cosserat continuum but the effect of microstructures direction was not further
discussed.

In this work, the effects of the microstructure’s direction and length scale in a compos-
ite are studied to extend the understanding of microstructured materials, such as advanced
materials with various microstructured and layered rocks with inclined angles. The com-
posite considered here is made of rectangular blocks interacting with each other through
their elastic interfaces, and it is homogenized as a Cosserat continuum by an energetic-
equivalence-based homogenization technique [30]. Thus, the characteristic of non-locality
is involved in this study. Six directions and four length scales of the microstructure are
investigated by the finite element method (FEM) for a tension problem of a composite
plate with a circular hole. Therefore, this work also focuses on the stress concentration
problem of microstructured materials. This problem has been widely reported in previous
studies [31–34]. Holes in materials can induce stress concentration around it and hence
reduce the mechanical properties [35]. However, a number of solutions have been carried
out for holes in isotropic plates [36]. With the increasing research interests on materials,
especially with microstructures, it is essential to gain a better understanding in modeling
the mechanical behavior of these materials.
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This paper is structured as follows. After the introduction section, Section 2 introduces
the Cosserat theory and its FEM implementation. Section 3 presents the model, parameters,
methods, etc. used in the simulations of the tension problem for a plate with a circular hole.
In Section 4, numerical simulations are conducted and results of displacements, stresses,
and relative rotation are shown. The stress distribution around the hole is discussed and
the simulation results are analyzed in Section 5. In the end, conclusions and remarks are
drawn in Section 6.

2. Cosserat Continuum and Its FEM Implementation

The Cosserat continuum is considered to be a multi-scale tool [37] that can be used
to investigate the mechanical behavior of materials where the microstructures and, in
particular, internal lengths, play a crucial role. As an implicit’ non-local continuum, it is
equipped with additional degrees of freedom revealing the presence of microstructures.
That is, for two-dimensional (2D) Cosserat media, each material point has two translation
degrees of freedom u1, u2 and an additional microrotation degree of freedom ω. The
microrotation ω is an independent degree of freedom and it is different from the macro-
rotation θ which is defined as the skew-symmetric part of the gradient of displacement.
Thus, a peculiar measurement, the relative rotation θ−ω, can be defined in this continuum.
A general displacement vector for the Cosserat material point can be expressed as:

d> =
[
u1 u2 ω

]
=
[
u> ω

]
(1)

where u> =
[
u1 u2

]
. Due to the introduction of ω, the tangential strains in the Cosserat

model are not reciprocal, i.e., ε12 6= ε21, and the microcurvature component is introduced
as an additional strain measure; therefore, the linear strain–displacement relation can be
expressed as: [

ε
χ

]
=

[
L M
0 ∇

][
u
ω

]
(2)

where ε> =
[
ε11 ε22 ε12 ε21

]
contains the normal and tangential strains and χ> =[

χ1 χ2
]

contains the microcurvatures. ∇ is the gradient operator, and

L =

[
∂

∂x1
0 ∂

∂x2
0

0 ∂
∂x2

0 ∂
∂x1

]>
,

M =
[
0 0 1 −1

]> (3)

With the strain measures, the stresses of the Cosserat continuum can be obtained by a
linear elastic constitutive equation as:[

σ
µ

]
=

[
A B
B> D

][
ε
χ

]
(4)

where σ> =
[
σ11 σ22 σ12 σ21

]
contains the normal and tangential stresses and µ> =[

µ1 µ2
]

contains the couple stresses. The tangential stress components are also not
reciprocal (σ12 6= σ21). The constitutive sub-matrices A, B, and D collect the constitutive
terms Aijhk, Bijh, and Dij, where i, j, h and k = 1, 2.

A detailed three-dimensional finite element formulation for the Cosserat continuum
can be found in [38]. For the sake of simplicity, the displacement-based finite element imple-
mentation for 2D Cosserat theory is presented here to model the behavior of microstructured
material. Firstly, in the finite element procedure, displacement and microrotation fields
should be approximated by the nodal values of an element. In this study, for avoiding



Materials 2022, 15, 6196 4 of 17

the element locking problem, a bi-quadratic (Nu) and a bi-linear (Nω) shape function are,
respectively, used for the displacement and microrotation approximation:

u = Nuũ
ω = Nωω̃

(5)

where ũ and ω̃ are nodal displacement and microrotation values. In the present paper,
nine-node quadrangular elements are considered for an element. All nine node values are
used to approximate the displacements, whereas values at four corner nodes are used for
the microrotation. Nu and Nω can be expressed as:

Nu =

[
N1

u 0 . . . N9
u 0

0 N1
u 0 . . . N9

u

]
,

Nω =
[
N1

ω . . . N4
ω
] (6)

Substituting Equation (5) into (2), the strain vectors become:

ε =
[
LNu MNω

]{
ũ ω̃

}>
= Bεd̃,

χ =
[
0 ∇Nω

]{
ũ ω̃

}>
= Bχd̃

(7)

where Bε and Bχ are the derivatives of the shape functions. d̃ is the unknown nodal values
collecting ũ and ω̃. Substituting Equation (7) into Equation (4), the constitutive relations
become:

σ = ABεd̃ +BBχd̃,
µ = B>Bεd̃ +DBχd̃

(8)

Now, the stress and couple stress measures can be obtained from the nodal values.
Considering a domainA and boundary Γ, the principle of virtual work can be expressed as:∫

A
δε>σ + δχ>µ dA =

∫
A

δu>b dA+
∫

Γ
δu>t + δω>m dΓ ∀δu, δω (9)

where δ is the variational operator, b is the body force vector. t and m are the traction and
couple-traction vectors applied on the boundary Γ. The components (ti and mi) of t and m
should satisfy the equilibrium at external boundary as ti = σijnj and mi = µjnj, where nj is
the components of the outward unit normal to the boundary. Substituting Equations (5), (7)
and (8) into (9) and excluding body forces, we obtain:

δd̃>
∫
Ae

(
Bε
>ABε + Bε

>BBχ + Bχ
>B>Bε + Bχ

>DBχ

)
dAe︸ ︷︷ ︸

Ke

d̃ = δd̃>
∫

Γe

 Nu
>t

Nω
>m

dΓe

︸ ︷︷ ︸
Fe

∀δd̃ (10)

where Ke and Fe are the element stiffness matrix and the element nodal force vector.
They can be computed numerically by a Gauss–Legendre integration with 3× 3 grid. If
considering arbitrary δd̃, we can obtain the standard finite element formulation as:

Ked̃ = Fe (11)

At the end, the unknown d̃ can be obtained by solving this equation. With this solution,
in the post-processing stresses and strains are firstly computed at Gauss points for each
element and then an extrapolation technique is used to get stresses and strains at element
nodal points.

The above implementations are achieved by an updated MATLAB code based on
codes of a classical 2D Cauchy continuum as presented in [39].
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3. Numerical Simulation

In this section, we intend to numerically investigate the effects of direction and scale
of microstructures for a composite material that can be considered as an assembly made of
rigid rectangular blocks in contact with elastic interfaces (Figure 1), where each rectangular
block has the width of b and height of h. The assembly is arranged as an interlocking
structure and the interfaces of blocks form the microstructures of this composite material.
A homogenization procedure presented in [30] can be used to describe the assembly as
an equivalent Cosserat continuum. In this work, 7-block representative volume element
(RVE) that is highlighted with orange color in Figure 1 is used for the homogenization
procedure to produce the Cosserat constitutive matrix in Equation (4). In the highlighted
RVE, the blocks’ centroids are represented by green crosses, and red lines mean the outward
unit normal vectors of the central block’s interfaces. The direction of microstructures can
be changed by transforming the assembly of an angle β from x − y coordinate system
to X − Y coordinate system as shown in Figure 1. In this study, we select 6 values of
β (0◦, 30◦, 60◦, 90◦, 120◦, 150◦). Furthermore, to obtain various scales of microstructures,
4 different block sizes are used by fixing the height of block h = 0.1 m and changing
the aspect ratio ρ = b/h = 1.5, 3, 7, and 15, where a greater ρ corresponds to a longer
rectangular block, as a consequence, showing more orthotropic nature.

×
×

×

×
× ×

×

RVE

h b

X = X1

Y = X2

x = x1

y = x2

β

Figure 1. Schemes of the considered assembly and RVE.

The blocks interact among themselves through elastic common interfaces. The adopted
spring stiffness at the interfaces is:

K =

[
kn 0
0 kt

]
(12)

where kn and kt are the normal and tangential stiffness per unit length, respectively. Here
we have kn = 576.58 MPa/m and kt = 288.29 MPa/m. The rotation stiffness of interface is
computed kr = kn(d/2)2, where d is the length of interface. Therefore, the Cosserat consti-
tutive matrices of the reference RVE when β = 0◦ can be obtained by the homogenization
technique that is based on an equivalence energy criterion between the material’s discrete
system of and the continuum model [30]. The constitutive matrix of transformed assembly
can be obtained as follows:

C = Q>C0Q (13)

where C0 is the constitutive matrix when β = 0◦, Q is the usual transformation matrix [40].
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For comparison, the Cauchy continuum is also considered here to carry out the same
simulations as performed by the Cosserat continuum. Because of the lack in microstructures,
the constitutive relation of the Cauchy continuum has the form of: σ = Âε, where the
matrix Â is obtained from A and their relationship can be found in the previous literature
as [41]:

Â1111 = A1111

Â1122 = A1122

Â2222 = A2222

Â1112 = (A1112 + A1121)/2

Â2212 = (A2212 + A2221)/2

Â1212 = (A1212 + A2121 + 2A1221)/4

(14)

Tables 1–4 list the constitutive components of all configurations, where components
keeping zero for all configurations are not reported. It can be seen that there are more zero
components when β = 0◦ and 90◦. Actually, only diagonal components of the constitutive
matrix exist and an orthotropic nature of the material is observed for these two transforma-
tion angles. For other angles, all components of matrices A and D appear. Consequently,
materials with these RVEs show a centrosymmetric nature [30]. B = 0 for all configurations,
meaning there is no coupling between stresses/microcurvatures and microcouples/strains.
As the aspect ratio ρ increases, constitutive components change monotonously except for
A2222, A1212 of Cosserat continuum and Â2222 of Cauchy continuum when β = 0◦. Because
of the fixed height of blocks (h), these components stay the same with increasing ρ.

Table 1. Cosserat and Cauchy constitutive parameters for RVE with block parameter ρ = 1.5,
Aijkl , Âijkl [MPa], Dij [MPa·m2].

0◦ 30◦ 60◦ 90◦ 120◦ 150◦

A1111 102.70 80.97 58.45 57.66 58.45 80.97
A1122 0 10.47 10.47 0 10.47 10.47
A1112 0 25.94 13.85 0 −13.85 −25.94
A1121 0 5.66 −6.44 0 6.44 −5.66
A2222 57.66 58.45 80.97 102.70 80.97 58.45
A2212 0 −6.44 5.66 0 −5.66 6.44
A2221 0 13.85 25.94 0 −25.94 −13.85
A1212 28.83 51.01 74.44 75.68 74.44 51.01
A1221 0 10.47 10.47 0 10.47 10.47
A2121 75.68 74.44 51.01 28.83 51.01 74.44
D11 0.57 0.47 0.29 0.19 0.29 0.47
D12 0 0.16 0.16 0 −0.16 −0.16
D22 0.19 0.29 0.47 0.57 0.47 0.29

Â1111 102.70 80.97 58.45 57.66 58.45 80.97
Â1122 0 10.47 10.47 0 10.47 10.47
Â1112 0 15.80 3.71 0 −3.71 −15.80
Â2222 57.66 58.45 80.97 102.70 80.97 58.45
Â2212 0 3.71 15.80 0 −15.80 −3.71
Â1212 26.13 36.60 36.60 26.13 36.60 36.60
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Table 2. Cosserat and Cauchy constitutive parameters for RVE with block parameter ρ = 3, Aijkl , Âijkl
[MPa], Dij [MPa·m2].

0◦ 30◦ 60◦ 90◦ 120◦ 150◦

A1111 237.84 183.34 93.24 57.66 93.24 183.34
A1122 0 9.46 9.46 0 9.46 9.46
A1112 0 85.04 74.12 0 −74.12 −85.04
A1121 0 3.90 −7.02 0 7.02 −3.90
A2222 57.66 93.24 183.34 237.84 183.34 93.24
A2212 0 −7.02 3.90 0 −3.90 7.02
A2221 0 74.12 85.04 0 −85.04 −74.12
A1212 28.83 85.14 178.83 216.22 178.83 85.14
A1221 0 9.46 9.46 0 9.46 9.46
A2121 216.22 178.83 85.14 28.83 85.14 178.83
D11 3.64 2.87 1.33 0.56 1.33 2.87
D12 0 1.33 1.33 0 −1.33 −1.33
D22 0.56 1.33 2.87 3.64 2.87 1.33

Â1111 237.84 183.34 93.24 57.66 93.24 183.34
Â1122 0 9.46 9.46 0 9.46 9.46
Â1112 0 44.47 33.55 0 −33.55 −44.47
Â2222 57.66 93.24 183.34 237.84 183.34 93.24
Â2212 0 33.55 44.47 0 −44.47 −33.55
Â1212 61.26 70.72 70.72 61.26 70.72 70.72

Table 3. Cosserat and Cauchy constitutive parameters for RVE with block parameter ρ = 7, Aijkl , Âijkl
[MPa], Dij [MPa·m2].

0◦ 30◦ 60◦ 90◦ 120◦ 150◦

A1111 756.76 604.96 255.41 57.66 255.41 604.96
A1122 0 −22.97 −22.97 0 −22.97 −22.97
A1112 0 328.47 354.99 0 −354.99 −328.47
A1121 0 −52.27 −25.75 0 25.75 52.27
A2222 57.66 255.41 604.96 756.76 604.96 255.41
A2212 0 −25.75 −52.27 0 52.27 25.75
A2221 0 354.99 328.47 0 −328.47 −354.99
A1212 28.83 225.68 665.32 908.11 665.32 225.68
A1221 0 −22.97 −22.97 0 −22.97 −22.97
A2121 908.11 665.32 225.68 28.83 225.68 665.32
D11 59.06 44.97 16.81 2.72 16.81 44.97
D12 0 24.40 24.40 0 −24.40 −24.40
D22 2.72 16.81 44.97 59.06 44.97 16.81

Â1111 756.76 604.96 255.41 57.66 255.41 604.96
Â1122 0 −22.97 −22.97 0 −22.97 −22.97
Â1112 0 138.10 164.62 0 −164.62 −138.10
Â2222 57.66 255.41 604.96 756.76 604.96 255.41
Â2212 0 164.62 138.10 0 −138.10 −164.62
Â1212 234.23 211.26 211.26 234.23 211.26 211.26
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Table 4. Cosserat and Cauchy constitutive parameters for RVE with block parameter ρ = 15,
Aijkl , Âijkl [MPa], Dij [MPa·m2].

0◦ 30◦ 60◦ 90◦ 120◦ 150◦

A1111 2486.50 2096.86 882.44 57.66 882.44 2096.86
A1122 0 −217.57 −217.57 0 −217.57 −217.57
A1112 0 1189.82 1441.04 0 −1441.04 −1189.82
A1121 0 −389.32 −138.10 0 138.10 389.32
A2222 57.66 882.44 2096.86 2486.50 2096.86 882.44
A2212 0 −138.10 −389.32 0 389.32 138.10
A2221 0 1441.04 1189.82 0 −1189.82 −1441.04
A1212 28.83 722.98 2546.41 3675.70 2546.41 722.98
A1221 0 −217.57 −217.57 0 −217.57 −217.57
A2121 3675.70 2546.41 722.98 28.83 722.98 2546.41
D11 933.59 703.25 242.57 12.23 242.57 703.25
D12 0 398.96 398.96 0 −398.96 −398.96
D22 12.23 242.57 703.25 933.59 703.25 242.57

Â1111 2486.50 2096.86 882.44 57.66 882.44 2096.86
Â1122 0 −217.57 −217.57 0 −217.57 −217.57
Â1112 0 400.25 651.47 0 −651.47 −400.25
Â2222 57.66 882.44 2096.86 2486.50 2096.86 882.44
Â2212 0 651.47 400.25 0 −400.25 −651.47
Â1212 926.13 708.56 708.56 926.13 708.56 708.56

In the following, a classical tension problem of a square plate with a circular hole is
studied for all above-mentioned configurations. Figure 2 shows the sketch of the problem
and its finite element meshing. The plate has a side length of 10 m and the radius of the
hole is 1.25 m. A total of 1440 elements is used for this model. Due to the singular nature
resulting from the presence of the hole, stress concentration is more likely observed around
the hole under tension force. To make sure the results are reliable, a finer mesh is applied
near the hole. Uniform tensile stress σ0 = 1 MPa is applied on the right side of the plate.
The left side of the plate is fixed symmetrically in the x-direction and the bottom left point
is additionally fixed in the y-direction. In the present paper, the direction and scale effect
of microstructure is investigated by setting various β and ρ. The simulation results are
shown below.

Figure 2. Sketch of the plate with hole problem and its finite element mesh.
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4. Results

The results of displacements and stresses for the Cosserat and Cauchy models and
relative rotation for the Cosserat model are presented in this section to show the effects of
microstructure’s direction and scale on the behavior of microstructured composite materials.
Figure 3 depicts the horizontal displacement results u1 of Cosserat and Cauchy models.
It can be seen that change in direction of microstructure has a significant effect on u1 for
both two models. The smallest u1 can be observed when β = 0◦. As β changes from 0◦ to
150◦, u1 increases to the greatest at β = 90◦ and then decreases but this is expected for the
shortest block case ρ = 1.5. In the case of ρ = 1.5, the greatest u1 occurs at β = 60◦ and 120◦

but that is also close to u1 at β = 90◦. For all β representing the directions of microstructure,
u1 has a reduction as ρ increases. For the plate with the shortest blocks, displacement
localization can be observed at the middle of the right side of the plate. However, as ρ
increases, displacement localization reduces and uniform displacement distribution can be
observed at the right side of the plate.

It can be seen from Figure 3 that the difference in u1 between Cosserat and Cauchy
models is not obvious for the orthotropic materials (β = 0◦ and 90◦). Here we take the
difference in the maximum u1 between the two models as ∆u1. For various ρ, ∆u1 is
3.02–8.63 mm when β = 0◦ and 2.13–5.85 mm when β = 90◦. However, the difference is
more evident for the centrosymmetric materials. ∆u1 increases from 20 mm to 69 mm as ρ
increases when β = 30◦, 60◦, 120◦, and 150◦.

(a) (b)

Figure 3. Horizontal displacement u1, mm, (a) Cosserat, (b) Cauchy.

Figure 4 depicts the vertical displacement results u2 for two models. The orthotropic
materials (β = 0◦ and 90◦) show negligible u2 under the horizontal tension stress for both
models. However, the centrosymmetric materials with other transformation angles can
produce clear u2 with more or less directionality.

It should be noted that there is a big difference in u2 between Cosserat and Cauchy
models. u2 of these two models has a similar distribution only when ρ = 1.5. As ρ increases,
u2 distributions of two models become different. When β = 30◦ and 150◦, the Cosserat
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continuum shows high-intensity u2 distribution on the right plate as ρ increases, e.g., the
maximum u2 is up to 117 mm when β = 150◦; however, u2 from the Cauchy continuum
has no clear high-intensity distribution with ρ and the maximum u2 is just 77 mm when
β = 150◦. An opposite difference between two models can be observed when β = 60◦

and 120◦, that is high-intensity u2 distribution can be observed by the Cauchy but not the
Cosserat model.

(a) (b)

Figure 4. Vertical displacement u2, mm, (a) Cosserat, (b) Cauchy.

The horizontal stresses σ11 of the two models are shown in Figure 5. The results show
directionality of distribution of σ11 with respect to the direction β. For orthotropic materials,
the high-stress area is parallel to the x-direction and the peak stress happens at the top
and bottom points of the hole edge (i.e., x = 0). However, for centrosymmetric materials,
the high-stress area is inclined with the x-direction by an angle that can be related to the
direction of microstructure, and the location of peak stress changes. It can be seen the
directionality of σ11 is more evident for greater ρ. As the increase of ρ, the high-stress area
becomes wider. The exception happens at β = 90◦ which shows the opposite behavior. The
existence of the hole as a singularity can result in the concentration of stress around the
hole edge. In the following, the stress concentration at the hole boundary will be discussed.

Vertical stress σ22 (Figure 6) also shows directionality of stress distribution with respect
to β. There can be seen a difference in σ22 between two models for various ρ. For relative
short blocks (ρ = 1.5 and 3), two models produce closed behavior of σ22. However, for
longer blocks (ρ = 7 and 15) especially at β = 60◦, 90◦ and 120◦, σ22 from Cauchy model is
significantly greater than that from Cosserat model.
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(a) (b)

Figure 5. Horizontal stress σ11, MPa, (a) Cosserat, (b) Cauchy.

(a) (b)

Figure 6. Vertical stress σ22, MPa, (a) Cosserat, (b) Cauchy.
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The relative rotation, defined as the difference between macrorotation (θ) and mi-
crorotation (ω), is a peculiar measurement in the Cosserat model. Figure 7 shows the
relative rotation θ − ω for the Cosserat model. The directionality of θ − ω distribution
can be also observed and that is more evident as ρ increases. For orthotropic materials,
θ −ω shows point symmetric behavior with respect to the hole center where positive and
negative θ−ω can be both observed, but the value of θ−ω is close to 0. Thus, the Cosserat
model is very close to the Cauchy one. For β = 30◦ and 60◦, the plate domain mainly
undergoes a positive relative rotation. Oppositely, for β = 120◦ and 150◦, this domain
mainly undergoes a negative θ −ω. The above-mentioned indicates that relative rotation
can be affected by the direction of microstructure. There is less relative rotation when the
microstructures are arranged along parallel and perpendicular to the direction of force,
whereas the microstructures arranged along other directions would result in an obvious
relative rotation acting at a certain orientation.

Figure 7. Relative rotation θ −ω of Cosserat model.

5. Discussions

The problem of stress concentration has always been focused on due to the presence of
singularity [32,42,43]. Under horizontal tension in this study, it can be seen that the stresses
σ11 and σ22 in the plate (Figures 5 and 6) is mainly concentrated around the boundary of
the hole. To better show the stress distribution, in the following, by transforming the stress
state from Cartesian coordinate to polar coordinate, the hoop stress σh at the hole boundary
is depicted for two models in the polar coordinate system as shown in Figure 8. In this way,
σh represents σ22 when the polar angle equals to 0 or π, whereas the hoop stress denotes
σ11 when the polar angle is π/2 or 3π/2. Therefore, the location and magnitude of σh
can be clearly observed. For both Cosserat and Cauchy models, it can be seen that the
distribution of σh at the hole boundary is point symmetric to the center of hole and also
shows directionality that depends on the aspect ration ρ and angle β.
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(a) (b)

Figure 8. Distribution of the hoop stress σh at the hole boundary, MPa, (a) Cosserat, (b) Cauchy.

For the orthotropic materials, the distribution of σh is symmetrical along the vertical
direction (π/2− 3π/2) in the polar coordinate. The highest σh can be observed at the top
and bottom points of the hole boundary (i.e., polar angle equals to π/2 and 3π/2) for the
Cosserat model and Cauchy model when β = 0◦, indicating that the peak stress results
from the horizontal stress σ11. As for the Cauchy model when β = 90◦, it is consistent with
the above results for small ρ. As ρ increases, the highest σh trend to be occurred at the
right and left points of the hole boundary (i.e., polar angle equals to 0 and π). Since we
observed a significant σ22 concentration in the Cauchy model in Figure 6b, the vertical stress
σ22 is able to result in the peak stress for these cases. For centrosymmetric materials, the
distribution of σh is no longer symmetrical along the vertical direction but deviates from it
to more or less of an extent because of the transformation angle of rectangular blocks. Thus,
the highest σh does not occur at these special points, i.e., polar angle equals to 0, π/2, π, or
3π/2. This is consistent with the results by early study [9], which investigates the stress
distribution of the layered surrounding rock tunnel by considering different angles of
rock joints (microstructures). It is also shown that the stress distribution is symmetrical
when angle equals to 0◦ and 90◦. When the angle is 45◦ the stress presents an asymmetric
distribution and the tunnel even comes into being eccentric-pressed.

It should be noted that the effect of β is less for smaller ρ. When ρ = 1.5, the distribu-
tion of σh is close to each other, that is, the highest σh is located near to the top and bottom
point of hole boundary and its value close to 3, whereas the lowest σh near to right and
left points and its value is around 1. Such a result is close to the well-known analytical
solution for an infinite isotropic plate with a circular hole [33,44]. However, as ρ increases,
the directionality of σh distribution becomes more evident and the extreme values of σh
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also vary. For example, when β = 0◦, as increase in ρ the highest value of σh can increase to
9. In addition, the difference between the Cosserat and Cauchy models gets bigger with
increasing ρ. The smallest values of σh are not lower than −3 for the Cosserat continuum,
whereas lower σh to −9 can be obtained from the Cauchy continuum, especially when
β = 60◦, 90◦, and 120◦.

By investigating measurements of displacements, stress, etc, and the stress distribution
of the square plate with circular hole under horizontal tension stress, a direction effect
of microstructures can be found for the present problem. With different transformation
angle β, the plate can produce mechanical behavior showing obvious directionality. Such a
direction effect of microstructures can be also found in previous studies on surrounding rock
roadway and tunnels with different dip angles of surroundings [9,45], where the joints of
surrounding rocks can represent the microstructure interfaces. In this present paper, similar
behaviors are often observed when β = 0◦ and 90◦. That is because the microstructures
in these two cases are both parallel and perpendicular to the x-direction, showing an
orthotropic nature. The difference between these two cases is actually due to the different
values of ρ (ρ < 1 when β = 90◦ whereas ρ > 1 when β = 0◦); therefore, measurements
of these two cases have similar behavior but different intensities under the horizontal
tension stress. As for microstructures not parallel or perpendicular to the x-direction, i.e.,
β = 30◦, 60◦, 120◦ and 150◦, it can be seen from the constitutive matrices (Tables 1–4) that
more coupling in the constitutive components such as dilatancy components [46] appear
for these cases, showing a centrosymmetric nature. The centrosymmetric material can show
different behavior from the orthotropic material by coupling different stresses and strains
as well as the couple stresses and curvatures. As the transformed constitutive matrix is
related to β (Equation (13)), the behavior of the centrosymmetric material depends on β.
Under horizontal tension stress, it is shown that u1 first increases and then decreases with
β. Oppositely, as β increases the maximum σh first decreases and then increases. Such
an effect of β can be compared with the previous study [8] where a similar effect was
found, that is, the strength of phyllite decreases first and then increases with the increase of
bedding angle.

The direction effect of microstructures is more evident for higher ρ. When ρ is small
(e.g., ρ = 1.5), the width of the rectangular block b is close to its height h. Thus, the assembly
made of such blocks can show a nearly orthotetragonal behavior (close to isotropic) that
is less sensitive to change in the microstructure direction. This could also account for the
small differences between Cosserat and Cauchy results when ρ is small since it was known
that orthotetragonal materials are very close to Cauchy continua [30,47].

With the increase in ρ, the assembly becomes more orthotropic and the measurements
can show more obvious directionality with respect to β. As the length of microstructure (i.e.,
internal length) is introduced to the Cosserat continuum, asymmetries are generated for the
shear stress and shear strain fields. Therefore, in the Cosserat model each stress is coupled
with asymmetric shear strains through two constitutive components (Aij12 and Aij21), and
vice-versa. In the Cauchy model, there is just one component (Âij12). When ρ is small, the
difference between Aij12 and Aij21 is not evident. As ρ increases, such difference increases
rapidly, showing a higher degree of asymmetry. However, Âij12 of the Cauchy model is
an arithmetic mean by Aij12 and Aij21 (Equation (14)), which cannot show the asymmetric
behavior of continua. Thus, the difference between the results from Cosserat and Cauchy
models may be induced, especially for higher ρ. Moreover, since the microstructures
are considered in the Cosserat continuum, the additional sub-matrix D is involved in
the Cosserat constitutive relation rather than the Cauchy one. The components of D are
negligible for small ρ but become prominent as ρ increases. It has been found that the stress
can be re-distributed within the Cosserat continuum [34]. For the smaller ρ, the Cosserat
continuum behaves close to the Cauchy continuum as mentioned above. As a result, the
re-distribution of stress can be neglected. However, as the scale of the microstructure
increases, such a re-distribution can be more prominent for higher ρ. This can be used to
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account for the difference in σ22 between the Cosserat and Cauchy continuum, especially
for large ρ.

6. Conclusions

The present paper investigates the mechanical behavior of the microstructured com-
posite treated as Cosserat continuum by considering various microstructure’s directions
(β) and scales (ρ). According to the constitutive parameters obtained from the Cosserat
homogenization procedure, the composite studied here can be classified as orthotropic and
centrosymmetric materials depending on the direction β. The simulations are conducted
for a tension problem of a microstructured plate with a circular hole, so this paper also
focuses on the stress distribution around the hole. The main conclusions are as follows:

(1) The mechanical behavior of microstructured composite changes as the microstructure’s
directions β, thereby showing a directionality of measurement distribution such as
stresses. In general, orthotropic materials show similar behaviors but with different
intensities, and the behavior of centrosymmetric is related to various β.

(2) The increasing microstructure’s scale ρ can results in more evident effect of β and
difference between the Cosserat and Cauchy models. Such an effect of ρ is clearer for
the centrosymmetric materials than orthotropic materials.

(3) The Cosserat continuum is able to better describe the direction effect of microstructures
due to the relative rotation that not only shows the directionality of distribution
but also varies with the microstructure direction. The Cauchy continuum does not
have such advantages because there is no relative rotation and tangential strains
are symmetric.

(4) The extreme value and its location of the hoop stress σh around the hole depend on β.
For smaller ρ, the highest and smallest σh are close to 3 and −1, which is similar with
the classical result of the isotropic material. As ρ increases, a highest σh up to 9 can
be observed.

(5) Difference in the hoop stress σh between the Cosserat and Cauchy model is mainly in
the smallest σh, especially for greater ρ when β = 60◦, 90◦, and 120◦. All the smallest
σh of the Cosserat model are greater than -3, whereas the Cauchy model can have a σh
as low as −9.

From this present study, the effect of the microstructure’s directions on mechanical
behavior of microstructured composite can be found, especially for the composite with
large scale of the microstructure. The area applying the development of this research can
be for microstructured materials with various dimensions (from micromaterials to macro-
materials), where the scale of the microstructure should be comparable to the material’s
dimension. For example, the layered rock with joints has different dip angle due to the
geological formation. The stress distribution can be also used for such composite with
singularity, not only the circular shape used here, but alternative shapes. The rectangular
microstructures with standard interlocking give a basic and important research aspect of
the effect of the microstructure’s direction and scale. As more and more advanced materials
are developed nowadays, various microstructures formations are interesting to be studied
in future research.
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