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Abstract: Metabolic syndrome (Mets) is a clinical condition characterized by a cluster of major risk
factors for cardiovascular disease (CVD) and type 2 diabetes: proatherogenic dyslipidemia, elevated
blood pressure, dysglycemia, and abdominal obesity. Each risk factor has an independent effect,
but, when aggregated, they become synergistic, doubling the risk of developing cardiovascular
diseases and causing a 1.5-fold increase in all-cause mortality. We will highlight gender differences
in the epidemiology, etiology, pathophysiology, and clinical expression of the aforementioned Mets
components. Moreover, we will discuss gender differences in new biochemical markers of metabolic
syndrome and cardiovascular risk.
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1. Introduction

Metabolic syndrome (MetS) is a complex disorder with a high socioeconomic cost
that is generally thought to be a consequence of social and environmental changes related
to urbanized living conditions, high-caloric food intake, and sedentary lifestyle [1]. It is
considered a worldwide epidemic. MetS is defined by a cluster of causally interconnected
metabolic and cardiovascular risk factors (CVRF) such as atherogenic dyslipidemia, ar-
terial hypertension, dysregulated glucose homeostasis, and abdominal obesity. Several
MetS definitions, differing in their focus and their diagnostic threshold values, have been
proposed by different international organizations, such as the World Health Organization
(WHO) [2], the European Group for the study of Insulin Resistance (EGIR) [3], the Na-
tional Cholesterol Education Programme Adult Treatment Panel III (NCEP ATP III) [4], the
American Association of Clinical Endocrinologists (AACE) [5], the International Diabetes
Federation (IDF) [6], and the American Heart Association/National Heart, Lung, and Blood
Institute [7] (Table 1). Recently, other abnormalities such as chronic proinflammatory and
prothrombotic states (characterized by high levels of circulating inflammatory markers
such as C-reactive protein and fibrinogen), non-alcoholic fatty liver disease (NAFLD),
and sleep apnea have been added as factors of the syndrome, making its definition even
more complex [8].
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Table 1. Criteria for the diagnosis of metabolic syndrome.

World Health
Organization [2]

European Group
for the Study

of Insulin
Resistance [3]

National Cholesterol
Education Programme

Adult Treatment
Panel III [4]

American Association
of Clinical

Endocrinologists [5]

International
Diabetes

Federation [6]

American Heart
Associa-

tion/National
Heart, Lung, and

Blood Institute [7]

Criteria
Insulin resistance

+ ≥2 other
components

Insulin resistance
+ ≥2 other

components
≥3 components

No specified
number of factors

for diagnosis, left to
clinical judgment

Increased waist
circumference ≥2
other components

≥3 components

Dysglycemia
Impaired glucose

regulation or
diabetes

Impaired fasting
glucose or impaired

glucose tolerance
(diabetes excluded)

Blood glucose
≥ 110 mg/dL

(6.1 mmol/L) or
previously

diagnosed diabetes

Impaired glucose
tolerance (but not

diabetes)

Fasting plasma
glucose

>100 mg/dL
(5.6 mmol/L) or

previously
diagnosed diabetes

Fasting plasma
glucose

>100 mg/dL
(5.6 mmol/L) or on
drug treatment for
elevated glucose

Raised plasma
triglycerides

≥150 mg/dL
(1.69 mmol/L)

≥150 mg/dL
(1.69 mmol/L)

≥150 mg/dL
(1.69 mmol/L)

≥150 mg/dL
(1.69 mmol/L)

≥150 mg/dL
(1.69 mmol/L) or on

triglycerides
treatment

≥150 mg/dL
(1.69 mmol/L) or on

triglycerides
treatment

Low HDL
cholesterol

<35 mg/dL
(0.90 mmol/L)

in men and
<39 mg/dL

(1.01 mmol/L)
in women

<39 mg/dL
(1.01 mmol/L) in
men and women

<40 mg/dL
(1.03 mmol/L)

in men and
<50 mg/dL

(1.29 mmol/L)
in women

<40 mg/dL
(1.03 mmol/L)

in men and
<50 mg/dL

(1.29 mmol/L)
in women

<40 mg/dL
(1.03 mmol/L)

in men and
<50 mg/dL

(1.29 mmol/L)
in women

<40 mg/dL
(1.03 mmol/L)

in men and
<50 mg/dL

(1.29 mmol/L)
in women

Increased blood
pressure ≥160/90 mmHg

≥140/90 mmHg or
on antihypertensive

medications

≥130/85 mmHg or
on antihypertensive

medications
≥130/85 mm Hg

≥130/85 mmHg or
on antihypertensive

medications

≥130/85 mmHg or
on antihypertensive

medications

Central obesity

Waist to hip ratio
>0.9 in men and
>0.85 in women

and/or body mass
index >30 kg/m2

Waist circumference
≥94 cm in men and
≥80 cm in women

Waist circumference
≥102 cm in men
and ≥88 cm in

women

Body mass index
≥25 kg/m2

Waist circumference
> ethnicity-specific

thresholds

Waist circumference
≥102 cm in men

and ≥88 cm
in women

Other Microalbuminuria

Worldwide, the prevalence of MetS ranges from <10% to as high as 84%, depending
on the region, environment (urban or rural), composition (sex, age, race, and ethnicity)
of the population studied, and the criteria used [9]. Published reports from different
countries differ in the gender distribution of metabolic syndrome: some researchers report
a higher incidence in men than women, and the reverse is the case in some other reports.
MetS prevalence increases with age [10,11], and different studies have shown a steeper
age-related increase in MetS prevalence in women compared with men [10,12] due to a
dramatic increase in blood pressure in women after menopause and to a rapid impairment
in endothelial function [13].

MetS confers a 5-fold increase in the risk of type 2 diabetes mellitus (T2DM) [14],
and a meta-analysis including 87 studies showed that MetS is associated with a 2-fold
increase in risk for cardiovascular disease (CVD), myocardial infarction (MI), stroke, and
cardiovascular mortality, as well as with a 1.5-fold increase in risk for all-cause mortal-
ity [15]. In the RIVANA (Vascular Risk Study in Navarre) Study, including a Mediterranean
cohort of 3,976 middle-aged adults, MetS was found to be independently associated with
the incidence of CVD, mortality from CVD, and all-cause mortality after adjustment for
multiple potential confounders [16]. Indeed, MetS includes both metabolic risk factors
promoting atherosclerosis and coronary heart disease (CHD) and hemodynamic risk factors
promoting arteriosclerosis and stroke [14]. Moreover, in women, MetS has a higher level of
prognostic significance for cardiovascular disease and mortality [17,18], a finding that is
consistent with the greater impact of the components of the syndrome in women than in men.

This review will present the current evidence for the differences between genders
observed in the epidemiology, etiology, pathophysiology, clinical expression, and manage-
ment of MetS and its components. Moreover, the ways in which gender differences impact
the cardiovascular risk, including pathogenesis, progression, and severity, will be discussed.
Finally, factors unique to women that can impact the prevalence and characteristics of MetS
in women will be presented.
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2. Gender Differences in Metabolic Syndrome Components

The individual components that define metabolic syndrome are the same in women
and in men, but there are gender differences in how and when these components manifest
as well as how they impact the cardiovascular risk in women.

2.1. Proatehrogenic Dyslipidemia

Atherogenic dyslipidemia has a direct correlation with CVD. It is a clinical condition
characterized by elevated levels of serum triglycerides and small dense low-density lipopro-
tein (sdLDL) and by low levels of high-density lipoprotein (HDL) cholesterol. Additional
features are elevated levels of triglyceride rich in very low-density lipoproteins (VLDL)
and apolipoprotein B (ApoB), as well as reduced levels of small HDL [19,20].

The interplay of lipid metabolism with genes, gender, and environmental factors has
been shown to modulate disease susceptibility [21]. In particular, a gender-dependent
association has been demonstrated between the polymorphisms associated with lipid
metabolism at the perilipin locus and obesity risk, supporting the notion that gender-
specific differences in morbidity and mortality may be mediated in part by genetic factors
associated with lipid metabolism.

It is well-known that premenopausal women exhibit a better lipid profile compared
with men, as shown by lower levels of total cholesterol (TC), LDL, and triglycerides along
with higher HDL concentrations, which have been partly linked to the specific action of es-
trogens [22,23]. Indeed, women commonly show better regulation, transport, and removal
of VLDL from vessels than their male counterparts [19,20]. On the other hand, several trials
have reported a shift toward an unhealthy atherogenic lipid profile in postmenopausal
women, who have the tendency to reach higher levels of TC, LDL cholesterol, triglycerides,
and lipoprotein(a), and who tend to have lower HDL levels compared with premenopausal
women [23]. These menopause-linked changes in the lipid profile are proatherogenic
(increased plasma concentration of TC, LDL, and triglycerides) and procoagulatory (higher
levels of lipoprotein(a)), and are strongly connected to the increase of visceral fat mass
classically associated with menopause-induced modifications [20].

Recent epidemiological data indicate that while in males, high TC and LDL levels are
the most important CVRFs, in women, the most significant CVRFs are increased plasma
levels of triglycerides and lipoprotein(a). Triglycerides also represent one of the most
important risk factors for T2DM in women, but to a lesser extent in men [19,20].

Abdominal fat accumulation, particularly visceral fat (VF) mass, contributes to wors-
ening the dyslipidemic and hypertensive profile detected in women with impaired glucose
tolerance [24]. VF accumulation is generally accompanied by insulin resistance (IR), in-
creased release of free fatty acid by adipose tissue, and secretion of ApoB containing
particles by the liver, leading to hyperlipidemia. This cascade ultimately results in a pre-
ponderance of sdLDL particles and a reduction in antiatherogenic HDL. A similar pattern
emerges with menopause, when LDL composition shifts from a low prevalence of sdLDL
particles in premenopausal women to one as high as 30%-49% after menopause. These
lipid changes are indicative of increased cardiovascular risk and contribute to the number
of women meeting the diagnosis of MetS. Thus, monitoring and controlling waist circum-
ference, a marker of abdominal obesity and VF accumulation, represents a key strategy to
counteract the clinical consequences of MetS, especially in postmenopausal women [24].

As regards as the therapeutic strategies, the benefits of statins, ezetimibe, and PCSK9
inhibitor therapy have been demonstrated to be comparable between women and men at
similar risk levels [25,26]. Nevertheless, women are less likely than men to be treated with
any statin or guideline-recommended statin intensity, as well as to receive ezetimibe, most
likely because of a lack of appreciation of CVD risk by clinicians [27]. In addition, due to
perceived side effects, women are more likely than men to discontinue statin therapy [28].
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2.2. Arterial Hypertension

Gender differences in the pathophysiology of arterial hypertension seem to be mul-
tifactorial and are still not entirely understood [29]. Some of the current hypotheses
include differences in sympathetic activation and arterial stiffness, with a specific role of
sex hormones [30].

The overactivation of the sympathetic nervous system is not only important in the
early stages of the development of hypertension, but it is also associated with several comor-
bidities commonly associated with hypertension [31]. Importantly, autonomic dysfunction
seems to play a more prominent role in female than in male hypertension [32]. Moreover,
the age-related increase in sympathetic traffic is higher in women than in men, and it is
independent of body mass index and menopausal status [33,34]. Therefore, sympathetic
neural mechanisms may play a key role in the marked influence of age on blood pressure
and cardiovascular disease in women.

Premenopausal women have a lower risk and incidence rate of hypertension compared
with age-matched men, but this advantage gradually disappears after menopause. After
65 years of age, the prevalence of arterial hypertension is higher in women than in men [35].

Androgens and estrogens regulate blood pressure (BP) through the renin-angiotensin
system (RAS). RAS is stimulated by androgens, resulting in an increase in BP [36], whereas
ovarian hormones have the opposite effect, reducing plasma renin and angiotensin-converting
enzyme (ACE) activity [37]. Sex hormones’ effects on the reabsorption of renal sodium and
on the vascular resistance could also explain the differences in BP control between men
and women [38]. Estrogens seem to maintain normal endothelial function by stimulating
the production of nitric oxide (NO), inducing structural and functional beneficial effects on
the arterial wall that, in turn, reduce vascular stiffness [37]; moreover, they moderate the
effects of the sympathetic nervous system [39,40].

Antihypertensive therapy is effective for controlling BP in both sexes, but although
women take more antihypertensive medications than men, they are less likely to achieve
the recommended treatment goals [35,40].

Hypertensive heart disease (HHD) defines the complex and diverse perturbations of
cardiac structure and function occurring secondary to hypertension. HHD is frequently
characterized by left ventricle hypertrophy (LVH), left atrial enlargement (LAE), and
left ventricular (LV) systolic and diastolic dysfunction. Gender influences the LV re-
sponse to hypertension, with women more likely to develop concentric LVH and men
eccentric LVH [41].

Moreover, arterial hypertension is a powerful risk factor for incident heart failure
(HF) [42]. According to the Framingham Heart Study, the hazard ratio for developing HF in
hypertensive compared with normotensive subjects was about two-fold in men and three-
fold in women [43]. Arterial hypertension has the highest population attributable risk (PAR)
of all risk factors: 39% for males and 59% for females. Accordingly, a systematic review
showed that eight different studies (two prospective, five retrospective, one cross-sectional)
concluded that the etiology of HF was more likely to be hypertension for females than for
males [44], but a 10 mm reduction in systolic BP could reduce the incidence of congestive
HF by 50% [43]. Since women are particularly at risk for arterial hypertension-associated
HF, the role of early detection and management of hypertension is even greater than in men.

2.3. Dysglycemia

Abnormal glucose homeostasis is commonly diagnosed by establishing the presence
of impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT); these two
pathological conditions are not interchangeable and represent metabolically distinct abnor-
malities characterized by different pathophysiological pathways. In fact, the physiological
regulation of fasting glucose depends mainly on hepatic glucose production and hepatic
insulin sensitivity, whereas postprandial glycemia in response to a carbohydrate load is
regulated by an adequate response of insulin secretion to promote hepatic and muscle
glucose uptake, which is dependent on insulin sensitivity [45].
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The prevalence of IGT and IFG is different between the sexes. The analyses of the
study groups of “Diabetes Epidemiology: Collaborative Analysis of Diagnostic Criteria in
Europe/Asia” highlighted that IFG is 1.5–3 times more prevalent in men than in women in
nearly all age groups, and is 7–8 times more prevalent in older age groups (50–70 years).
On the other hand, IGT prevalence is higher in women, with the exception of those over
the age of 60 and 80 years in Asian and European populations, respectively [46].

The reason for these differences in early dysglycemia is unknown, but could involve
the effect of gonadal hormones. Estrogen and progestin have a direct effect on pancreatic
secretion of insulin and on its peripheral action at the pancreatic, muscle, and adipose
tissue levels [47]. Animal studies have indicated that natural and synthetic estrogens
increase the insulin response to glucose loading [48]. In fact, in rats, insulin levels are
reduced by ovariectomy, while they are normalized by the administration of estrogen and
progesterone [49]. Accordingly, premenopausal women have lower IR than men of the
same age, and this feature represents a factor for their protection against ischemic heart
disease (IHD) [50].

Bonnet et al. demonstrated that low plasma sexual hormone-binding globulin levels
are associated with the onset of hyperglycemia or diabetes only in women, and this finding
seems to be partially independent of insulin and adiponectin concentrations [51]. On
the other hand, Wang et al. reported that both progesterone and estradiol levels were
significantly decreased in IGT and diabetic patients [52].

In addition, the prevalence of T2DM is characterized by a gender difference, being
higher in men [53,54]. Indeed, the male gender is usually considered a risk factor for
the development of T2DM. However, due to the greater number of elderly women than
men and the association between aging and T2DM, there are more women with diabetes
than men [55].

In women, diabetes is associated with a 37% increase in mortality rate due to cardiovas-
cular causes compared to that due to a history of myocardial infarction; on the contrary, in
men, the presence of a previous MI is associated with a 43% increase in the cardiovascular
death rate compared to that determined by the presence of diabetes [56].

The significant gender differences observed in diabetic patients exist due to different
pathophysiological processes in men and women. Differences in body composition, fat
deposition, mass and activity of brown adipose tissue, and expression of some fat-related
biomarkers clearly contribute to the sex-dimorphic diabetes risk. Moreover, predisposition,
development, and clinical presentation of diabetes are affected by genetic effects, epige-
netic mechanisms, health behavior, nutritional factors, sedentary lifestyle, and stress in
different ways in males and females [57,58]. It is well-known that the onset of T2DM in
premenopausal women nullifies the cardiovascular protection due to sexual hormones, as
evidenced by the reduced endothelium-dependent vasodilatation reserve, which is still
higher than that induced in men [59]. In addition, hyperglycemia reduces the production
of NO mediated by estrogens [60].

However, gender-specific mortality proceeds beyond the susceptibility of female
endothelia to diabetes or other biological factors, and suggests inequalities in therapeutic
treatment, leading to underestimation of the problem and/or poor therapy adherence
and tolerance [61].

2.4. Obesity and Adiposity

Although obesity is undoubtedly influenced by diet, exercise, and genetics, its patho-
physiology extends beyond these factors, and an important role is played by the sympa-
thetic nervous system. In fact, it makes a major contribution to the integrated regulation
of food intake, involving satiety signals and energy expenditure. The overactivity of
the sympathetic nervous system is not only a hallmark of obesity, but it may also take
part in the development of metabolic disturbance and cardiovascular complications in
obese subjects [62,63].
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Central/abdominal (mainly visceral) adiposity has emerged as a better predictor of
cardiometabolic risk than general obesity measured by body mass index (BMI) [64–67].
Central/abdominal fat deposition promotes abnormality in fatty acid metabolism and
macrophage accumulation with increased expression of pro-inflammatory biological active
compounds, especially adipokines, that enhance oxidative stress (OxS) and endothelial
dysfunction. These compounds are also responsible for adipose tissue IR [68].

Sex differences in adipose tissue distribution are well-supported by many findings in
the literature and are associated with whole-body metabolic health [68]. Premenopausal
women tend to accrue more fat in the gluteus–femoral area (lower-body, “ginoid” or “pear”
phenotype), predominantly due to a superficial increase in size, and often remain metabol-
ically healthy. Clinical studies conducted in healthy overweight and obese women with
a wide range of ages and comorbidities confirm that increased gluteus–femoral fat mass
is independently associated with a protective effect on glucose and lipid related cardio-
metabolic risk, with a beneficial adipokine profile and fewer pro-inflammatory molecules
compared with the subjects with accumulated VF [69,70]. Atherosclerotic protection is
also promoted through direct vascular effects; gluteus–femoral fat mass, in fact, is associ-
ated with lower aortic calcification and arterial stiffness [71], as well as with a decreased
progression of aortic calcification in women [72].

The menopausal transition, independently of aging, is associated with adverse changes
in body fat distribution, lipid profile, IR, and vascular remodeling. During the peri-
menopause period, fat deposition shifts to favor the visceral depot that, in addition to the
decreased protective effect of estrogens, contributes to endothelial dysfunction, inflamma-
tory state, and arterial stiffness, all of which are markers and causes of female IHD [73,74].
Furthermore, a reduction in adiponectin levels is associated with impaired coronary artery
reserve in women with normal epicardial coronary arteries [75,76].

Post-menopausal women are also characterized by signs of subclinical atherosclerosis,
such as an increased carotid intima–media thickness (IMT) and coronary calcification. The
contribution of visceral fat accumulation to subclinical atherosclerosis seems to be higher
in females that in males [77]. Inflammation seems to have a possible role in IHD sex
differences. Markers of inflammation, such as CRP and IL-6, correlate with measures of
adiposity, and this association has been reported to be generally stronger in women than in
men, for all measures of adiposity as well as the entity of visceral adiposity [78,79].

One aspect of abnormal fat distribution concerns the deposition of fat around blood
vessels and the heart. Fat depots around the heart can be classified into pericardial, epicar-
dial, and pericoronary fat. This fat is associated with all features of MetS and with increased
insulin resistance [80]. Particularly, perivascular and epicardial fat are also associated with
coronary and abdominal aortic calcium, independently from traditional measures of obe-
sity. Although intrathoracic fat is higher in men, the proportion of epicardial/intrathoracic
adipose tissue is similar in both genders. The excess cardiovascular adipose tissue appears
to be affected by hormonal status in women [81], and its volume is greater after menopause,
independent of age, obesity, and other covariates. Moreover, pericardial adipose tissue is
associated with coronary artery calcification in women at midlife, playing a possible role in
the higher risk of CHD reported after menopause [82]. Excessive fat can also accumulate in
cardiomyocytes. Cardiac steatosis could be the link between the observed left ventricular
diastolic impairment and IHD in women [83]. In men, the amounts of epicardial and
pericardial fat, but not the myocardial fat depots, are independently associated with LV
diastolic dysfunction [84].

3. Impact of Gender on Cardiometabolic Risk in NAFLD

NAFLD is a metabolic disease that is diagnosed when the accumulation of hepatic
triglycerides is >5.5% in absence of or with moderate alcohol consumption (i.e., daily intake
less than 20 g (2.5 units) in women and less than 30 g (3.75 units) in men) [77]. NAFLD is
closely linked with IR and, bidirectionally, with the MetS of which it may be both a cause
and a consequence.
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Although liver biopsy is still the gold standard for the diagnosis and staging of
NAFLD, imaging methods such as ultrasonography, computed tomography, and magnetic
resonance imaging have been approved as non-invasive alternative methods. Additionally,
raised liver enzymes are used as a surrogate marker [85].

Gender and reproductive status modulate the risk of developing NAFLD [86]. Below
the age of 50 years, the incidence of NAFLD is higher in the male as compared to the
female gender due to the protective effect of estrogens, which wanes after menopause.
Accordingly, after the fifth decade of life, postmenopausal women have a similar or even
higher prevalence of NAFLD compared to men of the same age. Moreover, women with
polycystic ovary syndrome (PCOS) or a history of gestational diabetes mellitus (GDM)
have a risk similar to or even higher than that of men.

NAFLD is increasingly recognized as a multisystem disease, and it is associated
with increased incidence and prevalence of subclinical and clinical CVD, mainly CHD,
independently of age [87]. Moreover, in a study consisting of 132 patients with biopsy-
proven NAFLD who were followed for 18 years, CVD was the second-most common cause
of death after all of the cancers combined [88].

Different studies have focused on the existence of gender differences in the association
between NAFLD and CVD/mortality, and many discrepancies are present, mainly due to
different populations and diagnosis methods as well as varying definitions of disease. A
recent, large cross-sectional study reported that although men had an higher prevalence of
ultrasonographic fatty liver disease and carotid plaques, as well as an increased IMT com-
pared to women, ultrasonographic fatty liver disease independently predicted subclinical
carotid atherosclerosis (IMT and plaques) only in women [89].

One study examining the association between elevated serum alanine aminotrans-
ferase (ALT) activity and the 10-year risk of CHD, as estimated using the Framingham risk
score, showed that relative increase in risk was much greater in women than in men (hazard
ratio 2.14 vs. 1.28) [90] despite the fact that women have a lower absolute risk of CHD than
men. However, one transversal study showed that elevated ALT was associated with CHD
in men, but not in women [91]. A population-based cohort study from Germany found that
increased gamma-glutamyltransferase (GGT) was associated with a higher risk of all-cause
and CVD mortality in men, but not in women, and this association was stronger in men
who also had ultrasound scanning findings compatible with steatosis [92]. A study based
on a national Danish registry showed that, compared to the general population, patients
with a hospital diagnosis of fatty liver had a higher all-cause mortality rate, including liver-
and CVD-related causes, which was similar between the sexes [93].

4. Gender Differences in Biochemical Markers of Cardiometabolic Risk

MetS is characterized by increased concentrations of pro-inflammatory cytokines
(Interleukin-6, Tumor Necrosis Factor-α), markers of pro-oxidant status (oxidized LDL,
uric acid), prothrombotic factors (Plasminogen Activator Inhibitor-1), and leptin, and
by decreased concentrations of anti-inflammatory cytokines (Interleukin-10), ghrelin,
adiponectin, and antioxidant factors (paraxonase-1) [94]. Values for many biomarkers
differ according to gender; however, whether these differences translate to different im-
pacts on cardiovascular risk and disease remains to be further clarified.

Interleukin-6 (IL-6) is considered to be one of the cytokines at the top of the inflam-
matory cascade. Despite some controversial findings, the main body of literature suggests
that, compared to men, women have higher IL-6 reactivity to mental and/or physical acute
stressors [95,96] and pharmacological inflammatory stimulation [97]. Several reports have
described IL-6 as a biomarker in CHD, highlighting a potential point of relevance for IL-6
mediated pathways. A large-cohort prospective study showed that long term IL-6 levels are
highly associated with CHD, with the CHD risk increasing continuously with increasing
levels of circulating IL-6 concentrations [98]. Another study confirmed a risk association of
IL-6 with CHD, including a possible role of IL-6 in mediating the associations of circulating
inflammatory markers with the risk of CHD in men [99]. However, no strong evidence
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of an association between IL-6 and incident CHD was found in older British women after
controlling for established CHD risk factors [100]. Further studies need to address whether
this could reflect a gender difference.

OxS is a condition that occurs when the rate of reactive oxygen species (ROS) formation
exceeds the rate of the antioxidant defense system. Gender is associated with differences in
OxS levels and antioxidant enzyme expression, likely related to estrogen antioxidant prop-
erties [101]. Accordingly, much data has suggested greater antioxidant potential in females
over males, as men appear more susceptible to OxS [101]. In particular, OxS biomarkers
are generally found to be higher in men when compared to premenopausal women. How-
ever, postmenopausal women show higher levels of OxS biomarkers than men in general
populations, as well as in coronary and peripheral artery disease cohorts [102,103].

Uric acid (UA) is a commonly used laboratory biomarker, and hyperuricemia is more
associated with MetS in females than in males [104]. UA has been primarily identified as
a powerful antioxidant; therefore, UA elevation in CVD may represent a compensatory
mechanism in response to pro-oxidative and pro-inflammatory status. UA concentration is
physiologically lower in women than in men due to the role of steroids in UA regulation,
also called “uricosuric effect”, and to the possible urate-depressing effect of estrogens in
women. However, emerging findings show that UA is more related with CVD in women
than in men [105].

Plasminogen Activator Inhibitor-1 (PAI-1) is a critical regulator of the fibrinolytic
system. PAI-1 levels are lower in females than in males, likely due to differences in
genetics, environmental factors, and/or sex hormones [106,107]. Circulating levels are
elevated in patients with CHD and may play an important role in the development of
atherothrombosis [108]. In large epidemiological studies, elevated plasma PAI-1 levels have
been identified as a predictor of myocardial infarction. No study has assessed the presence
of a gender difference in the PAI-1-CVD link. However, it has been demonstrated that
the correlations of PAI-1 levels with numerous established CVD-related traits (cholesterol,
triglycerides, systolic and diastolic blood pressure, glucose) differ between genders and
that the menopausal status strongly affects the patterns of gender differences [106].

Leptin has an important role in the long-term regulation of body weight. It has also
been proposed as an independent risk factor for CVD and as an important link between
obesity and cardiovascular risk [109]. Plasma leptin levels are higher in women than in
men due to the higher proportion of adipose tissue and increased production rate of leptin
per unit mass of adipose tissue. A significant association between leptin level and stroke
has been demonstrated in women, but not in men, after adjustment for age, smoking, body
mass index, waist circumference, and hypertension [110].

Adiponectin is an adipocyte-derived hormone with anti-atherogenic, antidiabetic, and
anti-inflammatory properties. Women have higher levels of adiponectin than men and, in
addition, postmenopausal women have significantly higher levels of plasma adiponectin
than premenopausal women. Clinical studies have implicated hypoadiponectinemia in the
pathogenesis of T2DM, coronary artery disease (CAD), and left ventricular hypertrophy.
The data in the Framingham Offspring Study indicate that low adiponectin is a significant
independent CHD risk factor only in men [111].

Similarly to adiponectin, resistin is another cytokine produced mainly by adipose
tissue. Alterations to resistin’s secretion process (increased levels in plasma or expression
in metabolic and gonadal tissues) have been observed in some metabolic pathologies
(e.g., obesity). Specifically, resistin has been reported to be higher in patients with MetS,
and it has been shown to be proportional to increased fat mass, possibly being directly
linked to insulin resistance. Thus, it functions as a pro-inflammatory molecule in the
presence of obesity and represents a candidate hormone that can potentially link obesity
to diabetes [112,113]. Interestingly, this molecule has been identified as one key potential
metabolic signal affecting the hypothalamo-pituitary gonadal axis in both sexes [114],
while higher levels of resistin have been found in women compared with men, showing
different strengths of correlation with cardiometabolic risk factors in the two sexes [115,116].
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Another very recent study evidenced that, although blood levels of resistin were higher in
women than in men, unstable plaques of men showed significantly greater resistin staining
intensity on macrophages/foam cells compared with unstable plaques of women [117].
Thus, whether the local expression of resistin in plaques may better and more directly
indicate a possible link between this adipokine and plaque instability than its circulating
concentration, sex may modulate this relationship and risk of acute events.

Human serum paraoxonase-1 (PON1) is synthesized in the liver and is physically
associated with HDL, on which it is almost exclusively located. It is an antioxidant en-
zyme and is believed to contribute to the antioxidant and anti-inflammatory properties
of HDL. There are gender-related differences in factors independently associated with
decreases in PON1, as obesity and obesity-related oxidative stress are more important in
females, whereas inflammation is more significant in males. Several articles support the
hypothesis that lower serum PON1 activity is related to an increase in plaque formation
and, consequently, to a higher risk of CVD [118]. Moreover, low serum PON1 activity is
associated with a higher degree of atherosclerosis in patients with confirmed MI or unstable
angina pectoris [119]. Lower serum paraoxonase activity has been reported in patients with
MI in comparison to the control group [120]. However, it is not known whether this low
paraoxonase activity plays a causative role in the pathogenesis of MI or is a consequence
of this derangement. In patients with CAD, a significant correlation was found between
lower paraoxonase and an increased risk of major adverse cardiac events (death, MI, and
stroke), and lower PON activity was observed in men than in women [121].

5. Women-Specific Risk Factors for Cardiometabolic Disease

There are unique MetS risk factors in women that act directly or indirectly on CVD
risk. These will be discussed below.

5.1. Pregnancy

Pregnancy is a contributor to weight gain and MetS. Normal pregnancy is associated
with a shift of coagulation and fibrinolytic systems towards hypercoagulability. Although
these changes are aimed at minimizing the risk of blood loss during delivery, they in-
crease the risk of thrombosis three-fold to four-fold. Nulliparous women have lower CVD
prevalence compared with parous women (18.0% vs. 30.2%) [122].

Moreover, multiparity is independently associated with higher rates of metabolic
syndrome [123]. Women with five or more births have a high (2.27 times) rate of CVD
prevalence after adjustment for complications [124].

5.2. Gestational Diabetes Mellitus

GDM significantly increases the risk for subsequent glucose intolerance and T2DM
(from 2.6% to over 70%) [125,126], as well as for Mets. In fact, Mets is more prevalent in
women with a history of GDM compared with healthy controls [127]. The risk is primarily
due to increased abdominal obesity.

Lower HDL, elevated triglyceride levels, and C-reactive proteins are present and
significantly enhance the risk of developing CVD [128]. Women with GDM have a higher
prevalence of coronary artery disease and/or stroke occurring at a younger age, which is
independent of T2DM [129]. Moreover, a recent study demonstrated that GDM is associated
with angina pectoris, MI, and hypertension within 7 years postpartum, regardless of
subsequent diabetes [130].

5.3. Pre-Eclampsia

Pre-eclampsia is defined as a systolic blood pressure of at least 140 mmHg and/or a di-
astolic blood pressure of at least 90 mmHg on at least two occasions. Proteinuria is present
after the 20th week of gestation in women known to be normotensive before pregnancy. In-
creased pre-pregnancy BMI is a risk factor for pre-eclampsia [131]. Pre-eclampsia increases
the risk for subsequent hypertension [132] and diabetes [133,134] in perimenopausal years.
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The association of both pre-eclampsia and GDM with diabetes and hypertension may arise
from common pathogenic pathways. Both conditions are associated with insulin resis-
tance [135,136] and with the presence of endothelial dysfunction and markers of chronic
vascular inflammation [137,138]. These entities have been shown to precede the develop-
ment of overt hyperglycemia in patients at risk for type 2 diabetes [137]. Moreover, defects
in insulin sensitivity and secretion are both related to elevated hypertension risk [139].

Endothelial damage and increased CVD risk, as well as a higher relative risk of cardio-
vascular mortality, have been demonstrated in pre-eclampsia [140,141]. According to data
from a meta-analysis based on cohort studies, in women with previous pre-eclampsia, the
risk of future cardiovascular or cerebrovascular events is doubled compared to unaffected
women [142]. Moreover, pre-eclampsia has been demonstrated to remain significantly asso-
ciated with an increased risk of heart failure, stroke, coronary heart disease, cardiovascular
disease, and cardiovascular death after adjusting for potential confounders (age, body mass
index, and diabetes mellitus) [143]. Importantly, early-onset pre-eclampsia (before 37 weeks
of gestation) conveys a higher CVD risk in comparison with late-onset pre-eclampsia [144].

5.4. PCOS

PCOS has many characteristics similar to those of the MetS. Women with PCOS show
a prevalence of metabolic syndrome of approximately 40% [145]. PCOS and MetS share
the same components: central obesity and proatherogenic dyslipidemia. Hypertension,
increased fasting glucose levels, and impaired glucose tolerance are also commonly present
in PCOS [146]. Moreover, PCOS is an independent risk factor for diabetes, dyslipidemia,
obesity, hypertension, and MetS [147]. All of these CVRFs contribute in a synergistic way
to endothelial activation, IMT, and preclinical atherosclerosis in younger women [147,148].
Additionally, women with PCOS have a higher risk of hyperfibrinogenemia and throm-
boembolism than healthy women of similar BMI at all ages [149].

Different findings exist regarding the relationship between PCOS and cardiovascular
complications and death. Therefore, recently, a meta-analysis comprising 10 cohort studies,
for a total of 166,682 women, was performed to better clarify this point. According to the
meta-analysis, women with PCOS have an increased risk of cardiovascular and cerebrovas-
cular events, including any CVDs, myocardial infarction, ischemic heart disease, and stroke,
but excluding mortality-related outcomes [150].

5.5. Menopause

The menopause transition (MT) represents a vulnerable time for women, and its
incidental hormonal changes have been associated with unfavorable changes in several
indicators of metabolic health, such as negative alterations in the lipid profile, increased
susceptibility to weight gain, accumulation of abdominal adiposity, and increased blood
glucose [151–153]. Therefore, in women, the incidence of MetS and cardiovascular disease
increases after menopause, regardless of chronological aging [154,155]. Data also suggest
that surgical menopause, with its greater hypoestrogenic effect, increases the risk of MetS
by 1.5 times compared to natural menopause [156].

Several MT characteristics have been demonstrated to predict a higher risk of adverse
CVD outcomes: early-onset menopause (<45 years of age) [157], higher estradiol levels [158],
presence of vasomotor symptoms and other menopausal symptoms [159], and experience
of poor sleep or depressive symptoms [160].

In light of this evidence, menopause can be viewed as an opportunity for preventative
strategies for improved health and longevity in women. Screening for many risks assumes
much greater importance after the onset of menopause, thus preventing or attenuating
diseases that increase within the first 10 years of menopause [161].

6. Conclusions

MetS is a heterogeneous entity, with age and sex variation in component clusters,
that may have important implications for interpreting the association between metabolic
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syndrome and cardiovascular risk during the human lifespan. As in CVD, sex hormones
influence gender differences and have a great impact on the expression and outcome of
MetS. Thus, the careful identification of gender-specific risk factors is not a mere formality,
but a vital cornerstone of full comprehension of cardiovascular and cardiometabolic disease,
which are increasingly afflicting the female gender.

It is evident that there is a need for physicians who approach female patients by
stressing the main anamnestic and gender-specific data concerning their hormonal lives,
starting from menarche and continuing through pregnancy until menopause. Menopause,
in particular, represents a turning moment, and is characterized by hormonal changes that
facilitate the onset of a series of diseases such as CHD, stroke, diabetes, osteoporosis, and
cognitive decline.
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