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"These days even reality has to look artificial."
- James G. Ballard, Kingdom Come



Abstract

This thesis focuses specifically on the study of nonlinear sloshing effects caused by large tank
motions in a direction perpendicular to the free liquid surface with emphasis on aeronautical
applications. Sloshing is a phenomenon that typically occurs in aircraft tanks as they are
subjected to loads caused by gusts, turbulence and landing impacts. This type of sloshing leads
to a noticeable increase in overall structural damping, yet it is generally not modeled in the
design phase of modern aircraft. The identification and study of such dissipative effects may
enable the development of less conservative aircraft configurations in the future, allowing for
increasingly lighter structures and reduced environmental impact. The present thesis proposes
a combined experimental and numerical approach aimed at obtaining reduced-order models
for vertical sloshing, to be subsequently integrated into aeroelastic modeling and applications
for the assessment of their effects on overall performance. An experimental campaign is first
carried out to characterise the nonlinear dissipative behaviour of vertical sloshing for different
filling levels. Specifically, a controlled electrodynamic shaker is employed to provide vertical
displacement by means of sine-sweep excitation. By exploiting vertical harmonic motion, it
is shown how the frequency and amplitude of the imposed excitation significantly influence
the dissipative capabilities of the sloshing liquid. The same experiment is used to create a
database - with an acquisition phase that considers vertical sloshing as an isolated system
- to build a neural-network-based reduced-order model. The dynamics to be modeled is
considered as a black box process, leading to the identification of a surrogate model driven
only by input/output signals, regardless the knowledge of the internal dynamics. In order to
assess the capability of the identified reduced order model for sloshing, the same tank used
to generate the training data is mounted at the free end of a cantilever beam to create a
new experimental setup in which a fluid-structure interaction scenario is expected. Indeed,
this experiment provides experimental data for the validation of the identified dynamic model
by comparison with numerical data. The comparison is carried out using a dynamic virtual
simulation model corresponding to the experiment, in which the numerical model of the
beam interacts with the reduced-order model simulating the sloshing dynamics. Finally, the
experimentally validated reduced-order model is used in two different aeroelastic applications
- wing prototype and flying wing model - to finally predict the dissipative effects induced
by vertical sloshing on the aeroelastic response. Aeroelastic response analyses under pre-
and post-critical conditions showed how the vertical sloshing dynamics helps to alleviate the
dynamic loads due to severe gusts while providing limit cycle oscillation beyond the flutter
margin.

Keywords: Vertical Sloshing, Nonlinear Reduced Order Models, Neural networks, Exper-
imental Tests, Aeroelastic response, Flexible Aircraft.
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Summary of the thesis

Large passenger aircraft are generally subjected to a wide range of loads during flight and
ground operations that cause significant deformation of the wings, especially during the most
severe loading phases. This can lead to sloshing of the fuel stowed in the wing tanks, whose
weight is comparable to that of the structural components. The standard engineering practices
for aircraft design do not consider the effect of the fuel movement within the wing tanks
for the determination of the aircraft design loads. The typical aircraft development cycle
includes two major tests for the identification and validation of the dynamic characteristics
of the aircraft structure: Ground Vibration Test (GVT), which is performed before the first
flight (the aircraft is made to vibrate by mechanical means so that its structural behaviour,
including damping, can be measured) and Flutter Flight Test (FFT), usually performed via
prescribed oscillatory motion of the aircraft control surfaces when flying at speed close to the
design envelope of the aircraft. However, these qualification tests are usually held after the
architecture of the fuel tank has reached an advanced design stage, thus severely limiting the
amount of changes that can be made.

This thesis is framed within the H2020 project SLOshing Wing Dynamics (SLOWD),
which studies fuel sloshing as a method to reduce loads in aircraft wings by increasing effec-
tive damping. It also aims to identify structural parameters for maximizing fuel slosh-induced
damping to overcome the main shortcomings of current industrial practices: unnecessary con-
servatism in calculating design loads (resulting in oversizing the structure) and maximizing the
benefits associated with slosh-induced dissipative effects. Preliminary work by some project
partners (Ref. [1]) has indeed shown that sloshing promotes an overall increase in response
damping characteristics for a cantilever beam on which tanks are mounted (made to emulate
an isolated half-wing model).

The main objective of the thesis is to adopt an integrated multidisciplinary approach that
has attention on the energy dissipation effects associated with fuel sloshing within aircraft
tanks and thus assess their effects on overall aeroelastic stability and response under maneu-
vering conditions. This is accomplished by carrying out four distinct activities in accordance
with the objectives of the project:

• Experimental characterisation of sloshing dissipative behavior in scaled tanks.



Summary of the thesis

• Development of Reduced Order Models (ROMs) for sloshing based on high-fidelity data
collected through experimental testing.

• Validation of identified ROMs with experimental tests that explore the interaction be-
tween sloshing and structural dynamics.

• Integration of sloshing ROMs into aeroelastic systems (such as commercial wing proto-
types or research aircraft) in order to evaluate the effects of stowed fluid movement on
stability and response to external loads.

Sloshing in aeronautical applications: a literature review

The term sloshing refers to any movement of the free liquid surface inside its tank. This
phenomenon is caused by any disturbance applied to a partially filled tank. The sloshing
problem generally involves estimating the hydrodynamic pressure distribution, forces and
moments exerted by the liquid on the internal walls of the tank. Depending on the type of
excitation received by the tank - in terms of intensity and/or direction relative to the walls,
the motion of the liquid can occur in different ways including planar, rotational, symmetric,
chaotic and many more. Thus, it is possible to distinguish different types of sloshing. In

Figure 1: Classification of sloshing dynamics

order to facilitate the understanding and modeling of this complex dynamic, a classification
of sloshing has been defined according to the type of motion exhibited by the free liquid surface
and the direction along which the tank is excited (see Fig. 1). The first defined category is
vertical sloshing, which occurs as a result of tank motion perpendicular to the plane of the
liquid free surface, i.e., parallel to the gravity force direction. The second is referred to as
lateral sloshing and is related to latero-rotational motions of the tank. Depending on tank
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motion magnitude, the internal dynamics of the liquid may be more or less violent, to the point
of exhibiting highly nonlinear behaviour. This can cause the two defined sloshing categories
to merge into a small region representing those situations in which the nonlinearities combine
the behaviour one would individually expect from each. A further category within lateral
sloshing is also defined, whereby the free surface of the liquid is linearised on the basis of the
application of small lateral or rotational tank excitations. It is possible in this case to estimate
the natural frequencies of the liquid free surface since the small perturbations that move the
tank do not cause its fragmentation. In fact, surface motion can ideally be represented as a
combination of sloshing modes having their own natural frequencies.

The one that is mainly treated in the present thesis is the nonlinear vertical sloshing in
rigid tanks. It is a phenomenon induced by high vertical acceleration of the tank, that is,
perpendicular to the free liquid surface and parallel to the direction of the gravitational field.
At very low excitation levels, the free surface tends to remain flat and not break. By increas-
ing the level of vertical acceleration some fluid modes can become unstable depending on the
oscillation frequency (Refs. [2–5]). It is indeed possible to define sloshing modes also for the
vertical category, however they can only occur by directly perturbing the free surface of the
liquid and not the tank from the outside. This is a nonlinear sloshing effect that is related to
so-called Faraday waves (Ref. [6]). They refer to nonlinear standing waves, which appear on
liquids enclosed by a tank excited vertically with a frequency, close to twice the natural fre-
quency of the free liquid surface (parametric resonance). Mathieu’s equations mathematically
manage to describe this effect, presenting solutions that can be stable or unstable depending
on the excitation parameters and the type of liquid (Ref. [7]). The boundaries of stability are
usually given in a chart known as Ince–Strutt diagram (Ref. [8]). These boundaries are set at
excitation frequencies corresponding to subharmonics (twice the natural sloshing frequency)
or harmonics (equal to the modal sloshing frequency) and enclose regions of instability. Out-
side these regions, the free liquid surface is stable. Nonlinearities also generate fluid fingers
that can reach the ceiling of the tank. By increasing the level of acceleration even more,
the transition to a completely chaotic regime takes place. Indeed, higher values of vertical
acceleration trigger Rayleigh-Taylor instabilities (Refs. [3, 9]), determining a chaotic flow
regime with air/liquid mixing. At this level of excitation, coherent structures related to the
sloshing modes are no longer recognised due to free surface fragmentation. Moreover, turbu-
lence, impacts with the tank ceiling, and continuous free surface generation (surface tension
effect) are responsible for additional energy dissipation, which does not depend on resonances
with sloshing modes as is the case with Farady waves (Refs. [10–13]). The overall interaction
of elastic potential energy of the structure containing the fluid and fluid energy lead to a
noticeable increase in the effective damping of the motion of the structure interfacing with
the sloshing tank. The energy dissipation occurs due to the phase shift between the sloshing
forces when the fluid impacts on the tank roof and the movement imposed on the tank, and
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its amount is interpreted to be mainly linked to the intensity of the impacts. More in details,
filling level and surface tension seem to play a key role to this behaviour, since affect the
relative acceleration of the floating fluid droplets can reach with respect to the tank walls,
thus exchanging momentum with the container. This suggests that, when the tank is set on
motion with high accelerations, the characteristic length to be considered for vertical slosh
dynamics is the tank height rather than the lateral dimension as in traditional sloshing anal-
yses. Nonlinear vertical sloshing can thus be considered a kind of energy sink. When a tank
is vertically excited with harmonic motion, it can be evidenced that the induced dissipation
depends strongly on both the amplitude and frequency of the imposed motion. This is also
supported by an experimental study conducted in this thesis (and published in Ref. [14]) that
investigated the dissipative behavior of vertical sloshing by considering a small sized tank set
in harmonic motion by an electromechanical shaker.

Sloshing can be characterised by other nonlinear effects - not considered in this thesis -
that are not necessarily related to vertical motion. Among these it is worth mentioning rotary
sloshing, a type of dynamics that modifies the tank response and may cause instabilities of
the tank walls (Refs. [15, 16]) and sloshing induced by g-Jitter that are typically encoun-
tered aboard a spacecraft in micro-gravity condition (Ref. [17]). Liquid propellant sloshing
dynamics can also have a significant influence on the stability and controllability of launch-
ers and satellites (see Ref. [18]). In this context, Ref. [19] introduced a nonlinear sloshing
damping factor to obtain prediction of the limit cycles oscillations magnitude due to adverse
control-slosh interaction in liquid propelled space vehicles. Nonlinear sloshing effects plays an
important role in naval applications, where extremely high impact pressures can occur on the
tank walls in gasoline tankers and ship cargo tanks (Ref. [20]). Vertical sloshing is, however,
the most interesting for aeronautical applications since the external loads typically acting on
these structures cause a motion of the wing tanks that has a dominant component in the
direction orthogonal to the free surface of the stowed fuel, because the typical perturbations
occurring on a flying aircraft are of such nature. Thus, this dominant category does not allow
the description of local tank rotations due to wing bending, as well as centrifugal effects due
to shortening. (which, although irrelevant at the level of fluid-structure interaction for small
perturbations, can generate effects on a fluid stowed on the tank Ref. [21]). Furthermore, the
above effects are negligible if a box-shaped tank is considered, as it is the case adopted in the
present thesis.

Linearised lateral sloshing is also considered in the thesis, but without the modeling that
will be devoted exclusively to vertical sloshing. In fact, the effects of this linearised dynamics
in aeroelastic applications will be evaluated using descriptive models already existing in the
literature. This sloshing dynamics will be considered together with the vertical one in the
reduced order description, assuming that they are decoupled and their effects can be summed
directly. In other words, the total sloshing force will be defined as the sum of the forces
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associated with the two phenomena. Indeed, the motion of the liquid free surface favours a
coupling between the first sloshing modes and the dynamics of the structure interfacing with
the tank. Nevertheless, the rigid tank assumption allows coupling effects related to possible
walls deformations to be neglected (Refs. [22, 23]). In fact, in aeronautical applications, fluid
lateral motion can cause the early onset of flutter instability. Studies on the effects of lateral
sloshing on the aeroelastic behaviour of aircraft can be found in Ref. [24], where the lateral
sloshing is modeled via mass-spring-damper mechanical model, in [25] where an hydroelastic
added-mass model is used, in [26] where a Linearised Frequency Domain (LFD) approach
is employed, and in [27] where the an Equivalent Mechanical Model for sloshing is used by
showing the effects on aeroelastic and flight mechanics stability as well. The reduced-order
model used to describe linear sloshing in the present thesis relies on the analytical formulation
provided in Ref. [2] and its further development in Ref. [15], according to which a realistic
representation of linearised liquid dynamics inside containers with simplified geometry can be
approximated by an equivalent mechanical model, whose parameters can be suitably related
with the physical quantities obtained from the linearised potential flow theory (Ref. [28]).

Methodology, objectives and activities description

The present thesis exploits a combined experimental and numerical approach to i) characterise
nonlinear vertical sloshing, ii) model it by obtaining surrogate models with a reliable level of
accuracy and iii) study its effects in aeroelastic applications through the modular integration
of different acting dynamics. Thus, the study of nonlinear vertical sloshing is focused on
two main aspects: characterisation and modeling. The first problem is primarily aimed at
understanding the physics behind the phenomenon and focusing its dissipative characteristics.
The second aspect is fundamental allow the integration of the developed sloshing model with
the flying-aircraft system. Indeed, the aim is to identify nonlinear reduced-order models
(ROMs) of vertical sloshing to be subsequently integrated into numerical simulation models
to allow the study of the effects on the global response of the system.

Figure 2 summarises in a diagram the logic behind the approach adopted during the
development of the work, highlighting the timing of each activity - defined by the vertical
arrow pointing downwards. The left-hand side of the diagram highlights the experiments
developed with the main purpose of studying vertical sloshing. While on the right-hand side
are the activities related to numerical modeling and the applications studied. It is important
to specify that the experimental and numerical analyses are strongly connected by the choice
to perform data-driven modeling. As will be described later, experimental tests have in fact
a dual role in this work. They are a tool for investigating the physics of the phenomenon and
they allow to collect high-fidelity data for the identification of a digital-twin to be used in
aircraft integrated numerical simulations.
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Figure 2: Thesis flowchart

According to the schedule of the SLOWD project, the thesis activity was focused on
obtaining a reduced order model for vertical sloshing. In particular, the baseline modeling
request was ensuring that the same dissipative behavior of vertical sloshing is accurately
reproduced. This can be achieved only after experimental or numerical analyses - with high-
fidelity computational fluid-dynamic (CFD) simulations - designed to fully characterise the
physics to be modeled by identifying the damping induced to the system. Some members of
the SLOWD consortium designed experiments to reduce the complexity of the analysis and
isolate the vertical component of sloshing motion (Refs. [29, 30]). These experimental tests
aimed to satisfy two main objectives: first, to create a complete database to test numerical
models to be developed within the project and, secondly, to understand the complexity of
liquid sloshing in the context where turbulence and violent impacts have a dominant role.
Within the SLOWD project, numerical analyses on vertical sloshing were also conducted.
In particular, multi-physics interface tools are presented in Refs. [31, 32] to accurately de-
scribe the coupling between structural dynamics and sloshing. These tools are capable of
performing analyses by coupling structural finite element solvers with sloshing CFD solvers
based on volume-of-fluid (VOF) or smoothed particle hydrodynamics models (SPH). These
two methodologies were respectively tested in Refs. [33, 34] and Refs. [35–37]), with the
aim of obtaining reliable numerical tools for the prediction of violent sloshing loads and the
dissipation mechanisms induced by them. Nevertheless, the modeling performed in this ini-
tial phase of thesis activity involved acceleration data measured in the sloshing experiment
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carried out by one of the project partners in the laboratories of the Universidad Politécnica
de Madrid (UPM) (see Ref. [29]), as shown in Fig. 2. The experimental facility consists of
an elastically scaled single degree of freedom (SDOF) mass-spring system coupled with the
slosh dynamics within a hydrodynamically scaled tank. Experimental data were measured in
transient tests corresponding to a free response problem to an initial condition. An equivalent
mechanical model (EMM) of a bouncing ball is then built to emulate the fluid behavior inside
the tank - specifically the impacts with the tank wall - and provide a numerical model of
a tank isolated from the structure on which it is possible to perform simulations with any
kind of excitation and that can be used for multi-disciplinary applications. Existing linear
sloshing ROMs in the literature are inherently based on potential fluid theory or small lateral
perturbations (see Refs. [2, 23, 28, 38]) and do not provide an estimate of the impulsive forces
that nonlinear vertical sloshing dynamics produce. In the framework of the SLOWD project,
a bouncing ball model capable to reproduce the impact mechanisms has been proposed also
in Ref. [39]. These bouncing ball models provide fast prediction of sloshing forces, but since
they are obtained by fitting the induced damping on the free response of a single degree of
freedom experimental system, they do not generally provide consistent results when working
at frequencies different from those used in their identification.

To refine the characterisation of vertical sloshing, a new experimental campaign was devel-
oped by employing a linear actuator to impose a controlled vertical sinusoidal motion on the
sloshing system. Compared to the transient case described above, where free vertical vibra-
tions following a step-release are used, there are several advantages of using a linear actuator
to study sloshing-induced damping, the most important being: i) the ability to focus and iso-
late a single sloshing mode in a controllable manner, ii) the ability to study a sloshing mode
of interest under periodically steady-state conditions characterised by harmonic inputs within
certain range of the input frequencies and amplitudes and iii) the minimisation of the various
parasitic effects such as dry friction and spatial motion irregularity. The SDOF experimental
harmonic campaign, presented in [14], took place in the structural dynamics laboratory of La
Sapienza University in Rome and it was conducted to investigate the dissipative behaviour
of the fluid sloshing inside a tank set in vertical motion. A controlled electrodynamic shaker
is employed to provide vertical displacement by means of sine-sweep excitation: the consid-
ered frequency and amplitude ranges are such to characterise the dissipation introduced by
the fluid in conditions of small perturbations (low values of gravity acceleration g) as well
as at high accelerations. Under these conditions where the imposed acceleration is high, dis-
sipative phenomena become the most intense as the free surface of the fluid breaks up and
impact mechanisms with the tank walls arise. The experiment consist of a box-shaped tank
- partially filled with water - with dimensions chosen in order to trigger slamming with the
tank roof following Rayleigh-Taylor instabilities. The test design provides that three different
filling levels are taken into consideration. The dynamic load at the interface between the
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shaker and the tank is measured by two load cell sensors. Thanks to such measures and the
acceleration measurements is possible to evaluate the work done by sloshing, which is related
to the pressure exerted by the liquid on the tank walls. The exchanged work corresponds
to the dissipated energy that vertical sloshing provides during the tank motion. Harmonic
test results show that the dissipation induced by sloshing depends strongly and nonlinearly
on both the amplitude and frequency of the imposed excitation. Moreover, the filling level
plays a key role as it is linked to the path that the fluid droplets must go through to impact
the tank ceiling. As the filling level increases, the extent - in the frequency and amplitude
domain - of the region in which high values of dissipated energy occur increases. However, the
case with the highest dissipation values is the one corresponding to the half-filled tank. The
experiment also shows how the acceleration imposed on the tank is the dominant parameter
in defining the dissipative behaviour of sloshing. In fact, the dissipation mechanisms is less
efficient before and beyond some acceleration values. Comparable results are obtained in Ref.
[40], where a similar experiment was carried out by imposing a controlled harmonic motion on
the tank with varying frequency and amplitude. This study also shows that sloshing-induced
dissipation exhibits a maximum in amplitude and frequency domain before being saturated.

Consequently, from the perspective of modeling, vertical sloshing can not simply be de-
scribed by means of linear viscoelastic models in which the loss of energy depends only on
the oscillation frequency (see Ref. [41]) such as fractional derivatives and finite states for
the damping (see Ref. [42]). Similarly, nonlinear models such as the bouncing ball are also
unable to model the damping characteristic effectively, given the way they are identified and
the strong dependence of the phenomenon on the frequency and amplitude of the imposed
motion. Reliable nonlinear predictive models are therefore necessary to simulate the impact
the sloshing forces have on the dissipation of the elastic energy.

To obtain a model of this kind, the thesis work explores methodologies for identify-
ing dynamic systems through machine-learning approaches. Machine learning methods can
be regarded as data-driven optimisation and regression techniques that are ideal for high-
dimensional and multi-objective optimisation problems with constraints. Given its wealth of
data - collected during every stage of design and testing - aerospace engineering is an ideally
suited field for modern data-driven machine learning techniques (Ref. [43]). With an ever-
increasing capacity to collect and store data (Ref. [44]), we have entered a new era in which
scientific analysis is conducted with data-driven hypotheses. This kind of model discovery
becomes a new paradigm (Ref. [45]), which does not replace but complements established
modes of theoretical, experimental and numerical investigation.

Machine learning algorithms can be grouped into supervised and unsupervised learning
methods, based on the extent to which the training data is labeled (see Ref. [46]). The
supervised approach requires that the training data have labels. In other words, this is
equivalent to saying that an input data corresponds to a specific output (also referred to as
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target). Unsupervised learning, on the other hand, determines the underlying structure of a
dataset without labels. In this thesis, supervised learning algorithms are used with the aim
to obtain a parameterized function that maps input data onto outputs, by minimising a loss
function built as the difference between targets and model estimates. There are numerous
techniques to learn the structure and parameters of these mappings, including linear and
nonlinear regression, genetic programming and neural networks (Ref. [47]). In addition,
machine learning algorithms can incorporate known physics, such as invariances, symmetries,
conservation laws, and constraints. These cases are referred to as physics-informed machine
learning applications (Ref. [48]).

Vertical sloshing dynamics is considered in this work as a black box process, leading to
the identification of a surrogate model by the means of those signals that will be assumed
as inputs and outputs regardless the knowledge of the internal dynamics. In addition, the
collection of data adequately covering the input space is essential for the model training.
Specifically, the same experimental setup designed to characterise dissipation in harmonic
motion is used to get experimental data for the identification of a nonlinear ROM that takes
advantage of neural networks properties. Artificial neural network (ANNs) can be seen as
a parallel distributed processors made up of the so called neurons: simple processing units,
having the natural capability of storing accumulated knowledge, and then, make it available
for subsequent use. In particular, knowledge is acquired by the network from its environment
through a learning process, and then stored by synaptic weights. Neural networks have
proven to be a powerful tool in modeling nonlinear systems (Ref. [49–51]). Indeed, they
can adequately handle complex high-dimensional input-output mappings (see Refs. [52–55]).
According to Refs. [56, 57], neural networks can be used for modeling purposes as a static
nonlinear approximator (mapping function) of a dynamic model that also employs a filter
bank containing delay lines for the input signals. In other words, in this type of model, the
neural network provides an estimate of the output at a certain instant of time, based on the
input values at previous instants (regressors). The network can also be fed with the measured
or estimated outputs at previous times (through feedback for the latter). Depending on what
the mapping function receives as input, different types of models can be defined in the context
of system identification. Nonlinear Autoregressive model with eXogenous input (NARX) (see
Refs. [52, 58]), Nonlinear Output Error (NOE) model (see Ref. [59]) and Nonlinear Finite-
Impulse-Response (NFIR) models (see Refs. [60–62]) are amongst the most popular nonlinear
black-box model classes. The first two respectively consider the regressors of the targets and
the output estimated by the model itself as additional inputs. Whereas, NFIR models only
relies on delayed input values to capture the system dynamics.

Neural networks use is increasingly popular in aeroelastic applications, where complex
fluid-structure interactions are expected. References [63–65] proposed a neural network ap-
proach to predict unsteady aerodynamics loads for nonlinear aeroelastic analysis.
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As for applications where sloshing is involved, Refs. [66, 67] already introduced the use of
machine learning theory for real-time prediction of the sloshing loads in cargo containers. A
data-driven ROM of the free liquid surface motion is developed in Ref. [68] to reduce the time
consumption for reconstruction of fluid dynamics in comparison with the standard viscous-flow
methods, by exploring several strategies including proper orthogonal decomposition (POD)
(Ref. [69]), locally linear embedding (Ref. [70]) and topological data analysis (Ref. [71]).
Real-time predictions of the fluid response are also obtained from a ROM constructed by
means of thermodynamics-informed data-driven learning in Ref. [72]. The proposed method
infers the constitutive behavior of the fluid from video sequences of the sloshing phenomena.
Reference [73] used neural networks to adaptively calibrate the associated damping coefficient
of fully-nonlinear liquid sloshing simulation in floating liquefied natural gas (FLNG) tanks.
A convolutional neural network (CNN) based methodology (see Ref. [74]) is employed in
Ref. [75] for the identification of the noise induced by interactions of fluid inside the tank
under various driving conditions of a vehicle. The use of an artificial neural network method
is also featured in Ref. [76] to obtain effective prediction of impact loads due to sloshing in
an offshore vessel. Reference [77] proposed the use of machine learning surrogates based on
recurrent neural networks (RNNs) (outlined in Ref. [78]) to predict both external aerody-
namic and sloshing loads for describing the coupled motion of the combined airfoil and fuel
tank system. Training data for the RNN identification are generated using high fidelity CFD
analysis.

As already mentioned, this thesis uses experimentally measured data to train a neural-
network-based dynamic model, selecting the best performing structure after sensitivity analy-
ses (NFIR and NOE structures are selected for this purpose). Specifically, the data-acquisition
phase reflects an open-loop problem, where the process to be identified - vertical sloshing - is
considered as an isolated system that enables to obtain data. The strategy employed to gen-
erate data for the training consists in imposing vertical displacements to the tank by means of
an electromechanical shaker by slowly varying the frequency and output of the motion. The
latter strategy is referred to as Variable Frequency and Amplitude (VFA). The neural network
based ROM is then validated in a complex fluid structure interaction environment. A new
experimental setup is designed in which the same tank used to generate the training data is
mounted at the free end of a cantilever beam. This particular set up is referred to as the
sloshing beam problem, and the experimental data generated for comparison and validation
will be provided by free response and random testing. The comparison is carried out using
a dynamic virtual simulation model that conforms to the closed-loop logic of the experiment,
in which the numerical model of the beam interacts with the reduced-order model simulating
the sloshing dynamics.

As shown in Fig. 2, the final perspective of the thesis is the integration of the validated
sloshing ROM into aeroelastic systems to investigate its effects on the response under pre-
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critical and post-critical conditions. To this end, a scaling law is introduced in order to
use the identified model also in actual applications which may have tanks with different
dimensions. Two different applications are considered: the first, consists of a commercial
wing prototype of a single-aisle aircraft, while the second is a flying wing (see Refs. [79,
80]) in which both flight dynamics and aeroelasticity are involved. It is worth noting that
the latter also involves the integration of reduced-order models for linear lateral sloshing
(see Refs. [2, 15, 28]) to evaluate also the effects on aircraft stability. In particular, it is
assumed that sloshing forces can be decomposed into a lateral part with linearised behavior
and a vertical part with extremely nonlinear behavior by neglecting their mutual interactions.
Numerical modeling is implemented in Simulink®, resulting in a hybrid model that combines
a differential linear problem (for aeroelasticity, flight dynamics, and linear sloshing) with a
data-driven model (nonlinear vertical sloshing). Response analyses under pre- and post-
critical aeroelastic conditions have illustrated how the vertical sloshing dynamics helps to
alleviate the dynamic loads following severe gusts while providing limit cycle oscillations
beyond the linear flutter margin. In addition, stability analyses for the flying wing have
shown how the coupling between linear sloshing and aircraft aeroelasticity and flight dynamics
contributes to modify the overall stability scenario.

Outline of the thesis

The development of the thesis activities followed the timeline illustrated in Fig. 2. How-
ever, they are presented here using a different logic, with a body of three main chapters
devoted respectively to the experimental activity of energy characterisation, the identification
of nonlinear reduced-order models for vertical sloshing, and related aeroelastic applications.
Supporting appendices are also included. Specifically, the thesis is organised as follows:

In Chap. 1, introduces the vertical sloshing problem for rigid tanks and the analytical
procedure for obtaining the forces to which it gives rise. Secondly, the experimental campaign
carried out to characterise the dissipative behaviour induced by this phenomenon when the
tank is set in harmonic motion with different excitation frequencies and amplitudes is pre-
sented. The experimental analysis is performed as the tank filling level varies, in order to
show how the amount of dissipation varies with the mass of liquid considered.

In Chap. 2, the data-driven procedures for identifying nonlinear vertical sloshing reduced-
order models are presented. The first part is devoted to the so called "bouncing ball", an
equivalent mechanical model identified using experimental data from transient tests measured
in a single-degree-of-freedom sloshing experiment. The same experiment presented in Chap.
1 is again used to create a database aimed at identifying a nonlinear reduced-order model
based on neural networks. The second part of the Chapter then shows the training process
of this model together with its validation based on comparison with experimental data. The
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latter are measured through a further experiment, in which the same tank used to generate
the data is mounted on a cantilever beam to simulate a fluid-structure interaction problem.
The final part introduces a numerical procedure to scale up the identified model in order to
be able to use it in applications where tanks of different sizes are expected.

In Chap. 3, the neural-network-based ROM is used in two aeroelastic applications to
evaluate the effects that vertical sloshing induces on the overall system response. The first
case study consists of a commercial wing prototype of a single-aisle class aircraft, while the
second is a flying wing. In the latter, the additional effect of lateral linear sloshing is also
considered, using equivalent mechanical models already present in the literature (see Appendix
D).

In Appendix. A, an analytical overview of linear mechanical systems is given in order
to simply introduce the dimensional and non-dimensional quantities with which dissipated
energy can be measured.

In Appendix. B, a theoretical background on artificial neural networks with radial basis
functions as activation functions is presented.

In Appendix. C, the results of an initial attempt to utilise nonlinear dynamic system
identification techniques based on the use of neural networks are shown. In particular, the
performance of a neural network trained with low-fidelity data obtained by simulating the
bouncing ball in harmonic motion for different frequency and amplitude values is presented.

In Appendix. D, the theoretical background underlying the construction of equivalent
mechanical models for sloshing in the case of small lateral or rotational perturbations of the
rectangular tank is given.

Appendix. E presents a linearised vertical sloshing model based on the assumption that
sloshing forces can be described as viscous damping forces with coefficients that can be derived
from experimental sloshing data.
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Chapter 1

Experimental characterisation of
sloshing tank dissipative behaviour

In this chapter, the general problem of vertical sloshing is first presented, together with the
analytical procedure assessing the procedure used to measure the sloshing forces exchanged
between fluid and tank. Second, a method for characterising and measuring the dissipation
caused by this phenomenon is presented by vibrating the tank that contains the sloshing fluid
with a harmonic motion. The results concerning the experimental study of the dissipative
behaviour of vertical sloshing are part of the work published in Ref. [14]. The chapter
concludes with a discussion on sloshing effective mass concept, which was introduced in Ref.
[81].

1.1 Measurement of sloshing force on a rigid tank having har-
monic vertical motion

In this section, the problem of vertical sloshing is described in general terms, referring to a
configuration involving a rigid tank containing a liquid. In particular, an analytical procedure
is defined in order to measure the sloshing forces. When a partially filled tank is set in
vibration with a motion perpendicular to its base (considering for simplicity that the shape
of the tank is parallelepiped), mechanisms can be triggered that lead the stowed liquid to
impact with its internal walls. The pressure generated during impacts will represent the force
the liquid exerts on the structure, i.e. the sloshing force. The description of vertical sloshing
therefore requires a procedure to be defined for the estimation of these actions. The aim is to
show how this objective is closely linked to the type of motion imposed on the tank. For this
reason, the steady-state harmonic motion is the most suitable to derive a formulation that
allows us to estimate the sloshing forces. Figure 1.1 shows a rigid tank, partially filled with
a liquid, subjected to vertical motion (i.e. perpendicular to the free surface of the liquid).



1.1. Measurement of sloshing force on a rigid tank having harmonic vertical motion

The stowed liquid is portrayed at one of the moments immediately following the application
of motion. This type of shape has been found in several experimental campaigns (See Ref.
[82]). The displacement field of the rigid tank is given by:

Figure 1.1: Partially filled rigid tank subjected to vertical motion.

u (x; t) = u (t)k (1.1)

where k is the vertical unit vector and u (t) is an assigned tank time law for the vertical rigid
motion. If x ∈ Vt (rigid body domain) indicates the position of the tank material point in the
reference configuration and Vt the volume tank domain, one has in general

ρ
D2u

Dt2
(x; t) = divT (x; t) + ρgk (1.2)

where ρ is density of the solid tank material. By integrating the previous expression on the
volume occupied by the tank particles and then projecting it on vector k one has[˚

Vt

ρ
D2u

Dt2
dV −

˚
Vt

divTdV − g

˚
Vt

ρkdV
]
· k = 0 (1.3)

By introducing the mass of the dry tank M and applying the divergence theorem one has:Mük−
‹

S

tdS −Mgk

 · k = 0 (1.4)

that could be rewritten as:

Mü−

‹
S

tdS

 · k−Mg = 0 (1.5)

where t = ts + te represents the surface forces, whose two contributions are specifically:
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• ts = −pn are the surface forces due to the sloshing fluid (p is the fluid pressure; note
that no shear forces are assumed on the internal tank walls ts = −pn+σshearτ ≃ −pn)

• te it is related to the applied external forces:
‚
S

te · kdS =: Fext, where Fext is the

vertical applied external force.

Therefore

Mü+

‹
S

p n · kdS

−Mg = Fext (t)

Mü (t)− FSz (u (t))−Mg = Fext (t) (1.6)

where FSz is the vertical sloshing force which depend by the imposed rigid body motion time
law [u (t) , u̇ (t) , ü (t)]. Eq.(1.6) can be rewritten as follows

FI − FSz − FG − Fext = 0 (1.7)

where FI = Mü, FSz = −
‚
S

p n · kdS, FG = Mg, so highlighting a balancing in vertical

direction of the inertial, sloshing, weight and external forces performed on the tank.
As we shall see, in this chapter, an experimental activity will be presented in which the

vertical motion u (t) is imposed by means of an elettrodynamical shaker that allows to get
Fext (t) as external force ensuring the imposed motion. The work performed by the forces
expressed in Eq.(1.7) in the vertical direction z in a time period [t1, t2] is given by

ˆ z(t2)

z(t1)
(FI − FSz − FG − Fext) dz = 0 (1.8)

where dz = u̇ dt.
As mentioned above, we use steady harmonic motion to deduce the sloshing force. In this
case, the law of motion u (t) imposed on the tank is expressed as follows:

u (t) = u0 sin(Ωt) (1.9)

where u0 and Ω represent respectively the amplitude and the frequency of the displacement
excitation. The work done by the forces acting on the tank in a generic associated time cycle
T = 2π/Ω in a steady harmonic motion could be derived by considering Eq. 1.8, that is

ˆ t+T

t
[Mü(t)− FSz (u(t))−Mg − Fext (t)] u̇(t) dt = 0

−
ˆ t+T

t
FSz (u (t)) u̇(t) dt =

ˆ t+T

t
Fext (t) u̇(t) dt (1.10)

15



1.2. Experimental case study and set-up

It should be noted that the work done by the inertial and the weight forces in a generic cycle
in steady state harmonic motion are identically equal to zero. Thus, if the work performed
by the external forces were measurable, this would be directly the work performed by the
sloshing fluid on the tank. The importance of this simple relationship relies in the fact that it
shows that the energy dissipated by the sloshing fluid in the left hand side of Eq. 1.10 equals
the energy subtracted to a structure interfacing with the tank. The characterisation of this
work can thus be referred to as a source of damping for the structure.

1.2 Experimental case study and set-up

A method is now presented to characterise the dissipation caused by vertical sloshing in
harmonic motion, exploiting an experimental setup involving a tank dynamically vibrated by
a shaker. Given the tank geometry, the quantification of the energy dissipated by the fluid is
performed for different values of oscillation amplitudes and frequencies in order to quantify the
sloshing nonlinear dissipative behaviour. These two parameters characterise ideal unsteady
harmonic boundary conditions that a vertically vibrating structure can impose to the walls
of a tank with which it interfaces triggering slosh dynamics. The considered frequency and
amplitude ranges are such to characterise the dissipation introduced by the fluid in conditions
of small perturbations (low values of g) when Faraday waves occur with a limited dissipative
capability as well as at high accelerations with the complete fragmentation of the free surface
with the occurrence of intense impacts between liquid and tank ceiling. A proper metric for
the definition of dissipative energy is introduced thus mapping the damping introduced by the
slosh dynamics corresponding to different filling levels. The proposed metric is inspired by
works like the one presented in Ref. [83] where suitable energy maps were used for prediction
and control strategies applied to aeroelastic airfoil response to gusts. This experimental
campaign took place in the structural dynamics laboratory of the University of Rome La
Sapienza.

The experimental testbed is a box-shaped tank made in Plexiglass with a height of h = 27.2

mm and base of sides l1 = 117.2 mm and l2 = 78.0 mm. The dimensions are chosen in order
to trigger slamming with the tank roof after Rayleigh-Taylor instabilities. The test design
provides that three different filling levels featured by α = hf/h (with hf the liquid depth) are
taken into consideration, i.e., α = 0.50 (case 1, reference), α = 0.25 (case 2) and α = 0.75

(case 3), to which correspond the following non-dimensional liquid depths: hf/l1 = 0.116 (case
1), hf/l1 = 0.058 (case 2), hf/l1 = 0.174 (case 3). The liquid tested in each of the cases listed
is water. Table 1.1 provides the sloshing frequencies analytically evaluated for the considered
liquid depths for non-ideal fluids (See Ref. [3]). The indices l and m indicate the order modes
considering that the modal deflection of the free surface is Sl,m(x, y) = cos( lπxl1 ) cos(mπy

l2
). For

the sake of conciseness only the symmetric modes frequencies are provided in Tab. 1.1.
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1.3. Identification of sloshing dissipated energy from frequency sweep excitation

Case 1
α = 0.50

Case 2
α = 0.25

Case 3
α = 0.75

l m Sloshing natural frequencies [Hz]
2 0 2.909 2.179 3.295
0 2 4.093 3.234 4.411
2 2 4.716 3.850 4.972
4 0 5.091 4.240 5.307
4 2 5.984 5.219 6.116
6 0 6.809 6.160 6.886
0 4 6.817 6.170 6.893
2 4 7.079 6.471 7.142
6 2 7.381 6.818 7.432
4 4 7.789 7.285 7.827

Table 1.1: Analytical frequencies of the first ten symmetric sloshing modes for all the considered
filling level cases.

The tank is placed over a controlled electrodynamic shaker able to impose vertical si-
nusoidal displacement starting from a lower frequency of 5 Hz and able to reach 25 mm
peak-to-peak displacement amplitude. The dynamic load at the interface between shaker
and tank is measured by two PCB 208C03 load cells (See Fig. 1.2), placed in the middle
of the long side of the tank base. The overall force exchanged by tank and shaker, that is
Fext introduced in Sec. 1.1, is the sum of the two load cells. The system is also equipped
with two redundant PCB 352C22 accelerometers placed at the opposite corners of the tank
upper closing side and with a control accelerometer used by the shaker sine-sweep controller.
The comparison between the data of the accelerometer used for sine-sweep control and the
other two over the tank roof confirmed the considered experimental testbed rigidly behaved
throughout all the tests carried out.

1.3 Identification of sloshing dissipated energy from frequency
sweep excitation

In order to estimate the energy dissipated by the liquid, it is necessary to derive the sloshing
forces, i.e. those forces that the liquid exerts on the walls of the tank as a result of its vertical
dynamic excitation. The identification of the sloshing forces is carried out under sine-sweep
excitation regime. The curves showed in Fig. 1.3 illustrate the paths of the frequency-
amplitude pairs run through the sine-sweep tests. Specifically the first run starts from O1

frequency-amplitude point ending at F1 point (branch O1−F1); similar trends are considered
for the branches (i.e. the runs) O2 − F2, O3 − F3 and O4 − F4. The other branches start
from O4 thus reaching the final points F5, F6 and so on, but initially following the dashed line
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1.3. Identification of sloshing dissipated energy from frequency sweep excitation

(a) Experimental Set-up (b) Layout

Figure 1.2: Experimental configuration considered for characterising the energy dissipated by vertical
sloshing

indicating a displacement of about 12.5 mm due to the aforementioned shaker limits. The
right hand side axis indicates the experimental time showing the sweep goes from 5 Hz to 20
Hz in 240 s, where the value of the instantaneous frequency is a function of the time depends
on the initial value of the frequency Ωi and the octave rate RΩ such that:

Ω(t) = Ωie
log 2RΩt (1.11)

As a consequence, once the acceleration amplitude profile a0[Ω(t)] is provided, it is possible
to get the imposed vertical acceleration

ü(t) = a0[Ω(t)]cos
[
ϕ(t)

]
(1.12)

where ϕ(t) is the instantaneous phase defined as

ϕ(t) =
Ωi

log 2RΩ
elog 2RΩt (1.13)

For the evaluation of the work exchanged per unit cycle during the experimental test, we need
to find the time domain boundaries of each cycle. This can be identified by finding the time
instants tn such that ϕ(tn) = 2nπ, or considering Eq. 1.13:

tn =
1

log 2RΩ
log
( log 2RΩ2nπ

Ωi

)
(1.14)
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1.3. Identification of sloshing dissipated energy from frequency sweep excitation

By averaging over a user defined number of cycles 2P we get the work exchanged by fluid and
shaker at any instant tn:

W
(
Ω(tn), a0(tn)

)
=

1

2P

ˆ tn+P

tn−P

FSz(Ω(τ), a0(τ)) u̇(τ) dτ (1.15)

The dissipated energy is measured by centering in tn and averaging in a number of cycles 2P .
However, Eq. 1.15 is evaluated in a subset of time instant tk with k = n/M where M indicates
the number of cycles between a sample and the following (see Fig. 1.4). It is worth pointing
out that the ratio between M and 2P represents the overlapping between the distance between
the tk points and the width of the window of the integral. In this analysis, the set values of
P and M are 6 and 24, respectively. Therefore no overlapping is present among the windows
centred at the considered time instants tk. It should be noted that Eq. 1.15 subtends what
was obtained in Eq. 1.10. In fact, in this case, since the motion is harmonic, the work done by
the force Fext, measured by the load cells, is equal to the work done by the sloshing forces FSz .
Although the work done by the two forces is the same, they are not exactly equal. Indeed,
the sloshing force FSz is equal to the sum of the signals measured by the load cells (hence,
Fext) from which is subtracted the inertial contribution, which in harmonic motion does not
contribute to the work, associated with the structural mass resting on the cells (Plexiglass
and metal support plate).

The results of the present activity can be also reported in a non-dimensional form. The
non-dimensionalised version of the operational parameters introduced in the present analysis,
that is the non-dimensional frequency ω̄ and the amplitude of the vertical motion ū are
introduced as it follows:

ω̄ =
Ω√
g/h

(1.16)

ū =
u0
h

(1.17)

The present definition of the nondimensional frequency comes from the findings (see Sec. 1.4)
that sloshing resonances (low acceleration) have little influence on dissipated energy compared
to the regime in which the impacts between liquid and tank ceiling occur (high acceleration).
In the case of harmonic motion, this non-dimensionalisation makes the product ū ω̄2 = a0/g,
the main parameter conditioning the possibility of Rayleigh-Taylor instability in the case of
an ideal fluid, independent of the geometrical parameters of the tank and fluid depth. Indeed,
alternative definitions of non-dimensional frequency (such as normalisation with respect to
a reference resonant frequency, see Ref. [84]) would modify the iso-acceleration lines in the
domain ū − ω̄. The non-dimensional work exchanged between the tank and the shaker is
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1.3. Identification of sloshing dissipated energy from frequency sweep excitation

defined as:

W̄ =
W

mlu
2
0Ω

2
(1.18)

where ml is liquid mass and the denominator represent a reference energy that can be inter-
preted as the kinetic energy of the system (by considering just the mass of the liquid). The
non-dimensional dissipated energy defined in Eq. 1.18 can also be related to the concept of
the loss factor (presented in Appendix A), which allows a metric for dissipation to be defined.
It is worth noting that the provided non-dimensional results take into consideration only the
operational parameters ω̄ and ū without considering the dependency of the phenomenon with
respect to parameters more addressed to the physics and tank size like free surface effects and
viscosity.

Figure 1.3: Frequency-amplitude pairs spanned during different sine sweep tests.

Figure 1.4: Discretization of time and averaging strategy for dissipated energy evaluation.
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1.4. Experimental results

Point a0(tk)[g] Ω(tk)/(2π) [Hz] tk [s]
1 1.5 9.0 102.3
2 1.5 13.0 166.0
3 1.5 17.0 212.5
4 3.0 9.0 102.3
5 3.0 13.0 166.0
6 3.0 17.0 212.5

Table 1.2: Reference points on which the results are provided.

1.4 Experimental results

Several experimental tests have been carried out which allowed to map the energy dissipated
by the fluid for different filling levels on a frequency-amplitude domain. For each of the
considered filling levels (i.e. , α = 0.50, α = 0.25 and α = 0.75), frequency sine-sweep
tests were carried out with acceleration amplitudes between 0.25 g and 6 g (See. Fig. 1.3).
The excitation frequency varies, starting from a value of 5 Hz, up to a maximum of 20 Hz,
following the time law expressed in Eq. 1.11. Figure 1.5 shows the same result but using the
acceleration amplitude instead of the displacement one. The arrows indicate the direction
followed by the frequency sweep during the test. The minimum (0.25 g) and maximum (6 g)
iso-acceleration curves therefore define the domain where the energy dissipated by the fluid
inside the tank is experimentally identified. Furthermore, 6 red dots are highlighted in Fig.
1.5. They are representative of the 6 frequency-amplitude pairs reported in Tab. 1.2 selected
to show quantitatively the results in terms of measured sloshing forces and hysteresis cycles.

The dissipated energy is evaluated by considering a time interval centred in the time
instant tk and having as extremes tk − P and tk + P , where 2P is the number of cycles
considered, set to 12 (See Fig. 1.4). Thus, in the results that will be hereafter provided, it
should be remembered that when referring to the energy dissipated at an instant tk (and in
turn, we are assuming a pair Ω(tk)− a0(tk) ) we are not considering a single time instant but
we are averaging in a 2P -wide time interval.

1.4.1 Fluid-dynamics regimes characterisation

This section provides a qualitative characterisation of the different fluid-dynamics regimes. For
the sake of conciseness only the reference filling level case α = 0.50 is here taken into account.
Figure 1.6 shows 12 snapshots of the sloshing behaviour at different values of acceleration and
frequency, containing also the same points from Tab. 1.2. In this flow regime, it is hardly
possible to relate the sloshing modes in Tab. 1.1 to those in Fig. 1.6, since, the Faraday
waves can respond synchronously with the tank displacement as well as at 0.5 and 1.5 of the
excitation frequency when the tank is set on vertical motion. Figures 1.6(a) to 1.6(d) refer to
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1.4. Experimental results

Figure 1.5: Scheme of the runs performed to identify the dissipated energy maps. Six red bullets
indicate the reference points presented in Tab. 1.2.

the test with acceleration equal to 0.5 g, for frequency values that corresponds respectively to
6, 9, 13 and 17 Hz. For this acceleration value, Rayleigh -Taylor instability is not triggered
and, therefore, the liquid does not experience any free surface breakage. Rather we see
Faraday waves that are generated inside the tank, that may softly impact the tank ceiling
(see Figures 1.6(b) and 1.6(c)). By increasing the frequency, surface tension stabilises the free
surface and impacts no longer occur (see Fig. 1.6(d)).

Next, when the acceleration values are further than 1 g we notice the transition to a more
chaotic regime of the fluid, where the free surface breaks. This is noticeable in Figures 1.6(e)
to 1.6(h), which are related to an acceleration level of 1.5 g. In particular, for frequency values
equal to 6 and 9 Hz, the fluid violently impacts the tank ceiling and it is no longer possible
to identify coherent structures of the fluid (see Figs. 1.6(e) and 1.6(f)). By increasing the
frequency, more precisely at 13 Hz, a transition to a new standing waves regime is noticed
with impacts occurring with less intensity (see Fig. 1.6(g)). Figure 1.6(h) shows that above a
certain frequency value there is no longer presence of impacts. Finally, when the tank is set in
motion at high acceleration values (i.e. with an acceleration of 3g, see Figures 1.6(i) to 1.6(l)),
the fluid inside the tank behaves chaotically for the whole considered range of frequencies.

1.4.2 Filling level case 1: α = 0.50 (reference)

The filling level case α = 0.50 is the first case considered in this analysis. Figure 1.7 shows
the trend over time of the sloshing forces corresponding to the points highlighted in Tab. 1.2.
These data are normalised with respect to the maximum of the corresponding inertial force of
the liquid, that is equal to mla0. Note that no filtering procedure was used on the measured
time signals. The time intervals in which the trend of the sloshing forces is shown are precisely
those having an amplitude defined by [tk − P, tk + P ]. Figure 1.8 shows the hysteresis cycles
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1.4. Experimental results

(a) a0 = 0.5g, f = 6Hz (b) a0 = 0.5g, f = 9Hz

(c) a0 = 0.5g, f = 13Hz (d) a0 = 0.5g, f = 17Hz

(e) a0 = 1.5g, f = 6Hz (f) a0 = 1.5g, f = 9Hz

obtained by plotting the variation of the sloshing force (normalised with respect to mla0)
with respect to the harmonic displacement of the tank (that is normalised with respect to the
maximum vertical displacement u0). The area enclosed by the cycles represents the dissipated
work at the specific acceleration-frequency pair. It should also be noted that multiple periods
are considered in the hysteresis cycle plots. Figure 1.9 shows the trend of the dissipated energy
as a function of the frequency sweep for the reference cases with acceleration equal to 1.5g

and 3.0g. In particular, the vertical bars in this figure represent the values of the dissipated
work evaluated at the selected time intervals centred at tk (and therefore, at Ω(tk) − a0(tk)

). The bars corresponding to the three reference frequencies already indicated above are
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(g) a0 = 1.5g, f = 13Hz (h) a0 = 1.5g, f = 17Hz

(i) a0 = 1.7g, f = 6Hz (j) a0 = 3g, f = 9Hz

(k) a0 = 3g, f = 13Hz (l) a0 = 3g, f = 17Hz

Figure 1.6: Snapshots of the sloshing response at different values of acceleration and frequency for
the case α = 0.50.
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highlighted in red. On the other hand, the dashed orange curve corresponds to the trend of
the acceleration amplitude. Note that, the generic bar corresponding to the frequency Ω(tk)

will be associated to a vertical displacement of the tank equal to a0(tk)/Ω2(tk).
By extending this process of evaluating the dissipated energy to all Ω(tk) − a0(tk) pairs

spanned during the experimental tests, an appropriate interpolation of the data based on the
radial basis function is performed in order to represent the dissipated energy on a continuous
domain as shown in Fig. 1.10. The result of this interpolation allows us to obtain a map of
the dissipated energy as a function of frequency and displacement as depicted in Fig. 1.11.
The iso-acceleration curves considered for the tests and the six red dots representing the red
vertical bars shown in Fig. 1.9 are superimposed on the continuous variation of the energy.
The darker regions on the map correspond to the highest values of the dissipated work, while
the white regions are those in which the dissipated energy is practically zero. Indeed, in this
last region the work done by the sloshing forces is negligible given the lack of Rayleigh-Taylor
instability which lead to violent impacts of the fluid with the walls of the tank.

The non-dimensional energy dissipated by the slosh dynamics W̄ (as in Eq. 1.18) is
represented by means of the maps in Fig. 1.12 (where blue points provides the reference
to the snapshots illustrated in Sec. 1.4.1). Both dimensional and non-dimensional axes are
depicted for comparison with the dimensional map. The magenta horizontal line in the graph
represents the double of the frequency ω2,0 associated with the first symmetrical mode S2,0 (see
Tab. 1.1). The non-dimensional map assumes very little values at the very low acceleration
when fluid motion experiences Faraday waves that are not so effective in dissipating energy.
After the 1 g iso-acceleration, we assist to a gradual increase to higher dissipation level in
conjunction with the transition to a more chaotic regime. It is worth noting that the trend
is not simply dependent on the imposed acceleration and that W̄ achieves a maximum for
acceleration close to 4 g in a range ω̄ = 3 − 5 and ū = 0.2 − 0.4. The presence of maximum
dissipation values as a function of both amplitude and frequency can be interpreted as owed
to two causes: on the one hand, i) the increase in frequency of motion brings to the response
of sloshing modes exhibiting greater curvature. As a consequence, the surface tension delays
the free surface breakage and the water droplets impact more softly the tank ceiling. On
the other hand, ii) above a certain value of acceleration, the generation of a homogeneous
air/liquid mixture tends to reduce the overall phase shift between the sloshing forces and the
imposed motion.

1.4.3 Filling level case 2: α = 0.25

The second set of experiments concerns the filling level case α = 0.25. The same set of results
and analyses of the case α = 0.50 have been obtained, where the decrease in water level
considerably influences dissipation. Figure 1.13 shows the trend of the dissipated energy as a
function of the frequency sweep for the considered acceleration values 1.5g and 3.0g. Figure
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(a) a0 = 1.5g, f = 9Hz (b) a0 = 3g, f = 9Hz

(c) a0 = 1.5g, f = 13Hz (d) a0 = 3g, f = 13Hz

(e) a0 = 1.5g, f = 17Hz (f) a0 = 3g, f = 17Hz

Figure 1.7: Sloshing force for the fill level case 1: α = 0.50.
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(a) a0 = 1.5g, f = 9Hz (b) a0 = 3g, f = 9Hz

(c) a0 = 1.5g, f = 13Hz (d) a0 = 3g, f = 13Hz

(e) a0 = 1.5g, f = 17Hz (f) a0 = 3g, f = 17Hz

Figure 1.8: Hysteresis cycles for the fill level case 1: α = 0.50.
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(a) a0 = 1.5g (b) a0 = 3g

Figure 1.9: Dissipated energy for the fill level case 1: α = 0.50. Red bars indicate the reference
points.

Figure 1.10: Interpolation of data by employing radial basis functions for the fill level case 1:
α = 0.50. Red circles indicate the data used for the interpolation.
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Figure 1.11: Dissipated energy for the fill level case 1: α = 0.50. Red bullets indicate the reference
points presented in Tab. 1.2.
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Figure 1.12: Non-dimensionalised dissipated energy for the fill level case 1: α = 0.50. Blue bullets
indicate the twelve snapshots presented in Fig. 1.6.
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1.14 provides the interpolated values of dissipated energy. Similarly to the case α = 0.50, the
non-dimensional dissipated work is provided in Fig. 1.15 as a function of non-dimensional
frequency and amplitude. The decrease of liquid depth brings to the reduction of the frequency
ω2,0 as it can be noticed from the horizontal magenta line. It has similar features as in Fig.
1.12, but unlike the case α = 0.50, the fluid fingers generated by the Faraday waves have less
chance to impact on the tank ceiling because the distance between the free surface at rest and
the ceiling is larger, resulting in less dissipation at smaller displacement amplitudes.

(a) a0 = 1.5g (b) a0 = 3g

Figure 1.13: Dissipated energy for the fill level case 2: α = 0.25.
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Figure 1.14: Dimensional dissipated energy for the fill level case 2: α = 0.25.
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Figure 1.15: Non-dimensionalized dissipated energy for the fill level case 2: α = 0.25.

1.4.4 Filling level case 3: α = 0.75

The last set of experiments concerns the case with α = 0.75. Figure 1.16 shows the trend
of the dissipated energy as a function of the frequency sweep for the considered acceleration
values 1.5g and 3.0g. Figure 1.17 provides the interpolated values of dissipated energy. Again,
the non-dimensional dissipated work is provided in Fig. 1.18 as a function of non-dimensional
frequency and amplitude. As opposed to the cases α = 0.50 and α = 0.25, the map of non-
dimensional dissipated work tends to be more homogeneous since, on one hand there is less
dissipation at higher values of acceleration since the distance that the liquid can travel inside
the tank is shorter (due to the higher filling level) and the liquid particles are unable to get
accelerated at a relative speed value such as to generate violent impacts. On the other hand,
at lower frequencies the fingers generated by Faraday waves can easily reach the tank ceiling.

1.4.5 Sensitivity to filling level

A sensitivity analysis to the filling level is performed on the dissipation of the fluid. Figure 1.19
shows the trend of dissipated energy for the three filling levels considered in the present work
for the cases with 1.5g and 3g vertical acceleration, respectively, and by varying different
frequencies. It can be noticed that the case α = 0.50 filling level, is generally the more
disruptive in terms of dissipated energy by varying both frequency and amplitude (except for
the case of 17Hz) confirming the results obtained in Refs. [10, 30].
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(a) a0 = 1.5g (b) a0 = 3g

Figure 1.16: Dissipated energy for the fill level case 3: α = 0.75.
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Figure 1.17: Dissipated energy for the fill level case 3: α = 0.75.

To better understand the mechanisms that regulate energy dissipation, Fig. 1.20 shows
the isolines with 85% of the maximum of W̄ for three considered filling level cases, highlighting
how the region in the displacement-frequency domain where most of the dissipation occurs
evolves as a function of the filling level.

This figure shows the location of the maximum dissipation region in the frequency and
amplitude domain and its extension. Vertical sloshing provides always maximum dissipation
beyond 1 g of acceleration. The maximum relative dissipation seems to be linked to the
oscillation amplitude values owe to a sort of spatial synchronisation of the movement of the
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Figure 1.18: Non-dimensionalised dissipated energy for the fill level case 3: α = 0.75.

(a) a0 = 1.5g (b) a0 = 3.0g

Figure 1.19: Sensitivity analysis on the dissipated energy to different water filling levels.

fluid with that supplied to the tank. The filling level plays a key role as it is linked to the
path that the fluid droplets must go through to impact the tank ceiling. Maximum dissipation
isolines are all comprises in the region ū = 0.2 − 0.3 but the case α = 0.25 seems to present
higher dissipation values at higher displacement with respect to the case α = 0.75, featured by
a greater distance between the free surface and the tank ceiling. Furthermore, the greater the
α, the greater the extension of the zone of maximum dissipation, probably due to increased
likelihood of droplets to reach the ceiling.

In conclusion, the processed results showed that the energy dissipated by the sloshing
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Figure 1.20: Isolines with 85% of maximum of W̄ for α = 0.25, α = 0.50 and α = 0.75.

forces highly depends on the intensity of the excitation. More in details, a low dissipation
level has been noted for acceleration values lower than 1 g beyond which there is a transition to
a regime in which resonant modes are no longer visible (at least at lower frequencies). The W̄
dissipated energy maps are not simply monotonically dependent on the amplitude levels of the
vertical acceleration. Indeed, surface tension and viscosity seem to play a role in stabilising the
free surface at higher frequency range even at acceleration values higher than 1 g. Moreover,
beyond a certain level of acceleration (around 4 g) the dissipation mechanisms become less
effective. The sensitivity analysis conducted on the filling level showed that among the three
cases considered, the intermediate case, i.e. α = 0.50 was the most significant in terms of
dissipated energy. This suggests that, according with the tank size, the energy dissipated by
the fluid is a trade-off between the fluid mass and the path to be covered by the liquid before
impacting to the tank walls: the lower the filling level, the higher is the path for the liquid
particle for being accelerated (relatively to tank walls) before the impact with the ceiling,
whereas, on the other hand, a lower filling level means a lower slamming mass.

1.5 Sloshing-effective mass fraction concept

This section introduces a further contribution to the study of vertical sloshing, again based on
the experimental analysis presented in the previous sections. The experimental data obtained
allowed us to define another non-dimensional quantity, named sloshing-effective mass fraction
β. Its identification is performed by applying phasor theory to the dynamics of vertical
sloshing and then considering a linear approximation of it.
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1.5. Sloshing-effective mass fraction concept

The sloshing force FSz can be decomposed as follows:

FSz := FSz(u(t), t) = −ml ü(t) + ∆fSz(u(t), t) (1.19)

where ml ü(t) is a purely inertial contribution associated with the mass ml of liquid con-
tained in the tank and ∆fSz is a non-conservative force contribution, nonlinear function of
the history of the tank vertical displacement u(t), denoted as dynamic sloshing force.
In vertical steady harmonic motion, the response of a nonlinear system provides a nonlinear
sloshing force such that its Fourier transform is not uniquely defined as a simple spectral line.
However, filtering the response about the excitation frequency preserves the most of the signal
properties and can be used here to interpret the role and the origin of the dissipate energy
and effective mass.

Let’s suppose that, given the amplitude of the motion u0 and the frequency Ω, it is possible
to linearize the dynamic sloshing force by assuming:

∆fSz(u(t), t)
∼= −β(Ω, u0)ml ü(t)− γ(Ω, u0) u̇(t) (1.20)

where [β(Ω, u0)ml] is an additional term with respect to the frozen liquid model (i.e. where
the liquid is not free to move in the tank) and γ(Ω, u0) is a quantity that provides the
dependency of the sloshing force with respect to the vertical input velocity u̇(t). Both β and
γ generally depend on the frequency and amplitude of the motion.

Let us therefore consider that the vertical mtion u(t) imposed on the tank is purely steady
harmonic and expressed as ǔ = u0 e

jΩt. The output in response from the liquid is the following
dynamic sloshing force ∆f̌Sz = Fej(Ωt+φ), with F and φ, respectively being its amplitude and
the phase shift with respect to the tank motion. In this case, Eq. 1.20 gives:

∆f̌Sz = −
(
− β(Ω, u0)mlΩ

2 + γ(Ω, u0)jΩ
)
ǔ (1.21)

Thus, Eq. 1.21 yields

∆f̌Sz

mlΩ2ǔ
= β(Ω, u0)− j

γ(Ω, u0)

mlΩ
(1.22)

∆f̌Sz

Ωǔ
= β(Ω, u0)mlΩ− jγ(Ω, u0) (1.23)

By respectively taking the real and imaginary part of Eqs. 1.22 and 1.23, one obtains

β(Ω, u0) =
F

ml Ω2 u0
cos(φ) = ℜ

[ ∆f̌Sz

ml Ω2 ǔ

]
(1.24)

γ(Ω, u0) = − F

Ωu0
sin(φ) = −ℑ

[∆f̌Sz

Ω ǔ

]
(1.25)
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The dynamic sloshing force ∆fSz can be expressed also as a function of the relative acceleration
∆ülG of the fluid center of mass with respect to tank. Indeed, assuming ul the displacement
field of the the fluid continuum and T the stress tensor, the Cauchy momentum (conservation)
equation projected in vertical direction k provides[˚

V
ρ
D2ul

Dt2
dV −

˚
V
divTdV − g

˚
V
ρkdV

]
· k = 0 (1.26)

Assuming ul = uk+∆ul, being u the vertical displacement of the tank and ∆ul the relative
displacement of each fluid point of the domain, and using the divergence theorem, one has:

mlü+

˚
V
ρ
D2∆ul

Dt2
dV = −FSz +mlg (1.27)

Neglecting the hydrostatic contribution and considering the dynamic sloshing force given by
∆fSz = FSz +mlü, it is possible to obtain:

∆fSz = −ml∆ülG (1.28)

that is, the dynamic sloshing forces depends on the relative motion of the fluid center of mass.
The motion of the fluid center of mass is therefore given by ∆ǔlG = ul0e

j(Ωt+φ) where
ul0 = F/(mlΩ

2) is the amplitude of the relative motion of the fluid center of mass with
respect to the tank. This way, it is possible to recast the sloshing effective mass variation
ratio as:

β(Ω, u0) = ℜ
[ ∆f̌Sz

ml Ω2 ǔ

]
= ℜ

[∆ǔlG
ǔ

]
=
ul0
u0

cos(φ) (1.29)

Thus, the variation of the sloshing-effective mass assumes the meaning of the ratio between
the amplitude of the phased relative motion of the fluid center of mass and the tank motion
amplitude.

Based on what has just been demonstrated, it is possible to correlate the nondimensional
dissipated energy W̄ already presented in the previous sections with the coefficient γ. By com-
bining Eqs. 1.15, 1.18, 1.19 and 1.20, for the linearised harmonic motion the nondimensional
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dissipated energy W̄ can be expressed as follows:

W̄ =
W

mlu
2
0Ω

2
=

1

mlu
2
0Ω

2

ˆ
cycle

∆fSz(Ω(τ), u0(τ)) u̇(τ) dτ

∼=
1

mlu
2
0Ω

2

ˆ
cycle

− [γ(Ω(τ), u0(τ)) u̇(τ)] u̇(τ) dτ

= − 1

mlu
2
0Ω

2

ˆ
cycle

γ(Ω(τ), u0(τ)) (u0Ω)
2 cos2(Ω τ) dτ

= − γ

ml

ˆ
cycle

cos2(Ω τ) dτ

= − πγ

mlΩ
=

πF

mlΩ2u0
sin(φ) = π

ul0
u0

sin(φ) (1.30)

From Eqs. 1.29 and 1.30, we can estimate the relative amplitude ul0 and phase shift φ
of the fluid center of mass displacement from which we can interpret the role of dissipated
energy and sloshing-effective mass. Note that in Eq. 1.30, the work done by sloshing forces
is only associated with the dynamic sloshing force ∆fSz , as inertial contributions make no
contribution in harmonic motion. A Fourier transform of the sloshing forces ∆f̃Sz(Ω), as well
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Figure 1.21: Experimental sloshing-effective mass fraction β

as the vertical tank motion ũ(Ω) at the excitation frequency Ω, can be used instead of the
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1.5. Sloshing-effective mass fraction concept

phasors for experimentally measured harmonic signals. By exploiting these Fourier transforms
and the developments demonstrated in this section, it is possible to identify a map for the
effective sloshing mass fraction β as the non-dimensional operational parameters vary (as has
already been done for dissipated energy). The result is shown in Fig. 1.21.

The identified β(ω̄, ū) results to be negative throughout the interest frequency-amplitude
domain. Therefore, the relative motion of fluid center of mass is always counter-phased with
respect to the tank.

Summary

In this chapter the experimental characterisation of the vertical sloshing dissipative behaviour
was addressed for a box-shaped tank by means of an experimental campaign using a seismic
harmonic excitation on the tank. A controlled electrodynamic shaker was employed to provide
high amplitude seismic excitation to the tank thus obtaining the interface forces exchanged
between the tank and the shaker. The present work provided that the energy dissipated by
the sloshing fluid inside the tank can be related to a source of damping for a structure that
interfaces with the tank. A procedure based on the hysteresis behaviour of the sloshing forces
was used to evaluate the dissipated energy for a wide range of operative conditions. The type
of excitation consisted of a sine-sweep covering a range of amplitudes and frequencies defined
by the limits of the electrodynamic actuator and by the characteristics of the phenomenon.
The interface force and tank acceleration were used to identify, on one hand, the sloshing
forces and, on the other hand, the dissipative behaviour of the sloshing forces for different
amplitude-frequency pairs according with dimensional and non-dimensional definition of the
evaluated dissipated energy. The analyses were repeated for three different filling levels, i.e.
α = 0.50, α = 0.25 and α = 0.75. The processed results showed that the energy dissipated
by the sloshing forces highly depends on the intensity of the excitation. More in details,
a low dissipation level has been noted for acceleration values lower than 1 g beyond which
there is a transition to a regime in which resonant modes are no longer visible (at least at
lower frequencies). The W̄ dissipated energy maps are not simply monotonically dependent
on the amplitude levels of the vertical acceleration. Indeed, surface tension and viscosity seem
to play a role in stabilising the free surface at higher frequency range even at acceleration
values higher than 1 g. Moreover, beyond a certain level of acceleration (around 4 g) the
dissipation mechanisms become less effective. A sensitivity analysis was finally conducted on
the filling level having shown that among the three cases considered, the intermediate case,
i.e. α = 0.50 was the most significant in terms of dissipated energy. This suggests that,
according with the tank size, the energy dissipated by the fluid is a trade-off between the fluid
mass and the path to be covered by the liquid before impacting to the tank walls: the lower
the filling level, the higher is the path for the liquid particle for being accelerated (relatively
to tank walls) before the impact with the ceiling, whereas, on the other hand, a lower filling
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1.5. Sloshing-effective mass fraction concept

level means a lower slamming mass. The provided energy maps can help to predict the
nonlinear behaviour of structures containing tanks subjected to high vertical accelerations.
In addition, following an approach similar to the one in Ref. [83], these maps can help to
predict the amplitude of limit cycle oscillations before performing computationally expensive
fluid-structure interaction simulations. The concept of the sloshing-effective mass fraction was
also introduced. By means of a linearisation, it was possible to experimentally identify this
nondimensional parameter, showing that sloshing introduces also inertial effects that leads to
a correction of the liquid mass that actively participates in the dynamics.
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Chapter 2

Nonlinear Reduced Order Models
(N-ROMs) for Vertical Sloshing

This chapter describes the non-linear reduced-order models (N-ROMs) that have been devel-
oped and identified to obtain virtual twins capable of adequately representing the vertical
sloshing dynamics of a fluid contained within a tank. In the first part, the bouncing ball
model is presented, consisting of an equivalent mechanical model able to emulate the impact
mechanisms inherent in vertical sloshing - which are most responsible for dissipation. Most of
the results for this model were presented in Ref. [85]. The second part deals with the reduced
order model based on neural networks. Together with its experimental validation, the scaling
law introduced in order to use this ROM in applications with tanks of different sizes is also
presented. This part draws mainly on the work presented in Refs. [81, 86].

2.1 Equivalent Mechanical Model (EMM) for vertical sloshing:
the Bouncing Ball model

A realistic representation of the liquid dynamics inside closed tanks can be approximated
by an equivalent mechanical model. Equivalence is meant in the sense of equal resultant
forces (and moments) acting on the tank walls. Exploiting this principle, it was decided to
design a reduced-order model equivalent to the strongly nonlinear dynamics that can occur
when a tank containing some liquid inside it, is subjected to violent vertical (and therefore
perpendicular to its base) excitations. Under these circumstances, a series of impacts are
triggered between the liquid and the tank ceiling (and floor), which contribute greatly to
dissipating much of the energy that is supplied to the system through excitation. Observing
this physical phenomenon, a conceptual similarity emerged with the motion dynamics of a
ball bouncing on flat ground. For this reason, a mathematical model has been developed that
can reproduce the behavior of a bouncing ball. It involves the use of a system of masses,



2.1. Equivalent Mechanical Model (EMM) for vertical sloshing: the Bouncing Ball model

springs and dampers capable of both reproducing the mechanism of impact of the liquid in
the tank, and the dissipation induced under the same conditions. In the bouncing ball model,
equivalence is therefore realized by ensuring that sloshing forces can be replaced by the forces
exchanged between the tank walls (floor and ceiling) and the ball itself during impacts. The
energy balance after each impact is negative due to the presence of a viscoelastic element
inside the ball that characterizes energy dissipation. The bouncing ball model is illustrated in
Fig. 2.1. The system is ideally represented as a rigid bubble without mass properties that has

Figure 2.1: Bouncing ball model and its representation inside a box-shaped rigid tank.

a concentrated mass inside hanged to its wall by means of a spring-damper system. A portion
of the fluid total mass is considered associated with the ball mb, whereas another portion is
considered frozen mf , namely attached to the wall. The parameter β, which can take values
between zero and 1, is introduced to indicate the mass fraction of frozen liquid. Specifically,
we have mf = β ml, while the remaining mass of the liquid is dedicated exclusively to the
ball as mb = (1− β)ml. When the rigid bubble touches the ceiling or the floor of the tank,
the impact condition is verified so causing viscoelastic forces exchanged between the case and
the bouncing ball. The equation of motion of the bouncing ball can be thus summarized as
follows

mbz̈b = −mbg + Fb(zb(t), zT (t)) (2.1)

where Fb is the viscoelastic force exchanged at the wall, zT (t) represents the motion of the
tank whereas zb(t) is the absolute vertical motion of the bouncing ball (to be understood as
the vertical displacement of the ball mass mb, which is located in its geometric center when
the internal springs and dampers are at rest). In this framework, it is convenient to introduce
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a new variable s(t) as:

s(t) =


zb(t)− zT (t)− r0 if zb(t) < zT (t) + r0

zb(t)− zT (t)− h+ r0 if zb(t) > zT (t) + h− r0

0 elsewhere

(2.2)

where r0 is the radius of the rigid bubble and h is the height of the tank. When the condition,
zb(t) < zT (t)+ r0 occurs, the ball is in the impact region with the floor of the tank. Whereas,
the condition zb(t) > zT (t) + h − r0 is related to impact with the ceiling. The new variable
s(t) is null when the ball finds itself in the suspension or floating phase, where there is no
impact. In addition, the variable ν(t) = żb(t) − żT (t) is introduced. It follows that we can
define the viscoelastic forces as

Fb(zb(t), zT (t)) = Fb(s(t), ν(t)) = kb s(t) + cb ν(t) (2.3)

where kb and cb are, respectively the stiffness and damping associated to the bouncing ball.
It is worth to notice that kb = k̂b fnl(s) may eventually be, in turn, nonlinear function of s(t)
by introducing a penalty function fnl(s), defined as

fnl(s) = 1 +
αs2

(r0 − |s|)
(2.4)

that avoid the ball to go out by the limits of the tank. Then, the inertial and hydrostatic
contributions associated with the frozen mass are subtracted from the viscoelastic force to
obtain the overall sloshing force Fs(s(t)) exchanged between the tank and fluid mass inside
it:

Fs(s(t), ν(t)) = Fb(s(t), ν(t))−mf [z̈T (t) + g]. (2.5)

In order for the described mathematical model to be representative of real vertical sloshing
dynamics, its design parameters must have specific values. The parameters that define the
bouncing ball are stiffness k̂b, damping cb, penalty function coefficient α, frozen mass fraction
β, and radius r0. These can be determined by implementing identification or optimization
procedures based on the use of experimental data or high-fidelity fluid dynamics data. The
next section shows a procedure for identifying a reduced-order model for vertical sloshing
based on the bouncing ball, exploiting experimental data in which a partially water-filled
tank is mounted in a one-degree-of-freedom structural mechanical system.
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2.1.1 Identification of a bouncing ball model based on transient response
experimental data

The bouncing ball model should be designed to have parameters that ensure the surrogate
model will replicate the same dissipative behavior of sloshing dynamics. As mentioned above,
this requires reliable data. The work presented next involves the use of data from sloshing
transient experimental tests carried out in the laboratories of the Universidad Politécnica
de Madrid (UPM). The experimental object consists of an elastically scaled single degree
of freedom mass-spring system coupled with the slosh dynamics within a hydrodynamically
scaled tank. The equivalent mechanical model of a bouncing ball is then used to emulate
the fluid behavior inside the tank (specifically the impacts with the tank wall) and provide
a numerical model of a tank isolated from the structure on which it is possible to perform
simulations with seismic excitation.

Description of the UPM experiment set-up

A picture of the experimental setup at the Model Basin Research group sloshing laboratory
of the UPM and a simplified outline are both shown in Fig. 2.2. This tank is scaled to reflect
the dimensions of real wing tanks. In order to scale down an actual wing to the SDOF test it
is important to consider the dimensional analysis of the problem. Applying the Π theorem to
a reference variable, for example the dissipated power by the fluid, one can find a dimensional
relation between this variable and several non-dimensional numbers, such as, the Reynolds
number, Froude number, filling level, etc. It is common practice in sloshing problems to
perform a Froude scaling (see Ref. [87]), where Fr =

√
w2
0h/Ng is defined based on the

maximum acceleration of the problem which is N times the gravity. In the Froude number
definition, w0 is the characteristic angular frequency of the problem, h represents the height
of the tank, Ng is the maximum acceleration of the problem, being N ≈ 10 in this case.
Then, a perfect geometrical scaling parameter is considered λ = hSDOF /hW defined as the
ratio between the heights of the SDOF tank and the wing tank. For the SDOF sloshing test,
a 1:5 scale was selected (λ = 0.2) which results in a tank geometry of 10x6x6 cm. The scaled
tank is filled up to 50 % of its volume with a water mass of ml = 0.18 kg and it oscillates
at a characteristic frequency of f0 = 6.56 Hz. Table 2.1 shows the geometric and structural
parameters of the components used in the experiment.

The sloshing rig is a SDOF system composed of a mechanical guide that allows the 1
degree of freedom constraint. This guide is attached to a C-shaped wooden structure that
holds the tank with a structural mass of ms = 2.06 Kg. Similarly, the C-shaped wooden
structure is attached to a set of 6 springs, 3 on the upper side and 3 on the lower side. The
lower springs are mechanically embedded into the floor, and on the opposite side the upper
set of springs is attached to a metallic plate, having mass mp = 0.06 Kg, that acts as a joint
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λ 1:5
Fluid tested Water

Tank dimensions [cm] 10 x 6 x 6
Filling level [%] 50

Liquid mass ml [Kg] 0.18
Structural mass ms [Kg] 2.061

Total mass [Kg] 2.241
Stiffness K [N/m] 3808.8

Characteristic frequency f0 [Hz] 6.56

Table 2.1: Summary of the parameters used in the Froude scaled SDOF experimental setup.

(a) Experimental setup (b) Outline of the setup

Figure 2.2: UPM experiment components: (1) Load cell, (2) Metallic plate (3) Upper springs
k1 = 1904.4 N/m, (4) Lower springs k2 = 1904.4 N/m, (5) Laser sensor, (6) Mechanical guide,
(7) Accelerometer, (8) Methacrylate tank and C-shaped wooden structure (9) Solenoids for release
mechanism.

between them and the the embedded load cell. This setup also includes an accelerometer
glued to the C-shaped wooden structure, a laser sensor pointing at the wooden block and two
solenoids acting as a release mechanism. The experimental setup presented here can be used
to perform free response tests at different initial conditions. Through the use of appropriate
sensors, it is possible to acquire measurements. Specifically, the structure can be deflected
with an initial amplitude until it is fixed by the action of the solenoids. When the electrical
current is turned on, they release the structure triggering the beginning of the experiment
where acceleration and position of the tank as well as load cell measurements are recorded
allowing the calculation of the sloshing force acting on the system. A more detailed description
of the sloshing rig and the sloshing force can be found in Ref. [29].
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Bouncing ball model replacing UPM slosh dynamics

In this section a procedure to obtain a bouncing ball that can replace the sloshing liquid
inside the experimental tank is presented. The behaviour of the fluid inside the tank is such
that it is possible to appreciate impacts of the fluid mass on the tank walls (see Figs. 2.3(b)
and 2.3(c)) as well as instants when the most of water mass is floating inside the cavity (see
Fig. 2.3(a)). As illustrated in Fig. 2.4, the bouncing ball model aims at reproducing this
behaviour. Specifically three different conditions are illustrated representing the ball floating
in the tank, and, respectively, the impacts with the ceiling and floor. From Figs. 2.4(b) and
2.4(c) it is possible to appreciate also a graphical representation of the variable s, already
introduced in Sec. 2.1.

(a) Floating (b) Ceiling Impact (c) Floor Impact

Figure 2.3: Snapshots of the sloshing experiment.

(a) Floating (b) Ceiling Impact (c) Floor Impact

Figure 2.4: Bouncing ball motion phases.

In order to obtain a surrogate model capable of accurately reproducing the dissipative
behavior induced by sloshing, a virtual configuration equivalent to the experimental one car-
ried out at the UPM was therefore planned. Figure 2.5 shows a schematic drawing of the
configuration to be obtained, in which the bouncing ball replaces the liquid. Obviously, in
order for it to actually be an equivalent configuration, it is necessary to determine the param-
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eters of the ball that will make it return the same actions that the sloshing liquid manifests
in the experiment (mainly to be interpreted as impact forces that induce an additional dis-
sipation). Before presenting the procedure for obtaining the optimal design parameters, the
mathematical model for describing the dynamics of the experiment is outlined using the free
body diagram of the integrated system shown in Fig. 2.6. The system under consideration

Figure 2.5: Virtual UPM experimental set-up: bouncing ball model instead of the liquid

can be modeled by three components. A rigid tank including the sloshing fluid and therefore,
the bouncing ball model (highlighted as body 3 in Fig. 2.6). Then, a load cell having a
negligible mass and able to detect, as voltage signal, the compression force t1 = t2 (body 1)
and, finally, a rigid plate elastically linked to the tank, and attached to the load cell (body
2). The individual group of three springs is modeled as a viscoelastic element having a mass,

Figure 2.6: Free-body diagram of the virtual experiment
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equal to half the total mass of the three springs, concentrated at the ends. The mass of the
upper set of springs is mk1, and it is equal to the lower set mk1 = mk2 = mk = 0.42 Kg.
The dampers represent all the mechanical damping in the system, such as the action of the
mechanical guide, the drag force of the tank and other minor elements. The equilibrium of the
static load cell (body 1) implies that the forces t1 and t2 are equal, consequently t1 = t2 = t.
From the equilibrium of the rigid plate (body 2) the following equation is obtained:

0 = fve1 − t−
(
mp +

mk

2

)
g (2.6)

The third equilibrium equation is the one associated with the tank (body 3) and is expressed
as follows:(

ms +
mk1 +mk2

2

)
z̈T = Fs(s, ν)− fve1 + fve2 −

(
ms +

mk1 +mk2

2

)
g

(ms +mk) z̈T = [Fb(s, ν)−mf (z̈T + g)]− fve1 + fve2 − (ms +mk)g

(ms +mk +mf ) z̈T = Fb(s, ν)− fve1 + fve2 − (ms +mk +mf )g (2.7)

where, we also considered the internal liquid action, i.e., the sloshing force Fs, provided
by the impacts of the bouncing ball and expressed as in Eq. 2.5. Assuming that the damping
is mainly due to the mechanical guide and the tank drag force, these forces are distributed
symmetrically as part of the viscoelastic elements 1 and 2, as consequence we can consider
both elements to be equal, and fve1 = −fve2 . Now, combining Eq. 2.6 with Eq. 2.7, we get

(ms +mk +mf ) z̈T = Fb(s, ν)−mf g − 2
[
t+

(
mp +mk +

ms

2

)
g
]

(ms +mk +mf ) z̈T = Fb(s, ν)−mf g − 2 (t− t0) (2.8)

having defined with t0 the following static contribution t0 = − (mp +mk +ms/2) g. The
data provided by UPM comes primarily from accelerometer and load cell measurements (to-
gether with the measurement of the tank position obtained with the laser). However, while
the measured acceleration is precisely z̈T , the measurement provided by the load cell comes
from a correction that takes into account the static contribution t0 and the inertia force of
the springs. Denoting by tLC the provided force signal, defined as tLC = 2 (t− t0) +mk z̈T ,
Eq. 2.8 becomes

(ms +mf ) z̈T = Fb(s, ν)−mf g − tLC (2.9)

which in turn can be rewritten in a more generic form, by considering the sloshing force Fs,
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as follows:

ms z̈T = Fs − tLC (2.10)

Equation 2.10 is used in Ref.[29] to calculate the sloshing force Fs based on the acceleration
measurement and load cell (and it will be exploited to compare the force predicted by the
bouncing ball with the experimentally measured sloshing force). In the same reference, an
alternative way to consider Eq. 2.7 is introduced. In particular, Newton’s second law is
applied to the tank assuming that only three forces are acting: linear springs force K zT , the
sloshing force Fs and a damping force FD, which is assumed to cause all sources of energy
dissipation that are not due to fluid slosh. So, Eq. 2.7 is rewritten by neglecting the mass
of the viscoelastic elements and assigning to the actions they exert on the body a linear
combination of FD and K zT :

ms z̈T + FD +K zT = Fs −ms g (2.11)

where FD = b0 sign (żT )+b1 żT , being b0 a dry friction coefficient (from Coulomb friction law)
and b1 a structural viscous damping coefficient. The values of these two parameters, identified
through a linear fitting in [29], are respectively equal to 0.37 N and 1.58 Kg/s. Considering
the bouncing ball instead of the fluid, Eq. 2.11 becomes

(ms +mf ) z̈T + b0 sign (żT ) + b1 żT +K zT = Fb(s, ν)− (ms +mf ) g (2.12)

Equation 2.12 allows us to model the dynamics of the UPM experiment by considering the ball
instead of the fluid. In order to identify the ball parameters, this equation is implemented in
a simulation model built in Simulink® , in which the structure and the bouncing ball interact
with each other in a closed-loop logic. The flowchart of the overall system (structure and
sloshing) is shown in Fig. 2.7 where the input of the structural subsystem is represented by
the viscoelastic force exerted by the bouncing ball, while the input of the sloshing subsystem
is represented by the vertical rigid displacement zT and the velocity żT of the tank. Leaving
out the hydrostatic contribution, and considering the frozen fluid mass mf as a liquid mass
contribution added to the structure, the structural subsystem is entirely described by the first
member of Eq. 2.12. It is worth to notice that the sloshing subsystem can be also studied
separately from the structure by assigning a suitable seismic excitation, or connected in a
closed loop with the structure.

Bouncing ball tuning via experimental test

2.1.1 The research group at UPM developed and used the experiment described in Sec.2.1.1
to perform free response tests, exploiting a mechanism to release the tank from a given initial
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Figure 2.7: Flowchart of the fluid structure interaction problem.

condition. The reference experimental analysis was characterized by an initial displacement
equal to zT = 0.064 m. Through an optimization process, the proposed study utilizes accel-
eration and force data, measured with the accelerometer and load cell during the reference
test, to identify and validate the parameters of the bouncing ball. Based on these, the model
should be able to reliably reproduce the dissipative behavior of the sloshing liquid as esti-
mated during the experiment. To identify the bouncing ball, the only experimental data that
were available were those mentioned above. Consequently, it was necessary to define a metric
by which dissipation could be described and quantified, based on these measurements. For
this purpose, the metric selected was the instantaneous damping ratio as the representative
quantity of dissipation. Specifically, we consider this damping ratio as a function of the ac-
celeration amplitude of the vertical motion of the tank. It is estimated by exploiting the
logarithmic decay on the signal over time of the experimental acceleration measured by UPM
and shown in Fig.2.8(a). The instantaneous damping ratio evaluated on the experimental

(a) Acceleration (b) Instantaneous damping ratio

Figure 2.8: UPM Experimental acceleration of the tank and estimated instantaneous damping ratio
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acceleration data is shown in Fig. 2.8(b). Its value ζexp(i,i+1) is assumed to be constant between
two consecutive peaks and is evaluated by first selecting the peaks of signal z̈T depicted in
Fig.2.8(a), and then implementing the following logarithmic decay relation:

ζexp(i,i+1) = − log(z̈T (t+∆t))− log(z̈T (t))

ω0∆t
= − log(z̈T (ti+1))− log(z̈T (ti))

ω0∆t
= const. (2.13)

where ω0 = 2πf0 is the natural frequency of the experimental system (see Tab.2.1) and
∆t = ti+1 − ti is the time interval between two consecutive peaks of the acceleration. To
avoid having a piece-wise constant curve, an averaging operation between consecutive constant
damping values is performed, providing a continuous curve for damping ζexpj (with j being a
positive integer index that goes up to number M of samples of the acceleration signal) as the
acceleration changes, such as in Fig.2.8(b). This curve of the damping ratio, that is influenced
also by the structural damping (viscous and Coulomb), represent the target function to fit.
In other words, the bouncing ball, once integrated into the virtual system representing the
experiment, should return the same damping estimated with the provided experimental data.

Leveraging the Simulink® model presented in 2.1.1, it is possible to implement the same
free response problem as in the reference experiment, with the bouncing ball emulating the
dynamics of sloshing liquid impacts. The optimal parameters of the bouncing ball are deter-
mined by implementing an optimization process using the simulation model just mentioned.
The first step is to collect the vertical acceleration of the tank at each iteration (inside of which
the ball bounces and possibly impacts the walls). Then, repeating the procedure already used
for the experimental data, the virtual instantaneous damping ratio ζbbj as a function of the
acceleration signal is determined by using Eq. 2.13. An optimization using a gradient-based
method is implemented in Matlab® , aimed at determining the ball parameters that minimize
the distance between the two damping curves (experimental and numerical). In other words,

the optimal solution is that which minimizes the objective function J =

√∑N
j=1

(
ζexpj − ζbbj

)2
.

The optimal design parameters are reported in Tab.2.2. They allow to construct a bouncing
ball model that is able to return the same dissipative behavior induced by vertical sloshing. In

r0 [m] k̂b [Nm−1] cb [Nsm−1] α [m−1] β

0.0244 1103.00 13.04 74.04 0.0017

Table 2.2: Optimal parameters of the bouncing ball obtained by tuning the UPM experimental data

fact, as can be seen from Fig.2.9, the identified reduced-order model is able, when integrated
into the overall system, to return an acceleration and an instantaneous damping ratio that
are practically superimposed on those measured experimentally. By referring to Eqs. 2.9 and
2.10, the force predicted by the bouncing ball can also be compared to the experimentally
measured force using load cells. The results are shown in Fig. 2.10, from which it is pos-
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(a) Acceleration (b) Instantaneous damping ratio

Figure 2.9: Acceleration and instantaneous damping ratio provided by the bouncing ball model

Figure 2.10: Comparison between the sloshing force predicted by the bouncing ball and the one
measured from UPM experiment

sible to appreciate how the bouncing ball identified with the optimization process, is able to
reproduce with good fidelity the nonlinear behavior of vertical sloshing. However, the force
predicted by the ball turns out to be more impulsive than the experimental one and this is
due to the impulsive nature of the impacts through which it is modeled.

2.1.2 Characterisation of the nonlinear dissipative behaviour using the
bouncing ball model

The bouncing ball model identified in Sec.2.1.1 was able to represent with a good level of
accuracy the dissipative actions induced by vertical sloshing in the UPM reference experiment;
for this reason, it was decided to use it for a more general characterisation of the sloshing
dissipative behaviour. Through the use of the sloshing subsystem (i.e. bouncing ball) shown
in Fig.2.7 one can easily perform very fast simulations in an open-loop mode, testing different
types of tank excitation. Since the amount of dissipation induced by the internal dynamics of
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the fluid is highly dependent on the amplitude and frequency of the motion imposed on the
tank, it is necessary to perform many tests in order to cover a wide region of interest. The first
step must be to determine a metric for defining the dissipation. For steady harmonic motion,
we can quantify dissipation using a non-dimensional parameter, the loss factor η, defined as
follows:

η :=
LD

2πUmax
(2.14)

where LD is the energy dissipated by the sloshing force in a cycle and Umax is the maximum
elastic (or kinetic) energy of the system (see Appendix A). The objective is then to charac-
terise the dissipation by obtaining a loss factor map in the frequency and amplitude domain
of interest. To this end, the bouncing ball subsystem is considered and used to carry out
simulations in which the tank containing the equivalent mechanical model is excited with per-
manent harmonic motion at a fixed frequency and amplitude. More precisely, a large number
of simulations are performed for different values of the frequency Ω and amplitude A of the
vertical imposed motion, which fall within the following ranges:

0.0025m < A < 0.1m

1.57 rad/s < Ω < 62.83 rad/s

For each of these simulations (with different frequency-amplitude pairs), the sloshing forces
produced by the equivalent mechanical model are obtained as output. Once the steady state
is reached, the dissipation LD is evaluated as the work done by the force generated by the
bouncing ball on the imposed vertical displacement. This energy quantity will correspond
to the area enclosed by the hysteresis cycle in the displacement-force plane (see Appendix
A). The cycle shape (with the direction highlighted) for one of the frequency-amplitude pairs
taken as an example is shown in Fig. 2.11. By repeating the same process, obtaining the

Figure 2.11: Hysteresis cycle generated by the bouncing ball when subjected to steady harmonic
motion
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hysteresis cycle and evaluating the energy dissipated as the area enclosed by it, for each
of the harmonic tests, the dissipation map shown in Fig.2.12(a) is obtained. Black curves
representing acceleration iso-lines were also highlighted in it. However, the energy dissipated
LD must be related to the maximum energy supplied to the system (in this case it is an
isolated system, in which there is only the tank containing the moving ball). We define this
maximum energy Umax as the kinetic energy of the system, which can be expressed, for each
frequency and amplitude pair, as

Umax :=
1

2
ml (AΩ)2 (2.15)

Thanks to the definition given in Eq.2.15, it is possible to rewrite the loss factor given in Eq.
2.14 as follows:

η :=
LD

2πUmax
=

LD

πmlA2Ω2
= η(A,Ω) (2.16)

Evaluating the loss factor η(A,Ω) for each pair of points in the domain of interest gives
the map in Fig.2.12(b). The darker area of the map represents where there is maximum

(a) Dissipated Energy LD (b) Loss factor η

Figure 2.12: Dissipated energy and loss factor maps obtained with the identified bouncing ball ROM

dissipation (in relation to the energy being supplied). It looks evident how there exists a
specific interval of the displacement A (that appears to be between 1 cm and 3 cm) that
maximizes the loss factor. Furthermore, one can easily see that the iso-line of acceleration
equal to 2g acts as a kind of frontier, beyond which dissipation begins to occur. What happens
is that, as the acceleration increases above 2g, the ball starts to detach from the bottom of the
tank, possibly resulting in impacts that can be more or less violent. This boundary therefore
behaves as a kind of Rayleigh-Taylor stability margin: in real fluids, once a certain value
of acceleration is exceeded, chaotic motion and consequent impact with the tank walls are
triggered. Figure 2.13 shows the trend of the dissipated energy LD and the loss factor eta
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(a) Dissipated Energy LD (b) Loss factor η

Figure 2.13: Dissipated energy and loss factor for selected frequencies

as the amplitude of the motion varies, for different values of the imposed frequency Ω. From
the trends in Fig. 2.13(b) it is even more evident how much the dissipation induced by the
bouncing ball (and thus, by sloshing) depends nonlinearly on the frequency and amplitude
of the motion. However, we now want to exploit a concept from linear theory to link the
loss factor to the damping. In particular, under resonance conditions, the loss factor is found
to coincide with twice the instantaneous damping ratio (see Eq.A.22 in Appendix A). This
concept is used to compare the two dissipation metrics introduced in relation to the bouncing
ball: the instantaneous damping ratio used for the identification and the loss factor for the
characterisation of the dissipation in harmonic motion. For the instantaneous damping, we
refer to the dashed red curve shown in Fig. 2.9(b), obtained by identifying the parameters of
the bouncing ball. This damping curve takes into account not only the damping induced by
the bouncing ball, but also those associated with the structure of the experiment: Coulomb
and viscous damping (related to the b0 and b1 coefficients identified by UPM). In order
to isolate the damping associated exclusively with sloshing (i.e , bouncing ball), the same
simulation of the UPM experiment can be performed with the identified ball, setting the
other two damping contributions to zero. The result is shown in Fig. 2.14, where all damping
contributions acting in the virtual experiment are compared. Also shown in the same figure is
a blue curve representing the instantaneous damping obtained by summing the three separate
contributions (sloshing, Coulomb and viscous). This curve is practically superimposed on the
dashed red curve corresponding to the same one shown in Fig. 2.9(b). Multiplying by two
the values given by the green curve in Fig. 2.14, representing the damping induced by the
bouncing ball alone, we obtain a sort of loss factor as the amplitude of the acceleration varies,
for the fixed frequency corresponding to the natural frequency of the experimental system.
This quantity will be indicated as ηtr. From the loss factor map shown in Fig.2.12(b) it is
then possible to extract the values obtained at the same frequency of the UPM experiment,
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Figure 2.14: Damping contributions in the virtual UPM experiment

indicated as ηsh, in order to compare them with ηtr. To do this, the following relationship
must be implemented

ηsh =
ml

(ml +ms)
η(a,Ω)

∣∣∣
ω0

=
ml

(ml +ms)
η(a, ω0) (2.17)

where it has been necessary to consider a corrective mass factor, taking into account the
fact that, in order to compare ηsh with ηtr, it is appropriate to redefine the reference kinetic
energy Umax. In fact, in the experimental integrated system, the latter is defined as Umax :=

(ml + ms)A
2Ω2/2. Note also that a is the amplitude of the vertical acceleration and no

longer the amplitude of the motion, indicated instead by A. The comparison of the two loss
factors is shown in Fig. 2.15, where ηtr is the dashed green curve and ηsh is the continuous
blue one. The two curves almost overlap each other, demonstrating a similarity between the

Figure 2.15: Comparison between loss factors: steady harmonic ηsh and free decaying ηtr

two dissipation metrics used.
In Appendix C, a nonlinear reduced-order model based on a neural network is presented,
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trained with the data obtained by simulating the bouncing ball model. It should be noted
that this model was identified before the experimental analysis presented in Sec. 1 was
conducted. At that time, the only sloshing data available was the experimental free response
data provided by UPM. Consequently, following the obtaining of the bouncing ball model,
it was decided to exploit the latter to collect low-fidelity data, given its versatility. In other
words, the bouncing ball model simulations replaced what in the authors minds should have
been represented either by a long experimental campaign designed to investigate the behavior
of the fluid or by high-fidelity Computational Fluid Dynamics (CFD) simulations. The good
results obtained from this preliminary attempt to use neural network-based identification
techniques laid the foundation for what will be shown in the following sections.
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2.1.3 Experimental investigation of the bouncing ball ability to estimate
dissipation as the frequency varies

The energy dissipated by the sloshing fluid Ld (referred to in the experimental analysis pre-
sented in Sec. 1 as work dissipated W ) can be expressed by means of the π-theorem as
follows:

Ld = mlA
2Ω2Φd (ω̄, v̄, α,Re,Bo, ...) (2.18)

where, Φd is the non-dimensional dissipated energy, equivalent to W̄ defined in Sec. 1. Besides
the non-dimensional frequency ω̄ = Ω/

√
g/h and the non-dimensional velocity v̄ = v/

√
gh

(with v = AΩ), Ld is dependent on the fill level α, the Reynolds number Re = vh/ν (ν
kinematic viscosity) that reflects viscosity effects, and the Bond number Bo = ρgh2/γ (γ sur-
face tension) that reflects surface tension effects. Furthermore, the choice of non-dimensional
operational parameters is arbitrary. Specifically, instead of ω̄ and v̄ we could use also the
non-dimensional acceleration ā = ū ω̄2 and the non-dimensional displacement ū = A/h. The
non-dimensional velocity assumes the meaning of Froude number for vertical slosh dynamics
(Ref. [29, 30]).

The bouncing ball model can be redefined on the basis of non-dimensional constitutive pa-
rameters, exploiting the non-dimensional quantities on which the energy dissipated by sloshing
depends. In particular, the five ball parameters defined in Sec.2.1 are redefined in order to be
non-dimensional as follows

r̄0 = r0/h

k̄b = k̂b/(ρ g S ω̄
2)

c̄b = cb/(ρS
√
g h ω̄)

ᾱ = αh (2.19)

β̄ = β

where ρ is the liquid density and S is the area of the box-shaped tank base. The non-
dimensional parameters defined in Eqs. 2.19 allow a bouncing ball model to be used for
different tanks, if the similarity of the non-dimensional frequency ω̄ is guaranteed. The simi-
larity of ū is implicitly guaranteed when scaling geometric quantities such as h and S, assigning
to them the values of the new tank.

As seen in Sec. 2.1.1, the bouncing ball model was identified with transient free response
data corresponding to a single frequency (coinciding with the natural frequency of the experi-
mental system considered). However, it is worth investigating how this equivalent mechanical
model behaves for frequencies other than the one considered for identification. To this end,
the experimental results shown in Sec. 1 are used, which give a more general idea of the dis-
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sipative behaviour of vertical sloshing when varying both the frequency and amplitude of the
imposed excitation. It should be noted that, the experimental analysis with harmonic tests
presented in Sec. 1, was conducted after the one carried out in the UPM laboratories, from
which the free response data for the tuning of the bouncing ball was collected. Considering the
case with a filling level equal to α = 0.50, we refer to the map of non-dimensional dissipated
energy depicted in Fig. 1.12, which is shown again below in Fig. 2.16. On the energy map

(a) Non-dimensional dissipated energy Φd (b) Φd for ω̄ = 4

Figure 2.16: Experimental non-dimensional dissipated energy and its trend for ω̄ = 4

(see Fig. 2.16(a)), a line is highlighted in yellow, corresponding to the non-dimensional fre-
quency equal to 4. Figure 2.16(b), in turn, shows the trend of the non-dimensional dissipated
energy extracted from the points covered by this yellow line. The objective of this study
is to implement an optimisation procedure to identify a new bouncing ball with a damping
characteristic as similar to the one shown in Fig. 2.16(b) as possible. Once the constitutive
parameters of the ball have been obtained, it will be tested at different points in the domain of
interest to obtain a map like the experimental one. Then, it will be analysed what is obtained
at non-dimensional frequencies other than ω̄ = 4.

The identification process cannot be the same as that already seen in Sec. 2.1.1, since
in this case there is no structural system (the experimental characterisation of the dissipated
energy was carried out using an isolated tank placed on a shaker). However, in order to
reproduce a damping like the one in Fig. 2.16(b), the bouncing ball must be excited with
decaying harmonic motion (as in the free response of the UPM experiment). For this purpose,
a Simulink® model is realised in which the bouncing ball is considered as an isolated system
receiving a damped motion as input (in the range of interest defined in Fig. 2.16) defined as
follows

zT = c e−ζ̂ Ω t cosΩ t (2.20)
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where c is a coefficient introduced to have an initial condition compliant with the maximum
displacement in the map, ζ̂ is an arbitrary damping coefficient, selected to obtain a damped
signal, and Ω = ω̄

√
g/h is the frequency corresponding to ω̄ = 4, being h = 2.72 cm the

height of the box-shaped tank used in the shaker-experiment. Assigning the vertical motion
defined in Eq. 2.20 to the bouncing ball, the latter respond with a sloshing force Fs defined
as in Eq. 2.5. By selecting specific time intervals, the non-dimensional dissipated energy Φ

(bb)
d

associated with the bouncing ball can be calculated using the following relationship:

Φ
(bb)
d =

1

mlA2Ω2

ˆ
Fs dzT (2.21)

A gradient-based optimisation procedure is implemented to find the parameters defined in Eq.
2.19 that minimise the distance between Φ

(bb)
d and Φ

(exp)
d (the blue curve in Fig. 2.16(b)) for

ω̄ = 4. The optimal non-dimensional parameters obtained are listed in Tab. 2.3 and Fig. 2.17
shows the optimal non-dimensional dissipated energy curve compared to the experimental one.

As demonstrated in the previous sections, the bouncing ball cleverly captures dissipative

r̄0 k̄b c̄b ᾱ β̄

0.3342 25.28 3.34 52.12 0.0021

Table 2.3: Optimal non-dimensional parameters of the bouncing ball obtained by tuning the shaker-
experiment data

Figure 2.17: Comparison between non-dimensional dissipated energy: experimental Φ
(exp)
d and

boucning ball Φ(bb)
d

behaviour at a specific frequency. To understand how it behaves at different frequencies,
the same procedure presented in Sec. 2.1.2 is implemented: the new bouncing ball is used
for steady harmonic excitation simulations for different amplitude and frequency pairs, with
values within the domain of interest; at each simulated operating point, the work (or energy)
dissipated by the sloshing forces exerted by the ball is calculated by estimating the area of
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the hysteresis cycles in the displacement-force plane. Using this procedure, the bouncing ball
with the parameters listed in Tab. 2.3 provides the map for the non-dimensional dissipated
energy shown in Fig. 2.18. At ω̄ = 4 this map returns what is shown in Fig. 2.17 (in

Figure 2.18: Non-dimensional dissipated energy map provided by the bouncing ball obtained by
tuning the shaker-experiment data

agreement with what has already been obtained in Fig. 2.15). However, for frequencies
other than the one used for identification, the scenario is different. Comparisons of the non-
dimensional dissipated energies estimated by the bouncing ball at frequencies different from
ω̄ = 4 are shown in Fig. 2.19. As can be seen, the bouncing ball cannot accurately estimate
the dissipative behaviour induced by vertical sloshing for different frequencies. This leads to
the conclusion that this equivalent mechanical model can only be used for applications where
the operating conditions are the same as those considered for its identification.
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(a) ω̄ = 2 (b) ω̄ = 3

(c) ω̄ = 5 (d) ω̄ = 6

Figure 2.19: Bouncing ball model capability to estimate dissipation at different operating frequencies

2.2 Vertical sloshing reduced order modeling with neural net-
work based nonlinear models

Section 2.1.3 highlighted the main limitation of the bouncing ball equivalent mechanical model
defined in Sec. 2.1: inaccuracy in estimating dissipative behaviour induced by vertical sloshing
at frequencies other than the one considered for model identification. As a result, the bouncing
ball is hardly applicable in multi-frequency problems. This awareness led to the exploration
of different techniques for the identification of nonlinear systems, searching for solutions that
could handle the aforementioned problem.

In order to obtain a model capable of describing the nonlinear dynamics of vertical sloshing,
it was decided to use dynamic systems identification techniques based on the use of data and
machine learning theory. The dynamics to be modeled can be treated as a black box process,
since the relationships linking the quantities that describe it are not known. This leads us to
face the problem of identifying a surrogate model, working only with those signals that will
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then be selected as inputs and outputs, without knowing the internal dynamics. In addition,
for training the model, it is essential to collect data that adequately covers the input space.
To this end, input-output data from high-fidelity numerical simulations (CFD) or experiments
with varying frequencies and amplitudes are likely to be the most useful for implementing this
technique.

An experiment aimed at characterising the dissipative behaviour of vertical sloshing based
on harmonic motion, by varying the two operating parameters mentioned above, has already
been presented in Sec. 1. The same configuration is used to collect experimental data for
the identification of a nonlinear reduced-order model (ROM) that takes advantage of artificial
neural networks (ANN) properties (see Appendix B). Specifically, this phase reflects an open-
loop problem, where the process to be identified, vertical sloshing, is considered as an isolated
system that allows to obtain data. The latter will be referred to as harmonic data with Variable
Frequency and Amplitude (VFA). Appendix C presents what was an initial attempt to apply
these methods in the context of vertical sloshing, but relying on low-fidelity data (obtained
by testing the bouncing ball with vertical harmonic excitations for different frequency and
amplitude pairs). The model identified consisted of a dynamic feedforward neural network
(FFNN).

The purpose of this section is to first describe how the experimental data used for the
identification of the new reduced order model are generated. Then, a sensitivity analysis on
the neural-network-based model constitutive parameters is carried out to select the structure
that most accurately describes the process to be identified. Two main types of models are
described and considered for this analysis: one strictly feedforward and another recurrent, in
which the output signal is fed to the model as additional input. The model selection is based
on comparing the training loss value. After the presentation of the process of identifying the
reduced-order model, a further analysis that was conducted in order to validate it experimen-
tally is also introduced. Specifically, a new experimental configuration is set up, in which the
same tank used to generate the training data (which also include an additional set of VFA
data to help the training avoid overfitting) is mounted at the free end of a cantilever beam.
This particular set up will be referred to as the sloshing beam problem, and the experimental
data generated for comparison and validation will be provided by free response and random
testing. To carry out the comparison, a virtual simulation model is designed to conform to
the closed-loop logic of the experiment, in which the numerical model of the beam interacts
with the reduced-order model simulating the sloshing dynamics.

2.2.1 Experimental data collection for ROM identification

The experimental setup presented in Chapter 1 was used to generate a training and valida-
tion data set for the identification of a neural-network based ROM capable to predict the
desired sloshing forces. The advantage of using this configuration (reproduced in Fig. 2.20)
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stems from the fact that it allows the sloshing dynamics to be studied as an isolated system,
guaranteeing that its constitutive properties can be highlighted. Two additional harmonic

Figure 2.20: Experimental Configuration of the isolated sloshing-tank (see Fig. 1.2).

tests with variable frequency and amplitude (VFA) were performed, by considering the filling
level corresponding to the 50 %. Indeed, two tests with acquisition time of 480 s and 240 s

are used for the collection of training and validation data. In these experimental tests, the
vertical sloshing fluid is considered as an isolated system that receives as input a motion (or
acceleration) imposed to the boundary by the electrodynamic shaker and returns as output a
force. The excitation provided by the shaker, which is controlled in order to impose a vertical
acceleration with the law ü = f(t)

[
cos(

´ t
0 Ω(τ)dτ)

]
, was such as to suitably cover the non-

dimensional frequency ω̄ and amplitude ū domain of interest, following the path shown in Fig.
2.21. The choice of this path was dictated by the need to acquire the most representative data
possible to describe the dissipation induced by vertical sloshing characterised in Sec. 1.4.2
and shown in Fig. 1.12.

The time series needed for training the neural network were obtained by acquiring sensor
measurements. In particular, from the accelerometers we obtain the signal associated with
the motion imposed by the shaker, while from the load cells we obtain the force exchanged at
the fluid-tank interface. Integrating the acceleration signal yields the velocity signal given by
the vertical shaker motion shown in Fig. 2.22(a). This signal assumes the role of the input
of neural network model to be identified. On the other hand, load cells are used to acquire
the force that is exchanged at the interface between shaker and tank. In this study, sloshing
force is decomposed into two contributions (as already defined in Eq. 1.19): the inertial force
according to the frozen fuel modeling (Ref. [25]) and the perturbation resulting from the
relative motion of the fluid particles within the tank, denoted as dynamic sloshing force

FSz = −ml ü+∆fSz (2.22)
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Figure 2.21: Path of the VFA harmonic tests considered for training and validation data collection

whereml is the overall fluid mass. As the inertial contribution −ml ü is linear and conservative
with respect to the input, it is convenient to identify directly the dynamic sloshing force ∆fSz .
Therefore, in order to obtain the dynamic sloshing force in Fig. 2.22(b), it is necessary to
subtract from the force measured by the load cells the inertial contribution of the liquid −mlü

and the supporting structure of the box which lies on top of the load cells. Figure 2.23(a),
shows the input signal of the validation data set, obtained with the shorter VFA harmonic
test (240 s long), in the frequency-amplitude domain. Figure 2.23(b) shows the trend of the
dynamic sloshing force of the validation data set.

2.2.2 Identification of the neural-network-based ROM for vertical sloshing

In order to identify a nonlinear reduced order model for vertical sloshing it was decided
to exploit an external dynamics strategy, that is, by far, the most widely used approach
for modeling and identifying nonlinear dynamical systems. The name "external dynamics"
indicates that the nonlinear dynamic model can be uniquely divided into two parts: a nonlinear
static (i.e., memory-less) approximator and an external dynamic filter bank (Ref. [56]). Any
function g(·) can be chosen for the static approximator. However, it should be able to cope
with relatively high-dimensional mappings, at least for high-order systems (the system order
is indicated as m). If filters are chosen as simple time delays and the approximator is chosen
as a fully connected neural network, the whole model is usually called a time-delay neural
network (TDNN). This type of model has the property of being a universal dynamic mapper.
Figure 2.24 shows a nonlinear input/output model built using the external dynamics approach,
where x(k) and y(k) are the measured input and output data of the process to be identified
(at the current discretised time instant k). The estimate of the output produced from the
identified model is instead represented by ŷ(k). As can be seen from the figure, this approach
can generate an output prediction by receiving both past input and output values (if available
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(a) Velocity imposed on the tank

(b) Dynamic sloshing force

Figure 2.22: Input-Output time histories for data-driven ROM training process
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(a) Velocity imposed on the tank

(b) Dynamic sloshing force

Figure 2.23: Input-Output time histories for data-driven ROM validation
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during simulations).

Figure 2.24: External dynamics approach: the model is separated into a nonlinear static approxi-
mator and an external filter bank, realised as tapped-delay lines

A nonlinear dynamic model can be used in two configurations: for prediction and for
simulation. Prediction means that on the basis of previous process inputs x(k− i) and process
outputs y(k − i), the model predicts one or several steps into the future. A requirement for
prediction is that the process output is measured during operation. In contrast, simulation
means that the model simulates future outputs on the basis of previous process inputs x(k−i)
(and, eventually, also estimated outputs ŷ(k − i)). Thus, simulation does not require process
output measurements during operation. The one-step prediction configuration is called a
series-parallel model, while the simulation configuration is called a parallel model. Figure 2.25
compares the model configuration for prediction (a) and simulation (b).

The two configurations shown in Fig.2.25 cannot only be distinguished for the model
architecture but also for the training process. The model is trained by minimising a loss
function dependent on the error e(k) = y(k) − ŷ(k). For the series-parallel model, esp(k) is
called the equation error, and for the parallel model, ep(k) is called the output error.

The model that performs the prediction is purely feedforward (i.e., the information is
propagated from the input to the output without any feedback). While, the simulation model,
beyond being feedforward (in the case in which the static approximator receives in input only
the passed values of the input), can be also recurrent, if the feedback of the output predicted
from the same model is considered. All nonlinear dynamic input/output models can be written
in the following form

ŷ(k) = g (φ(k)) (2.23)

where φ(k) is the regression vector containing previous and possibly current process inputs,
previous process or model outputs, and previous prediction errors. So basically the vector of
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(a) Prediction with a series-parallel model (b) Simulation with a parallel model

Figure 2.25: External dynamics approach models: (a) series-parallel. (b) parallel

regressors collects within it all the signals that come out of the tapped-delay lines and are
then fed to the approximator. Two types of models can be distinguished: with and without
output feedback.

The regression vector φ(k) of the models with output feedback contains previous process
or model outputs and possibly prediction errors. The three most common nonlinear model
structures are NARX (nonlinear autoregressive model with exogenous inputs), NARMAX
(nonlinear autoregressive moving average model with exogenous input) and NOE (nonlinear
output error model):

• NARX: φ(k) = [x(k − 1) · · ·x(k −m) y(k − 1) · · · y(k −m)]T

• NARMAX: φ(k) = [x(k−1) · · ·x(k−m) y(k−1) · · · y(k−m) e(k−1) · · · e(k−m)]T

• NOE: φ(k) = [x(k − 1) · · ·x(k −m) ŷ(k − 1) · · · ŷ(k −m)]T

The NARX model is trained in series-parallel configuration and the NOE model is trained
in parallel configuration. The NARMAX model requires both process outputs y(k − i) and
model outputs ŷ(k − i) contained in e(k − i). One drawback of models with output feedback
is that the choice of the dynamic order m is crucial for the performance and no really efficient
methods for its determination are available. Another disadvantage of output feedback is that,
in general, stability cannot be proven for this kind of model. Generally, however, the user is
left with extensive simulations in order to check stability.
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In opposition to these drawbacks, models with output feedback compared with those
without output feedback have the strong advantage of being a very compact description of
the process. As a consequence, the regression vector φ(k) contains only a few entries, and
thus the input space for the approximator g(·) is relatively low dimensional.

The NARX model should be used for training if the model is to be applied for prediction.
The NARX model minimises exactly this prediction error and is simpler to train than NOE.
On the one hand, the NOE model is advantageous because it yields the optimal simulation
error, which is exactly the goal of modeling. The NARX model is simpler to train. A
recommended strategy (see Ref. [56]) is to train a NARX model first and possibly utilize it as
an initial model for a subsequent NOE model optimization. The training of an NOE model
independently of the chosen approximator always requires nonlinear optimization schemes
with a quite complex gradient calculation due to their recurrent structure. In contrast to
NARX models, an NOE model can discover an error accumulation that might lead to inferior
accuracy or even model instability.

When no output feedback is involved, the regression vector φ(k) contains only previous
or filtered inputs. The number of required regressors for models without output feedback
is significantly higher than for models with output feedback. Therefore, only approximators
that can deal well with high-dimensional input spaces can be applied. The most important
model is the NFIR (nonlinear finite impulse response model):

• NFIR: φ(k) = [x(k − 1) x(k − 2) · · ·x(k −m)]T

This type of model bypasses all the problems of previous models, mainly related to the presence
of feedback. The price to be paid for the missing feedback is that the dynamic order m has to
be chosen very large to describe the process dynamics properly. Theoretically, the dynamic
order must tend to infinity (m → ∞). Since NFIR models are not recurrent but purely
feedforward, their stability is ensured (Ref. [49]), although an NFIR model can represent an
unstable process for the first m sampling instants in a step or impulse response.

In the analysis to be presented in this section, only simulation-oriented models are consid-
ered in order to identify a digital-twin for vertical sloshing. Therefore, only parallel models,
such as the NFIR model and the NOE model, will be tested to conduct a sensitivity analysis
on their constituent parameters, aimed at identifying the best performing model. The NFIR
model’s static approximator will only receive as input the vertical velocity passing through
the delay lines, whereas the NOE model’s static approximator, in addition to receiving the
velocity, will also be fed with the predicted dynamic sloshing force (once it has passed through
the delay lines). The static approximator of both considered model types is precisely a neural
network having a hidden layer and an output layer. Normalised radial basis functions are em-
ployed as activation functions in all nodes of the hidden layer, while the output layer consists
of a simple linear function (see Appendix B for more details). By using Gaussian activation
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functions, neural networks are ensured to be universal approximators, due to their inherent
properties (Ref. [88]). The reliability of the models is assessed based on the training loss
value, that is the Mean Squared Error (MSE).

The velocity-force input-output data obtained with the VFA harmonic experimental tests
have been used for the training of the networks. The algorithm used consists of Levenberg-
Marquardt backpropagation implemented in Matlab® through the trainlm function (Ref.
[89]). The networks learn directly from the training data shown in Fig.2.22, while the valida-
tion data, shown in Fig.2.23, are not involved in the process of estimating its weights. All the
tested models underwent a training process that stops after the error rate on the validation
data increase continuously for more than 6 epochs. NFIR models are trained directly in their
original form, while NOE models require an intermediate step. Specifically, a NARX model
having the NOE desired structure - but using feedback from the measured output rather than
the predicted output - is first trained. The weights obtained from the NARX training are
then used to initialise the NOE recurrent network training process. Sensitivity analysis is
performed considering for NFIR models 3 different filter banks with 50, 60 and 70 delay lines
for the input velocity and with a variable number of hidden layer neurons from 5 to 40. While
for NOE models the only architectures that in our trials guaranteed stability are those having
2 delay lines for both velocity and predicted output and a number of hidden layer neurons
equal to 10, 15 and 20. The results of the sensitivity analysis are shown in Fig. 2.26, in terms
of the trend of MSE as the number of neurons and selected delay lines changed. Each MSE

Figure 2.26: Sensitivity analysis for NFIR and NOE models with varying number of neurons and
number of delay lines.

displayed is equal to the average of the MSE computed on the training data and the validation
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Figure 2.27: Architecture of the identified Time-Delay Neural Network: NFIR model with 70 tapped
delay lines and 35 hidden layer neurons

Figure 2.28: Comparison between the output predicted by the identified neural network and the
experimental time history of the force used for the validation

data obtained at the end of the training process. Figure 2.26 shows that as the number of
neurons increases, the NFIR models perform much better than the only stable NOE models
identified. Since the convergence looks to be reached for the NFIR models after 35 neurons,
the model with 70 tapped delay lines and 35 neurons results to be the candidate for being
used in FSI simulations. The architecture of this model is shown in Fig.2.27. The selected
network was then converted into a Simulink® block to simulate it and obtain predictions for
the output. Figure 2.28 shows the dynamic sloshing force (in red) that the network predicts
when it is excited with a velocity equal to that used for the validation data set generation
(see Figs. 2.23(a)), compared to the validation force (in black). From the comparison figure,
it looks like the identified network is able to accurately replace the nonlinear behaviour of
sloshing.

Finally, by performing tests varying the frequency and amplitude of excitation in the
domain of interest, the sloshing dissipated energy was evaluated based on the predictions
provided by the neural network. The result is the nondimensional dissipated energy map
shown in Fig. 2.29, that is in good agreement with the experimental map shown in Fig.
1.12, thus demonstrating that the neural network based ROM is a reliable digital twin of the
vertical slosh dynamics.

Good performances can also be achieved with lighter NFIR models - in terms of the number
of delays and neurons - having a higher training loss value. In fact, the output predicted by the
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Figure 2.29: Nondimensional Dissipated energy map predicted by the neural-network-based NFIR
model

selected model has a fitting 1 of ef = 85% with the experimental validation target, whereas,
for example, the NFIR model with 60 delay lines and 20 neurons has a slightly lower fitting
corresponding to ef = 83.4%. Moreover, the latter requires a lower computational cost in the
simulation phase. Thus, the model with fewer parameters could also be used instead of the
one selected to run faster simulations, but with the awareness of having slightly less accurate
(but still reasonable) estimates of the dynamic sloshing force.

2.2.3 The sloshing beam problem

This section introduces the experimental strategy used to validate the reduced-order model
for sloshing identified in Sec. 2.2.2. Specifically, the section consists of a first part in which
the analytical formulation used to describe the problem of a structural system interfacing
with vertical sloshing dynamics is presented. The second part on the other hand, describes
a new experimental setup representing the sloshing beam problem. This is used to generate
data to be used as a benchmark for the experimental validation of the identified model.
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Figure 2.30: Sloshing beam problem.

Analytical formulation of the sloshing beam integrated system

In this section, the mathematical formulation for the dynamic description of the sloshing
beam system shown in Fig. 2.30 is presented. The problem consists of a cantilever beam
characterized by a purely vertical linear displacement field, with a partially filled tank placed
at its free end. The latter is assumed perfectly symmetrical with respect to the vertical
plane passing through the elastic center. The structural transversal displacement for a one-
dimensional bending beam u(x, t) can be expressed as

u(x, t) ≃
N∑

n=1

ψn(x)qn(t) (2.25)

where ψn(x) is the n-th mode of vibration of the structure and qn(t) is the n-th modal
coordinate describing the body vertical displacement in time. This analysis uses a modal
representation involving a finite number of modes N , which corresponds to describing the
system in a limited frequency band. Considering the displacement representation defined in
Eq. 2.25 for the beam dynamics, one has the following Lagrange equations of motion in terms
of N modal coordinates qn(t):

Mq̈+ Kq = g + f(ext) (2.26)

where M = diag(m1,m2, . . .mN ) and K = diag(k1, k2, . . . kN ) are, respectively, the modal
mass and stiffness diagonal matrices, whereas g = [g1, g2, . . . , gN ]T is the vector of the gen-
eralised sloshing forces non-linearly induced by the elastic motion q. The f(ext) is the vector

1An evaluation of the goodness of fit between the neural network prediction ŷ and the target signal y can
be performed by employing the error function ef defined as follows

ef := 100×
(
1− ∥y − ŷ∥

∥y − ŷm∥

)
(2.24)

where ŷm is the mean value of the predicted output.
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of the current external forcing terms. The natural frequency of the n-th mode is indicated as
ωn =

√
kn/mn.

The n-th component of g is the projection of the liquid-induced internal pressure distribution
pS on each n-th modal shape ψn by integrating the inner product on the n-th tank wet surface
Stank as in the following (n unit normal vector to Stank and k vertical unit vector)

gn = −
"

Stank

pS n · kψn dS (2.27)

By assuming a rigid tank identified by its geometrical centre, Eq. 2.27 can be recast as:

gn = fS ψn(xT ) +mS φn(xT ) (2.28)

where fS and mS are, respectively, the sloshing force and moment applied in the geometric
centre of the tank xT , whereas φn(xT ) is the n-th modal rotation of the point xT . The dynamic
sloshing force ∆fSz is a nonlinear function of the history of the tank vertical displacement
u(xT , t).
Assuming that the moment mS about the geometric center of the tank is negligible, and
considering the decomposition of the sloshing force as in Eq. 2.22, Eq. 2.28 can be recast as:

gn = −
N∑
k=1

ml ψn(xT )ψk(xT ) q̈k + ψn(xT )∆fSz (2.29)

It is worth to remind that the dynamic sloshing force ∆fSz is a non-conservative force that is
a nonlinear function of the history of the tank vertical displacement and corresponds to the
output used for training the neural network in Sec. 2.2.2.

Experimental test case of the sloshing beam

The tank presented in Sec. 2.2.1, used to generate the data for the identification of the
reduced-order model, is placed at the end of a cantilever beam in order to obtain a new
experimental configuration, shown in Fig. 2.31, aimed at studying the interaction between
the liquid stowed in the box and the beam. The vertical sloshing dynamics and the beam
structural dynamics interface with each other, defining a closed-loop problem, through the
motion imposed by the structure and the load provided by the liquid impacting with the
internal walls of the tank. These two actions are measured by means of accelerometers and
load cell sensors properly placed on the experimental system (see Fig. 2.31). The beam is
74 cm long, 10 cm large, 1 cm thick. Table 2.4 shows the main modal quantities of the first
three modes of vibration of the cantilever beam in the configuration with frozen liquid, defined
as the case in which ∆fSz = 0. In experimental practice, this reference configuration, useful
for assessing the effects that sloshing induces on the system response, was realized by replacing
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Figure 2.31: Layout of the experimental FSI problem

Mode Experimental Numerical

n f
(exp)
n [Hz] ζn [%] f

(num)
n [Hz] mn [kg]

1 10.87 0.32 10.87 0.8956
2 79.06 0.90 78.31 1.0692
3 223.15 1.76 226.5 0.9655

Table 2.4: Experimental and numerical natural frequencies fn, modal damping coefficients ζn and
modal masses mn of the cantilever beam with frozen liquid at the free end.

the liquid with an equivalent non-sloshing mass. The experimental natural frequencies f (exp)n

are listed, as well as the numerical frequencies f (num)
n derived by a structural model updating

process. In addition, the table also shows the experimental modal damping coefficients. The
modal masses of the beam are also listed based on the numerical model obtained with the
structural updating process.

The sloshing beam presented in this section is used to obtain experimental reference data
that can be used to validate the identified reduced-order model. Free response data as well as
random seismic excitation at the root provided by the shaker are used to assess the identified
ROM performances.

Free response analysis

Similarly to Refs. [10], a free-response problem was considered in this work, where an initial
displacement is assigned to the free end of the beam. With the release of the beam tip, the
interaction between liquid and structure is triggered. The free response results are shown
in Fig. 2.32 showing the effects induced by sloshing on the system response compared to
the frozen case. A weight of 7 kg (see Fig. 2.31) was used to provide an initial vertical
displacement of the beam tip of 1.46 cm that provide initial acceleration in line with the
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(a) Frozen case (b) Sloshing case

Figure 2.32: Comparison between acceleration signals measured by the sensors in the case where
the liquid is considered as frozen (a) and in the case where it is free to move (sloshing) (b).

maximum acceleration provided during the training process. Figure 2.32 shows the time
trends of the free acceleration response signals measured by the accelerometers for the frozen
case in Fig. 2.32(a) and the sloshing case in Fig. 2.32(b)). The impacts of the liquid with
the ceiling of the tank, which occur in the initial stages of the response, lead to considerable
dissipation of energy, resulting in more damped responses than in the frozen case. This can
also be appreciated from Fig. 2.33, in which two different instants of the sloshing beam
response are shown. In particular, in the first instants of the response, the liquid impacts
violently with the ceiling of the tank (see Fig. 2.33(a)) inducing considerable damping in
the response. Once the initial phase of the response is over, the fluid transitions to a regime
characterized by the presence of standing waves (see Fig. 2.33(b)). It is also possible to
consider a further comparison by identifying the modal content from accelerometer responses.
Indeed, by exploiting the modal filtering technique (see Ref. [90]) on the measured acceleration
signals, the modal accelerations of the cantilever beam can be extracted. The comparison of
the first three modal accelerations of the frozen case with that of the sloshing case is provided
in Fig. 2.34. The interaction between sloshing and structural dynamics provides effects on
damping the dynamics of the first mode of vibrations, whilst is less effective on the second
mode and looks to have a detrimental on the third mode.

Random analysis

In addition to the free response test, other experiments were conducted in which the same
configuration presented in Sec. 2.2.3 is subjected to seismic excitation. To this end, the beam
root is attached to the electromechanical shaker as described in Ref. [91].

Three 90s long experimental tests were performed, corresponding to three different levels
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(a) t = 0.65 s (b) t = 2.45 s

Figure 2.33: Frames of the sloshing beam free response in two different time instants

(a) Frozen case (b) Sloshing case

Figure 2.34: Comparison between modal accelerations of frozen (a) and sloshing (b) cases.
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(a) Time signals (b) Power spectral densities (PSD)

Figure 2.35: Seismic excitations imposed by the shaker (RMS: 0.1 g, 0.2 g, 0.4 g)

of vertical random excitation, with a root-mean-square (RMS) acceleration value of 0.1 g,
0.2 g and 0.4 g. Figure 2.35 shows the three controlled accelerations imposed by the shaker
at the beam root. More in details, Fig. 2.35(a) shows the trend of the acceleration signals
over time (for a limited time window), while Fig. 2.35(b) shows their power spectral densities
(PSD) as a function of the frequency, in which the inset plot shows a zoom on the PSD having
RMS equal to 0.1 g, compared with a black dashed curve representing the assigned theoretical
Gaussian spectrum expressed as follows

S (f) =
A

σ
√
2π

[
e−(f−f0)

2/2σ2
+ e−(f+f0)

2/2σ2
]

(2.30)

where A is the amplitude, σ is the standard deviation and f0 is the center of the distribution.
Sloshing response data is collected by means of accelerometers and load cells placed on the
beam as shown in Fig. 2.31. Figure 2.36 shows the tank accelerations measured for each of
the three considered RMS levels, in the case where the liquid is free to slosh. It is possible
to appreciate that the seismic excitation imposed on the beam is amplified by the beam’s
dynamics, leading to acceleration values that, for the case with RMS level equal to 0.4g,
reach at most a value of 6 g at the tank location. This value is in line with the maximum
acceleration covered by the identification process.
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Figure 2.36: Tank accelerations measured in the sloshing case, following the application of the shaker
random excitations (RMS: 0.1 g, 0.2 g, 0.4 g)

2.2.4 Results of the experimental validation

The neural-network-based NFIR model identified in Sec. 2.2.2 is experimentally validated
using the data obtained with the experimental set-up presented in Sec. 2.2.3. In this section,
the numerical procedure implemented in order to evaluate the performance of the model by
comparison with experimental data is presented. The logic employed in this activity is to
implement a digital twin of the experimental configuration in Fig. 2.31.

For this purpose, a simulation model was built in Simulink®, representing the the sloshing
beam problem as shown in Fig. 2.37. The block structure in Fig. 2.37(a) contains the modal
description of the cantilever beam implementing Eq. 2.26, while the block sloshing detailed
in Fig. 2.37(b) include the neural network ROM architecture. It provides the dynamic
sloshing forces ∆fSz when it receives as input the history of the elastic velocity evaluated
at the tank position xT . The gains before and after the network in Fig. 2.37(b) (the blue
block) allow, respectively, for the transformation of modal velocities in tank vertical velocity
as u̇(xT ) =

∑
m ψm(xT )q̇m(t), and the projection of the dynamic sloshing force on the modes

of vibration to obtain the generalized sloshing forces ψn(xT )∆fSz .
The numerical model of the sloshing beam problem was used to replicate the same re-

sponses of the experimental set-up presented in Sec. 2.2.3. The results used for the experi-
mental validation of the surrogate model are shown next, starting with those related to the
free response problem presented in Sec. 2.2.3.

Figure 2.38(a) shows the predicted numerical acceleration at the center of tank xT com-
pared with that obtained by the corresponding experiment. On the other hand, Fig. 2.38(b)
shows the comparison of time histories of the interface forces exchanged between the structure
and the tank. The curves are practically superimposed for both acceleration at tank location
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(a) FSI model plant

(b) Neural network plant

Figure 2.37: Simulink® model representing the sloshing beam experiment
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and interface force. Figure 2.38(c) shows the comparison between the experimental dynamic
sloshing force and that predicted numerically by the network. The two curves are in good
agreement with each other, except for the first cycles of the response in which the load cells
seems to incorrectly measure the sloshing forces (likely due to the impulsive release mechanism
in the initial phase of the response). By taking advantage of the modal filtering technique, it
is possible to isolate the first mode of vibration from the experimental and numerical accel-
eration signals shown in Fig. 2.38(a). Once the dynamics of the first mode of vibration has
been isolated, the instantaneous damping ratio can be evaluated by considering the envelope
through logarithmic decay. Then, since the envelope decreases monotonically, the damping
can be parameterized as a function of the vertical acceleration of the tank as shown in Fig.
2.39 that provides the comparison between experimental and numerical instantaneous damp-
ing. Since the model is trained using harmonic input, it is limited in providing a perfect
estimate of the damping at the very initial transient - first two cycles at high acceleration
amplitudes - but the neural-network-based ROM looks to provide perfect superimposition in
the prediction of the nonlinear damping induced by slosh dynamics in the rest of the response.
Indeed, when high vertical accelerations are involved triggering Rayleigh-Taylor instabilities
and impacts with the tank ceiling, the system promptly reaches a steady regime. The dif-
ference at the first cycles - in which the NN model appears to be anyway conservative with
respect to the experimental response in terms of damping - is likely to be linked with the time
needed for the inertial forces to win the surface tension and fragment the free surface. The
problem of introducing such an effect on the training process is still open. In the Appendix E
these same results are compared with those obtained by modeling the vertical sloshing force
by means of linearised viscous damping.

Concerning random analysis, the seismic excitation is implemented by considering the
model in the non-inertial frame of reference and modeling a generalized force f(ext) determined
by the fictitious forces such as

f (ext)n = −
ˆ l

0
µ(x)ψn(x) dx as (2.31)

where as is the controlled vertical acceleration imposed by the shaker at the beam root and
µ(x) the beam linear density. On the other hand, the input to the neural network needs to
be expressed in the inertial frame of reference, and thus equal to u̇(xT ) + vs where u̇(xT ) is
the tank vertical velocity in the non-inertial frame of reference and vs the drag speed. Fig.
2.40 compares the estimated and measured tank acceleration signals over time for each of the
three considered seismic tests. Again, the experimental response measured in the sloshing case
(blue curve) is compared with the acceleration predicted by the sloshing beam simulation (red
dot-dashed curve) obtained considering the same as as in Fig. 2.35(a). In order to compare
the effects that sloshing has on the random response of the system over time, the response in
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(a) Acceleration at the tank location

(b) Interface force

(c) Sloshing force

Figure 2.38: Comparison between network predictions and experiments for vertical acceleration of
a tank, interface force and sloshing force.
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Figure 2.39: Instantaneous damping ratio of the first mode of vibration as a function of the accel-
eration amplitude.

the frozen case obtained numerically with the same experimental input (black dotted curve)
is also represented. This is more representative of the experimental counterpart given the
difficulty of assigning the same random signal for two different experimental tests. In the
time intervals selected for the representation of the results, it can be noticed that the NFIR
model identified in Sec. 2.2.2, once integrated into the equivalent virtual sloshing-beam model,
is able to return a reasonable estimate of the sloshing beam response. This is mainly due to the
predominantly mono-harmonic nature of the random response, which is consistent with that
of the VFA harmonic experimental data used to train the neural network. However, as can be
seen from the inset plots in Fig. 2.40, the response is less accurate at low amplitudes. This
may be related to the lack of zero crossings at some points, which, based on the training data
used, may cause the model to fail in its predictions. However, the numerical response is very
close to the experimental response when compared with the frozen case numerical response
that still includes experimentally derived damping values. This is also corroborated by Fig.
2.41, which shows the comparisons of the power spectral densities (using Welch method, Ref.
[92]) of the tank acceleration for the different RMS cases. In fact, the PSDs associated with
the numerical frozen case (black) present a clearly higher peak than that of the sloshing curves
(blue). Comparing these with the (red) curves obtained by simulating the sloshing-beam with
the integrated data-driven ROM, it can be noticed that qualitatively the identified ROM is
able to return the same level of dissipation at the system resonance frequency.

Although it is quite clear that the damping level depends on the amplitude of the tank
vertical oscillation, PSDs are next used to make an average estimate of the modal damping of
the first vibration mode as a function of the intensity of the input random signal. To this end,
for each of the curves in Fig. 2.41, a modal fitting procedure is implemented based on the
least-squares rational function estimation method (Ref. [93]). Table 2.5 shows the obtained
damping ratios, in which it can be noticed that the experimental case of sloshing turn out
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Damping ratio ζ1 [%]

RMS Experiment NeuralNet Frozen

0.1 g 2.70 2.20 0.54
0.2 g 2.54 2.38 0.51
0.4 g 2.43 2.95 0.31

Table 2.5: Comparison between estimated modal damping ratios

to provide similar to those predicted with ROM, emphasizing the capability of the identified
model to adequately reproduce the dissipative behavior induced by vertical sloshing. Also for
this other type of test, Appendix E provides a comparison with results obtained by modeling
the sloshing force using a linear viscous damping model.

It is worth noting that, similar results to those presented in this section can also be ob-
tained with the NFIR model with 60 delay lines and 20 neurons. Indeed, the latter has
predictive capabilities comparable to those of the selected model, ensuring an accurate rep-
resentation of the dissipative behaviour of nonlinear vertical sloshing (as already mentioned
in Sec. 2.2.2). Having a lighter structure (in terms of hyperparameters, such as delays and
neurons) it may be suitable for use in applications that require a higher computational cost.
In fact, it will be used in the aeroelastic applications presented in Chap. 3 to study and
evaluate the effects of vertical sloshing on system response.

2.2.5 Scaling procedure for actual applications

The experimental data used to train the neural network were obtained with the set-up pre-
sented in Sec. 2.2.1. The dimensions of the box-shaped tank used in the experiment are
different than those of the tanks considered in actual aeroelastic applications. It is therefore
desirable to introduce a scaling law that allows the identified reduced-order model to be used
even for tanks with dimensions other than the original ones. Before describing the procedure
by which NFIR model scaling is implemented, it is necessary to reintroduce the concepts
presented in Sec. 1.4.2 and Sec. 1.5. In particular, referring to the case with the 50 % fill
level, the maps of the non-dimensional dissipated energy Φd and the sloshing-effective mass
fraction β (shown in Fig. 1.12 and Fig. 1.21, respectively) are re-presented in Fig. 2.42
in the non-dimensional frequency ω̄ = Ω/

√
g/h and the non-dimensional velocity v̄ domain.

The second operating parameter is expressed as v̄ = v/
√
gh (with v = Ωu0, being u0 the

amplitude of the vertical imposed motion) that, for the vertical slosh dynamics assumes the
meaning of Froude number (Ref. [29, 30]).

Figure 2.42(a) provides the non-dimensional dissipated energy Φd = Ld/(mlu
2
0Ω

2) in a
vertical harmonic motion u = u0 cos(Ωt) as a function of the non-dimensional frequency ω̄
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2.2. Vertical sloshing reduced order modeling with neural network based nonlinear models

(a) RMS: 0.1 g

(b) RMS: 0.2 g

(c) RMS: 0.4 g

Figure 2.40: Comparison between the numerical tank accelerations predicted by the virtual sloshing
beam model with NFIR model and with frozen liquid and the experimental one measured in the
sloshing case.
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(a) RMS: 0.1 g

(b) RMS: 0.2 g

(c) RMS: 0.4 g

Figure 2.41: Comparison between the PSDs of the tank acceleration predicted by the virtual sloshing
beam model with NFIR model and with frozen liquid and those of the experimental sloshing case.
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2.2. Vertical sloshing reduced order modeling with neural network based nonlinear models

(a) Non-dimensional dissipated energy Φd (b) Sloshing-effective mass fraction β

Figure 2.42: Maps of the Identified dissipated energy and Sloshing-effective mass fraction.

(not to be confused with the reduced frequency k for the unsteady aerodynamics) and velocity
v̄. Figure 2.42(b) shows the variation of the sloshing-effective mass fraction β in the same
domain. As described in Sec. 1.5, this quantity can be identified by assuming the linear
approximation of the dynamic sloshing force (removing the effects of the super-harmonics)
and performing the ratio between the Fourier transform of the dynamic sloshing force and
the related frozen mass force (see Eq. 1.29). The non-dimensional dissipated energy map
predicted by the identified NFIR model in the frequency-velocity domain of interest (already
presented in Fig. 2.29 in the frequency and amplitude domain) is shown in Fig. 2.43(a).
Similarly, Fig. 2.43(b) presents, in the same domain, the variation of β predicted by the
ROM. Comparing Fig. 2.43 with Fig. 2.42, it can be seen that the identified dynamic model
is able to capture both the dissipative behaviour and the mass effect induced by vertical
sloshing.

As already mentioned in Sec. 2.1.3 the energy dissipated by the sloshing fluid Ld can be
expressed by means of the π-theorem as

Ld = ml u
2
0Ω

2Φd (ω̄, v̄, α,Re,Bo, ...) (2.32)

Besides the non-dimensional frequency ω̄ and velocity v̄, Ld is dependent on the fill level α,
the Reynolds number Re = vh/ν (ν kinematic viscosity) that reflects viscosity effects, and
the Bond number Bo = ρgh2/γ (γ surface tension) that reflects surface tension effects. Since
the operational parameters ω̄ and v̄ only cover a subspace of the space spanned by the non-
dimensional parameters influencing the sloshing-induced energy dissipation, it is necessary to
formulate the following hypotheses before scaling the NN-based ROM:

• the non-dimensional dissipated energy is assumed to be mainly dependent on the non
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2.2. Vertical sloshing reduced order modeling with neural network based nonlinear models

(a) Nondimensional dissipated energy Φd (b) Sloshing-effective mass fraction β

Figure 2.43: Nondimensional Dissipated energy and sloshing-effective mass fraction maps predicted
by the neural-network-based NFIR model

dimensional velocity (Froude) and non-dimensional frequency. Other parameters more
related to physical properties of the fluid (Reynolds and Bond) are assumed to play a
secondary role.

• The principal dimension is assumed to be the tank height h (Ref. [29]). Tank base area
is not assumed to be important.

• For each filling level α a different identification is required.

Although these hypotheses are only partially supported by experiments and numerical ev-
idences [29, 82], it is reasonable to assert them to scale the obtained data for the eight
tanks embedded within the structure. Indeed, a variation in the dimensionless parameters of
Reynolds (at high Reynolds values) and Bond seems to provide a negligible influence on the
dissipative capabilities during violent vertical sloshing phenomena (Ref. [82]). The re-scaled
ROM must therefore work in similarity of non-dimensional velocity and non-dimensional fre-
quency as well as non-dimensional dissipated energy in order to replace the sloshing model
with a neural network capable of reproducing the real dissipative behavior. Figure 2.44 shows
the Simulink® implementation of the neural network unit and the scaling gain. More in
details, from the non-dimensional frequency similarity between the experiment ω̄(exp) and the
i-th tank ω̄(i), we obtain:

Ω(exp)√
g/h(exp)

=
Ω(i)√
g/h(i)

=⇒ dt(i) = dt(exp)

√
h(i)

h(exp)
(2.33)

Thus, a proper time rate translator is used within the simulation (see Fig. 2.44) to make the
neural network working with a time rate compliant with the one used for its identification.
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2.2. Vertical sloshing reduced order modeling with neural network based nonlinear models

Figure 2.44: Scaling procedure implemented in Simulink®.

Furthermore, the similarity of the non-dimensional velocity (Froude) of the vertical motion
yields:

v(exp)√
gh(exp)

=
v(i)√
gh(i)

=⇒ v(i) = v(exp)

√
h(i)

h(exp)
(2.34)

that provides a gain to the vertical tank velocities before the call to the neural network (see
Fig. 2.44). Assuming the similarity of the non-dimensional dissipative function Φd and that
Ld =

´
cycle∆fSzd u we obtain:

∆f
(i)
Sz

= ∆f
(exp)
Sz

m
(i)
l

m
(exp)
l

= ∆f
(exp)
Sz

ρkV
(i)

ρwV (exp)
(2.35)

where ρk and ρw are the density of kerosone and water, respectively, whereas V (i) and V (exp)

are the volume of the i-th wing tank and experimental tank, respectively. Equation 2.35
provides the gain for the dynamic sloshing forces to be applied after the call to the neural
network within the simulation framework (see Fig. 2.44). This scaling procedure is able to
take into account different liquids with respect to that used for data generation. In this scaling
procedure, velocity and displacements of the tank are adjusted according to tank size, but the
maximum accelerations achievable when the tank works in similarity with the tank used for
the network identification are retained. It is worth noting how this scaling procedure assumes
a perfectly box-shaped tank. In addition, the dependence of the dissipative characteristics
of vertical sloshing with respect to aspect ratios (the other two dimensions of the tank with
respect to its height) is not considered in this procedure.

Summary

A neural-network-based nonlinear finite impulse response model (NFIR), resulting from a sen-
sitivity analysis aimed at finding the most performing network, was selected to construct the

89



2.2. Vertical sloshing reduced order modeling with neural network based nonlinear models

surrogate model for vertical sloshing. An experimental validation procedure of the identified
model was presented. To this end, an experimental setup consisting of a cantilever beam
with a tank mounted at its free end was realised. The latter is the same as that used to
generate the training data. By performing free response and seismic tests, FSI experimental
data were collected to be used as a benchmark for validating the nonlinear identified ROM
when integrated in an equivalent virtual model to account for the effects of vertical sloshing.
The comparisons for the free response case showed that the time histories of the numerical
acceleration at the end of the beam and sloshing forces are in good agreement with the ex-
perimental data. The estimated instantaneous damping ratio validates the good capabilities
of the identified model to accurately reproduce the dissipative behavior induced by vertical
sloshing. The random analyses also yielded good results and showed a satisfactory level of
accuracy for the time response in each of the considered excitation cases. By comparing the
damping coefficients estimated in the frequency domain, it was possible to assess the neural
network capability to provide the same levels of dissipation as experimentally given by ver-
tical sloshing in random FSI testing. The nonlinear neural network-based model identified
in this section allows it, unlike an equivalent mechanical model such as the bouncing ball,
to be used for different applications, and thus, for different operating frequencies. However,
the data used for training, although covering a wide region in the frequency and amplitude
domain, is characterised by having, instantaneously, a dominant harmonic. This means that
the applications in which the neural network can be used (returning good force estimates)
should not have multi-harmonic effects. Consequently, future developments should include a
new identification process that uses experimental data from stochastic tests to train a model
capable of capturing these features as well.
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Chapter 3

A numerical investigation of the
sloshing effects in aeroelastic
applications

A thorough understanding of the effects of sloshing on aircraft dynamic loads is of great
relevance for the future design of flexible aircraft to be able to reduce their structural mass
and environmental impact. Indeed, the high vertical accelerations caused by the vibrations
of the structure can lead to the fragmentation of the fuel free surface. Fluid impacts on the
tank ceiling are potentially a new source of damping for the structure that has hardly been
considered before when computing the dynamic loads of the wings. This chapter presents
the application of sloshing reduced-order models to aeroelastic test cases, with the aim of
investigating their effects on response under pre- and post-critical conditions.
Section 3.1 presents an aeroelastic analysis in which vertical sloshing is integrated into a
flexible wing model in order to study its effects on the response for different loading conditions.
The related results are reported in [81]. Section 3.2 presents an investigation of the combined
effects of linear and nonlinear sloshing on the stability and aeroelastic response of a flying
wing. This second part is published in Ref. [94].

3.1 Nonlinear sloshing integrated aeroelastic analyses of a re-
search wing prototype

The subject of this section is an aeroelastic model consisting of research wing used to investi-
gate the nonlinear vertical sloshing effects on the aeroelastic response under pre-critical and
post-critical conditions. The vertical sloshing dynamics is modeled with the neural-network-
based ROM presented in Sec. 2.2. However, its integration into the aeroelastic model is
done by implementing the scaling procedure introduced in Sec. 2.2.5, considering that the
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Figure 3.1: Research wing aeroelastic/sloshing modeling.

wing tanks have different dimensions to those of the experimental set-up used to generate the
ROM training data. The results concern the aeroelastic response of the wing to gust input
under pre-critical (flutter) conditions as well as post-critical conditions highlighting the onset
of limit cycle oscillations caused by sloshing. Moreover, the load alleviation performances are
assessed for a typical landing input.

3.1.1 Aeroelastic and sloshing modeling of the wing prototype

A sloshing/aeroelastic wing is modeled in this section using a hybrid approach that combines
a linear differential problem (aeroelasticity) with a data-driven model (sloshing). More in
details, the numerical testbed is represented by a prototype wing model with dimensions
typical of a single-aisle commercial aircraft wing. Figure 3.1 shows the finite element model
(FEM), along with the lifting surface discretised by means of doublet lattice method (DLM),
and the position of the eight tanks integrated within the wing box. Since no data were
available to generate the aerodynamic model, the lifting surface was generated by taking into
account the typical values of single aisle commercial aircraft. Figure 3.2 shows the wing first
six modes of vibration in the case of dry structure, that is the case in which tanks are empty.
Dry modes are assumed to be the shape functions in order to avoid considering different FEM
models depending on the fill level (even though the case with 50% fill level is considered in the
present analysis). A box-shaped, rigid structure is approximated for each of the eight tanks
embedded within the wing-box. Their dynamic behaviour is condensed in a point placed in
the geometric centre of the tank and their motion is based on a weighted average of the motion
of the surrounding nodes. The wing structural displacements u(x, t) can be expressed by the
spectral decomposition

u(x, t) ≃
N∑

n=1

ψψψn(x)qn(t) (3.1)
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3.1. Nonlinear sloshing integrated aeroelastic analyses of a research wing prototype

(a) 1st O-P-B (b) 1st I-P-B, ω2/ω1 = 2.84

(c) 2nd O-P-B / 1st T, ω3/ω1 = 3.81 (d) 3rd O-P-B, ω4/ω1 = 8.50

(e) 1st T / 2nd I-P-B, ω5/ω1 = 10.42 (f) 2nd T / 2nd O-P-B, ω6/ω1 = 11.79

Figure 3.2: Mode shapes of the wing model with their natural frequencies. O-P-B = Out-of-plane
bending mode, I-P-B = In plane bending mode, T = torsional mode.
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where ψψψn(x) are the modes of vibrations of the structure and qn(t) are the generalised co-
ordinates describing the body deformation in time. Note that a space-discretisation for the
structure is assumed by including a finite number N of modes in the analysis, i.e., a frequency-
band-limited unsteady process. Considering this representation for aircraft wing dynamics,
one has the following Lagrange equations of motion in terms of N modal coordinates qn(t)

Mq̈+ Kq = e+ g + f(ext) (3.2)

where q = [q1, q2, . . . , qN ]T is the modal coordinates vector, M and K are, respectively,
the modal mass and stiffness (diagonal) matrices provided by FEM solver, whereas e =

[e1, e2, . . . , eN ]T and g = [g1, g2, . . . , gN ]T are, respectively, the generalized aerodynamic and
sloshing forces induced by the elastic motion. The f(ext) is the vector of the current external
forcing terms which includes gust and landing force. The generalised aerodynamic forces (due
to the aircraft motion only) are generally computed as a function of the reduced frequency
k = ωb/U∞ (with b semi-chord and U∞ free stream velocity) and Mach M∞ domain (see Ref.
[95]) as:

ẽ = qD Q(k,M∞) q̃ (3.3)

where Q(k,M∞) is the generalised aerodynamic forces matrix, qD is the dynamic pressure
and the symbol ˜ is used to represent the Laplace/Fourier transforms. For a fixed value of
M∞, the following rational function approximation for the unsteady aerodynamics

Q(k) ≈ A0 + jkA1 − k2A2 + jkC
(
jkI+ P

)−1
B (3.4)

is typically considered to transform an integro-differential problem into a pure differential
problem (see Ref. [96]). The coefficients of the matrices in Eq. 3.4 are obtained by apply-
ing a minumum criterion on the error between the aerodynamic matrix evaluation and its
interpolating form. This translates into finding those coefficients that minimise the following
norm:

min
A0,A1,A2,C,B,P

(
Nk∑
i=1

∥∥∥∥A0 + jkiA1 − k2i A2 + jkiC
(
jkiI+ P

)−1
B− Q(ki)

∥∥∥∥2
)

(3.5)

where Nk is the number of reduced frequencies with which the unsteady aerodynamics is
seeded. As a consequence of the rational function approximation, the aerodynamic forces can
be recast in time domain as

e = qD A0 q+ qD
b

U∞
A1 q̇+ qD(

b

U∞
)2 A2 q̈+ qD Ca (3.6)

ȧ =
U∞
b

Pa+ B q̇ (3.7)
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where a is the vector of the aerodynamic finite states, able to describe the linearised wake
dynamics. At the same time, the generalised sloshing forces vector g can be expressed as a
sum of contributions g(i) of individual tanks:

g =

NT∑
i=1

g(i) (3.8)

with NT the number of tanks. The n-th component of g(i) is the projection of the fluid pressure
distribution pS evaluated on the wet tank surface S(i)

tank on each n-th modal shape ψψψn as in
the following (n unit normal vector to S(i)

tank)

g(i)n = −
"

S(i)
tank

pS n ·ψψψn dS (3.9)

By assuming a rigid tank identified by its geometrical centre, Eq. 3.9 can be recast as:

g(i)n = f
(i)
S ·ψψψn(xTi) +m

(i)
S ·φφφn(xTi) (3.10)

where fS and mS are, respectively, the sloshing force and moment applied in the geometric
centre of the tank xTi , whereas φφφn(xTi) is the n-th modal rotation of the point xTi . In this
study, sloshing force is decomposed into two contributions: the inertial force according to the
frozen fuel modeling (Ref. [25]) and the perturbation resulting from the relative motion of
the fluid particles within the tank. Assuming there is only a vertical perturbation ∆f

(i)
Sz

, the
sloshing force fS and moment mS about the geometric centre of the i-th tank are given by:

f
(i)
S = −

N∑
k=1

m
(i)
l

[
ψψψk(xTi)− d×φφφk(xTi)

]
q̈k + i3∆f

(i)
Sz

(3.11)

m
(i)
S = −

N∑
k=1

(
I
(i)
l φφφk(xTi)−m

(i)
l d×

[
ψψψk(xTi)− d×φφφk(xTi)

])
q̈k (3.12)

where d is the offset between the geometric centre of the tank and the liquid centre of mass,
i3 is the vertical unit vector and Il is the inertia tensor of the frozen fluid. ∆f (i)Sz

is the already
defined dynamic sloshing force: a non-conservative force that is a nonlinear function of the
history of the tank vertical displacement u(xTi , t). By considering Eqs. 3.11 and 3.12, Eq.
3.10 can be recast as:

g(i)n = −∆m
(i)
nk q̈k + i3 ·ψψψn(xTi)∆f

(i)
Sz

(3.13)

where the components ∆m(i)
nk provides a further non-diagonal contribution to the mass matrix

given by the inertia of the fluid. The aeroelastic/sloshing modeling is therefore implemented
in Simulink® as illustrated in Fig. 3.3. The aeroelastic blocks are purely differential whereas
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Figure 3.3: Aeroelastic/sloshing modeling in Simulink®.
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Figure 3.4: Identified NFIR model with 60 tapped delay lines and 20 hidden layer neurons

the sloshing block is modeled with the data-driven neural-network-based ROM identified in
Sec. 2.2. Specifically, the NFIR model with 60 delay lines and 20 neurons is used, due to its
greater efficiency in terms of simulation time (as already discussed in Sec. 2.2.2). This model
is shown in Fig. 3.4. However, the experimental data used to train the neural network were
obtained with the set-up presented in Sec. 2.2.1. The dimensions of the box-shaped tank
used in the experiment are smaller than those of the eight tanks in the wing model under
investigation. Therefore, the scaling law introduced in Sec. 2.2.5 is applied to the identified
reduced order model for vertical sloshing in order to use it in this aeroelastic application.

3.1.2 Wing aeroelastic response analyses

Before performing the aeroelastic response of the wing, a stability analysis is performed by
evaluating the poles of the linearised aeroelastic system between 250 m/s and 360 m/s and
considering fixed the Mach number M∞ = 0.85 and the air density ρ∞ = 0.9 kg/m3. Twelve
vibration modes are employed for the aeroelastic analyses whereas 200 aerodynamic states
were used for the rational function approximation of the unsteady aerodynamics. An addi-
tional modal damping of 5% is introduced into the analysis only for vibration modes whose
dry nondimensional frequency with respect to the size of the wing bigger tank was greater
than the nondimensional frequency limit of the sloshing identification process, namely when
fn/
√
g/h1 > 6.72. The root locus of the aeroelastic system (frozen configuration ∆f

(i)
Sz

= 0)
is shown in Fig. 3.5 in which the vibration modes from which the different branches origi-
nate are annotated. The flutter instability occurs at U∞ = UF = 319.3m/s from the branch
that originates from the first bending mode (see Fig. 3.2(a)), whereas the flutter frequency
is ωF = 1.95ω1. The critical mode mainly consists of a coupling between the first vibration
mode (1st O-P-B) and the third mode (2nd O-P-B / 1st T) that consists also of a slight torsion
of the aerodynamic sections.

The effects induced by the sloshing-effective mass fraction, can result critical for aeroe-
lastic responses close to the flutter margin. In Ref. [97], a preliminary investigation of the
mass effects associated with vertical sloshing has already been carried out. A reference value
β̂ = −0.154 is obtained by averaging among the experimental values obtained at low level of
acceleration (0.25g), namely for the quasi-linear sloshing regime (with reference to the exper-
imental sloshing-effective mass fraction distribution shown in Fig. 2.42(b)). Nonetheless, a
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Figure 3.5: Root Locus of the wing aeroelastic system.

small uncertainty in defining the exact amount of liquid in the tank during the experiment
(presented in Sec. 1.4.2) affects this value. Figure 3.6 shows the trend of the flutter speed
as a function of the filling level α, where the green square represents the speed value in the
case a fuel mass correction is used to take into account the sloshing effective mass at small
perturbances, namely by assuming

∆f
(i)
Sz

= β̂ m
(i)
l

N∑
n=1

i3 ·ψψψn(xTi)q̈n (3.14)

that can be integrated in Eq. 3.13.
Aeroelastic response analyses to vertical gust are then performed for different velocities

in the neighborhood of the flutter speed where the response is less damped and the sloshing
may play a role of paramount relevance on damping aeroelastic vibrations. Since the neural
network is trained considering a time history made of a sequence of simply-harmonic input
with different frequency and amplitude values (see Fig. 2.22), it follows that the proposed
sloshing model works consistently when the input velocity has a dominant harmonic. The
external aerodynamics plays a key role on filtering a single mode that has a pole with a smaller
real part making the proposed ROM suitable to study most of the aeroelastic response analyses
(like the aeroelastic response to discrete gusts). Specifically, in this analysis we consider the
following standard gust profile:

wg(t) =
1

2
wga

[
1− cos

(
2πU∞t

Lg

)]
(3.15)
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Figure 3.6: Flutter speed as a function of the filling level fraction α.

where wga is the gust amplitude. The reference value for the gust length measured in chord
length b is Lg = 25 b. Spatially, the gust is assumed to be constant throughout the wing
domain.

Two models are compared, namely the frozen fuel model and the sloshing fuel model that
employs the neural network to replace slosh dynamics. Three different flight conditions are
considered, that is U∞ = 266m/s and U∞ = 315m/s, before the flutter margin as evaluated
by the frozen fuel model, and U∞ = 321m/s in flutter condition. The gust amplitude wga

is assigned in order to do not make the vertical acceleration overcome the limit of 6 g at the
tank locations which would violate the range of applicability of the network. Different gust
intensities are employed to highlight the increase of the sloshing induced damping at high
response amplitudes or the onset of limit cycle oscillations.

The first analysis is performed at a free stream velocity of U∞ = 266m/s, with a gust
intensity of wga = 6m/s. Figure 3.7(a) compares the wing response of the sloshing fuel model
with the frozen fuel model in terms of tip acceleration. Despite the aerodynamic damping is
high, the role of sloshing is evident since the sloshing fuel model results in a more damped
response due to presence of the fluid impacting inside the tanks. Moreover, The response of
the dynamic sloshing forces, obtained by exploiting the neural network-based ROM, can be
observed in Fig. 3.7(b).

Then, the flight speed is brought close to the flutter margin, at a free stream velocity of
U∞ = 315m/s, with a gust intensity of wga = 3m/s. Figure 3.8(a) compares the wing tip
response of the sloshing fuel model with the frozen fuel model. Even though, the structure
is closer to the flutter margin, it can be noticed how the beneficial influence of the damping
introduced by sloshing dynamics helps to alleviate the gust response. Again, the response of
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(a) Tip vertical acceleration (b) Dynamic sloshing forces

Figure 3.7: Gust response analysis for U∞ = 266 m/s.

the dynamic sloshing forces, obtained by exploiting the neural network-based ROM, can be
observed in Fig. 3.8(b). Appendix E shows the same results compared with what is obtained
by modeling vertical sloshing by experimentally characterised linearised viscous damping.

The post-critical gust response analysis is performed after the flutter speed limit evaluated
with the frozen fuel model, that is U∞ = 321m/s, with a gust intensity of wga = 1.5m/s.
The wing tip response is shown in Fig. 3.9(a) comparing the two considered cases. The linear
frozen case results in a fluttering response with diverging exponential envelope, whilst the
sloshing case develops a limit-cycle oscillation (LCO). This LCO is determined by the nature
of the sloshing forces, which become highly dissipative when the acceleration of the tank
increases (Rayleigh-Taylor instabilities occur above 1 g). Figure 3.10 compares the response
of the sloshing fuel model for two different gust amplitudes, that is wga = 0.15m/s and
wga = 2.5m/s. Within the range of maximum allowable vertical acceleration at the tank
locations (given by the identification process), the response of the wing converges to the same
limit cycle oscillation.

More in general, the response analysis to small disturbances (wga = 0.15m/s) is carried
out spanning from 316m/s to 323m/s. Figure 3.11 shows the Hopf bifurcation diagram of
the limit-cycle oscillation of the wing tip displacement. Despite the nonlinear stabilising
contribution of the sloshing forces, the system is nevertheless unstable after a flight speed
slightly lower 323m/s. This denotes the presence of an unstable branch coexisting with the
stable one identified by the numerical simulations. Moreover, because the sloshing forces are
primarily dissipative, the unstable branch cannot exist before the flutter speed. It is worth
noting that the limit cycle oscillations of the stable branch exist in a range of displacement
amplitude that generally structures of this type can withstand in terms of maximum allowable
stresses. Moreover, sloshing is able to provide a limit cycle response up to a velocity which is
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(a) Tip vertical acceleration (b) Dynamic sloshing forces

Figure 3.8: Gust response analysis for U∞ = 315 m/s.

(a) Tip vertical acceleration (b) Dynamic sloshing forces

Figure 3.9: Gust response analysis for U∞ = 321 m/s.
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Figure 3.10: Gust response analysis for U∞ = 321 m/s considering two different gust amplitudes.

slightly greater than the linear flutter speed. Therefore, for flutter analyses, this effect must
be weighed against other uncertainties from structural and aerodynamic modelling.

Figure 3.12(a) shows a contour plot of the energy exchanged between the structure and
external aerodynamics per cycle as a function of the amplitude of the response and flight
speed in case the response were solely determined by the unstable branch of the root locus
in Fig. 3.5, or q(t) ≈ w1a1(t) + c.c. 1. The blue colour indicates the region in which the
aerodynamics subtract energy from the structure (positive damping, stable), whereas the
red-one indicates that the structure is absorbing energy from the aerodynamics (negative
damping, flutter condition).

On the other hand Fig. 3.12(b) provides the energy exchanged by the internal sloshing
fluid with the structure summarising the effects of the eight tanks by dimensionalisation and
the sum of the map in Fig. 2.42(a). This energy map, similarly to the one in Fig. 3.12(a),
is based on the tracking of the critical eigenvector and frequency. By increasing the flight
speed, the map is not defined at the higher amplitude because of the increase of the considered
aeroelastic frequency. The dissipative nature of sloshing is thus highlighted (positive damping,
stabilising effect).

1From mode tracking we obtain the eigenvector w1track (U∞) corresponding to unstable branch as a function
of the flight speed (that is normalised in order to have real and unit displacement at tip −→ a1 assumes the
meaning of the tip displacement) and the associated frequency ω1track (U∞). Therefore, the following quantity
yields the energy exchanged by the structure and the external aerodynamics in a cycle with angular frequency
ω1track :

Laero(U∞, a1) = π a2
1
1

2
ρU2

∞ I
{
wT

1track
Q
(ω1track b

U∞

)
w1track

}
(3.16)
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Figure 3.11: Bifurcation diagram.

The energy exchanged between the structure and the fluids (external aerodynamics and
sloshing) can be computed by integrating the maps in Figs. 3.12(a) and 3.12(b) (see Fig.
3.12(c)). This figure is overlaid with the LCO bifurcation in Fig. 3.11. The zero-energy iso-
line should represent the locus of points at which fuel sloshing dissipates as much energy as the
aerodynamics induces onto the structure, and thus represents the LCO bifurcation obtained
directly from the energy map analysis (Ref. [83]). Note that the LCO bifurcation identified by
simulation is similar to the one obtained by energy consideration but it is shift of about 2 m/s
due the inertial effects of the fluid in the tank that anticipate the onset of flutter (as shown in
Fig. 3.11). Considering the dissipative nature of sloshing, the total energy exchanged between
structure and fluid before the flutter speed will always result in positive damping. Moreover,
as a result of the saturation of the dissipated energy, an unstable branch may result with
vertical asymptote at flutter speed. This a-priori post-critical analysis based on energy maps
shows that the neural-network-based ROM is capable to reproduce the behaviour of the slosh
dynamics when integrated in a complex aeroelastic computational environment.

3.1.3 Landing response analysis

The last analysis is performed considering landing condition with a reference free stream
velocity equal to U∞ = 150m/s and Mach M∞ = 0.43. The simplified landing modeling is
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(a) Aeroelastic energy map (b) Dissipated energy map by the sloshing forces

(c) Energy map of the full integrated system (with the LCOs)

Figure 3.12: Energy maps of the wing aerolastic system.
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accounted in modal coordinates by specializing the external forces f(ext) in Eq. 2.26:

f(ext) = b üzf (3.17)

where üzf is the vertical acceleration of the fuselage and therefore of a system moving according
with the wing. Moreover, the n-th component of the input vector b is obtained by:

bn =
Mac

2
i3 · ψψψn(xlg) −

ˆˆˆ
V
ρm i3 ·ψψψn dV (3.18)

where Mac/2 is the aircraft half mass, xlg is the position of the landing gear, ρm is the material
density, and V is the material volume. The first term in Eq. 3.18 represents the mutual force
between the landing gear and the ground, whereas the second term is the fictitious force given
by the deceleration of the wing reference system with respect to the ground.

The present simplified modeling is based on the following hypotheses: i) the vertical
acceleration of the landing gear is assumed equal to the fuselage vertical acceleration; ii)
there exists only a one way coupling between the dynamics of the fuselage and the wing
dynamics; iii) ground effects and high-lift devices are not accounted. Using an operational
landing acceleration measured at the fuselage of a typical aircraft, the analysis is conducted
for the two models taken into account. Figure 3.13(a) compares the wing tip response of the
sloshing fuel model with the frozen fuel model. Slosh dynamics provides a bit more damped
response with respect to the frozen fluid model. Moreover, Fig. 3.13(b) shows the response
of the dynamic sloshing forces.

(a) Tip vertical acceleration (b) Dynamic sloshing forces

Figure 3.13: Landing response analysis.
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Summary

A hybrid modeling was used to predict the aeroelastic/sloshing response of a wing prototype
model. The coefficients of the aeroelastic model were obtained by a standard linear aeroe-
lastic solver whilst a data-driven approach was used to obtain slosh dynamics which were
subsequently incorporated into the aeroelastic framework. The vertical sloshing dynamics
was considered using neural networks trained with experimental data from a scaled tank.
The neural-network based ROM was properly scaled for being integrated into the aeroelastic
system considering the current tank dimensions.

The results concerned the damping performance under pre-critical conditions as well as
the limit cycle oscillation caused by the sloshing. In fact, sloshing is the only nonlinear
phenomenon modeled in the present work and has proven to be effective in providing an
additional margin of stability in post-critical conditions. The characterisation of the limit
cycle bifurcation provides results in line with those originally presented in Refs. [98, 99] for a
simplified aeroelastic model in wind tunnel. Finally, the effect of sloshing in aircraft landing
was also investigated showing the increased damping of the structural response.

3.2 Linear and nonlinear sloshing integrated aeroelastic analy-
ses of a flying wing

This section presents the integration of both linear and nonlinear sloshing ROMs into a flex-
ible aircraft model, where flight dynamics and aeroelasticity are involved. It is assumed that
sloshing forces can be decomposed into a lateral part with linearised behavior and a vertical
part with extremely nonlinear behavior by neglecting their mutual interactions. The present
work mainly relies on the approach described in [100], where the fully coupled equation of
motion of the aircraft have been derived by assuming practical mean axes (PMA) constraints.
The structure is modeled using the finite element method (FEM), whereas the doublet lat-
tice method (DLM) is used to describe the unsteady aerodynamics (see Ref. [95]). Using
the rational polynomial function approximation, the unsteady aerodynamics is recast into a
pure differential expression that requires a new set of aerodynamic state space variables (see
Ref. [101]). The linear sloshing resembled in this analysis occurs during rotations or lateral
motions of the tank. Studies on the effects of lateral sloshing on the aeroelastic behaviour
of aircraft can be found in Ref. [24], where the lateral sloshing is modelled via mass-spring-
damper mechanical model, in [25] where an hydroelastic added-mass model is used, in [26]
where a linearized frequency domain (LFD) is employed, and in [27] where the an Equivalent
Mechanical Model for sloshing is used by showing the effect on aeroelastic and flight mechanics
stability as well. The reduced-order model used to describe linear sloshing in this study relies
on the analytical formulation provided in Ref. [2] and its further development in Ref. [15],
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according to which a realistic representation of linearised liquid dynamics inside containers
with simplified geometry can be approximated by an equivalent mechanical model, whose
parameters can be suitably related with the physical quantities obtained from the linearised
potential flow theory (Ref. [28]). The integration of linear sloshing, described by means of
an EMM, introduces additional state variables (analogous to aerodynamics), so representing
latero-rotational sloshing dynamics (see Appendix D for more details). Nonlinear vertical
sloshing, on the other hand, is a phenomenon caused by accelerations perpendicular to the
the liquid free surface, which interacts with the aeroelastic model by providing a nonlinear
force contribution that depends on the vertical excitation of the aircraft tanks. The vertical
sloshing dynamics is modeled with the neural-network-based NFIR model having 60 delay
lines and 20 neurons introduced in Sec. 2.2. The combined effect of linear and nonlinear
sloshing dynamics is modeled by adding the two contributions they make to the system. The
reference aircraft is the Body Freedom Flutter (BFF) (whose model is proposed in Ref. [79]
and a flutter suppression strategy also proposed in Ref. [80]) in two different cases or config-
urations. The first one has only one tank that is partially filled with a low density liquid and
placed beneath the aircraft center of mass whereas the second case has two rectangular tanks
symmetrically placed beneath the wings. Sloshing and frozen mass (in which liquid is just a
ballast) models are compared to quantify the sloshing effects on aircraft aeroelastic behav-
ior. Stability analyses show how the coupling between linear sloshing, aircraft aeroelasticity,
and flight dynamics contributes to modify the overall aircraft stability scenario. Nonlinear
response aeroelastic analyses provide that dynamic loads alleviation is achieved when vertical
(nonlinear) sloshing is also included in the overall aeroelastic model. Moreover, limit cycle
oscillations arise after the onset of flutter due to the dissipative characteristics of vertical
sloshing.

3.2.1 Flexible aircraft with sloshing integrated modeling

The present modeling is based on the formulation presented in Refs.[27, 100], in which the
rigid body degrees of freedom are associated with the so-called practical mean axes (PMAs),
characterised by having the PMA frame origin in the instantaneous center of mass and the
orientation of the principal axes invariant with respect the deformations. The linearised elastic
deflections are described as a combination of unconstrained aircraft mode shapes in the PMAs
thus relaxing the inertial formulation.

The equations of motion for the conservation of momentum and angular momentum and

107



3.2. Linear and nonlinear sloshing integrated aeroelastic analyses of a flying wing

the equations of the structural dynamics are given by:

m
dv

G

dt
= f

T

dh
G

dt
= m

G
(3.19)

mnq̈n + knqn = fn n = 1, . . . , Nm

where v
G

and h
G

are the centre of mass velocity and the angular momentum respectively, m
is the total mass, f

T
and m

G
are the aerodynamic force and moment, respectively, whereas

qn denotes the n-th modal coordinate, mn, kn, and fn are the n-th modal mass, stiffness
and generalized force and Nm is the number of flexible modes included in the analysis. The
equations of motion (3.19) are then recast with respect a body frame of reference and linearised
around a level flight aeroelastic trim condition:

m
dv

G

dt
= mv̇

G
+ ω × v

G
≈ m∆v̇

G
− vGe ×∆ω = ∆fT

dh
G

dt
=

dJω

dt
+ ω × Jω ≈ J∆ω̇ = ∆m

G

mn∆q̈n + kn∆qn = ∆fn n = 1, . . . , Nm

(3.20)

where J is the inertia tensor, and ω is the angular velocity. It is worth noting that, if a
linearization around a trimmed straight flight solution is performed, the inertial coupling
terms in Ref. [100] can be neglected.

The variables associated to a second order dynamics are grouped in the following vector:

∆η =
{
∆x

T

G
,∆Θ

T
,∆q

T
}T

(3.21)

where

∆x
G

= {∆x
G
, ∆y

G
, ∆z

G
}
T

∆Θ = {∆ϕ, ∆θ, ∆ψ}
T

(3.22)

are respectively the perturbation vectors of the center of mass coordinates in inertial frame of
reference and of the Euler angles. Moreover, the perturbation vector of the modal coordinates
is given by

∆q = {∆q1, . . . , ∆qNm}
T

(3.23)

Nevertheless, the equations of motion of the aircraft are expressed in a non inertial frame of
reference. Indeed, the following vector is defined

∆ν =
{
∆v

T

G
,∆ω

T
,∆q̇

T
}T

(3.24)
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where ∆v
G
= {∆u, ∆v, ∆w}

T
and ∆ω = {∆p, ∆q, ∆r}

T
are the translational and angular

velocities in the PMAs coordinate system, respectively. The linearised relation between ∆η

in Eq. (3.24) and ∆ν is expressed as

∆η̇ = ∆ν + T∗
1∆η (3.25)

with

T∗
1 =

 03×3 −V̂Ge 03×Nm

03×3 03×3 03×Nm

0Nm×3 0Nm×3 0Nm×Nm

 , V̂Ge =

0 0 0

0 0 −U∞

0 U∞ 0

 (3.26)

where 0•×• are zero matrices with suitable number of rows and columns. Equation 3.26 allows
to highlight the link between the variables expressed in the PMAs and those defined in the
inertial reference system (being T∗

1 a square matrix with dimension N = 6 + Nm). Taking
into account the external action of aerodynamics and sloshing dynamics, the system of Eqs.
(3.20) can be rewritten as follows:

M∆ν̇ + D∆ν + K∆η = e+ g + f(ext) (3.27)

where M, D and K are, respectively, the modal mass, damping and stiffness (diagonal) matrices
of the flexible aircraft, whereas e = [e1, e2, . . . , eN ]

T and g = [g1, g2, . . . , gN ]
T are, respectively,

the generalized aerodynamic and sloshing forces induced by the aircraft motion. These forces
are generally defined as projection of physical applied force fields (aerodynamics and sloshing)
on the assumed rigid and flexible mode shapes. In the present paper the wing body is assumed
to be locally rigid in the neighborhood of the tank (see Refs. [14, 23]) and therefore, the force
field projection becomes a scalar product (see later Eq. 2.29). The f(ext) is the vector of the
current external forcing terms like the gust excitation. The description of the aircraft motion
in the PMA non-inertial reference requires accounting for the projection of the weight force
on the aircraft body reference. Under the assumption of small perturbation with respect to
the trimmed configuration, such a contribution was modelled as an additional stiffness term
included inside K.

The generalised aerodynamic force vector is generally computed as a function of the re-
duced frequency k = ωb/U∞ (with b semi-chord and U∞ free stream velocity) and Mach
number M∞ domain (see Ref. [95]) as:

ẽ = qD Q(k,M∞)∆η̃ (3.28)

where Q(k,M∞) is the generalised aerodynamic forces matrix, qD is the dynamic pressure
and the symbol ˜ is used to represent the Laplace/Fourier transforms. For a fixed value of
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M∞, the same rational function approximation for unsteady aerodynamics presented in Eq.
3.4 is considered. Introducing the aerodynamic states vector a and exploiting the definition
of inverse Fourier transform, the aerodynamic forces can be recast in time domain as:

e = qD A0∆η + qD
b

U∞
A1∆ν + qD(

b

U∞
)2 A2∆ν̇ + qD Ca (3.29)

ȧ =
U∞
b

Pa+ B∆ν (3.30)

In this work, the effect of two different sloshing dynamics is considered. The first is
present when small lateral displacements and rotations are imposed on the tanks. In these
cases, the dynamics can be considered linear (Ref. [23]) and give rise to sloshing generalised
loads referred to as gl. The second is instead nonlinear, and its action gnl is triggered as a
result of large vertical perturbations imposed on the tanks. Thus, the generalised sloshing
forces vector g is composed as a sum of contributions g(i) of individual tanks:

g =

NT∑
i=1

g(i) =

NT∑
i=1

(
g
(i)
l + g

(i)
nl

)
(3.31)

with NT the number of tanks.
The linear contribution is due to the presence of lateral standing waves and is modelled

using equivalent mechanical models that allow the force and moment exerted by the liquid,
following the application of a small lateral displacement or rotation. The lateral sloshing
forces for each tank in Laplace domain are expressed by means of a generalised sloshing forces
matrix G(s)(i) as

g̃
(i)
l = Ḡ(s)(i)∆η̃ (3.32)

Appendix D provides the formulation of the linear lateral sloshing forces based on the ana-
lytical model (Ref. [2]), according with, the generalized sloshing forces can be recast as it
follows:

g̃
(i)
l = s2 Ā(i)

s ∆η̃ +
(
s2B̄(i)

s + C̄(i)
s

)
r̃(i) (3.33)

where the linear sloshing modal coordinates r̃(i) are introduced as

r̃(i) =

[(
s2I+ sD(i)

s +Ω2(i)
s

)−1 (
s2 B̄(i)

s + C̄(i)
s

)T]
∆η̃ (3.34)

and Ā
(i)
s , B̄

(i)
s , C̄

(i)
s ,D

(i)
s and Ω

2(i)
s are the coefficient matrices of the lateral sloshing operator. It

is worth to mention that Ω
2(i)
s and D̄

(i)
s are, respectively, the natural frequency and damping

modal coefficient matrices of the considered linear sloshing modes. The same representation
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of the sloshing force can be achieved by a linear frequency domain approach as in Ref. [23, 26].
The inverse Laplace transform of Eqs. 3.32 and 3.34 leads to

g
(i)
l = Ā(i)

s ∆η̈ + B̄(i)
s r̈ + C̄(i)

s r(i) (3.35)

r̈(i) + D(i)
s ṙ(i) + Ω2(i)

s r(i) = B̄(i)T
s ∆η̈ + C̄(i)T

s ∆η (3.36)

in which the second order dynamics of the sloshing modal coordinates is highlighted.
The nonlinear force contribution is instead related to the dynamic sloshing force ∆f

(i)
Sz

given by the relative acceleration of the liquid particles with respect to the i-th tank non-
inertial frame (see Ref. [81]). The n-th component of g

(i)
nl is the projection (following the

approximation previously discussed after Eq. 3.27) of the sloshing dynamic force on each n-th
rigid and elastic modal shape ψn as:

g
(i)
nln

= ψn(xTi) · i3∆f
(i)
Sz

(3.37)

where xTi is the geometrical centre of the i-th tank, i3 is the vertical unit vector of the inertial
frame of reference and ψn(xTi) correspond to the n-th column of matrix Z

(i)
t (defined in

Appendix D).
The formulation is implemented in Simulink® as illustrated in Fig. 3.3, creating a numer-

ical model combining a purely differential linear problem describing flight dynamics, aeroe-
lasticity and linear sloshing, and a data-driven model representing nonlinear vertical sloshing
dynamics. As for the wing prototype model, the nonlinear sloshing block contains the NFIR
model shown in Fig. 3.4 and appropriately scaled up following the procedure implemented in
Sec. 2.2.5. As will be shown in Sec. 3.2.2, in fact, the tanks mounted on the two reference
configurations turn out to have different dimensions to those of the box used to generate the
training data for the vertical sloshing reduced-order model. It is therefore necessary to use the
scaling law in order to use this model in the applications under consideration. Refs. [81, 86]
provide further details nonlinear reduced-order modeling based on neural network driven by
experimental data obtained with a suitable scaled tank. It is worth noting that the neural
network is fed with the tanks vertical velocity expressed in the inertial frame of reference and
provides an estimate of the already defined dynamic sloshing force ∆fSz .

3.2.2 Case Studies

The test cases analysed in this study are based on the finite element model (FEM) of the
Body-Freedom-Flutter (BFF), an unmanned flying-wing research aircraft model of total mass
M = 5.44Kg (without tanks), half-chord b = 0.2m, wing span equal to 3.048m and projected
wing surface area equal to 1.084m2. The model takes its name from its flutter mode involving
both vibrations and rigid body motion of the aircraft (Ref. [79]). The first six flexible modes,
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Figure 3.14: Flexible aircraft with linear and nonlinear sloshing modeling in Simulink®.

with their respective frequencies, are shown in Fig. 3.15. The effects of sloshing dynamics
on the aircraft are studied in two different configurations, one with a single tank under the
center of mass (see Fig. 3.16) and the other with two tanks symmetrically placed under the
wings (see Fig. 3.17). The geometric dimensions of the tank of case study 1 (half-filled with
a liquid with density ρ = 650kg/m3) are listed in Tab. 3.1 and are such that the total mass
of liquid contained is 25% of the structural mass of the aircraft. This configuration in Fig.
3.16 will be hereafter denoted as case study 1.

Table 3.1: Tank geometry - case study 1

Parameter Value (m)

side in direction x 0.18
side in direction y 0.18

h (height) 0.13
hf (filling level 50%) 0.065

In the present analysis, three sloshing modes have been considered in the linear lateral
analysis for both the dynamics along x and y (in plane dimensions). The natural frequencies
of linear sloshing are reported in Tab. 3.2 (when the tank detached from the structure).

The case study 2 was realised by considering two tanks created by halving the tank shown
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(a) f1 = 5.83 Hz (b) f2 = 8.83 Hz

(c) f3 = 13.45 Hz (d) f4 = 19.82 Hz

(e) f5 = 20.09 Hz (f) f6 = 23.72 Hz

Figure 3.15: Elastic mode shapes of the model. Captions indicate their natural frequencies.
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Figure 3.16: Configuration with one box shaped tank placed underneath the BFF center of mass

Table 3.2: Linear sloshing natural frequencies - case study 1

Mode number Direction Frequency (rad/s)

1,2 x, y 11.80
3,4 x, y 22.64
5,6 x, y 29.26

in Tab. 3.1 in the y-direction to ensure the same amount of liquid carried by the aircraft
(see Tab. 3.3). The natural frequencies of sloshing in this case are different depending on
the direction in the tanks plane being considered, as can be seen in Tab. 3.4. This implies
the presence of three modal coordinates describing the linear sloshing, referred to as r(i)1 , r(i)2

and r
(i)
3 , for both tanks. From a FEM modelling point of view, a node located at the tank

Figure 3.17: Configuration with two box shaped tanks placed under the BFF wings

geometrical center was created and attached to the aircraft structure by means of a rigid body
element. On the other hand, the small-disturbance unsteady aerodynamics is modeled via
the Doublet Lattice Method (DLM) available in MSC Nastran for unsteady linear aeroelastic
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Table 3.3: Tank geometry - case study 2

Parameter Value (m)

side in direction x 0.18
side in direction y 0.09

h (height) 0.13
hf (filling level 50%) 0.065

Table 3.4: Linear sloshing natural frequencies - case study 2

Mode number Direction Frequency (rad/s)

1 x 11.80
2 y 18.31
3 x 22.64
4 y 32.05
5 x 29.26
6 y 41.38

analysis (Ref. [95]). As can be seen in Fig. 3.14, linear sloshing was included in the same
block as the structural and flight dynamics model of the aircraft. Indeed, combining Eqs.
(3.27), (3.31) and (3.33) it is possible to obtain an augmented model with additional modal
variables represented precisely by the added state-space vector r.

3.2.3 Aeroelastic stability and response analyses

This section presents the stability and response analyses performed for the two configurations
presented in Sec. 3.2.2, highlighting the effects of lateral (linear) and vertical (nonlinear)
sloshing dynamics with respect to the case where the liquid is frozen (r = 0 and ∆fSz = 0).
The linearised aeroelastic system of the two case studies is used to evaluate the stability
scenario of the aircraft between 13m/s and 30m/s considering incompressible and sea level
flow conditions. On the other hand, gust response analyses at different velocities in the
neighbourhood of the flutter speed are performed to investigate the role of sloshing in damping
aircraft vibrations. Specifically, the following standard gust profile is considered for both case
studies:

wg(t) =


1
2wga

[
1− cos

(
2πU∞t
Lg

)]
if 0 < t <

Lg

U∞

0 if t ≥ Lg

U∞

(3.38)

where wga is the gust amplitude and b the chord length. The set value of the gust length
is Lg = 25 b. Spatially, the gust is assumed to be constant throughout the wing domain.
Four models will be compared for both case studies, namely the frozen fuel model, the lateral
(linear) sloshing model, the vertical (nonlinear) sloshing model, and the full sloshing model,
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in which both types of sloshing considered in this analysis are accounted.

Test case 1

The stability scenario of the aircraft model in the frozen liquid configuration (blue diamonds) is
compared in Fig. 3.18 with that in which lateral sloshing is considered in the formulation (red
squares). Figure 3.18(b) highlights the additional poles representing linear sloshing dynamics,
along with rigid-body dynamics. Lateral sloshing slightly worsens the stability of the aircraft
with respect to the frozen fuel case. In fact, the flutter speed UF slightly decreases from
18.95m/s to 18.8m/s. This corresponds to a slight change in the critical frequency ωF ,
which increases from 23.53 rad/s (3.74Hz) to 23.82 rad/s (3.79Hz). In both configurations,
the critical mode occurs due to the coupling between the short period mode and the first
vibration mode. The crossing of the imaginary axis occurs with the pole originating from
the branch of the first mode (see Fig. 3.18(a)). Furthermore, sloshing dynamics have a non-
negligible effect on dutch roll and phugoid, making the latter less stable and very close to the
imaginary axis. On the other hand, the higher frequency poles are only minimally affected
and show no particular changes compared to the frozen case. Two different flight conditions

(a) Root locus of the integrated system (b) Focus on the rigid body and sloshing modes

Figure 3.18: Root locus with linear sloshing - test case 1

are considered for the gust response analysis, that is U∞ = 18m/s (i.e., before the flutter
speed of the linear sloshing and the frozen fuel models), and U∞ = 19.35m/s (after flutter
onset). Moreover, the dependency of the vertical sloshing induced damping by the response
magnitude is investigated by taking into account different gust amplitudes. The first analysis
is performed at a free stream velocity of U∞ = 18m/s, with a gust intensity of wga = 2.5m/s.
Being slightly under pre-critical conditions (speed equal to 95% and 96% of the flutter speeds
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of the frozen and lateral sloshing models), the response is expected to be slightly damped.
Figure 3.19(a) compares the aircraft responses of the four considered models in terms of local
angle of attack (AoA = ∆w/U∞). Similarly, Fig. 3.19(b) shows the comparison in terms of the
response of the first dry vibration mode q1, whose values have meters as units when normalised
to unit displacement. A reasonable result is the ability of vertical sloshing dynamics to make
the aeroelastic response more damped than in the frozen case due to the sloshing impacts that
occur in the tank. It also leads to a change in the frequency of the response, which is lower
than in the frozen case. Linear sloshing does not introduce dissipative effects into the response,
but induces a slight increase in frequency (in the same way as the critical frequency). Figure
3.20 shows the time trends of the nonlinear dynamic sloshing force for the vertical and full
sloshing models. The forces almost overlap because the neural network-based reduced-order
model receives a similar tank velocity as input for both models. The particularly nonlinear
response in the first three cycles is caused by the impacts between the fluid and the tank
walls. Finally, Fig. 3.21 shows comparisons between the responses of the first two added
sloshing modes (in x-direction) in the linear and full sloshing models. The modes in question
do not appear to be influenced by aeroelastic or rigid-body dynamics, but solely by the initial
condition imposed by the external gust. The vertical sloshing effect dampens the second mode
response for a few seconds, before becoming irrelevant. Sloshing modes in the y-direction are
not affected by the gust and therefore do not exhibit active dynamics. The response analysis
is then performed at U∞ = 19.35m/s in developed flutter condition with a gust amplitude of
wga = 0.3m/s. Being under flutter conditions (the speed is 2% and 3% higher than flutter
speeds of the frozen and lateral sloshing models, respectively), the response is expected to be
unstable with exponential envelope. The local angle of attack and the first mode responses
are shown in Figs. 3.22(a) and 3.22(b) comparing the effects that the four considered models
have on the flying wing post-critical response. The linear sloshing model as well as the frozen
fuel configuration results in a unstable response. In contrast, vertical sloshing helps prevent
the response from growing indefinitely, favoring the onset of limit cycle oscillations (LCOs).
This behaviour is determined by the nature of the nonlinear sloshing forces, which become
highly dissipative when the acceleration of the tank increases. In the case of a combined
effect of the two sloshing dynamics, the oscillation amplitude is greater than in the case of
only vertical sloshing.

Test case 2

Figure 3.23 shows the results of the stability analysis conducted for the second case study,
both for the frozen model (blue diamonds) and for the linear sloshing model (red squares).
The stability scenario of the frozen model is different from that of test case 1. In fact, to
ensure the static stability of the two-tank configuration, it was necessary to place them under
the wings with some offset in the longitudinal direction. Such a tank location emphasizes the
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(a) Local angle of attack

(b) First structural mode

Figure 3.19: U∞ = 18m/s and wga = 2.5m/s - test case 1

Figure 3.20: Dynamic sloshing force for U∞ = 18m/s and wga = 2.5m/s - test case 1
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(a) First mode (dir. x) (b) Second mode (dir. x)

Figure 3.21: Sloshing modes for U∞ = 18m/s and wga = 2.5m/s - test case 1

(a) Local angle of attack

(b) First structural mode

Figure 3.22: U∞ = 19.35m/s and wga = 0.3m/s - test case 1
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coupling between the torsional mode (fourth mode) and the anti-symmetrical bending mode
(second mode). For the frozen model, flutter instability occurs at U∞ = UF = 20.86m/s

with the branch that originates from the short period (see Fig. 3.23(a)), whereas the flutter
frequency is ωF = 22.7 rad/s (3.61Hz). The critical mode occurs due to thecoupling between
the the short period and first vibration mode. Note also that the third mode becomes unsta-
ble at a flight speed of U∞ = 22.65m/s, which corresponds to the a frequency value equal
to 48.22 rad/s (7.67Hz). Lateral sloshing introduces poles that go to significantly affect the
dynamics of the aircraft. Figure 3.23(b) highlights rigid body dynamics and the added dynam-
ics of linear sloshing. One of the latter crosses the imaginary axis at a low velocity equal to
U∞ = 16.2m/s, making the system slightly unstable. The presence of the sloshing dynamics
makes the body freedom flutter pole (short period mode) more stable augmenting the flutter
margin to U∞ = 21.71m/s (ω = 23.12 rad/s). However, there is also a deterioration in the
stability of the third mode, which crosses the imaginary axis at the speed of U∞ = 20.94m/s

(ω = 49.13 rad/s) giving rise to a critical bending-torsional mode. Sloshing dynamics also
have an impact at low frequency, also going to affect both the frequency and damping of
dutch roll and phugoid.

(a) Root locus of the integrated system (b) Focus on the rigid body and sloshing modes

Figure 3.23: Root locus with linear sloshing - test case 2

Different aeroelastic analyses are considered by varying the speed and gust amplitude.
The first analysis is performed at a free stream velocity of U∞ = 18m/s (speed equal to 86%
and 83% of the body freedom flutter mode critical speeds of the frozen and lateral sloshing
models, respectively), with a gust intensity of wga = 3m/s. In this condition (see Fig.
3.23(b)) the model with linear sloshing is unstable due to the crossing of the imaginary axis
by a sloshing pole, whilst the frozen fuel model is still stable. The local angle of attack and
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(a) Local angle of attack

(b) First structural mode

Figure 3.24: U∞ = 18m/s and wga = 3m/s - test case 2

the first structural mode responses are respectively shown in Fig. 3.24(a) and Fig. 3.24(b),
comparing the four different models taken into account. Vertical sloshing again contributes to
damp the responses of both quantities shown also providing an increase in response frequency.
As can be seen from the structural response, linear sloshing provides a damping contribution,
which however is not as clear as in the local angle of attack. This makes the full sloshing
model the one with the most damped response for the first bending mode. The tail of the
response is featured by the trigger of the unstable sloshing dynamics that has small effect also
in the structural and flight dynamics components (see inset plots in Fig. 3.24). Albeit very
slowly, vertical sloshing succeeds in containing this instability. Increasing oscillations become
unphysical as they are associated with sloshing mode. This means that when accounting
the nonlinear behaviour of the lateral sloshing (not considered in this work), this dynamics
will be limited in oscillation amplitudes. The second gust response analysis is performed at
U∞ = 21.1m/s (speed that is 1% higher than the flutter speed of the frozen fuel model and
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(a) Local angle of attack

(b) First structural mode

Figure 3.25: U∞ = 21.1m/s and wga = 0.2m/s - test case 2

97% of the body freedom flutter mode critical speed of the lateral sloshing model), with a
gust intensity of wga = 0.2m/s. In this flight condition, the model with linear sloshing is
unstable because of the critical bending-torsional mode. Figure 3.25 compares the responses
of the four considered models in terms of local angle of attack and Fig. 3.25(b) shows the
comparison in terms of the response of modal variable associated to the first bending mode.
The frozen case results in a unstable response, whereas the case of vertical sloshing presents a
damped response. The model with lateral sloshing is in unstable condition due to the critical
bending-torsional antisymmetric mode. However, the applied gust, as symmetric input, is
not able to trigger this dynamics. In addition, the body freedom flutter occurs at a higher
velocity and this leads to a more damped response. The addition of vertical sloshing, makes
the response of the full sloshing case furtherly damped. The last analysis analysis is performed
in body freedom flutter condition at U∞ = 22.5m/s (the speed is 4% and 8% higher than body
freedom flutter mode critical speeds of the frozen and lateral sloshing models, respectively)
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(a) Local angle of attack

(b) First structural mode

Figure 3.26: U∞ = 22.5m/s and wga = 0.2m/s - test case 2

and wga = 0.2m/s. The local angle of attack and the first mode responses are shown in Figs.
3.26(a) and 3.26(b) comparing the four considered cases. The linear sloshing model leads to
a flutter response with divergent exponential envelope. In contrast, vertical sloshing helps
prevent the response from growing indefinitely, favoring the onset of limit cycle oscillations
(LCOs). In the full sloshing, the oscillations are damped completely by vertical sloshing and
this is due to the additional margin of stability provided by lateral sloshing dynamics.

Summary

In this work the effects of linear and nonlinear sloshing dynamics of fuel inside the tanks
on the stability and response of a flexible flying wing model involving flight dynamics and
aeroelasticity were studied. The aircraft equations of motion were linearised around a station-
ary level flight trim condition and recast in time-domain state-space form, thus obtaining a
aeroelastic model that includes rigid-body, elastic, and aerodynamic states. Furthermore, the
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combined effect of linear and nonlinear sloshing dynamics was modelled by adding directly the
two lateral and vertical contributions, respectively, to the aeroelastic system. Linear sloshing
was described using an equivalent mechanical model (EMM) capable of restoring the actions
exerted by the liquid following latero-rotational perturbations of the tank. Similarly to the
modelling of unsteady aerodynamics, the EMM introduced additional states related to the
liquid dynamics. Nonlinear vertical sloshing is a phenomenon caused by accelerations perpen-
dicular to the the liquid free surface. Rather than providing a coupling between the dynamics
of the free surface and the rest of the system, it can be considered as a kind of mechanical
energy sink. Thus, vertical sloshing dynamics was modelled with a neural network-based
ROM driven by experimental data. Two case studies were considered, one with one tank
placed beneath the aircraft center of mass and another with two tanks simmetrically placed
underneath the wings. For the two case studies, the effects of the sloshing dynamics on the
stability and response were investigated comparing the cases in which the liquid is assumed
as a frozen mass and the cases in which the liquid is allowed to slosh freely. The results
showed how linear sloshing dynamics can significantly influence aircraft stability as a result
of their coupling with aeroelastic dynamics. Gust response analyses revealed the performance
of vertical sloshing to provide additional damping in both pre-critical and post-critical condi-
tions. Indeed, the presence of limit-cycle oscillations after the flutter guarantees an enhanced
margin of stability for the system. The modeling presented will allow to verify the effects
of sloshing on the stability and response of commercial aircraft, including next-generation
configurations that may include large tanks within the fuselage. In addition, the ease with
which the presented sloshing reduced order models are scalable will enable to use such models
in preliminary aircraft design phase.
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This thesis is focused on the study and reduced-order modeling of nonlinear sloshing effects
caused by large aircraft tank motions in a direction perpendicular to the free liquid surface.
These effects were placed in the category referred to as vertical sloshing, appropriately de-
fined within the thesis to distinguish different sloshing dynamics according to the type of tank
movement. Aircraft are generally subjected to loads caused by gusts, turbulence and landing
impacts that excite the wing tanks in a predominantly vertical direction. This type of sloshing
results in a noticeable increase in structural damping, which, however, is not taken into ac-
count in the design phase of a modern aircraft. The identification and study of such dissipative
effects may enable the development of less conservative aircraft configurations in the future,
allowing for increasingly lighter structures and reduced environmental impact. The thesis
proposed a combined experimental and numerical approach aimed at obtaining reduced-order
models for vertical sloshing, to be subsequently integrated into aeroelastic applications for the
assessment of their effects on overall performance.

The first step was to create an equivalent nonlinear mechanical model - referred to as
bouncing ball - capable of emulating the mechanisms of liquid impact with the tank ceiling,
as these are primarily responsible for the additional dissipation caused by sloshing. Data
measured in time-decaying transient tests of a single-degree-of-freedom sloshing experiment -
suitably built to isolate vertical dynamics - were used to identify the model. Despite its ability
to reproduce sloshing-induced damping at the frequency for which it has been identified, the
bouncing ball model cannot accurately estimate dissipation for different frequencies.

Confirmation of this was provided by an experimental campaign performed to characterise
the non-linear dissipative behaviour of vertical sloshing for different fill levels. Specifically,
a controlled electrodynamic shaker was employed to provide vertical displacement by means
of sine-sweep excitation to a partially filled box-shaped tank. This configuration treats the
sloshing tank as an isolated system in order to properly investigate vertical sloshing. By
exploiting vertical harmonic motion, it has been shown how the frequency and amplitude of
the imposed excitation significantly influence the dissipative capabilities of the sloshing liquid.

The same experiment was used to create a database in the frequency and amplitude
domain for the identification of a neural-network-based reduced-order model. Vertical sloshing
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dynamics can be considered as a black box process, which resulted in a surrogate model
driven only by input/output signals (tank velocity and sloshing force, respectively). To avoid
overfitting in the training process, a validation data set, obtained by performing an additional
experimental test with variable frequency and amplitude, was also considered. A neural-
network-based Nonlinear Finite Impulse Response model (NFIR), resulting from a sensitivity
analysis aimed at finding the most performing network, was selected to construct the surrogate
model for vertical sloshing. An experimental validation procedure of the identified model as
integrated to a flexible structure was also performed. To this end, a specific experimental
setup consisting of a cantilever beam with a tank mounted at its free end was realized. The
latter is the same as that used to generate the training data. By performing free response and
seismic tests, FSI experimental data were collected to be used as a benchmark for validating
the nonlinear identified ROM when integrated in an equivalent virtual model to account for
the effects of vertical sloshing. The comparisons for the free response case in the numerical
simulation including the identified ROM for the sloshing tank component showed that the
time histories of the numerical acceleration at the end of the beam and sloshing forces are in
good agreement with the experimental data provided by the FSI coupled experiment. The
estimated instantaneous damping ratio validates the good capabilities of the identified model
to accurately reproduce the dissipative behavior induced by vertical sloshing. The random
seismic excitation for the considered cantilever beam with sloshing tank at tip also yielded
good results and showed a satisfactory level of accuracy for the time response in each of the
considered excitation cases. Indeed, by comparing the estimated damping coefficients , it was
possible to assess the neural network capability to provide the same levels of dissipation as
experimentally given by vertical sloshing in random FSI testing.

The experimentally validated reduced-order model was used in two different aeroelastic
applications - wing prototype and flying wing model - to assess the dissipative effects induced
by vertical sloshing on the response. This was made possible by the definition of a scaling law,
which allowed the data-driven ROM to be used even in systems employing tanks with different
dimensions. A scaling process is performed by considering tank height as the main dimension
and assuming that physical liquid parameters such as Reynolds and Bond numbers play a sec-
ondary role to operational parameters (such as Froude and non-dimensional frequency). Both
case studies were modeled in Simulink®, resulting in a hybrid model combining a differential
linear problem (for aeroelasticity, flight dynamics, and linear sloshing) with a data-driven
model (nonlinear vertical sloshing). Response analyses under pre- and post-critical aeroe-
lastic conditions showed how the vertical sloshing dynamics helps to alleviate the dynamic
loads following severe gusts while providing limit cycle oscillation beyond the flutter margin.
In the specific case of the wing prototype, a post-critical energy analysis was conducted to
demonstrate the neural-network-based ROM capability to reproduce the dissipative behaviour
of the slosh dynamics when integrated in a complex aeroelastic computational environment.
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Moreover, vertical sloshing is able to provide a limit cycle response up to a velocity which
is slightly greater than the linear flutter speed stability margin. As for the flying wing, the
combined effect of linear and nonlinear sloshing dynamics was modeled by adding directly the
two lateral and vertical contributions, respectively, to the aeroelastic system. Linear sloshing
was described using an equivalent mechanical model capable of restoring the actions exerted
by the liquid following latero-rotational perturbations of the tank. Similarly to the modeling
applied to unsteady aerodynamics for linear aeroelastic applications, the EMM introduced
additional states related to the liquid dynamics. Stability analyses showed how linear slosh-
ing dynamics can significantly influence aircraft stability as a result of their coupling with
aeroelastic and rigid body dynamics.

Future possible developments to the present thesis activity could include a plan to further
study sloshing and its interaction with aircraft structures. The sensitivity of the aspect ratios,
shape and number of degrees of freedom to be considered for the synthesis of the sloshing
ROMs will be investigated to assess the goodness of the assumptions that were made in
the scaling process. One of the aims is to characterise the dissipation induced by sloshing
in the presence of combined vertical-rotational motion and evaluate if it is consistent with
that obtained in the case of purely vertical motion. This analysis has a key role because
wing tanks may exhibit local rotations due to wing bending as well as centrifugal effects
due to shortening present in the realistic nonlinear wing bending deformation. Thus, it
should be understood whether the purely vertical sloshing category is quite representative
of what typically occurs in this type of application. Following this experimental analysis,
it will become clear whether the surrogate models identified for purely vertical sloshing can
also be used to accurately estimate dissipation in the presence of combined vertical-lateral-
rotational violent tank motion. Further developments on the modeling side will include the
improvement of the neural-network-based model performances by performing training with
stochastic inputs in order to account for multi-harmonic responses. With the support of high-
fidelity CFD codes, it will also be possible to create richer data sets, covering a large space in
the frequency and amplitude domain in order to simulate large gust scenarios as requested by
aircraft certification authorities. In addition, the characterisation of cylindrical or capsular
shaped tanks could facilitate the generation of reduced-order models for sloshing of alternative
fuels such as hydrogen inside tanks placed in the fuselage as envisioned for some classes of
future generation green aircraft.
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Appendix A

Damping characterisation for linear
harmonic oscillators

Consider a Mass-Spring-Damper linear system excited by a force F (t)

mẍ(t) + cẋ(t) + kx(t) = F (t) (A.1)

x(0) = 0

ẋ(0) = 0

Dividing by m (indeed, only 2 are the necessary parameters for describing the system, like
natural frequency and damping ratio) and defining:

ωn :=
√
k/m, d = ζ := c/(2

√
km) (A.2)

one has

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) =

F (t)

m
(A.3)

x(0) = 0

ẋ(0) = 0

Considering an harmonic excitation

F (t) = A sin(Ωt) with Ω = 2πf (A.4)

the steady state harmonic response of the system reads

x(t) = |B(Ω)| sin (Ωt+ χ(Ω)) (A.5)
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with1

|B(Ω)| = A/m√
(ω2

n − Ω2)2 + 4ζ2ω2
nΩ

2
and χ (Ω) = arctan

(
2ζωnΩ

Ω2 − ω2
n

)
(A.8)

In Figure A.1 the classic plots below show the |B| and χ as function of Ω/ωn = f/fn for
different damping coefficients ζ.

Figure A.1: Amplitude and phase of a standard harmonic damped oscillator system

The velocity can be calculated as (derivative of the displacement):

ẋ(t) = Ω |B(Ω)| cos (Ωt+ χ(Ω)) (A.9)

For the work done in a time cycle T = 1/f in steady harmonic motion (see Fig. A.2), using
Eq. A.4 and Eq. A.9 for the equation for the velocity, we have:

Wcycle =

˛
cycle

F (t)dx =

ˆ T=1/f

0
F (τ) ẋ(τ)dτ =

=

ˆ T=1/f

0
[ΩA |B(Ω)| sin(Ωτ) cos (Ωτ + χ(Ω))] dτ =

= −πA |B(Ω)| sin [χ(Ω)] (A.10)

1Note also that, by the standard theory, one can also obtain that

sinχ =
−cΩ/m√

(ω2
n − Ω2)2 + 4ζ2ω2

nΩ2
=

−2ωnΩζ√
(ω2

n − Ω2)2 + 4ζ2ω2
nΩ2

(A.6)

cosχ =
ω2
n − Ω2√

(ω2
n − Ω2)2 + 4ζ2ω2

nΩ2
(A.7)
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Figure A.2: Work performed by F (t) force in a cycle with time period T = 1/f at steady-harmonic
regime

Equation A.10 shows that the work done by the force in a cycle is maximum at resonance,
since |B(Ω)| is maximised and χ(Ω) is 90 degrees. Note also that the dissipative conditions
are symmetric in the neighbourhood of the resonance frequency since the function |B(Ω)| has
here a local maximum (see Fig. A.1) and χ(Ω) is a locally linear function for any ζ with value
around 90o and, therefore, sin[χ(Ω)] in Eq. A.10 is also symmetric in the neighbourhood of
the resonance.
Considering the first equation of motion, multiplying by the displacement x(t) and integrating
during a cycle, we get:

˛
cycle

[mẍ(τ) + cẋ(τ) + kx(τ) ] dx =

˛
cycle

F (τ)dx (A.11)

where the right-hand-side has already been calculated. Working on the first and third terms
on the left-hand side, we have in harmonic motion, respectively:

˛
cycle

mẍ(τ) dx =

ˆ T=1/f

0

1

2
m
d
(
ẋ2
)

dτ
dτ =

1

2
m

ˆ T=1/f

0
d
(
ẋ2
)
= 0

and
˛
cycle

kx(τ) dx =
1

2
k

˛
cycle

d
(
x2
)
= 0

Thus, substituting the above equations into Eq. A.11, we have:

Wcycle =

˛
cycle

F (τ)dx =

˛
cycle

cẋ(τ)dx = −πA |B(Ω)| sin [χ(Ω)] (A.12)

which implies that the work done by the exciting force in a harmonic cycle is equal to the
dissipation due to the viscous forces. Indeed, this can be further demonstrated. If one develop
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the above integral, one can identically obtain (see Eq. A.9)

˛
cycle

cẋ(τ)dx = cΩ2|B(Ω)|2
ˆ T=1/f

0
cos2 (Ωτ + χ(Ω)) dτ = c πΩ |B(Ω)|2

Indeed, by substituting into the previous formula the value of coefficient c as obtained from
Eq. A.6, one obtains, consistently with Eq. A.10, what follows

˛
cycle

cẋ(τ)dx = −πA |B(Ω)| sin [χ(Ω)]

It is worth to pointing out that the dissipative model considered here is simple, in that
the force is assumed to be proportional to the velocity:

fD(t) = cẋ(t) = 2ζ
√
km ẋ(t) = 2mζωn ẋ(t) (A.13)

However, the conclusions provided by Eq. A.12 are not limited to this kind o damping-force
model.

Listed next are the parameters that can be used to define or quantify dissipation in a
dynamical system undergoing a harmonic motion:

⋆ Damping Capacity : Ld

Dissipated energy in a cycle by the damper or a dissipative force:

Ld :=

˛
cycle

fD dx (A.14)

⋆ Specific Damping Capacity : D
Ratio between the damping capacity Ld and the maximum energy of the overall system
in a periodic motion Umax

D :=
Ld

Umax
(A.15)

⋆ Loss Factor : η
Specific damping capacity per radian

η :=
D

2π
=

Ld

2πUmax
(A.16)

So, in a harmonic motion is possible to identify a dissipation metric by exploiting the
loss factor. However, it is essential to make a distinction between linear systems and nonlin-
ear systems such as vertical sloshing. Indeed, for linear systems, the loss factor is a global
characteristic, mainly related to the dissipation capabilities of the system. While for non-
linear systems, it can be considered as a local quantity, or in other terms, a quantity strictly
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dependent on the imposed harmonic motion.
Selecting the loss factor as the most representative nondimensional parameter of dissi-

pation in harmonic motion, we go on to derive this parameter for two different dissipative
models: linear viscous model and hysteretic model.

Viscous damping model

Consider the Mass-Spring-Damper linear system already discussed in previous sections

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) =

A

m
sin(Ωt) (A.17)

where the dissipative model is characterized by having a force defined as that in Eq.(A.13).
The steady state harmonic response and velocity of this system reads

x(t) = |B(Ω)| sin (Ωt+ χ(Ω))

ẋ(t) = Ω |B(Ω)| cos (Ωt+ χ(Ω))

(A.18)

where |B(Ω)| and χ(Ω) are expressed as in Eq.(A.8).
The damping capacity Ld is therefore expressed as follows

Ld :=

˛
cycle

fD dx =

ˆ t+T

t
fD ẋ(τ)dτ =

ˆ t+T

t
(2mζωn ẋ) ẋdτ =

=

ˆ t+T

t
2mζωnΩ

2 |B(Ω)|2 cos2 (Ωτ + χ(Ω)) dτ =

= 2mζωnΩ
2 |B(Ω)|2

ˆ t+T

t

1 + cos [2 (Ωτ + χ(Ω))]

2
dτ = mζωnΩ

2 |B(Ω)|2 T =

= 2πmζωnΩ |B(Ω)|2 (A.19)

The maximum energy in a periodic motion Umax is defined as the maximum elastic energy

Umax =
1

2
kX2

0 =
1

2
k|B(Ω)|2 (A.20)

where X0 is the maximum amplitude oscillation, that is equal to |B(Ω)| at permanent
sinusoidal regime. So, the specific damping capacity D is

D :=
Ld

Umax
=

2πmζωnΩ |B(Ω)|2
1
2k|B(Ω)|2

=
4πζωnΩ

ω2
n

= 4πζ
Ω

ωn
(A.21)
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Dividing the specific damping capacity by 2π, it is possible to obtain the loss factor η

η :=
D

2π
= 2ζ

Ω

ωn
(A.22)

It is worth emphasising that, in resonance condition (Ω = ωn), the loss factor is twice bigger
than the damping ratio ζ.

Hysteretic damping model

Consider a system with a single degree of freedom having a hysteretic damping model which,
for a harmonic motion, can be written in the frequency domain as

(
−mΩ2 + j h+ k

)
x̃(Ω) = F̃ (Ω) (A.23)

where the term jh x̃(Ω) is representative of the dissipative force f̃Dhys
and F̃ (Ω) is the

harmonic excitation (see Eq.(A.4)). Defining the coefficient η̄ as the ratio between h and k,
the model expressed in (A.23) can be reformulated as

m
[
−Ω2 + (1 + jη̄)ω2

n

]
x̃(Ω) = F̃ (Ω) (A.24)

In this case, the steady state harmonic response and velocity of this system reads
x(t) = |Bhys(Ω)| sin (Ωt+ χhys(Ω))

ẋ(t) = Ω |Bhys(Ω)| cos (Ωt+ χhys(Ω))

(A.25)

where |Bhys(Ω)| and χhys(Ω) are expressed as follows

|Bhys(Ω)| =
A/m√

(ω2
n − Ω2)2 + η̄2ω4

n

and χhys (Ω) = arctan

(
η̄ ω2

n

Ω2 − ω2
n

)
(A.26)

The damping capacity Ldhys is now expressed as follows

Ldhys :=

˛
cycle

fDhys
dx =

ˆ t+T

t
fDhys

ẋ(τ)dτ =

ˆ t+T

t

(
h

Ω
ẋ

)
ẋdτ =

=
h

Ω

ˆ t+T

t
Ω2 |Bhys(Ω)|2 cos2 (Ωτ + χhys(Ω)) dτ =

= hΩ|Bhys(Ω)|2
ˆ t+T

t

1 + cos [2 (Ωτ + χ(Ω))]

2
dτ = η̄kΩ|Bhys(Ω)|2

T

2
=

= πη̄k|Bhys(Ω)|2 (A.27)
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The maximum energy Umax is again defined as the maximum elastic energy

Umax =
1

2
kX2

0 =
1

2
k|Bhys(Ω)|2 (A.28)

So, the specific damping capacity Dhys is

Dhys :=
Ldhys

Umax
=
πη̄k|Bhys(Ω)|2
1
2k|Bhys(Ω)|2

= 2πη̄ (A.29)

Dividing the specific damping capacity by 2π, it is possible to obtain the loss factor ηhys

ηhys :=
Dhys

2π
= η̄ (A.30)

Therefore, in this case the loss factor coincides with the hysteretic damping coefficient η̄ and
it does not depend by the excitation frequency.
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Artificial neural networks (ANN)

Artificial neural network can be seen as a parallel distributed processors made up of the so
called neurons (or nodes): simple processing units, having the natural capability of storing
accumulated knowledge, and then, make it available for subsequent use. In particular, knowl-
edge is acquired by the network from its environment through a learning process, and then
stored by synaptic weights. Due to their useful properties and capabilities (Ref. [49]), neural
networks are increasingly used in nonlinear system identification. Indeed, they are a powerful
tool for approximating nonlinear dynamic systems, even when the system structure is un-
known and only input–output data are available, thus allowing a sort of generalized black-box
modeling. This appendix describes the structure of neural networks for static modeling.

To talk about nonlinear static models as neural networks, it is necessary to introduce a
fundamental concept on which they are based, which, in the context of systems modeling,
is called the basis function formulation. Static nonlinear models perform a mapping from
p inputs xi contained in the vector x = [x1 x2 · · ·xp]T to r outputs yj of the vector y =

[y1 y2 · · · yr]T . Considering for the sake of simplicity a static nonlinear model with only one
output (thus a MISO model), it follows that it can be described by the following equation:

ŷ = g (x) (B.1)

being g(·) the nonlinear function that defines the mapping from the p inputs xi to the single
output denoted as ŷ. Note that the first member of Eq. B.1 is different from the true output
y, precisely because the mapping is only able to provide an estimate of it.
From all possible realizations of this function g(·), almost all alternatives of practical interest
can be written in the following basis function formulation:

ŷ =
M∑
i=0

θiΦi

(
x,θ

(n)
i

)
with Φ0(·) = 1 (B.2)
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The output y is modeled as a weighted sum of M basis functions Φi(·). The basis functions
are weighted with the linear parameters θi, and they depend on the inputs x and a set of non-
linear parameters gathered in vector θ(n)i . In order to realize a nonlinear mapping, the basis
functions have to be nonlinear. Thus, the parameters in θ(n)i on which the basis functions
depend are necessarily nonlinear. Often models incorporate an offset parameter (sometimes
called “bias”) that adjusts the operating point. Such an offset can be included in the basis
function formulation by the introduction of a “dummy” basis function Φ0(·), which is always
equal to 1. The basis function formulations can be illustrated as the network shown in Fig.
B.1. Generally, the basis functions Φi(·) can be of different type for each node. If all basis
functions are of the same type and differ only in their parameters, the network is called an
artificial neural network (ANN) or, for short, a neural network (NN). Then the nodes of the
network in Fig. B.1 are called neurons (or nodes). In neural network terminology, the struc-

Figure B.1: Network of basis functions Φi(·)

ture shown in Fig. B.1 is described as follows. The node at the output is called the output
neuron, and all output neurons together are called the output layer (here only a single output
is considered, so the output layer consists only of one neuron). Each of the M nodes in the
center that realizes a basis function is called the hidden layer neuron, and all these neurons
together are called the hidden layer. Finally, the inputs are sometimes denoted as input neu-
rons, and all of them together are called the input layer. However, these neurons only fan out
the inputs to all hidden layer neurons and do not carry out any real calculations. For a neural
network, the linear parameters associated with the output neuron are called output weights:
θi = wi.
The output neuron is usually a linear combination of the hidden layer neurons (basis func-
tions) Φi(·) with an additional offset w0, which is sometimes called “bias”. Each hidden layer
neuron output is weighted with its corresponding weight. The two most common neural net-
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work architectures are the multilayer perceptron (MLP) and the radial basis function (RBF)
network.

The basis functions Φi(·) are generally multidimensional, i.e., their dimensionality is
defined by the number of inputs p. For all neural network approaches and many other
model architectures, however, the multivariate basis functions are constructed by simple one-
dimensional functions. In the neural network context, the one-dimensional function is called
the activation function. Note that the activation function that maps the scalar x̃ to the neuron
output ỹ is denoted in the following by h(·). In contrast, the basis function Φ(·) characterizes
the multidimensional mapping from the neuron inputs to the neuron output and thus depends
on the construction mechanism. MLP and RBF networks differ mainly on the grounds of this
construction mechanism.

B.1 Radial basis function (RBF) networks

Figure B.2: The i-th hidden neuron of an RBF network

Figure B.2 shows a neuron of an RBF network. Its operation can be split into two parts.
In the first part, the distance of the input vector x = [x1 x2 · · ·xp]T to the center vector
wi = [wi1wi2 · · ·wip]

T with respect to the covariance matrix Σi is calculated. This is the
radial construction mechanism. In the second part, this scalar distance x̃ is transformed by
the nonlinear activation function h(x̃). The activation function is usually chosen to possess
local character and a maximum at x̃ = 0. Typical choices for the activation function are the
Gaussian function like

h(x̃) = e−x̃2
(B.3)

The distance x̃i is calculated with help of the center wi and inverse covariance matrix Σ−1
i ,

which are the hidden layer parameters of the i-th RBF neuron

x̃i = ∥x− wi∥Σi
=

√
(x− wi)

T Σ−1
i (x− wi) (B.4)
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Thus, the basis functions Φi(·) of a Gaussian RBF network are

Φi

(
x,θ

(n)
i

)
= exp

(
−∥x− wi∥2Σi

)
(B.5)

where the hidden layer parameter vector θ(n)i consists of the coordinates of the center (weights)
vector wi and the entries of the inverse covariance matrix Σ−1

i . For simplicity, we will always
consider RBF networks with the inverse covariance matrix equal to the identity matrix Σ−1

i =

Ii. If several RBF neurons are used in parallel and are connected to an output neuron, the
radial basis function network is obtained (see Fig. B.3). In basis function formulation, the
RBF network can be written as

ŷ =

M∑
i=0

wiΦi (∥x− wi∥Σi
) with Φ0 = 1 (B.6)

Figure B.3: Radial basis function (RBF) network

with the output layer weights wi. The hidden layer parameters contain the center vector
wi , which represents the position of the i-th basis function, and the inverse covariance matrix
Σ−1
i , which represents the widths and rotations of the i-th basis function. The total number

of parameters of an RBF network depends on the Σ−1
i . However, as already mentioned,

this matrix will be assumed to be the same as the identity matrix. So it does not generate
any additional parameters. The number of output weights is M + 1 and the number of
center coordinates is Mp. Then, the total number of parameters of an RBF network becomes
(Mp + M + 1), where M is the number of hidden layer neurons and p is the number of
inputs. Like the MLP, an RBF network is a universal approximator (see Refs. [88], [102]).
Contrary to the MLP, multiple hidden layers do not make much sense for an RBF network.
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B.1. Radial basis function (RBF) networks

In conclusion, an RBF network consists of three types of parameters, output layer weights wi,
centers (or hidden layer weights) wi and standard deviations (nonlinear elements of the matrix
Σ−1
i ). These parameters must be determined following an optimisation or training process

in order to obtain an RBF neural network model capable of estimating an output ŷ that is
as accurate as possible. The training of neural networks is generally performed using the
backpropagation algorithm. This method consists of calculating the gradients of the output
of the neural network with respect to its parameters (hence, its weights). There are several
versions of this algorithm, and among them are variants that also allow for the inclusion of
time dependency for dynamic models (namely, backpropagation through time).

Matlab® also allows the use of a variant of the function defined in Eq. B.3 which is called
the normalised radial basis function. This function is equivalent to the classic radial basis
one, except that output vectors are normalised by dividing by the sum of the pre-normalised
values (see Ref. [103]). In basis function formulation, the normalised radial basis function
(NRBF) network can be written as

ŷ =
M∑
i=1

wi Φ̃i

(
x,θ

(n)
i

)
=

M∑
i=1

wi

(
Φi (∥x− wi∥Σi

)∑M
j=1Φj

(
∥x− wj∥Σj

)) with
M∑
i=1

Φ̃i (·) = 1 (B.7)

It overcome some of the shortcomings of RBF networks, such as the lowering of interpo-
lating capabilities in the case of too small standard deviations. These drawbacks are almost
unavoidable for highly dimensional input spaces and cause unexpected non-monotonic be-
haviour. In addition, the extrapolation behaviour of standard RBF networks, which tends
to zero, is undesirable for many applications (Ref. [56]). Under some conditions, normalised
radial basis function networks are equivalent to singleton neuro-fuzzy models (Ref. [104]),
which exploit a combination of fuzzy logic and neural networks and can be used in the iden-
tification of nonlinear systems (see Ref. [105]). Within the thesis, NRBF networks are used
to construct reduced-order models to describe the nonlinear dynamics of vertical sloshing.

148



Appendix C

Neural-network-based ROM driven by
bouncing ball data

In order to cover the initial lack of reliable data on vertical sloshing, it was decided to use
the bouncing ball model identified in Sec. 2.1.1 to train a reduced-order model based on a
neural network. What is shown in this appendix represents the first attempt to use neural
networks to identify a nonlinear system. The neural network is trained by exploiting data
that are output by low-fidelity bouncing ball model. This equivalent mechanical model is now
considered as a black-box to be identified that provides sloshing forces as a function of the
history of the assigned vertical displacement. Next, the training process of the neural network
and the process of integrating the identified model into the simulation environment will be
presented, in order to obtain an integrated model equivalent to the experiment performed by
UPM.

C.1 Training phase

The training phase consists in the definition of a neural network able to emulate vertical slosh
dynamics represented by the bouncing ball. In this framework, the use of a proper data set
is critical, thus requiring an investigation among different types of inputs, after which, the
choice fell on a pseudo-harmonic signal with amplitude and frequency slowly varying over
time (zT = A(t) sin(

´ t
0 Ω(τ) dτ)). This time law is such as to suitably cover the amplitude-

frequency domain of interest as in Fig. 2.12(b), that, in turn, covers the range of accelerations
provided by the performed simulations. The time derivative of zT is used as input for the
training. On the other hand, the output consists of the sloshing force that the ball returns
when the tank is set on motion. The need to cover the more frequency-amplitude pairs leads to
a data set represented by time series (velocity as input and sloshing force as output) obtained
by only one 200 s long simulation with a sample frequency of 1 kHz. Among the wide variety



C.1. Training phase

of NN architectures, a Feed Forward Neural Network (FFNN) has been considered, in which
the information simply propagates from left to right in the network through a manifold of
hidden layers. The proposed scheme of the identified neural network is shown in Fig. C.1. It

Figure C.1: Feed forward neural network flowchart.

was built in MATLAB using the system identification toolbox (see Ref. [106]) and consists of 7
hidden layers with 35 nodes/neurons each. The neural network receives as input a vector Rv

of 50 regressors, corresponding to 50 time-delayed velocity values. In other words, one could
say that 50 tapped delay lines are considered for the input. The model under consideration
thus corresponds to a nonlinear finite impulse response model (NFIR), having a feedforward
neural network as static approximator. The regressor vector Rv at time instant t is defined
as follows

Rv(t) = [żT (t− 1) żT (t− 2) · · · żT (t−m)]T (C.1)

where m is the order of the model, that in this case is equal to 50.
This kind of NN is proved to work efficiently by using non-polynomial activation functions
like radial basis functions (Refs. [107, 108]). As a consequence, these latter are employed as
activation functions in all nodes of the considered hidden layers, whereas the output layer is
made up with a simple linear function. The choice of the number of hidden nodes and layers
is based on a qualitative sensitivity analysis that did not require the use of specific techniques.
Specifically, given the same number of epochs considered in the network training, the selected
NN is the one that proved to provide more fitting results when the ROM is introduced in the
FSI environment that follows in Sec. C.2. The algorithm used for the training consists of
Bayesian Regularization, implemented in Matlab® through the trainbr function (Ref. [89]),
with a fixed number of epochs equal to 1000, in which the mean-squared error performance is
observed to converge to a constant value, thus guaranteeing the convergence of the network.
The total time spent for the NN training is 44 hours without employing any kind of parallel
computing.
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C.2. Performance assessment in a fluid-structure interaction problem

C.2 Performance assessment in a fluid-structure interaction prob-
lem

Subsequently, the equivalent mechanical model of bouncing ball was replaced by the identified
neural-network-based ROM in the simulation framework depicted in Fig. 2.7. The same free
response analysis as in the experiments and simulation in Sec. 2.1.1 has been performed. It
is worth to highlight that this kind of response has nothing to do with the data used to train
the network. Since the sloshing tank system is of the type single input/single output, the
simulation takes only a few seconds to perform the fluid structure interaction analysis where
the sloshing block is replaced with a neural network. Figs. C.2(a), C.2(b) and C.2(c) provide,
respectively, the acceleration response, the instantaneous damping ratio as a function of the
acceleration envelope, and the sloshing force comparing the experiments, the simulation with
the bouncing ball and the one with the neural-network-based ROM. Specifically, Fig. C.2(a)
shows that response in terms of acceleration obtained with the NN-based ROM for sloshing is
close to the the response obtained with the bouncing ball model (used to train the network)
and the experimental response as well. Fig C.2(b) demonstrates the capability of the NN-
based ROM to provide a value of the instantaneous damping ratio matching the one of the
bouncing ball model at each value of response amplitude even though better performances
are noticeable at higher acceleration values. The results show that although the methodology
was at its preliminary stage, the NN-based ROM was able to reproduce the behaviour of the
model with the bouncing ball and, in turn, also of the experiments. Moreover, as shown in
Fig. C.2(c), the neural network is also capable to reproduce the nonlinear behavior of the
bouncing ball impact force.
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C.2. Performance assessment in a fluid-structure interaction problem

(a) Acceleration free response (b) Instantaneous damping ratio

(c) Sloshing Forces

Figure C.2: Comparison between FFNN, Bouncing Ball and experiment.
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Appendix D

Equivalent mechanical model for
linearised sloshing

The appendix presents the analytical formulation of linear sloshing for potential flows. The
linear sloshing dynamics of a quasi-rigid rectangular tank is characterised by the action of lat-
eral forces and moments when the system is perturbed by lateral accelerations and rotations.

Starting from the basic assumptions generally adopted for such analytical models (mainly
related to the fluid properties and tank geometry), the procedure here presented considers
the formulation in Refs. [2, 15, 28] as a starting point with reference to a rectangular tank
geometry. Indeed, the analytical models provide a Laplace domain expression of lateral force
and moment about the center of mass of the liquid denoted as G arising by lateral motion Y
and rotation φ(G) of a 2D tank as a function of the tank size and filling level. Considering a
rectangular tank as in Fig. D.1, the force and moment provided by the liquid can be expressed
as:
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where ˜ represents the Laplace transformed variables, s is the Laplace variable, ωn are the
natural frequencies of the linear sloshing dynamics, ρ is the density of the liquid, g is the
gravity acceleration, at and hf represent, respectively, the tank-edge length in y-direction and
the height of the liquid mass and bt is tank-edge length in x-direction. Eq. D.1 can eventually
be recast as {

F̃y

M̃
(G)
x

}
= G(s)

{
Ỹ

φ̃(G)

}
(D.2)

where G is a linear sloshing operator derived here by analytical models, hereafter referred as
generalized sloshing forces matrix. Considering a limited number of sloshing dynamics Ns

and according with the Equivalent Mechanical Models (EMMs), the above equation can be
rewritten as

G(s) = s2As + (s2Bs + Cs) (s
2I+ sDs +Ω2

s)
−1 (s2Bs + Cs)

T
(D.3)
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where:

As = −

[
ρabhf 0

0 If

]
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and Ds is a diagonal matrix, having as i-th diagonal element, a term associated with the
modal damping of sloshing phenomenon. If is the effective sloshing fluid inertia moment (see
Ref.[2]) and

mn = 8ρatbthf
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This allows us to express the Eq. D.2 as follows{
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}
+ (s2Bs + Cs) r̃ (D.6)

by defining as r̃ the sloshing modal state space vector (in the Laplace domain) that collects
the sloshing states, each of them representing a different dynamics of the liquid contained into
the tank. For a wide range of applications in the framework of linear sloshing of simplified
tanks, these Laplace-domain models allow to obtain sloshing forces and moments by having
as time-domain counterpart a set of linear ordinary differential equations.

Figure D.1: Representation of 2D rectangular tank.

For finite elements applications, it is useful to express forces and moments with respect
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Appendix D. Equivalent mechanical model for linearised sloshing

to a fixed point, that can be associated to the geometric center of the tank (denoted as O in
Fig. D.1). This needs to introduce a transformation matrix, indicated as S, that is given by

S =

[
1 −h−hf

2

0 1

]
(D.7)

and by which Eq. D.6 can be rewritten as follows:{
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M̃
(O)
x

}
= s2 S

T
AsS

{
Ỹo
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}

where F̃yo and M̃
(O)
x are the sloshing force and moment about the geometric center of the

tank resulting from its lateral motion Yo and rotation φ(O). Note that the first addend of
the second member of Eq. (3.33) represents the inertial force contribution of the liquid, in
accordance with frozen sloshing modelling.

In order to integrate this contribution into the aircraft model, a transformation matrix
indicated as Tt is applied to Eq. D.8 in order to express the state variables of the tanks with
respect to the perturbation variables of the complete aircraft. Tt is defined for the i-th tank
as

T
(i)
t = R(i)(α(i))Z

(i)
t (D.9)

where R(α) is the rotation matrix , related to the tank, that allows to pass from a "tank"
frame of reference to the FE model frame of reference. The angle α measures the deviation
between these two systems. Z

(i)
t instead, represents a 6 × (6 + Nm) matrix whose columns

are the modal shape vectors associated to the rigid and structural modes (assuming empty
tank) and referred to the node where the i-th tank is located. It follows that the matrices in
Eqs. 3.32 and 3.34 can be expressed as

Ās = T
T

t S
T
AsSTt B̄s = T

T

t S
T
Bs C̄s = T

T

t S
T
Cs
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Appendix E

A viscous damping model for vertical
sloshing

An alternative procedure for modeling vertical sloshing forces is proposed in this appendix.
Specifically, a linearised viscous damping model is used whose coefficient is defined on the
basis of the energy map obtained in the experimental characterisation presented in Chap. 1.
For this purpose, a steady vertical harmonic motion u (t) of the tank is considered to deduce
the work (energy) dissipated by the sloshing forces approximated as Fs ≃ c u̇. The law of
motion u (t) imposed on the tank is expressed as follows:

u (t) = u0 sin(Ωt) (E.1)

Thus, the energy dissipated by linearised vertical sloshing forces can be expressed as follows:

Ld :=

˛
cycle

Fs du =

ˆ t+T

t
Fs u̇(τ) dτ =

ˆ t+T

t
c u̇2(τ) dτ

= c u20Ω
2

ˆ t+T

t

1 + cos (2Ω τ)

2
dτ = π c u20Ω (E.2)

The viscous damping coefficient c is derived using the energy map data obtained from the
experimental characterisation of the dissipative behaviour of vertical sloshing. In particular,
reference is made to the nondimensional dissipated energy Φd in the case with 50% filling
level (see Sec. 1.4.2), which allows the dissipated work to be expressed as

Ld = ml u
2
0Ω

2Φd (ω̄, ū) (E.3)

where ω̄ = Ω/
√
g/h is the nondimensional frequency and ū = u0/h is the nondimensional

amplitude. By imposing equivalence between Eqs. E.2 and E.3, the following expression for
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viscous damping is obtained:

c = c (ω̄, ū) =
ml

π
ΩΦd (ω̄, ū) =

ml

π

√
g

h
ω̄Φd (ω̄, ū) (E.4)

Thus, the viscous damping coefficient distribution defined on the basis of the experimentally
characterised energy information depends on both a dimensional term ml/π

√
g/h, related to

the height of the tank h and the mass of liquid stowed ml, and a nondimensional term given
by the product of the frequency ω̄ and the dissipated energy Φd (ω̄, ū).
By selecting a tank with the same geometrical characteristics and the same liquid mass (of
the case with 50% filling) as the one used in Chap. 1, the distribution of the viscous damping
coefficient c in the nondimensional frequency and amplitude domain shown in Fig. E.1 is
obtained.

Figure E.1: Distribution of the viscous damping coefficient c based on the experimentally identified
nondimensional dissipated energy

A representative scalar value of the viscous damping coefficient is required to be able to
use this model to simulate vertical sloshing with the applications presented in the thesis.
There is no clear-cut way to select this scalar value, however, it is possible to define different
metrics based on the specific operational parameters of the application under consideration.

Sloshing beam with viscous sloshing force

In this section, the linear viscous damping model is used to describe vertical sloshing in the
sloshing beam problem presented in Sec. 2.2.3, comparing the results obtained with those
measured experimentally and those obtained by simulating the identified neural-network-
based ROM. Since the tank mounted on the sloshing beam is the same as that used in
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the energy characterisation in Chap. 1, the distribution of the viscous damping coefficient
corresponds to that shown in Fig. E.1. With reference to it, the following three possible
metrics are defined to select the unique value of the damping coefficient:

c1 =
ml

π

√
g

h
ω̄1Φd (ω̄1, ū) = 3.40 Kg/s

c2 =
ml

π

√
g

h
ω̄maxΦdmax (ω̄max, ūmax) = 4.69 Kg/s (E.5)

c3 =
ml

π

√
g

h
ω̄1Φdmax (ω̄max, ūmax) = 4.40 Kg/s

where ω̄1 = 3.55 is the nondimensional frequency corresponding to the first mode of the
beam, Φd (ω̄1, ū) is the value of the nondimensional dissipated energy obtained at the fre-
quency ω̄1 by averaging over all nondimensional amplitudes ū and ω̄max = 3.78 is the nondi-
mensional frequency corresponding the the maximum value of the nondimensional dissipated
energy Φdmax = 1.65. The coefficients given in Eqs. E.5 allow the generation of three lin-
earised vertical sloshing models that can be used in free response simulations (see Sec. 2.2.3).
The implementation is carried out similarly to what is shown in Sec. 2.2.4, where the Simulink
block of vertical sloshing is replaced by a block capable of providing the generalised forces
from the viscous damping forces acting at the point where the tank is located. Repeating the
same free response analysis presented in Sec. 2.2.4 with the three viscous damping models
yields the results shown respectively in Figs. E.2, E.3 and E.4. Figures E.3 and E.4 show how

(a) Acceleration at tank location (b) Instantaneous damping ratio (first mode)

Figure E.2: Comparison between sloshing beam experiment, network prediction and viscous damping
model c1 for tank vertical acceleration and instantaneous damping ratio of the first mode of vibration.

models with c2 and c3 cause an excessively damped response compared to the reference one,
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(a) Acceleration at tank location (b) Instantaneous damping ratio (first mode)

Figure E.3: Comparison between sloshing beam experiment, network prediction and viscous damping
model c2 for tank vertical acceleration and instantaneous damping ratio of the first mode of vibration.

(a) Acceleration at tank location (b) Instantaneous damping ratio (first mode)

Figure E.4: Comparison between sloshing beam experiment, network prediction and viscous damping
model c3 for tank vertical acceleration and instantaneous damping ratio of the first mode of vibration.

providing an excessive damping contribution especially at low amplitudes. The model with
the coefficient c1 seems to be the one that on provides the most acceptable response, guar-
anteeing a damping that almost averages the experimental one over all response amplitudes
(see Fig. E.2). The linearised vertical sloshing model based on viscous damping is highly
dependent on the type of application being studied. The definition of the damping coefficient
given in Eq. E.4 and the free response results just presented show how performance changes
depending on how the nondimensional parameters ω̄ and Φd are chosen. Indeed, considering
the problem with seismic excitation presented in Sec. 2.2.3, it is worth introducing a new vis-
cous damping coefficient that is more representative of the specific operating conditions. The
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random excitation imposed at the root of the beam promotes a variable amplitude vertical
motion of the tank. In order to avoid overestimating the damping coefficient by averaging
the nondimensional dissipated energy over all amplitudes as is done for c1, it is preferable to
estimate the average amplitude of vertical tank motion a priori and, based on this, directly
evaluate Φd. Taking only the case with RMS: 0.4 g into consideration, a new viscous model
can be defined as follows

crand =
ml

π

√
g

h
ω̄1Φd (ω̄1, ūm) = 3.686 Kg/s (E.6)

where ū = 0.162 is the average nondimensional vertical displacement measured in the
sloshing beam seismic experiment and Φd (ω̄1, ūm) = 1.38 is the nondimensional dissipated
energy corresponding to it and to the nondimensional frequency of the first mode of the
beam. Simulating this model in the Simulink® environment provides comparisons with the
experiment and the neural network simulation in terms of tank acceleration over time (see
Fig. E.5) and respective power spectral density (see Fig. E.6). From the comparisons

Figure E.5: Comparison between sloshing beam experiment, network prediction and viscous damping
model crand for tank vertical acceleration in the case of RMS: 0.4 g.

shown in Figs. E.5 and E.6, it can be seen that the viscous model defined in Eq. E.6 is able
to reproduce an accurate estimate of acceleration over time and provide a level of damping
ζ1 = 2.52 which is almost equal to the experimental one (ζ1 = 2.43).

Although the performance obtained is quite good, it should be noted that it was possible to
construct the crand viscous model on the basis of the experimental data measured in the specific
problem to be analysed. Therefore, it is not possible to create a linearised vertical sloshing
model that works for every application. Instead, one must be defined for each problem,
selecting the most representative operating parameters (in terms of frequency, amplitude and
dissipated energy).
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Figure E.6: Comparison between sloshing beam experiment, network prediction and viscous damping
model crand for PSD of the tank vertical acceleration in the case of RMS: 0.4 g.

Wing prototype with viscous sloshing force

This section employs the linearised vertical sloshing model based on viscous damping in the
aeroelastic model of the wing prototype introduced in Sec. 3.1. As already expressed in
the previous section, depending on the application being studied, different criteria must be
defined to obtain a representative damping coefficient. In the present case, it should first
be noted that the wing contains eight tanks of different sizes inside it. Consequently, it is
possible to define a viscous damping coefficient for each of the tanks due to the presence of a
dimensional term that characterises each of them differently. The nondimensional amplitude
and frequency domain distribution of the damping coefficient for the i-th tank is expressed as
follows

c(i) = c(i) (ω̄, ū) =
m

(i)
l

π

√
g

h(i)
ω̄Φd (ω̄, ū) (E.7)

Figure E.7 shows the distribution of the damping coefficient for two of the eight wing tanks,
highlighting how the damping capacities change as the geometry and mass of liquid stowed
vary. Tank number 3 (Fig. E.7(a)) has higher damping coefficient values than tank number
7 (Fig. E.7(b)), which is located almost at the wing tip.

The following three possible metrics are defined to select the unique value of the damping
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(a) (b)

Figure E.7: Distribution of the viscous damping coefficient c(i) based on the experimentally identified
nondimensional dissipated energy for two of the eight tanks of the wing prototype.

coefficient for each tank of the wing:

c
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m
(i)
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π
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c
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ω̄maxΦdmax (ω̄max, ūmax) (E.8)

c
(i)
3 =

m
(i)
l

π

√
g

h(i)
ω̄Fi Φdmax (ω̄max, ūmax)

where ω̄Fi is the nondimensional frequency of the i-th tank corresponding to the flutter
frequency ωF = 1.95ω1 (being ω1 the first mode of vibration in the case of dry structure)
Φd (ω̄Fi , ū) is the value of the nondimensional dissipated energy obtained at the frequency
ω̄Fi by averaging over all nondimensional amplitudes ū for each tank. The two contributions
ω̄max and Φdmax coincide with those introduced in the case of the sloshing beam problem.

In order to evaluate the performance of the linearised vertical sloshing model in the present
case, we consider the same Simulink model presented in Sec. 3.1.1, in which, instead of the
neural network block, another block is substituted to provide the generalised forces from the
viscous ones (generated with the coefficients given in Eqs. E.8) acting in each of the wing
tanks. Aeroelastic response analysis to vertical gust is then performed in the neighborhood
of the flutter speed - in sub-critical condition - where the response is less damped and the
sloshing plays a role of paramount relevance on damping aeroelastic vibrations. The same
gust profile used in Sec. 3.1.2 is considered. The analysis is performed at a free stream velocity
of U∞ = 315m/s, with a gust intensity of wga = 3m/s, for each one of the viscous damping
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model defined in Eqs. E.8. Figure E.8 shows the gust responses in the case of U∞ = 315m/s

(a) Viscous damping model c(i)1 (b) Viscous damping model c(i)2

(c) Viscous damping model c(i)3

Figure E.8: Comparison of gust responses for U∞ = 315m/s

in terms of vertical wing tip acceleration, for each of the linearised models defined. Each of
the models fails to provide a response over time comparable to that given by the nonlinear
reduced-order model based on neural networks. The damping induced by viscous models is in
fact significantly larger than expected. This is confirmed by Fig. E.9, which shows the trends
of instantaneous damping ratio evaluated directly on the responses through logarithmic decay.

Leaving aside the more conservative models such as those with coefficients c(i)2 and c
(i)
3 ,

it can be said that the model with coefficient c(i)1 provides an inaccurate estimate of the
damping due to the fact that, in the process of averaging the dissipated energy, those values
corresponding to amplitudes not reached during the gust response are also taken into account.
This causes the viscous coefficient calculated for each tank to be overestimated. As a result,
the linearised model of vertical sloshing again shows its limitations, since it must be redefined
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each time the type of problem, and therefore the response to the gust changes. This is precisely
because by changing the type of response, the amplitudes reached by the tank change and
therefore the operation of averaging the nondimensional dissipated energy would require a
redefinition according to the amplitude ranges reached in that specific problem.

Figure E.9: Comparison of instantaneous damping ratio associated to the gust responses with
U∞ = 315m/s for each of the defined viscous damping models, for the neural network model and for
the frozen fuel case.
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