
Journal of Global Optimization
https://doi.org/10.1007/s10898-024-01440-x

Using dual relaxations in multiobjective mixed-integer
convex quadratic programming

Marianna De Santis1 · Gabriele Eichfelder2 · Daniele Patria3 · Leo Warnow2

Received: 11 December 2023 / Accepted: 3 October 2024
© The Author(s) 2024

Abstract
We present a branch-and-bound method for multiobjective mixed-integer convex quadratic
programs that computes a superset of efficient integer assignments and a coverage of the
nondominated set. The method relies on outer approximations of the upper image set of
continuous relaxations. These outer approximations are obtained addressing the dual formu-
lations of specific subproblems where the values of certain integer variables are fixed. The
devised pruning conditions and a tailored preprocessing phase allow a fast enumeration of
the nodes. Despite we do not require any boundedness of the feasible set, we are able to prove
that the method stops after having explored a finite number of nodes. Numerical experiments
on a broad set of instances with two, three, and four objectives are presented.

Keywords Multiobjective optimization · Convex quadratic optimization · Mixed-integer
quadratic programming · Branch-and-bound algorithm

Mathematics Subject Classification 90C11 · 90C25 · 90C29 · 90C57

1 Introduction

The area ofmultiobjectivemixed-integer programming (MOMIP) is receiving growing atten-
tion from the operations research and optimization community, both for its practical relevance
and for the mathematical challenge of solvingMOMIP problems. Applications can be found,

B Marianna De Santis
marianna.desantis@unifi.it

Gabriele Eichfelder
gabriele.eichfelder@tu-ilmenau.de

Daniele Patria
daniele.patria@uniroma1.it

Leo Warnow
leo.warnow@tu-ilmenau.de

1 Dipartimento di Ingegneria dell’informazione, Università degli Studi di Firenze, Via di Santa Marta
3, 50139 Firenze, Italy

2 Institute of Mathematics, Technische Universität Ilmenau, Po 10 05 65, 98684 Ilmenau, Germany

3 Dipartimento di Ingegneria Informatica Automatica e Gestionale, Sapienza Università di Roma, Via
Ariosto, 25, 00185 Roma, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-024-01440-x&domain=pdf
http://orcid.org/0000-0002-1189-5917
http://orcid.org/0000-0002-1938-6316

Journal of Global Optimization

for example, in transportation, designofwater distributionnetworks, andbiology [1–4].When
addressing multiobjective programming problems, a typical goal is to compute an approxi-
mation of the nondominated set, which corresponds to the set of optimal values. The proper
definition of such an approximation is a debated topic (see [5] for an overview).

Apossibility is given by the concept of an enclosure, exploited in several recent approaches
[6, 7] and in the mixed-integer context, too [8, 9]. Loosely speaking, an enclosure is a well-
structured set in the image space, as for example a union of boxes, which contains the
nondominated set as a subset. Using the enclosure concept, we have a termination criterion
for global algorithms: a multiobjective programming problem can be considered solved to
a certain precision as soon as the quality of the enclosure is below a specific value. We will
give the formal definition of an enclosure in Sect. 2.

Various methods with correctness guarantees proposed in the literature are branch-
and-bound frameworks. This includes, for instance, [10–12] for multiobjective integer
programming and [8, 13, 14] for MOMIP. For a broader survey of branch-and-bound meth-
ods, mainly for linear MOMIP problems, we refer to [15]. The survey in [16] extends this
collection by also including approaches that do not use a branch-and-bound framework.

In this paper, we develop a branch-and-bound method that, using dual relaxations as a key
ingredient, is guaranteed to compute an enclosure for the nondominated set of a multiobjec-
tive mixed-integer convex quadratic programming problem in a finite number of iterations.
Differently from approaches that work exclusively in the image space, our algorithm is also
able to deliver a superset of the set of efficient integer assignments, that in turn is needed as
input for some existing approaches (see, e.g., [17]). Here, an efficient integer assignment is a
fixing of the integer variables in such a way that there exists an efficient point of the problem
with exactly this fixing. Note that for multiobjective mixed-integer problems, it can happen
that there is a large number of efficient integer assignments. In fact, there exist instances of
such optimization problems that cannot be solved without a full enumeration of all integer
assignments. The reason for that is that it can happen that all integer assignments contribute to
different parts of the nondominated set. This clearly represents a big difference with respect
to the single-objective case and at the same time a big challenge regarding the development
of solution algorithms for MOMIPs. In the definition of branch-and-bound methods, this
emphasizes the need for strategies for a fast enumeration of the nodes.

Starting from some of the ideas presented in [18] to deal with purely integer uncon-
strained problems, in this paper, we address the difficulties of handling the presence of both
continuous and integer variables and linear inequality constraints. In contrast to the purely
integer case, the nondominated set of the corresponding multiobjective mixed-integer non-
linear optimization problems is an, in general, infinite set and cannot be computed exactly.
Consequently, solving such optimization problems usually refers to computing an approxi-
mation of the nondominated set, the efficient set, or both of them. Thus, different solution
techniques are needed. The method that we present in this paper computes both a coverage
of the nondominated set and a superset of the set of efficient integer assignments.

More formally, we focus on optimization problems where the goal is to minimize m ≥ 2
quadratic objective functions given by f j : R

n → R,

f j (x) = x�Q j x + (c j)�x + a j ,

for all j ∈ [m] := {1, . . . ,m} with symmetric positive definite matrices Q1, . . . , Qm ∈ Sn ,
vectors c1, . . . , cm ∈ R

n , and scalars a1, . . . , am ∈ R. We recall that under the assumption
that all the matrices Q j are positive definite, we have that all the functions f j are strongly
convex. This means that there exist some ν > 0 such that for all x, y ∈ R

n and λ ∈ [0, 1] it

123

Journal of Global Optimization

holds

νλ(1 − λ)‖x − y‖22 + f j (λ x + (1 − λ) y) ≤ λ f j (x) + (1 − λ) f j (y)

for j ∈ [m], where with ‖ · ‖2 we denote the Euclidean norm. This also implies the strict
convexity of the functions, i.e., for any x, y ∈ R

n with x �= y and any λ ∈ (0, 1) we have
f j (λ x + (1 − λ) y) < λ f j (x) + (1 − λ) f j (y) for j ∈ [m]. These convexity assumptions
will be essential to derive the finiteness result for our new algorithm.

Assuming that the objective functions are quadratic allows us to perform many of the
expensive calculations in a preprocessing phase. What is more important, we can make use
of simple dual formulations within our procedure which are a main aspect to make our
algorithm fast and efficient. Thus, in summary, compared to the algorithm presented in [18],
we extend the theory and the algorithm to mixed-integer problems (compared to the pure
integer case in [18]), to linearly constrained problems (compared to unconstrained problems
in [18]), and we additionally speed up the algorithm by making use of dual formulations.

The multiobjective mixed-integer quadratic programming problem which we study in this
paper is given as

min
x

(f1(x), . . . , fm(x))�

s.t. Ax ≤ b
xi ∈ Z for all i ∈ [k]
x ∈ R

n

(MOMIQP)

with a matrix A ∈ R
p×n , a vector b ∈ R

p , and with 1 ≤ k ≤ n, i.e., we assume that
at least one variable can attain integer values only. We do not need any assumption on the
boundedness of the feasible set. In particular, we are not assuming any lower or upper bounds
on the variables, i.e., no box constraints, as it is often required, for instance in [14] or for
branch-and-bound based methods with a partitioning of the starting box in the pre-image
space as in [8, 13]. In the following, the feasible set of (MOMIQP) is denoted by S, i.e.,

S := {x ∈ Z
k × R

n−k | Ax ≤ b}.
Note that for k = n we have the special case of a multiobjective integer quadratic pro-

gramming problem, for which our method will be exact. This means that it will be able to
detect the whole nondominated set, which is a finite set.

The paper is organized as follows. In Sect. 2, we give some standard definitions for
multiobjective optimization and we formally recall what an enclosure of the nondominated
set is. In Sect. 3 we define the subproblems that we address at the nodes of our branch-and-
bound algorithm according to our branching strategy that works by fixing integer variables.
In Sect. 4 we present the theoretical results that allow to avoid an infinite enumeration of
nodes even in case problem (MOMIQP) has an unbounded feasible set. In Sect. 5 a scheme of
our branch-and-bound algorithm is presented and in Sect. 6, we see how the dual relaxations
may come into play to save computational effort. Eventually, in Sect. 7, numerical results
are reported and in Sect. 8 we draw some conclusions.

2 Basic notions and definitions

For the following notions as well as an introduction to multiobjective optimization we refer,
for instance, to [19]. We use the standard optimality notion based on the componentwise
partial ordering in the image space. A point x̄ ∈ S is called an efficient point for (MOMIQP)

123

Journal of Global Optimization

if there is no feasible point x ∈ S with f (x) �= f (x̄) and with f (x) ≤ f (x̄). Here and in
the following, ≤ and < are understood componentwise. The image f (x̄) of an efficient point
for (MOMIQP) is called nondominated, and the image set of all efficient points is denoted
as the nondominated set N (also known, specifically for m = 2, as Pareto front). Thanks to
Corollary 8.1 in the Appendix, we have that the nondominated set of aMOMIP problemwith
strongly convex objective functions is a bounded set. In particular, due to our assumptions,
this holds for our problem (MOMIQP). Hence, it is guaranteed that a closed box

B := [z, Z] := {x ∈ R
m | z ≤ x ≤ Z} (1)

with N ⊆ int(B) = (z, Z) := {x ∈ R
m | z < x < Z}, where z, Z ∈ R

m , always exists. As
already mentioned, we aim at approximating the nondominated set N by an enclosure that
can be defined as follows (see [20]).

Definition 1 Let L,U ⊆ R
m be two finite sets with N ⊆ L + R

m+ and N ⊆ U − R
m+. Then

L is called a lower bound set, U is called an upper bound set, and the setAwhich is given as

A = A(L,U) := (L + R
m+) ∩ (U − R

m+) =
⋃

l∈L

⋃

u∈U,
l≤u

[l, u]

is called an enclosure (or a box approximation) of the nondominated set N of (MOMIQP)
given L and U .

Note that for the elements of the set U one cannot take just objective function values f (x)
of feasible points x ∈ S, as one might be used to from single-objective global optimization.
Instead we need another concept, for instance the one of so-called local upper bounds, which
we will introduce below. A lower bound set L can be computed as a union of ideal points of
certain subproblems of (MOMIQP) which we discuss in the forthcoming Section 3.

The quality of an enclosureA is given by its widthw(A). It is defined in [6] as the optimal
value of

max
l,u

s(l, u) s.t. l ∈ L, u ∈ U, l ≤ u

where s(l, u) := min {ui − li | i ∈ [m]} denotes the shortest edge length of a box [l, u]. The
surprising fact that this quality measure is based on the shortest edge length of the boxes, and
not on the largest as typically expected in global optimization, is due to a desired relation to
ε-optimality. For ε > 0 a point x̄ ∈ S is called ε-efficient for (MOMIQP) if there exists no
x ∈ S with f (x) �= f (x̄)−εe and f (x) ≤ f (x̄)−εe, where e represents the all-ones vector.
We denote the image set of all ε-efficient points by Nε . According to Lemma 3.1 in [6], if
A is an enclosure of N with w(A) < ε then any x ∈ S with f (x) ∈ A is at least ε-efficient
for (MOMIQP). In other words, A ∩ f (S) ⊆ Nε holds. This is the natural extension of
ε-optimality as used in single-objective global optimization. A more detailed discussion and
extensive motivation for this quality measure is provided in [6, 7].

As already mentioned, and widely discussed in the literature, a proper concept to obtain
an upper bound set U are the so-called local upper bounds which have been presented in
[21]. In the following definition, we use the generalized definition of local upper bounds
from [20, Def. 4.1] with the set B from (1) as the so-called initial area of interest. Within
the definition we further make use of stable sets. These are sets N ⊆ R

m where for any two
points y1, y2 ∈ N with y1 �= y2 it holds that y1 � y2, i.e., all elements of N are pairwise
non-comparable.

123

Journal of Global Optimization

Definition 2 Let N ⊆ R
m be a finite and stable set. Then the lower search region for N

is s(N) := int(B) \ (N + R
m+) and the lower search zone for some u ∈ R

m is c(u) :=
{y ∈ int(B) | y < u}. A set U = U (N) ⊆ R

m is called local upper bound set given N if
s(N) = ⋃

u∈U (N) c(u) and if {u1}− int(Rm+) � {u2}− int(Rm+) for all u1, u2 ∈ U (N), u1 �=
u2. Each point u ∈ U (N) is called a local upper bound (LUB).

We remark that the set B within Definition 2 does not necessarily have to be a box as in (1),
but can be chosen as an arbitrary subset of R

m with N ⊆ int(B), see [20, Assumption 4.3].

3 Building subproblems by fixing variables

The algorithm we propose is a branch-and-bound method that works by fixing the values of
certain integer variables. Our enumeration strategy is depth-first and we always branch by
fixing the value of one of the k integer variables. A crucial property of our algorithm is that
the set of fixed variables only depends on the depth of the node in the branch-and-bound tree.
We thus lose the flexibility of choosing the best branching variable, but this strategy allows
us to process a single node in the tree much faster. As it will be clarified later, this branching
strategy, already successfully used in single-objective mixed-integer optimization [22–25],
allows to perform a preprocessing phase for faster computations at the nodes. More precisely,
at a generic level d ∈ [k] ∪ {0} of the branch-and-bound tree, the variables x1, . . . , xd are
fixed to certain integer values, say, r1, . . . , rd ∈ Z. In particular, the order in which integer
variables are fixed is predetermined. This means that we start by fixing the value of x1 at
level d = 1, continue by fixing the value of x2 at level d = 2, and so on, until we fix the
last integer variable xk at level d = k. Hence, at every node of the branch-and-bound tree at
the same level d ∈ [k] ∪ {0} the same set of integer variables is fixed to certain (different)
values.We remark that at level d = 0 (root node) no variable is fixed and we have the original
problem. The full algorithmic scheme of our method is reported in Sect. 5.

Let r = (r1, . . . , rd)� ∈ Z
d be a vector of integer fixings. This vector defines a specific

node at level d of the branch-and-bound tree. For every j ∈ [m], we define, as in [18, Lemma
3.1], the function f rj : R

n−d → R by f rj (x) := f j (r1, . . . , rd , x1, . . . , xn−d). This function
can be expressed explicitly as

f rj (x) = x�Qd
j x + (c j,r)�x + a j,r ,

where the positive definite symmetric matrix Qd
j is obtained by deleting the corresponding

d rows and columns of Q j and c j,r and a j,r are set to

c j,ri−d := c ji + 2
d∑

l=1

qli rl , for i = d + 1, . . . , n

and

a j,r := a j +
d∑

l=1

clrl +
d∑

l=1

d∑

i=1

qli rlri .

Similarly, we define the matrix Ad ∈ R
p×(n−d) and the vector br ∈ R

p by taking into
account the fixings, i.e., Ad denotes the matrix which is obtained from A by deleting the first
d columns and br := b − A(r1, . . . , rd , 0, . . . , 0)�.

123

Journal of Global Optimization

We consider the following continuous relaxation of (MOMIQP) induced by that fixing
r ∈ Z

d of the first d integer variables:

min
x

(f r1 (x), . . . , f rm(x))�

s.t. Adx ≤ br

x ∈ R
n−d .

(MOPr)

In our method, we mainly use these continuous subproblems to compute a lower bound set
L for an enclosure of the nondominated set of (MOMIQP) and to check whether the node
corresponding to the fixing r ∈ Z

d of integer variables can be pruned. In fact, we do not
consider (MOPr) directly, but an outer approximation of the corresponding upper image set

Pr := { f r (x) ∈ R
m | Adx ≤ br , x ∈ R

n−d} + R
m+.

The simplest outer approximation is determined by the ideal point of this set, which is
componentwise calculated as min{y j ∈ R | y ∈ Pr } for j ∈ [m]. By our assumptions, these
minima exist in case the feasible set Sr := {x ∈ R

n−d | Adx ≤ br } of (MOPr) is nonempty.
This approximation using the ideal point corresponds to an outer approximation derived bym
supporting hyperplanes to the set Pr with normal vectors equal to the m unit vectors. As this
outer approximation is very rough, we allow improved outer approximations. In this respect,
let L ⊆ {y ∈ R

m+ | ‖y‖1 = 1} be a finite set of nonnegative vectors which includes allm unit
vectors. We decided here for the 1-norm but any other norm can also be used for normalizing
the vectors. This set defines the hyperplanes which are used for the outer approximation of
Pr . The derived approximation of the upper image set Pr will be involved in our pruning
condition which we define later.

In order to compute the outer approximation, at a node, we solve the |L| continuous
single-objective subproblems

min
x

�� f r (x)

s.t. Adx ≤ br

x ∈ R
n−d .

(Pr (�))

In fact, we will examine the dual problems of these subproblems, see Sect. 6. In case problem
(Pr (�)) is infeasible, i.e., in case we have

Sr = {x ∈ R
n−d | Adx ≤ br } = ∅ , (Inf)

the node can be pruned, see the results in Sect. 4.1.
Otherwise, in case problem (Pr (�)) is feasible, we define ϕr (�) to be its optimal value

for � ∈ L . Moreover, we denote by x∗�,r ∈ R
n−d its unique minimizer, which exists due to

the strong convexity of the objective function. Note that for � = e j , the j-th unit vector, we
minimize �� f r (·) = f rj (·). Hence, in that case x∗�,r denotes the unique minimizer of f rj
with respect to Sr . In particular, ϕr (e j) = f rj (x

∗e j ,r) gives the j-th component of the ideal
point of the set Pr .

Furthermore, in case of feasibility, i.e., in case Sr �= ∅, we define
α(d + 1) := min

�∈L x∗
1

�,r
, β(d + 1) := max

�∈L x∗
1

�,r
, (2)

and the interval

[�α(d + 1)� , �β(d + 1)�] . (I)

123

Journal of Global Optimization

Recall that the vector r ∈ Z
d of integer fixings corresponds to a node at level d of the

branch-and-bound tree. In case d < k, the interval (I) basically defines the range of values
r ′
d+1 ∈ Z for which, within our algorithm, child nodes with xd+1 fixed to r ′

d+1 ∈ Z need to be
considered. More importantly, we will show in Lemma 4.8 that all child nodes corresponding
to r ′ := (r1, . . . , rd , r ′

d+1) ∈ Z
d+1 with r ′

d+1 outside that interval and far enough can safely
be pruned. This is one of the key results that ensures finiteness of the overall algorithm.

In the following, we briefly explain how exactly the child nodes at level d + 1 ≤ k
corresponding to such vectors r ′ ∈ Z

d+1 of integer fixings are explored within our algorithm.
At the first child node, xd+1 is fixed to r ′

d+1 = �α(d + 1)�. Then its sibling nodes are
computed by consecutively fixing xd+1 to increasing integer values r ′

d+1 ∈ {�α(d + 1)� +
1, �α(d + 1)� + 2, . . . , �β(d + 1)�}. The method continuous with fixing xd+1 to increasing
integer values r ′

d+1 > �β(d + 1)� until it reaches the first assignment of r ′
d+1 for which the

node corresponding to r ′ ∈ Z
d+1 can be pruned by one of the conditions we present in the

forthcoming Sect. 4. Since that implies that also all child nodes with even larger values of
the integer variable xd+1 can be pruned, the algorithm continues by exploring those nodes
corresponding to fixings of r ′

d+1 < �α(d + 1)�. Again, starting from �α(d + 1)� − 1, the
value of r ′

d+1 is decreased until the first child node which can be pruned based on the results
from Sect. 4 is found. The rules adopted to fix the variables are outsourced in Algorithm 1.
Again, the full branch-and-bound algorithm is presented in Sect. 5.

Algorithm 1 Update rd
INPUT: rd , α(d)

OUTPUT: rd
1: if rd ≥ �α(d)� then
2: Set rd = rd + 1
3: else
4: Set rd = rd − 1
5: end if

To conclude this section, we consider the special case d = k. This means that at a
corresponding node all the integer variables are fixed to certain values given by r ∈ Z

k . In
other words, a leaf node of the branch-and-bound tree is reached. At this point, the sets L
of lower bounds and U of upper bounds for the enclosure of the nondominated set N of
(MOMIQP) are built up as detailed in the following.

We initialize L = ∅, U = U (∅) = {Z}, and N = ∅. At the leaf node corresponding to
r ∈ Z

k , we solve the problems (Pr (�)) for all � ∈ L . The optimal solutions x∗�,r ∈ R
n−k of

(MOPr) lead to feasible points (r , x∗�,r) ∈ Z
k × R

n−k of (MOMIQP). The upper bound set
U is then updated as

U = U (N ∪ { f r (x∗�,r
) | � ∈ L}). (3)

More precisely, we use [21, Algorithm 3] (which is the same as [20, Algorithm 1]) to do so.
By [20, Lemma 4.7], for the resulting local upper bound set it holds that

N ⊆ U − R
m+. (4)

On the other hand, the lower bound set L is updated by

L = L ∪ {(ϕr (e1), . . . , ϕr (em))}, (5)

123

Journal of Global Optimization

i.e., by the ideal point of the upper image setPr .Wewill show in Lemma 5.1 that the resulting
set L computed by our algorithm is indeed a lower bound set in the sense of Definition 1.
We remark that, while U is always an upper bound set for an enclosure in that sense, for L
this only holds at the end of our algorithm.

4 Pruning of nodes

As already mentioned, given a certain node at level d of the branch-and-bound tree, the
interval (I) defines the range of integer values for which corresponding child nodes at level
d + 1 need to be computed. In this section, we analyze how to stop the computation of new
child nodes when fixing variable xd+1 to integer values outside this interval. In particular, we
provide sufficient conditions that allow to consider a finite number of integer assignments.
This implies that our method needs to explore only a finite number of nodes even in the case
that the original problem has an unbounded feasible set.

4.1 Pruning by infeasibility

Whenever for some d ∈ [k] and a vector r = (r1, . . . , rd) ∈ Z
d the problem (Pr (�))

is infeasible, i.e., condition (Inf) holds, the corresponding node and all its children can of
course be pruned:

Lemma 4.1 Let the condition (Inf) hold for some d ∈ [k] and some vector r ∈ Z
d of

integer fixings. Then there is no feasible point x̄ ∈ Z
k × R

n−k of (MOMIQP) such that
(x̄1, . . . , x̄d) = (r1, . . . , rd).

In Lemma 4.2 we prove that, in case (Inf) holds, for integer fixings r ∈ Z
d with rd >

�β(d)� or rd < �α(d)�, thanks to linearity of the constraints, we can also prune the outer
siblings of that node. Note that the condition (Inf) cannot occur for integer fixings r ∈ Z

d

with rd ∈ [α(d) , β(d)].

Lemma 4.2 Let the condition (Inf) hold for some d ∈ [k] and some vector r ∈ Z
d of integer

fixings.

(a) If rd = δ ≥ �β(d)�, then there is no feasible point x̄ ∈ Z
k × R

n−k of (MOMIQP) such
that (x̄1, . . . , x̄d) = (r1, . . . , rd−1, r̄d) =: r̄ ∈ Z

d with r̄d ≥ δ.
(b) If rd = δ ≤ �α(d)�, then there is no feasible point x̄ ∈ Z

k × R
n−k of (MOMIQP) such

that (x̄1, . . . , x̄d) = (r1, . . . , rd−1, r̄d) =: r̄ ∈ Z
d with x̄d ≤ δ.

Proof We only prove (a). The proof of (b) is analogous.
Assume by contradiction that there exists a feasible point x̄ ∈ Z

k × R
n−k of (MOMIQP)

with (x̄1, . . . , x̄d) = r̄ and r̄d ≥ δ. By the definition of β(d) there exists a feasible point
of (Pr ′

(�)) for r ′ := (r1, . . . , rd−1) ∈ Z
d−1 and some � ∈ L . In particular, there exists some

x ′ ∈ R
n with Ax ′ ≤ b, (x ′

1, . . . , x
′
d−1) = (r1, . . . , rd−1), and x ′

d ≤ β(d). For any λ ∈ [0, 1]
let q(λ) be the point defined as

q(λ) := λx̄ + (1 − λ)x ′.

By linearity, it holds Aq(λ) ≤ b for all λ ∈ [0, 1]. Moreover, qi (λ) = ri for all i ∈ [d−1] and
for all λ ∈ [0, 1]. For the d-th component of q(λ) we have that qd(0) = x ′

d ≤ β(d) ≤ δ ≤
x̄d = qd(1). As a result, there exists λ̄ ∈ [0, 1] such that qd(λ̄) = δ = rd . This contradicts
(Inf). ��

123

Journal of Global Optimization

Of course, problem (MOMIQP) can still have an unbounded feasible set and the situation
that (Inf) is satisfied might never occur. However, we will show in the forthcoming Sect. 4.2
that even in case (Inf) is never satisfied, we can still prune nodes and their siblings under
certain conditions.

4.2 Pruning by lower and upper bounds

In this section, we analyze what happens when infeasibility does not occur. In particular, we
make the following assumption.

Assumption 4.3 Let d ∈ [k] and r = (r1, . . . , rd) ∈ Z
d be a vector of integer fixings.

Assume that (Inf) does not hold, i.e. Sr = {x ∈ R
n−d | Adx ≤ br } �= ∅.

In order to be able to prune certain nodes and their siblings as in Sect. 4.1, we define a
pruning condition based on lower and upper bound sets. We say that LBr ⊆ R

m is a lower
bound set for the node corresponding to the vector r ∈ Z

d of integer fixings if

{ f (x) ∈ R
m | x ∈ Z

k × R
n−k, (x1, . . . , xd) = (r1, . . . , rd), Ax ≤ b} ⊆ LBr + R

m+.

A sufficient condition for this to hold is that Pr ⊆ LBr + R
m+. Due to the definition of ϕr (�)

and since L ⊆ R
m+, we have for any � ∈ L that Pr ⊆ {y ∈ R

m | ��y ≥ ϕr (�)}. Thus a valid
lower bound set for the node is given by

LBr :=
{
y ∈ R

m
∣∣∣ ��y ≥ ϕr (�) ∀� ∈ L

}
. (6)

Further, due to L ⊆ R
m+, we have that LBr = LBr + R

m+. Since we assume that the set L
contains the m unit vectors, we obtain for the ideal point idr := (ϕr (e1), . . . , ϕr (em)) of the
set Pr that LBr ⊆ {idr } + R

m+.
Intersecting the set of local upper bounds U with the lower bound set LBr gives a pruning

condition:

∀ u ∈ U : u /∈ LBr . (Cond)

We need the following lemma for proving that this is indeed a pruning condition.

Lemma 4.4 Let Assumption 4.3 hold. If (Cond) holds then for the nondominated set N of
(MOMIQP) we have N ∩ LBr = ∅.
Proof Since L ⊆ R

m+, for any h ∈ −R
m+ it holds that ��h ≤ 0 for all � ∈ L . As a result,

we have that u /∈ LBr if and only if ({u} − R
m+) ∩ LBr = ∅. Hence, (Cond) holds if and

only if (U − R
m+) ∩ LBr = ∅. Together with (4) we obtain that if (Cond) holds then also

N ∩ LBr = ∅. ��
Since for any feasible point x̄ ∈ Z

d × R
n−d of (MOMIQP) with (x̄1, . . . , x̄d) =

(r1, . . . , rd) it holds that f (x̄) ∈ LBr , we immediately conclude from Lemma 4.4 the
following result for pruning:

Lemma 4.5 Let Assumption 4.3 hold. Further, let LBr ∈ R
m be a lower bound set as in (6)

and let (Cond) hold. Then there is no efficient point x̄ ∈ Z
k × R

n−k for (MOMIQP) with
(x̄1, . . . , x̄d) = (r1, . . . , rd).

In the forthcoming Lemma 4.6, we prove that as soon as (Cond) holds for a node r ∈ Z
d

with rd /∈ [�α(d)�, �β(d)�], we can prune its outer siblings r̄ ∈ Z
d with (r̄1, . . . , r̄d−1) =

(r1, . . . , rd−1) and r̄d > rd or r̄d < rd .

123

Journal of Global Optimization

Lemma 4.6 Let Assumption 4.3 hold for some d ∈ [k] and some vector r ∈ Z
d of integer

fixings with rd /∈ [�α(d)�, �β(d)�]. Further, let LBr ∈ R
m be the lower bound set computed

as in (6) and let (Cond) hold.

(a) If rd = δ > �β(d)�, then there is no efficient point x̄ ∈ Z
k × R

n−k of (MOMIQP) such
that (x̄1, . . . , x̄d) = (r1, . . . , rd−1, r̄d) =: r̄ ∈ Z

d with r̄d ≥ δ.
(b) If rd = δ < �α(d)�, then there is no efficient point x̄ ∈ Z

k × R
n−k of (MOMIQP) such

that (x̄1, . . . , x̄d) = (r1, . . . , rd−1, r̄d) =: r̄ ∈ Z
d with r̄d ≤ δ.

Proof We only prove (a). The proof of (b) is analogous.
If (Inf) holds for r̄ then there cannot be an efficient point x̄ of (MOMIQP) with

(x̄1, . . . , x̄d) = r̄ , see Lemma 4.1. Thus, in the following we consider the case where (Inf)
does not hold, i.e., Assumption 4.3 holds for r̄ ∈ Z

d . Then we can determine the set LBr̄ as
in (6) based on the values ϕr̄ (�) for � ∈ L . We will show that it holds

ϕr (�) ≤ ϕr̄ (�) for all � ∈ L (7)

as then we have LBr̄ ⊆ LBr and (Cond) also holds for LBr̄ . Lemma 4.5 then concludes the
proof.

To show (7), let � ∈ L and denote by f̄ � : R
n−d+1 → R the function

f̄ �(z) := �� f (r1, . . . , rd−1, z1, . . . , zn−d+1).

Within this proof, we use the notation b̄ := b − A(r1, . . . , rd−1, 0, . . . , 0) and denote as
usual by Ad−1 the matrix which is obtained from A by deleting the first d −1 columns. Then
A(r1, . . . , rd−1, z)� ≤ b reduces to Ad−1z ≤ b̄. Using this notation, we have

ϕr (�) = min
z

{ f̄ �(z) | z1 = rd , Ad−1z ≤ b̄, z ∈ R
n−d+1}

and

ϕr̄ (�) = min
z

{ f̄ �(z) | z1 = r̄d , Ad−1z ≤ b̄, z ∈ R
n−d+1}.

The first components of the unique minimal solutions u∗� ∈ argminz{ f̄ �(z) | Ad−1z ≤
b̄, z ∈ R

n−d+1} determine the interval [�α(d)�, �β(d)�], cf. (2), and we have that
u∗�
1 ≤ β(d) ≤ �β(d)� < δ = rd ≤ r̄d .

For γ ∈ R with u∗�
1 < γ ≤ r̄d we define the parametric optimization problem P(γ) by

min
z

f̄ �(z)

s.t. z1 ≥ γ,

Ad−1z ≤ b̄,
z ∈ R

n−d+1.

(P(γ))

Since Assumption 4.3 holds for r̄ ∈ Z
d , all of these optimization problems are solvable.

We denote their optimal value by v(γ) for γ ∈ (u∗�
1 , r̄d]. Due to r̄d ≥ rd we have that

v(rd) ≤ v(r̄d). Next, we prove by contradiction that for all γ ∈ (u∗�
1 , r̄d] it holds that

min
z

{ f̄ �(z) | z1 ≥ γ, Ad−1z ≤ b̄, z ∈ R
n−d+1}

= min
z

{ f̄ �(z) | z1 = γ, Ad−1z ≤ b̄, z ∈ R
n−d+1}. (8)

Let γ ∈ (u∗�
1 , r̄d] and z̄ ∈ R

n−d+1 be the optimal solution of (P(γ)) with z̄1 > γ . We set
q(λ) := (1−λ)z̄+λu∗�, i.e., q1(0) = z̄1 > γ and q1(1) = u∗�

1 < γ . Note that Ad−1q(λ) ≤ b̄

123

Journal of Global Optimization

holds for all λ ∈ [0, 1]. Let 0 < λ̄ < 1 be such that q1(λ̄) = γ . Moreover, by the definition
of u∗� we have f̄ �(u∗�) ≤ f̄ �(z̄). Then, from the strict convexity of f̄ �, we derive

f̄ �(q(λ̄)) = f̄ �((1 − λ̄)z̄ + λ̄u∗�) < (1 − λ̄) f̄ �(z̄) + λ̄ f̄ �(u∗�) ≤ f̄ �(z̄),

which contradicts the minimality of z̄ for (P(γ)). Consequently, (8) holds, implies that
ϕr (�) = v(rd) ≤ v(r̄d) = ϕr̄ (�), and we are done with showing (7). ��

All pruning results within this subsection are based on the condition (Cond). The next
result simplifies the evaluation of (Cond). It exploits the fact that for any u ∈ U it holds
u /∈ LBr if and only if there exists � ∈ L with ��u < ϕr (�).

Lemma 4.7 Let Assumption 4.3 hold and define for u ∈ U the value σ(u) by

σ(u) := min{��u − ϕr (�) | � ∈ L}. (9)

Then (Cond) holds if and only if σ(u) < 0 for all u ∈ U .
The costs for evaluating (Cond) can be further reduced:

Remark 1 In order to verify whether (Cond) is satisfied it is sufficient to check whether
σ(u) < 0 only for those u ∈ U with u ≥ idr , where idr ∈ R

m is the ideal point of Pr

or some underestimator of it. This holds because of LBr ⊆ {idr } + R
m+. The ideal point is

obtained as a byproduct when calculating LBr .

As we are making use of dual formulations of the problems (Pr (�)) (see Sect. 6) and as
we will try to avoid to solve them exactly, we sometimes calculate just lower bounds for
ϕr (�) in (6) and thus derive only sets LB ′ which are supersets of LBr . Still those sets can
be used to formulate a sufficient condition for (Cond):

Remark 2 Let LBr ∈ R
m be the lower bound set computed as in (6) and let LB ′ ⊇ LBr

be an arbitrary superset of it. Then, if (Cond) holds for LB ′, i.e. if for all u ∈ U we have
u /∈ LB ′, then (Cond) holds also for LBr .

In Sect. 6, we explain how to make use of Lemma 4.7 in combination with Remark 2 to
speed up the pruning strategy in our branch-and-bound algorithm.

4.3 Occurring of pruning conditions

In the last two subsections, we formulated conditions for pruning a node in case (Inf) or
(Cond) hold. Furthermore, we have given conditions in order to prune all the outer siblings
of a node in case (Inf) or (Cond) are satisfied at that node. However, sincewe are not assuming
boundedness of the feasible region of (MOMIQP), it may happen that an infinite number of
nodes is visited, as neither (Inf) nor (Cond) are satisfied at any node. This would imply that
our algorithm never stops. The following lemma shows that this cannot happen and that for
all d ∈ [k] there exist only finitely many integer fixings r ∈ Z

d such that neither (Inf) nor
(Cond) are satisfied. The strong convexity of the objective functions is key to the proof of
the result.

Lemma 4.8 Let d ∈ [k−1]∪ {0} and let Assumption 4.3 hold at level d for r ∈ Z
d , i.e., (Inf)

does not hold. Then there exists γ ∈ Z such that for all r̄ ∈ Z
d+1 with (r̄1, . . . , r̄d) = r and

r̄d+1 /∈ [�α(d + 1)� − γ, �β(d + 1)� + γ
]

either (Cond) or (Inf) is satisfied.

123

Journal of Global Optimization

Proof First, select an arbitrary element � ∈ L . For the current finite and nonempty set of local
upper bounds U define ξ := max{��u | u ∈ U}. Since the objective functions f j , j ∈ [m],
are strongly convex, �� f : R

n → R is a strongly convex quadratic function, too. Thus, there
exists some ν > 0 such that

νλ(1 − λ)
∥∥x − x ′∥∥2

2 + �� f (λx + (1 − λ)x ′) ≤ λ�� f (x) + (1 − λ)�� f (x ′) (10)

for all x, x ′ ∈ R
n and all λ ∈ [0, 1]. Let x∗�,r denote the unique minimizer of the problem

(Pr (�)). By definition it holds α(d + 1) ≤ x∗
1

�,r and β(d + 1) ≥ x∗
1

�,r .
Now, let δ ≥ 0 and consider the optimization problem

min
x

�� f r (x)

s.t. Adx ≤ br

x1 = �β(d + 1)� + δ

x ∈ R
n−d .

(11)

First, assume that there exists some δ̄ ≥ 0 such that (11) is infeasible. Then we define
γ̄ := �δ̄� ∈ N and it holds that (11) remains infeasible for all δ ≥ γ̄ ≥ δ̄. To see this,
assume that there exists some δ′ > δ̄ such that (11) is feasible. The corresponding minimizer
x ′ ∈ R

n−d is not only feasible for (11), but also for (Pr (�)). Further, it holds that

x∗
1

�,r ≤ �β(d + 1)� + δ̄ < �β(d + 1)� + δ′ = x ′
1.

However, since both x∗�,r and x ′ are feasible for (Pr (�)) and the constraints are all linear,
there exists some feasible point x̂ ∈ R

n−d for (Pr (�)) with x̂1 = �β(d + 1)� + δ̄ which
contradicts the assumption that (11) is infeasible for δ̄.

Next, assume that (11) is feasible for all δ ≥ 0 and denote for each δ ≥ 0 by x̄(δ) ∈ R
n−d

its unique minimizer. Note that for r̄ ∈ Z
d+1 with (r̄1, . . . , r̄d) = (r1, . . . , rd) and r̄d+1 =

�β(d + 1)� + δ it holds ϕr̄ (�) = �� f r (x̄(δ)).
We obtain from (10) with λ = 1/2 and for any δ ≥ 0 that

0.25 ν

∥∥∥x∗�,r − x̄(δ)
∥∥∥
2

2
+ �� f r (0.5 x∗�,r + 0.5 x̄(δ)) ≤ 0.5 �� f r (x∗�,r

) + 0.5 �� f r (x̄(δ)).

Since x̄(δ) and x∗�,r are feasible for (Pr (�)), so are all convex combinations of them and in
particular the point 0.5 x∗�,r +0.5 x̄(δ). As x∗�,r is the unique minimizer of (Pr (�)) we have
�� f r (x∗�,r) ≤ �� f r (0.5 x∗�,r + 0.5 x̄(δ)). Further, we have �� f r (x∗�,r) ≤ �� f r (x̄(δ))
and hence

0.25 ν

∥∥∥x∗�,r − x̄(δ)
∥∥∥
2

2
+ �� f r (x∗�,r

) ≤ �� f r (x̄(δ)).

Finally, making use of x̄(δ)1 = �β(d + 1)� + δ ≥ x∗
1

�,r + δ, we obtain that

0.25νδ2 + �� f r (x∗�,r
) ≤ �� f r (x̄(δ)).

For δ ≥ 0 larger than some γ̄ ∈ N, we have that the left hand side of this inequality exceeds
ξ such that ξ < �� f r (x̄(δ)) for all δ ≥ γ̄ .

Analogously, replacing the constraint x1 = �β(d+1)�+δ in (11) by x1 = �α(d+1)�−δ

and using that α(d + 1) ≤ x∗
1

�,r , one obtains that there exists some γ ∈ N such that either

(11) becomes infeasible or ξ < �� f r (x̄(δ)) for all δ ≥ γ .

Thus, for γ := max{γ̄ , γ } and an arbitrary vector r̄ ∈ Z
d+1 of integer fixings with

(r̄1, . . . , r̄d) = (r1, . . . , rd) and r̄d+1 /∈ [�α(d + 1)� − γ, �β(d + 1)� + γ
]
we obtain that

either (Cond) holds since ϕr̄ (�) > ξ ≥ ��u for all u ∈ U or that (Inf) holds. ��

123

Journal of Global Optimization

5 DEIA-BB: algorithmic scheme and finiteness

In order to summarize what we have presented so far, we report in Algorithm 2 the
scheme of our branch-and-bound method, called DEIA-BB (forDetector of Efficient Integer
Assignments-Branch-and-Bound). As already mentioned, DEIA-BB computes two things.
Primarily, it computes a lower bound set L and an upper bound set U for an enclosure of
the nondominated set of (MOMIQP). Thereby, it also computes a superset S of the set of
efficient integer assignments. In the following, we will briefly describe step-by-step how
the algorithm works and how the steps are related to the theoretical results presented in the
previous sections.

Algorithm 2 DEIA-BB: Detector of Efficient Integer Assignments
INPUT: m strongly convex quadratic functions f j : R

n → R, j = 1, . . . ,m, linear constraints Ax ≤ b,

finite set L ⊆ R
m+ with e j ∈ L for all j ∈ [m]

OUTPUT: L, U , S
1: Perform a preprocessing phase to speed up computations (see Algorithm 3)
2: Set U = U (∅) = {Z}, S = ∅ and d = 0
3: if {x ∈ R

n | Ax ≤ b} �= ∅ then
4: Compute α(1) and β(1) according to (2)
5: Set d = 1, r1 = �α(1)�
6: else
7: Stop the algorithm and state infeasibility of (MOMIQP)
8: end if
9: while d > 0 do
10: Evaluate whether (Inf) or (Cond) holds for d and r = (r1, . . . , rd)

11: if not ((Cond) or (Inf)) then
12: if d = k then
13: Update U and L according to (3), (5)
14: Update S = S ∪ {r}
15: else
16: Compute α(d + 1) and β(d + 1) according to (2)
17: end if
18: end if
19: if ((Cond) or (Inf)) and rd < �α(d)� then
20: Set d = d − 1;
21: if (d > 0) Update rd with Algorithm 1 end if
22: else if ((Cond) or (Inf)) and rd ≥ �α(d)� then
23: if rd ≥ �β(d)� then
24: Set rd = �α(d)� − 1
25: else
26: Set rd = rd + 1
27: end if
28: else if d ≤ k − 1 then
29: Set d = d + 1;
30: Set rd = �α(d)�
31: else
32: Update rd with Algorithm 1
33: end if
34: end while

The algorithm first checks in line 3 whether the continuous relaxation of (MOMIQP) is
feasible, i.e., whether the corresponding feasible set {x ∈ R

n | Ax ≤ b} is nonempty. If it is
nonempty, then α(1) and β(1) are computed and the algorithm continues with the main loop
in line 9. Otherwise, the algorithm detects the infeasibility of (MOMIQP) and stops.

123

Journal of Global Optimization

The while loop basically computes feasible leaf nodes, i.e., integer fixings r̄ ∈ Z
k such

that {x ∈ R
n−k | Akx ≤ br̄ } �= ∅, with a depth-first approach. It starts at depth d = 1 with

the integer fixing r = r1 = �α(1)� ∈ Z
d . We remark that the depth d ∈ N never exceeds k

since it is only increased in line 29 of the algorithm and this line is only called if d ≤ k − 1.
We also remark that the first node that is considered at level d + 1 is always the one with the
vector r = (r1, . . . , rd , �α(d + 1)�) of integer fixings.

For an arbitrary node, i.e., an arbitrary vector r ∈ Z
d of integer fixings, at depth d ∈ [k]

the algorithm checks (line 11) whether this node needs to be explored. Namely, it checks
whether (MOMIQP) with the first d variables fixed to r ∈ Z

d is feasible and (Cond) does not
hold. If this is the case and d = k the algorithm has reached a leaf node and thus a feasible
integer fixing for (MOMIQP). This allows us to update the lower and upper bound sets L
and U for the initial enclosure, see line 13. Otherwise, we have not reached a leaf node and
compute the bounds α(d + 1) and β(d + 1) for the integer fixings at level d + 1.

Next, the algorithm checks whether the children or siblings of the current node can be
pruned based on the results of Sects. 4.1 and 4.2. Note that for the former we need (Inf) and
for the latter we need (Cond) to hold in order to prune. If neither (Inf) nor (Cond) hold, then
the conditions in lines 19 and 22 of Algorithm 2 are not satisfied, nothing is pruned, and the
algorithm moves on (with its depth-first approach) to level d + 1, see line 29. In case d = k,
i.e., at a leaf node, the algorithm stays at level d = k and explores the siblings of the current
node, see line 32. We remark that by Lemma 4.8 at each level d ∈ [k] there only exist finitely
many nodes where neither (Inf) nor (Cond) are satisfied.

Thus, for Algorithm 2, it remains the setting that (Inf) or (Cond) are satisfied, i.e., that
either the clause in line 19 or in line 22 is true. If (Inf) holds then we can prune all the
children nodes of the current node corresponding to r ∈ Z

d and in particular the node itself.
Also if (Cond) holds we can prune all the children nodes by Lemma 4.5. Thus the algorithm
only needs to decide whether siblings of the current node need to be explored or can be
pruned. Since at each level d we always start with rd = �α(d)� and the value of rd is only
changed if one of the clauses in line 19 or 22 is true, we first consider the case in line 22.
If �α(d)� ≤ rd ≤ �β(d)� we cannot prune any siblings of the current node based on the
results from the previous sections. Thus, we need to explore them. This is done by setting
rd = rd + 1 in line 26 of Algorithm 2. If rd > �β(d)� it is known from Lemmas 4.2 and 4.6
that all siblings with r̃d > rd can be pruned. Thus, the algorithm will not continue to explore
such nodes and goes on exploring nodes to the left of �α(d)� by setting rd = �α(d)�−1, see
line 24. For any siblings of the current node this means that the condition in line 22 will never
be satisfied again. Instead, the condition in line 19 will be satisfied for any future sibling
where (Inf) or (Cond) holds. If this is the case, then also all siblings with r̃d < rd can be
pruned by Lemma 4.2 or 4.6. As a result, since the node corresponding to the current integer
assignment r ∈ Z

d itself and all of its sibling nodes can be pruned, also its parent node at
level d − 1 can be pruned. Thus, Algorithm 2 moves back to level d − 1, see line 20, and
continues by exploring a sibling of that parent node.

This whole procedure is repeated until we reach line 20 with d = d − 1 = 0, return to
the root node, and terminate the algorithm since the condition d > 0 of the while loop is
no longer satisfied. Together with Lemma 4.8 and the fact that each of the intervals [�α(d +
1)�, �β(d+1)�] is bounded, we eventually reach this line within a finite number of iterations
and obtain the following finiteness result for Algorithm 2.

Theorem 1 Algorithm 2 stops after a finite number of iterations returning the sets L, U and
S.

123

Journal of Global Optimization

From the setsL andU wecanbuild an enclosure of the nondominated setN of (MOMIQP).
Indeed, the following lemma shows that the output setL ⊆ R

m of DEIA-BB is a lower bound
set of (MOMIQP). This in turn implies (see Corollary 5.2) that DEIA-BB is able to release
an enclosure (or box approximation) in a finite number of iterations.

Lemma 5.1 The set L ⊆ R
m computed by Algorithm 2 is a lower bound set in the sense of

Definition 1.

Proof By Theorem 1 we know that L is finite. It only remains to prove thatN ⊆ L+R
m+. So

let z ∈ N and let x̄ ∈ S, r ∈ Z
k , with (x̄1, . . . , x̄k) = (r1, . . . , rk), such that f (x̄) = z. We

prove that DEIA-BB has explored the leaf node r ∈ Z
k . This would imply by (5) that for the

ideal point idr = (ϕr (e1), . . . , ϕr (em)) ∈ L computed at this leaf node it holds that idr ≤ z.
By contradiction, assume that the leaf node r ∈ Z

k has not been explored. Then the parent
node r ′ ∈ Z

d of this leaf node at a certain level d ∈ [k] with (r ′
1, . . . , r

′
d) = (r1, . . . , rd)

was pruned. Since x̄ ∈ R
n is feasible for (MOMIQP) this parent node was not pruned by

(Inf). Hence, it was pruned by (Cond). This means that for all u ∈ U we have that u /∈ LBr ′
.

By (4) we also have that z = f (x̄) ∈ N ⊆ U − R
m+. But then there exists u ∈ U such that

u ≥ z ∈ LBr + R
m+ = LBr ⊆ LBr ′

which is a contradiction. ��
Corollary 5.2 LetL,U ⊆ R

m be the finite sets obtained by Algorithm 2, σ > 0 a small offset,
and denote by e ∈ R

m the all-ones vector. Then B := A(L ′,U ′) = (L ′ + R
m+) ∩ (U ′ − R

m+)

with L ′ := L − {σe} and U ′ := U + {σe} is an enclosure of the nondominated set N of
(MOMIQP) such that N ⊆ int(B).

6 Using dual relaxations

Let r = (r1, . . . , rd)� ∈ Z
d be the vector of integer fixings defining a node at level d in our

branch-and-bound algorithm. As already stated, the multiobjective continuous relaxation of
problem (MOMIQP), where the integer variables are fixed to r ∈ R

d , is (MOPr). Instead of
addressing the problem (MOPr), our aim is to compute LBr by addressing the dual of the
|L| single-objective problems (Pr (�)), where the objective function is defined by

�� f r (x) =
m∑

j=1

� j (x
�Qd

j x + (c j,r)�x + a j,r)

= x�
⎛

⎝
m∑

j=1

� j Q
d
j

⎞

⎠ x +
⎛

⎝
m∑

j=1

� j c
j,r

⎞

⎠
�
x +

m∑

j=1

� j a j,r .

Wedo so in order to accelerate the pruning process for those nodes that can be pruned because
of (Cond). As we will see, addressing the dual of the |L| single-objective problems (Pr (�))
may allow to stop the computation of LBr to a rough though effective-for-pruning set and
this clearly helps in saving computational effort.

For ease of notation, we introduce the following:

Q̄d
� =

m∑

j=1

� j Q
d
j , c̄�,r =

m∑

j=1

� j c
j,r , ā�,r =

m∑

j=1

� j a j,r .

Weobtain the dual of problem (Pr (�)) by first forming the LagrangianLd
� : R

n−d×R
p → R,

Ld
� (x, λ) = x� Q̄d

� x + (c̄�,r)�x + ā�,r + λ�(Adx − br)

123

Journal of Global Optimization

which depends on x and the Lagrange multipliers λ ∈ R
p . Then, for fixed λ ∈ R

p , one
has to minimize Ld

� with respect to the primal variables x . As Q̄d
� is under our assumptions

positive definite,Ld
� (·, λ) is a strictly convex quadratic function and its unique minimizer can

be computed in closed form as

xd� (λ) = −1

2
(Q̄d

�)−1(c̄�,r + Ad�
λ).

Then, the dual of problem (Pr (�)) is

max
λ

Ld
� (λ)

λ ∈ R
p
+,

(12)

with

Ld
� (λ) := Ld

� (xd� (λ), λ)

= λ�
(

−1

4
Ad(Q̄d

�)−1Ad�
)

λ −
(
br� + 1

2
(c̄�,r)�(Q̄d

�)−1Ad�
)

λ

− 1

4
(c̄�,r)�(Q̄d

�)−1(c̄�,r) + ā�,r .

Note that− 1
4 A

d(Q̄d
�)−1Ad� =: −Q̃d

� is a negative semidefinite matrix, so that problem (12)
can be seen as a convex quadratic minimization problem with simple nonnegativity con-
straints. Also note that since all constraints of problem (Pr (�)) are affine, strong duality
holds if the primal problem (Pr (�)) is feasible [26]. On the other hand, if problem (Pr (�))
is infeasible, the dual problem (12) is unbounded [26].

Thanks to weak duality, we also have that Ld
� (λ) ≤ ϕr (�) for each feasible λ ≥ 0. This

means that Lemma 4.7 can be easily extended, cf. Remark 2, as follows:

Lemma 6.1 Let Assumption 4.3 hold and define for u ∈ U, λ ∈ R
p
+ the value σL(u, λ) by

σL(u, λ) := min{��u − Ld
� (λ) | � ∈ L}.

Then (Cond) holds if and only if for all u ∈ U there exists some λ := λ(u) ∈ R
p
+ such that

σL(u, λ) < 0 .

Proof First we will show that if for all u ∈ U there exists λ(u) ∈ R
p
+ such that σL(u, λ(u)) <

0 then this implies (Cond). Assume by contradiction that (Cond) does not hold. Then there
exists ū ∈ U such that ū ∈ LBr . This implies ��ū − ϕr (�) ≥ 0 for all � ∈ L . Due to weak
duality it holds for all λ ∈ R

p
+ thatLd

� (λ) ≤ ϕr (�). Hence, we also have that ��ū−Ld
� (λ) ≥ 0

for all � ∈ L and all λ ∈ R
p
+ which contradicts σL(ū, λ(ū)) < 0.

We now show that if (Cond) holds, then for all u ∈ U there exists λ ∈ R
p
+ such that

σL(u, λ) < 0. For that fix some u ∈ U . By Lemma 4.7, there exists some � ∈ L such that
��u < ϕr (�). Since strong duality holds, λ̂� ∈ R

p
+ exists such that Ld

� (λ̂�) = ϕr (�). This
implies that also σL(u, λ̂�) < 0. ��
Remark 3 If Assumption 4.3 does not hold, namely (Pr (�)) is infeasible, for each � ∈ L a
sequence of points {λ�,k} ⊆ R

p
+ exists such that limk→∞ Ld

� (λ�,k) = +∞. In particular, for
each � ∈ L there is some sufficiently large k̄(�) ∈ N such that

(
max
u∈U ��u

)
− Ld

� (λ�,k̄(�)) < 0.

123

Journal of Global Optimization

Thus, for all u ∈ U and all � ∈ L there is some λ := λ�,k̄(�) such that ��u − Ld
� (λ) < 0

which implies that for each u ∈ U there is some λ ∈ R
p
+ with σL(u, λ) < 0. In fact, there

even exists one λ′ ∈ R
p
+ for all u ∈ U such that σL(u, λ′) < 0.

We address problem (12) with FAST-QPA, an active set feasible method devised in [25]
that uses conjugate gradient directions. The reduced matrices Q̄d

� , (Q̄d
�)−1, and Ad only

depend on the depth d , but not on specific integer fixings r ∈ Z
d . Hence, the quadratic part

of the reduced dual objective functions Q̃d
� can be computed in the preprocessing phase, as

it only depends on (Q̄d
�)−1 and Ad . What is more, also the maximum eigenvalue λmax(Q̃d

�),
needed for ensuring a proper setting of the parameter for the active set estimate and the
convergence of FAST-QPA (see [25]), can be computed in the preprocessing phase. The
preprocessing phase used in our implementation is detailed in Algorithm 3.

Algorithm 3 Preprocessing
INPUT: m strongly convex quadratic functions f j : R

n → R, j = 1, . . . ,m, linear constraints Ax ≤ b,
finite set of vectors L , number of integer variables k
OUTPUT: (Q̄d

�
), (Q̄d

�
)−1, Ad , Q̃d

�
, λmax (Q̃d

�
) for d = 0, . . . , n − 1, for � ∈ L;

1: For d = 0, . . . , n − 1 let Ad be the submatrix of A given by columns d + 1, . . . , n;
2: For d = 0, . . . , n − 1 and � ∈ L compute the submatrix Q̄d

�
;

3: For d = 0, . . . , n − 1 and � ∈ L compute (Q̄d
�
)−1;

4: For d = 0, . . . , n − 1 and � ∈ L compute Q̃d
�

= Ad (Q̄d
�
)−1Ad

�

5: For d = 0, . . . , n − 1 and � ∈ L compute λmax(Q̃d
�
), the maximum eigenvalue of Q̃d

�
,

Let {λk} be the sequence of points produced by FAST-QPA when dealing with prob-
lem (12). Given the properties of FAST-QPA, λk is feasible for all k ∈ N and {Ld

� (λk)} is
a monotonically increasing sequence. From the convergence results shown in [25, Proposi-
tion 11], in case problem (12) admits a maximal solution, under specific assumptions on the
parameter used in the active set estimate, we have that

lim
k→+∞ ‖max{0,∇Ld

� (λk)}‖ = 0.

By [25, Theorem 13] this implies that every limit point of the sequence {λk} produced by
FAST-QPA satisfies the standard first-order optimality conditions for problem (12). Further-
more, since problem (12) is a convex problem (maximization of a concave function over a
convex feasible set), this in turn implies that every limit point of {λk} is an optimal point.
In our implementation of FAST-QPA, we declare optimality when the point λk satisfies the
condition

‖max{0,∇Ld
� (λk)}‖ ≤ 10−5, (13)

having then a guarantee that the algorithm stops after a finite number of iterations.
Handling problem (12) with a feasible method (i.e., an optimization method able to pro-

duce a sequence of feasible points) allows us to implement a strategy for which the node
corresponding to r ∈ Z

d can be pruned before computing the lower bound set LBr . We
call this phenomenon early pruning. We now describe the implemented strategy and give an
example of early pruning.

Given u ∈ U , thanks to Lemma 6.1 and Remark 3, when dealing with problem (12) for a
specific � ∈ L , we stop FAST-QPA as soon as one of the following occurs:

123

Journal of Global Optimization

i) we get, at iteration k̂(�), that ��u < Ld
� (λ�,k̂(�)) implying

σL(u, λ�,k̂(�)) < 0, (14)

ii) we have that (13) holds at iteration k(�) and we set ϕr (�) := Ld
� (λ�,k(�)).

Note that, in case i), k̂(�) ≤ k(�) and Ld
� (λ�,k̂(�)) ≤ Ld

� (λ�,k(�)). If Assumption 4.3 holds for
the current vector r ∈ Z

d of integer fixings at level d , i.e., Sr �= ∅, and (14) holds for every
u ∈ U , condition (Cond) holds and the node can be pruned.Moreover, in case (Inf) holds, i.e.,
Sr = ∅, the |L| dual problems (12) are unbounded. Then, i) occurs and (14) is satisfied for
every u ∈ U so that the node is pruned after a finite number of iterations of FAST-QPA in that
case as well. Consequently, by applying FAST-QPA in our implementation of DEIA-BB,
we can possibly prune the node using only k̂(�) iterations of FAST-QPA, see i), instead of
k(�) iterations to compute ϕr (�) exactly, see ii).

We now discuss a biobjective example where early pruning is possible, see also Fig-
ure 1. Consider an integer fixing r = (r1, . . . , rd) ∈ Z

d , a set of local upper bounds
U = {u1, u2, u3}, and a set of vectors L = {(1, 0), (0, 1), (0.5, 0.5)}. In Figure 1a the
optimal lower bound set LBr is represented by the blue dashed lines. We will show by
this example that our pruning strategy allows us to prune the node without the need of
computing LBr exactly, but just a rough approximation of it. At the beginning, DEIA-BB
takes into account the first local upper bound u1 ∈ U and calls FAST-QPA on problem
(12) with �1 = (1, 0)�. In Figure 1b we see how FAST-QPA stops when i) is satisfied.

In other words, for u1, FAST-QPA stops at iteration k̂(�1) and detects a λ�1,k̂(�1) such that

σL(u1, λ�1,k̂(�1)) < 0. Since σL(u1, λ�1,k̂(�1)) < 0, DEIA-BB can move to the next local
upper bound u2 ∈ U . Since σL(u2, λ�1,k̂(�1)) > 0, FAST-QPA is resumed on problem (12)
with �1 = (1, 0)�, from iteration k̂(�1). From Figure 1c we see again how FAST-QPA stops
before reaching optimality or, in other words, it stops at an iteration k̄(�1) > k̂(�1) such that
σL(u2, λ�1,k̄(�1)) < 0. As before, since σL(u2, λ�1,k̄(�1)) < 0, DEIA-BB can move to the
next local upper bound u3 ∈ U .

Since σL(u3, λ�1,k̄(�1)) > 0, FAST-QPA is resumed on problem (12) with �1 = (1, 0)�,
from iteration k̄(�1). From Figure 1d we notice (see the blue dashed line) that in this case
FAST-QPA stops reaching optimality, or in other words at an iteration k(�1) such that (13)
holds. However, we still have that σL(u3, λ�1,k(�1)) > 0. Then, the new vector �2 ∈ L is
considered and FAST-QPA is called on problem (12) with �2 = (0, 1)�. From Figure 1d we

see that FAST-QPA stops at iteration k̂(�2) detectingλ�2,k̂(�2) such thatσL(u3, λ�2,k̂(�2)) < 0.
Then, by Lemma 6.1, we have that (Cond) holds and the node can be pruned. Note that
DEIA-BB did not have to compute LBr . In particular, we did not need to solve the (duals
of) |L| single-objective problems (Pr (�)) to optimality.

7 Numerical results

In order to investigate the performance of DEIA-BB, we considered randomly generated
instances of (MOMIQP) with m ∈ {2, 3, 4}. The instances were built with a number of
variables n ∈ {5, 10, 15, 20}, a number of constraints p = 15, and a percentage of integer
variables out of the total number of variables equal to %int ∈ {25, 50, 75, 100} (rounded up).
Matrices Q j ∈ R

n×n , j ∈ [m] were built using the MATLAB function sprandsym and
we considered three different density levels ρ ∈ {0.25, 0.50, 0.75}. Namely, we generated
matrices with approximately ρ · n2 nonzeros entries. For what concerns the linear inequality

123

Journal of Global Optimization

Fig. 1 Outer approximations of f r (Sr) obtained through dual relaxations - example of early pruning

constraints, we randomly generated matrix A ∈ R
p×n and vectors b ∈ R

p with m = 15
using the MATLAB functions sprandsym and rand respectively. For each combination
of n,m,%int, ρ we produced 5 different instances, having a total of 720 instances. All
the algorithms considered have been implemented in MATLAB. In our implementation of
DEIA-BB we considered {1, . . . , k} as order for fixing. Note that different orderings, as
well as alternative branching strategies, could be explored. However, in these numerical tests
we focus in analyzing the performance with approximations of the upper image set Pr ,
obtained from different values for |L| and the related benefits in using dual subproblems. All
experiments have been performed on an Intel Core i5-14400F processor running at 2.80GHz
under Linux. Each instance was addressed by DEIA-BB and, in case the algorithm stopped
within one hour, we considered the instance solved by DEIA-BB and the sets L and U were
considered to build an enclosure of the nondominated set.

In Tables 1,2 and 3 we report the results obtained running DEIA-BB on instances with
m = 2, m = 3 and m = 4, respectively, checking the width of the enclosure obtained when
varying the percentage of integer variables. In each table, we report a comparison among three

123

Journal of Global Optimization

Ta
bl
e
1

Pe
rf
or
m
an
ce

of
D
E
I
A
-
B
B
ac
co
rd
in
g
to

th
e
ca
rd
in
al
ity

of
L
,m

=
2

n
%
in
t

|L
|=

m
|L

|=
m

+
1

|L
|=

m
+

1
+

m
(m

−
1)

So
l

T
im

e
N
od

es
W
id
th

C
ar
d L

so
l

T
im

e
N
od

es
W
id
th

C
ar
d L

So
l

T
im

e
N
od

es
W
id
th

C
ar
d L

5
25

15
0.
01

14
.4
7

0.
37

4.
47

15
0.
01

14
.5
3

0.
37

4.
47

15
0.
01

14
.5
3

0.
37

4.
47

5
50

15
0.
02

32
.1
3

0.
18

6.
13

15
0.
03

31
.6
7

0.
18

6.
07

15
0.
04

31
.3
3

0.
18

6.
07

5
75

15
0.
06

60
.0
0

0.
06

6.
07

15
0.
07

63
.2
0

0.
06

6.
47

15
0.
10

62
.5
3

0.
06

6.
47

5
10

0
15

0.
10

98
.4
0

0.
00

5.
00

15
0.
12

97
.8
0

0.
00

5.
00

15
0.
16

97
.9
3

0.
00

5.
00

10
25

15
0.
04

10
0.
33

1.
97

34
.8
7

15
3.
78

83
.4
7

1.
97

29
.4
0

15
3.
76

80
.8
7

1.
97

28
.2
0

10
50

15
0.
07

40
5.
73

1.
05

78
. 4
0

15
3.
81

30
7.
27

1.
05

59
.2
7

15
3.
82

28
9.
87

1.
05

55
.9
3

10
75

15
0.
39

14
86

.4
0

0.
42

71
.9
3

15
4.
15

12
24

.9
3

0.
42

65
.8
0

15
4.
20

11
64

.0
7

0.
42

63
.3
3

10
10

0
15

1.
01

29
51

.2
7

0.
00

48
.3
3

15
4.
82

26
72

.8
0

0.
00

48
.8
7

15
5.
05

26
17

.4
0

0.
00

49
.7
3

15
25

15
9.
71

47
1.
07

3.
22

18
2.
93

15
9.
75

36
1.
00

3.
22

13
8.
20

15
9.
80

33
2.
60

3.
25

12
5.
33

15
50

15
35

.4
5

72
45

.1
3

1.
60

11
92

.8
7

15
23

.1
6

36
66

.1
3

1.
60

55
3.
80

15
24

.9
6

31
87

.8
0

1.
62

48
3.
00

15
75

15
33

.7
9

16
76

6.
53

0.
49

41
7.
27

15
26

.2
8

10
22

8.
53

0.
49

32
9.
60

15
27

.4
0

91
39

.6
0

0.
49

30
1.
47

15
10

0
15

48
.8
2

35
66

6.
07

0.
00

19
1.
67

15
40

.8
7

26
30

2.
53

0.
00

19
6.
40

15
40

.3
4

24
76

3.
87

0.
00

19
7.
53

20
25

15
0.
29

23
38

.8
0

4.
20

87
0.
73

15
0.
25

15
24

.0
0

4.
20

57
7.
00

15
0.
31

13
97

.6
0

4.
20

52
8.
20

20
50

15
59

3.
37

11
11

33
.7
3

2.
19

21
18

6.
07

15
43

2.
58

32
30

5.
20

2.
10

55
86

.1
3

15
48

0.
05

27
33

2.
13

2.
11

47
78

.8
0

20
75

15
90

0.
83

55
32

23
.1
3

1.
17

48
48

7.
60

15
68

4.
37

13
45

67
.6
0

1.
15

95
35

.3
3

15
81

0.
70

11
25

83
.0
7

1.
15

83
77

.9
3

20
10

0
15

97
0.
71

57
96

03
.8
7

0.
00

72
3.
33

14
78

0.
57

42
92

58
.0
0

0.
00

69
8.
93

14
87

2.
44

39
66

91
.2
1

0.
00

83
0.
00

123

Journal of Global Optimization

Ta
bl
e
2

Pe
rf
or
m
an
ce

of
D
E
I
A
-
B
B
ac
co
rd
in
g
to

th
e
ca
rd
in
al
ity

of
L
,m

=
3

n
%
in
t

|L
|=

m
|L

|=
m

+
1

|L
|=

m
+

1
+

m
(m

−
1)

So
l

T
im

e
N
od

es
W
id
th

C
ar
d L

So
l

T
im

e
N
od

es
W
id
th

C
ar
d L

So
l

T
im

e
N
od

es
W
id
th

C
ar
d L

5
25

15
0.
02

15
.4
0

0.
57

4.
93

15
0.
01

15
.0
0

0.
57

4.
93

15
0.
02

13
.8
7

0.
57

4.
67

5
50

15
0.
05

38
.5
3

0.
41

7.
53

15
0.
06

38
.8
7

0.
41

7.
53

15
0.
09

36
.6
0

0.
41

7.
27

5
75

15
0.
14

71
.4
0

0.
13

6.
87

15
0.
14

68
.2
0

0.
13

6.
87

15
0.
27

71
.8
0

0.
14

7.
07

5
10

0
15

0.
23

10
7.
73

0.
00

6.
93

15
0.
25

10
4.
47

0.
00

6.
87

15
0.
43

10
2.
20

0.
00

6.
80

10
25

15
1.
09

11
7.
67

1.
89

39
.2
7

15
1.
10

11
7.
07

1.
89

39
.2
7

15
3.
72

88
.2
0

1.
89

29
.6
7

10
50

15
1.
16

62
3.
27

1.
16

10
5.
60

15
1.
17

61
6.
60

1.
16

10
3.
73

15
3.
84

45
8.
40

1.
16

77
.6
0

10
75

15
1.
07

23
78

.9
3

0.
53

11
2.
67

15
1.
18

23
57

.8
7

0.
53

11
2.
20

15
4.
19

19
77

.8
7

0.
53

10
6.
73

10
10

0
15

4.
55

53
08

.3
3

0.
00

91
.3
3

15
4.
86

52
97

.2
0

0.
00

90
.8
7

15
8.
73

47
80

.0
7

0.
00

95
.8
7

15
25

15
1.
58

64
6.
00

3.
33

25
3.
67

15
1.
60

64
4.
07

3.
33

25
1.
93

15
6.
65

43
5.
60

3.
34

16
6.
27

15
50

15
18

8.
14

12
86

4.
87

1.
89

19
48

.4
7

15
23

7.
46

12
48

6.
60

1.
89

18
85

.6
0

15
19

4.
00

56
45

.4
7

1.
89

86
6.
20

15
75

15
14

1.
90

42
51

8.
60

0.
68

13
34

.6
7

15
18

9.
53

40
38

6.
87

0.
68

12
75

. 7
3

15
16

5.
58

21
00

0.
20

0.
66

91
1.
67

15
10

0
15

19
7.
10

10
19

83
.2
0

0.
00

64
5.
53

15
24

9.
39

98
30

8.
60

0.
00

64
4.
33

15
21

7.
71

67
31

5.
47

0.
00

65
9.
20

20
25

15
1.
30

52
78

.8
7

5.
97

23
13

.0
7

15
1.
40

51
66

.3
3

5.
97

22
57

.8
7

15
1.
71

35
31

.3
3

5.
97

15
07

.9
3

20
50

13
12

87
.6
0

71
16

06
.7
7

3.
59

17
95

97
.7
7

13
14

29
.3
1

64
94

73
.6
9

3.
55

16
36

24
.6
2

12
12

51
.9
7

26
18

86
.4
2

3.
40

63
59

4.
83

20
75

10
17

49
.4
9

20
94

59
3.
20

1.
59

22
79

25
.6
0

11
18

68
.4
8

23
81

73
4.
91

1.
69

26
46

57
.1
8

12
14

81
.8
6

42
88

16
.6
7

1.
79

41
70

0.
17

20
10

0
10

19
71

.4
8

23
90

14
2.
10

0.
00

55
16

.9
0

11
21

76
.9
8

23
22

67
0.
27

0.
00

63
53

.5
5

11
17

13
.0
9

62
45

16
.2
7

0.
00

60
31

. 3
6

123

Journal of Global Optimization

Ta
bl
e
3

Pe
rf
or
m
an
ce

of
D
E
I
A
-
B
B
ac
co
rd
in
g
to

th
e
ca
rd
in
al
ity

of
L
,m

=
4

n
%
in
t

|L
|=

m
|L

|=
m

+
1

|L
|=

m
+

1
+

m
(m

−
1)

So
l

T
im

e
N
od

es
W
id
th

C
ar
d L

So
l

T
im

e
N
od

es
W
id
th

C
ar
d L

So
l

T
im

e
N
od

es
W
id
th

C
ar
d L

5
25

15
0.
02

20
.0
7

0.
63

6.
33

15
0.
03

20
.0
7

0.
63

6.
33

15
0.
05

18
.0
7

0.
63

5.
87

5
50

15
0.
13

50
.2
0

0.
48

9.
67

15
0.
13

50
.4
0

0.
48

9.
80

15
0.
23

46
.5
3

0.
48

8.
93

5
75

15
0.
30

94
.0
0

0.
20

11
.4
0

15
0.
33

93
.8
0

0.
18

11
.3
3

15
0.
54

89
.8
7

0.
20

11
.2
0

5
10

0
15

0.
51

15
1.
93

0.
00

10
.4
7

15
0.
57

15
4.
67

0.
00

10
.4
7

15
0.
94

14
4.
93

0.
00

10
.0
7

10
25

15
0.
16

11
8.
53

1.
93

42
.4
0

15
0.
17

11
8.
53

1.
93

42
.4
0

15
0.
59

96
.4
7

1.
93

30
.6
7

10
50

15
0.
30

68
9.
87

1.
18

12
9.
80

15
0.
32

68
9.
07

1.
18

12
9.
60

15
0.
80

46
3.
27

1.
18

91
.2
0

10
75

15
1.
81

30
55

.8
0

0.
54

17
3.
27

15
1.
92

30
51

.4
0

0.
54

17
3.
53

15
3.
25

24
70

.1
3

0.
56

15
9.
73

10
10

0
15

8.
59

72
36

.4
0

0.
00

13
6.
33

15
8.
97

72
43

.6
7

0.
00

13
6.
47

15
12

.9
9

66
96

.5
3

0.
00

14
6.
47

15
25

15
16

.7
0

81
8.
20

3.
63

32
2.
87

15
16

.7
8

81
7.
80

3.
63

32
2.
67

15
38

.5
8

56
0.
47

3.
63

21
7.
00

15
50

14
39

5.
61

20
49

0.
79

2.
08

36
05

.0
7

14
39

7.
70

20
44

5.
07

2.
08

35
96

.1
4

14
35

5.
50

92
48

.7
9

2.
08

15
90

.8
6

15
75

14
26

6.
02

71
07

9.
36

0.
80

26
59

.1
4

14
27

0.
52

70
54

6.
14

0.
80

26
34

.0
0

13
34

2.
41

35
93

0.
00

0.
80

17
60

.1
5

15
10

0
14

41
3.
01

19
13

40
.0
7

0.
00

14
25

.3
6

14
42

2.
65

19
02

24
.0
0

0.
00

14
27

.1
4

13
56

8.
62

13
50

69
.2
3

0.
00

15
99

.1
5

20
25

15
4.
10

80
33

.0
0

6.
24

38
74

.0
7

15
4.
32

80
29

.4
7

6.
24

38
72

.6
0

15
5.
01

50
48

.2
7

6.
24

22
95

.6
7

20
50

9
18

26
.4
4

69
90

52
.6
7

3.
46

15
17

97
.0
0

9
18

62
.2
9

69
66

39
.6
7

3.
46

15
15

61
.7
8

11
21

63
.8
8

54
57

89
.7
3

4.
34

14
27

88
.5
5

20
75

1
26

70
.7
2

10
58

69
2.
00

1.
32

77
64

2.
00

1
27

03
.4
2

10
39

55
4.
00

1.
32

75
88

0.
00

3
28

74
.2
9

86
94

62
.3
3

1.
97

82
91

5.
00

20
10

0
0

–
–

–
–

0
–

–
–

–
3

30
21

.3
9

11
33

62
5.
00

0.
00

17
40

8.
00

123

Journal of Global Optimization

versions of DEIA-BB, where we considered a different number of hyperplanes for building
the linear outer approximation ofPr . In particular,we set |L| ∈ {m,m+1,m+1+m∗(m−1)},
having:

• |L| = m, if we consider the m vectors of the standard basis;
• |L| = m + 1, if we consider the m vectors of the standard basis plus the vector e

‖e‖1 ;• |L| = m + 1 + m ∗ (m − 1), if we consider the m vectors of the standard basis plus the
vector e

‖e‖1 and all the possible combination of vectors with two components different
from zero, with one component equal to 0.25 and the other one equal to 0.75.

Therefore, for m = 4 we consider up to |L| = 17, meaning that at every node of DEIA-BB
we need to address 17 subproblems to get the approximation of the upper image set Pr .

For each version of DEIA-BB, we report the number of instances solved within the time
limit (sol), the average CPU time (in seconds), the average number of nodes, the average
width of the enclosure obtained and the average cardinality of the set L. All the averages are
taken over the number of instances solved within the time limit among the 15 instances built
for fixed n and %int. We can notice that the quality of the enclosure obtained with DEIA-BB
improves with the percentage of integer variables considered. Note that the value reported is
an average on the quality of the enclosures obtained, on instances with matrices of different
density. Therefore, its interpretation is not obvious. However, as expected, the width of the
computed enclosure is 0 for purely integer instances. Indeed,DEIA-BB is able to detect the
exact nondominated set when dealing with purely integer instances. We can notice that as the
cardinality of L increases, the number of nodes that DEIA-BB needs to explore decreases,
meaning that the improved quality of the approximation of the upper image set pays off. In
some cases, this has a very positive impact: note, for example, that the number of instances
solved within the time limit for n = 20 and m = 3 and m = 4 increases with the cardinality
of L . However, increasing the cardinality of L does not always correspond to a saving in
terms of CPU time. This can be explained by the fact that in every node for which the pruning
condition is not satisfied, a larger number of subproblems needs to be solved. The cardinality
of the set L has an impact with respect to the cardinality of the lower bound set delivered
by DEIA-BB: in general, the higher the cardinality of L the smaller is the cardinality of the
lower bound set L (after reducing it to a stable set). We also notice that the CPU time needed
by DEIA-BB strongly increases with the number of variables.

In Figure 2, we report the enclosure produced by DEIA-BB on an instance with m = 2,
n = 15, %int = 75 considering |L| = m = 2. The lower and upper bound sets are
highlighted. The width of the obtained enclosure is 0.3859 (which is smaller than the average
value obtained for all the instances having n = 15).

DespiteDEIA-BB is able to compute an enclosure of the nondominated set of (MOMIQP),
its quality, when dealing with mixed integer instances, cannot be controlled by any of the
algorithm’s parameters. Thismakes the comparison of DEIA-BBwith other solvers a difficult
task. We opted for showing the performance of DEIA-BB on purely integer instances in
comparison with the performance of AdEnA, the hybrid decision-criterion space method
proposed in [20, Algorithm 3]. For this, we used the code of AdEnA provided on GitHub
[27]. By default, AdEnA starts with an enclosure of the nondominated set which is given as
a single box and refines it until an enclosure with a prescribed width is computed. Clearly,
this width cannot be set to zero, so that a fair comparison is not possible. We chose to set ε,
the parameter controlling the quality of the enclosure released by AdEnA, equal to 0.1. In
Table 4, we show results on instances with n up to 15, as we had numerical issues in calling
AdEnA on some instances with n = 20 andm = 3 andm = 4. The results are averaged with
respect to ρ, the parameter controlling the density of the matrices in the intances. As already

123

Journal of Global Optimization

Fig. 2 Enclosure produced by
DEIA-BB on an instance with
m = 2, n = 15, %int = 75

Table 4 Comparison between DEIA-BB and AdEnA on purely integer instances

n ρ |L| = m |L| = m + 1 |L| = m + 1 + m(m − 1) AdEnA
Sol Time Sol Time Sol Time Sol Time

m = 2 5 25 5 0.10 5 0.12 5 0.15 5 0.15

5 50 5 0.12 5 0.15 5 0.19 5 0.15

5 75 5 0.09 5 0.11 5 0.14 5 0.17

10 25 5 0.99 5 1.02 5 1.23 5 0.78

10 50 5 0.82 5 12.20 5 12.43 5 0.92

10 75 5 1.23 5 1.26 5 1.47 5 0.57

15 25 5 70.67 5 78.52 5 77.31 5 2.80

15 50 5 43.05 5 20.52 5 22.42 5 3.55

15 75 5 32.74 5 23.57 5 21.29 5 4.85

m = 3 5 25 5 0.25 5 0.24 5 0.43 5 0.39

5 50 5 0.28 5 0.32 5 0.52 5 0.73

5 75 5 0.17 5 0.20 5 0.35 5 0.51

10 25 5 4.43 5 4.74 5 6.22 5 6.99

10 50 5 3.15 5 3.35 5 11.77 5 6.77

10 75 5 6.08 5 6.48 5 8.21 5 8.63

15 25 5 62.34 5 116.04 5 142.23 5 38.68

15 50 5 154.92 5 246.17 5 300.08 5 40.77

15 75 5 374.04 5 385.97 5 210.82 5 77.63

mentioned DEIA-BB particularly suffers from an increasing numer of integer variables, as
the number of nodes to be visited strongly grows with respect to this number. However, the
time needed by DEIA-BB seems to scale better with the number of objective functions than
with the number of variables, so that form = 4 the performance of DEIA-BB are comparable
or even better that those of AdEnA.

123

Journal of Global Optimization

Table 4 continued

n ρ |L| = m |L| = m + 1 |L| = m + 1 + m(m − 1) AdEnA
Sol Time Sol Time Sol Time Sol Time

m = 4 5 50 5 0.49 5 0.56 5 0.93 5 1.62

5 75 5 0.45 5 0.47 5 0.85 5 1.64

10 25 5 11.55 5 11.96 5 17.08 5 32.26

10 50 5 7.85 5 8.17 5 11.38 5 39.58

10 75 5 6.37 5 6.78 5 10.52 5 31.15

15 25 4 679.33 4 684.23 4 803.42 5 217.54

15 50 5 264.72 5 269.90 5 406.83 5 252.29

15 75 5 348.25 5 366.13 4 536.06 5 303.34

8 Conclusions

We devised a branch-and-boundmethod able to compute a superset of the set of efficient inte-
ger assignments for multiobjective mixed-integer convex quadratic programs. The solution
of dual formulations of specific subproblems combined with a corresponding preprocessing
phase enables a fast enumeration of the nodes. For all the major results strong convexity of
the objective functions is needed as a basic assumption. Already for linear objective func-
tions, i.e., for convex functions which are not strongly convex, the results would fail. This
can be seen by the simple example f : R → R

2, with f (x) = (x,−x) and feasible set Z. All
feasible points are efficient and the nondominated set is unbounded. Also for using the dual
relaxations the convexity is needed as a necessary condition for strong duality. Moreover,
for explicitly stating the dual problem as done in (12), the analytically given unique solution
x(λ) is required which is, for nonlinear problems, in general only available for strictly con-
vex quadratic problems. A possible way to make use of those dual bounds for more general
nonlinear problems could be to first find strictly convex quadratic underestimators for the
objective functions, i.e., strictly convex quadratic functions g j : R

n → Rwith g j (x) ≤ f j (x)
for all x ∈ R

n for j = 1, . . . ,m, and then to apply the dual lower bounding procedure on
those. That would still give lower bounds for the original functions f j .

Under the assumption of strong convexity of the objective functions, the algorithm is
guaranteed to compute an enclosure of the nondominated set in a finite number of iterations.
No assumption on the boundedness of the feasible set is needed. Numerical results on biob-
jective instances as well as on instances with three and four objectives are reported, showing
the ability of the method in computing an enclosure of the nondominated set of multiob-
jective mixed-integer convex quadratic programs. However, DEIA-BB can be considered
exact only in the case of purely integer instances, where the complete nondominated set is
delivered. Indeed, for mixed-integer instances the quality of the enclosure obtained cannot be
controlled a priori by any of DEIA-BB parameters and from our numerical tests we notice
that such quality got worse as the number of continuous variables increases. This weakness
of DEIA-BB opens the possibility, as future work, of studying post-processing procedures
able to refine the enclosure obtained up to a desired precision.

123

Journal of Global Optimization

Appendix

Consider a multiobjective programming problem of the form

min (f1(x), . . . , fm(x))�
s.t. x ∈ � ⊆ R

n (15)

where f j : R
n → R denotes a strongly convex function with parameter γ j > 0 for all

j ∈ [m] and � ⊆ R
n is a nonempty feasible set. The following results show that the efficient

set and the nondominated set of (15) are bounded sets.

Proposition 1 Let E be the efficient set of (15). Then there exist x̄, x ∈ R
n such that E ⊆

int(BE) =: (x̄, x).

Proof Assume by contradiction that (xk)k∈N ⊆ E exists such that limk→∞
∥∥xk

∥∥2
2 = +∞.

Let x̃ ∈ � and let ρ := f (x̃). In particular, we have that

lim
k→∞

∥∥∥xk − x̃
∥∥∥
2

2
= +∞. (16)

Further, let j ∈ [m]. Since f j is strongly convex, we have that

0.25 γ j ‖x − x̃‖22 + f j (0.5(x + x̃)) ≤ 0.5 f j (x) + 0.5 f j (x̃)

holds for all x ∈ R
n or, equivalently,

0.5 γ j ‖x − x̃‖22 + 2 f j (0.5(x + x̃)) − f j (x̃) ≤ f j (x). (17)

Furthermore, let x∗
j denote the unique minimizer of f j overR

n . From (17) and since f j (x) ≥
f j (x∗

j) for all x ∈ R
n , we have that for all k ∈ N

f j (x
k) ≥ 0.5 γ j

∥∥∥xk − x̃
∥∥∥
2

2
+ 2 f j (x

∗
j) − f j (x̃).

Therefore, from (16), it necessarily holds limk→∞ f j (xk) = +∞ for all j ∈ [m]. In par-
ticular, for sufficiently large k ∈ N we have that f (xk) > ρ = f (x̃), contradicting that
(xk)k∈N ⊆ E . ��

As a direct consequence from Proposition 1 we obtain the following:

Corollary 8.1 Let N be the nondominated set of (15). Then there exist z, Z ∈ R
m such that

N ⊆ int(BN) =: (z, Z).

Acknowledgements The authors are very grateful to the anonymous referees for the careful reading of the
manuscript and their valuable comments.

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agree-
ment. The work of the second and the last author is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) within Project-ID 432218631. The first and the third author acknowledge sup-
port within the project No RM120172A2970290 which has received funding from Sapienza University of
Rome.

Data Availability The data presented in this manuscript are reproducible through the implementation publicly
available on GitHub https://github.com/mariannadesantis/DEIA-BB

Declarations

Conflict of interest The authors declare they have no financial interests.

123

https://github.com/mariannadesantis/DEIA-BB

Journal of Global Optimization

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Zhong, H., Guan, W., Zhang, W., Jiang, S., Fan, L.: A bi-objective integer programming model for
partly-restricted flight departure scheduling. PLOS ONE 13(5), 0196146 (2018). https://doi.org/10.1371/
journal.pone.0196146

2. Ulusoy, A.-J., Pecci, F., Stoianov, I.: Bi-objective design-for-control of water distribution networks with
global bounds. Optim. Eng. 23(1), 527–577 (2022). https://doi.org/10.1007/s11081-021-09598-z

3. Pecci, F., Stoianov, I.: Bounds and convex heuristics for bi-objective optimal experiment design in water
networks. Comput. Oper. Res. 153, 106181 (2023). https://doi.org/10.1016/j.cor.2023.106181

4. Legendre, A., Angel, E., Tahi, F.: Bi-objective integer programming for RNA secondary structure pre-
diction with pseudoknots. BMC Bioinf. 19(1), 13 (2018). https://doi.org/10.1186/s12859-018-2007-
7

5. Ruzika, S., Wiecek, M.M.: Approximation methods in multiobjective programming. J. Optim. Theory
Appl. 126(3), 473–501 (2005). https://doi.org/10.1007/s10957-005-5494-4

6. Eichfelder, G., Kirst, P., Meng, L., Stein, O.: A general branch-and-bound framework for continuous
global multiobjective optimization. J. Global Optim. 80(1), 195–227 (2021). https://doi.org/10.1007/
s10898-020-00984-y

7. Eichfelder, G., Warnow, L.: An approximation algorithm for multi-objective optimization problems using
a box-coverage. J. Global Optim. 83(2), 329–357 (2022). https://doi.org/10.1007/s10898-021-01109-9

8. Eichfelder, G., Stein, O., Warnow, L.: A solver for multiobjective mixed-integer convex and nonconvex
optimization. J. Optim. Theory Appl. (2023). https://doi.org/10.1007/s10957-023-02285-2

9. Eichfelder, G., Warnow, L.: A hybrid patch decomposition approach to compute an enclosure for multi-
objective mixed-integer convex optimization problems. Math. Methods Oper. Res. (2023). https://doi.
org/10.1007/s00186-023-00828-x

10. De Santis, M., Grani, G., Palagi, L.: Branching with hyperplanes in the criterion space: the frontier
partitioner algorithm for biobjective integer programming. European J. Oper. Res. 283(1), 57–69 (2020).
https://doi.org/10.1016/j.ejor.2019.10.034

11. Forget, N., Gadegaard, S.L., Klamroth, K., Nielsen, L.R., Przybylski, A.: Branch-and-bound and objective
branchingwith three ormore objectives. Comput. Oper. Res. 148, 106012 (2022). https://doi.org/10.1016/
j.cor.2022.106012

12. Parragh, S.N., Tricoire, F.: Branch-and-bound for bi-objective integer programming. Inf. J. Comput. 31(4),
805–822 (2019). https://doi.org/10.1287/ijoc.2018.0856

13. De Santis, M., Eichfelder, G., Niebling, J., Rocktäschel, S.: Solving multiobjective mixed integer convex
optimization problems. SIAM J. Optim. 30(4), 3122–3145 (2020). https://doi.org/10.1137/19m1264709

14. JayasekaraMerenchige, P.L.W.,Wiecek, M.: A branch and bound algorithm for biobjective mixed integer
quadratic programs. Preprint 21294, Optimization Online (2022)

15. Przybylski, A., Gandibleux, X.: Multi-objective branch and bound. Eur. J. Oper. Res. 260(3), 856–872
(2017). https://doi.org/10.1016/j.ejor.2017.01.032

16. Halffmann, P., Schäfer, L.E., Dächert, K., Klamroth, K., Ruzika, S.: Exact algorithms for multiobjective
linear optimization problems with integer variables: A state of the art survey. J. Multi-Criteria Decis.
Anal. 29(5–6), 341–363 (2022). https://doi.org/10.1002/mcda.1780

17. Cabrera-Guerrero, G., Ehrgott, M., Mason, A.J., Raith, A.: Bi-objective optimisation over a set of convex
sub-problems. Ann. Oper. Res. 319(2), 1507–1532 (2022). https://doi.org/10.1007/s10479-020-03910-
3

18. De Santis, M., Eichfelder, G.: A decision space algorithm for multiobjective convex quadratic integer
optimization. Comput. Oper. Res. 134, 105396 (2021). https://doi.org/10.1016/j.cor.2021.105396

19. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-
27659-9

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pone.0196146
https://doi.org/10.1371/journal.pone.0196146
https://doi.org/10.1007/s11081-021-09598-z
https://doi.org/10.1016/j.cor.2023.106181
https://doi.org/10.1186/s12859-018-2007-7
https://doi.org/10.1186/s12859-018-2007-7
https://doi.org/10.1007/s10957-005-5494-4
https://doi.org/10.1007/s10898-020-00984-y
https://doi.org/10.1007/s10898-020-00984-y
https://doi.org/10.1007/s10898-021-01109-9
https://doi.org/10.1007/s10957-023-02285-2
https://doi.org/10.1007/s00186-023-00828-x
https://doi.org/10.1007/s00186-023-00828-x
https://doi.org/10.1016/j.ejor.2019.10.034
https://doi.org/10.1016/j.cor.2022.106012
https://doi.org/10.1016/j.cor.2022.106012
https://doi.org/10.1287/ijoc.2018.0856
https://doi.org/10.1137/19m1264709
https://doi.org/10.1016/j.ejor.2017.01.032
https://doi.org/10.1002/mcda.1780
https://doi.org/10.1007/s10479-020-03910-3
https://doi.org/10.1007/s10479-020-03910-3
https://doi.org/10.1016/j.cor.2021.105396
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9

Journal of Global Optimization

20. Eichfelder, G., Warnow, L.: Advancements in the computation of enclosures for multi-objective opti-
mization problems. Eur. J. Oper. Res. 310(1), 315–327 (2023). https://doi.org/10.1016/j.ejor.2023.02.
032

21. Klamroth, K., Lacour, R., Vanderpooten, D.: On the representation of the search region in multi-objective
optimization. Eur. J. Oper. Res. 245(3), 767–778 (2015). https://doi.org/10.1016/j.ejor.2015.03.031

22. Buchheim, C., De Santis, M., Palagi, L.: A fast branch-and-bound algorithm for non-convex quadratic
integer optimization subject to linear constraints using ellipsoidal relaxations. Oper. Res. Lett. 43(4),
384–388 (2015). https://doi.org/10.1016/j.orl.2015.05.001

23. Buchheim, C., De Santis, M., Palagi, L., Piacentini, M.: An exact algorithm for nonconvex quadratic
integer minimization using ellipsoidal relaxations. SIAM J. Optim. 23(3), 1867–1889 (2013). https://doi.
org/10.1137/120878495

24. Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex quadratic
integer programming. Math. Program. 135(1–2), 369–395 (2012). https://doi.org/10.1007/s10107-011-
0475-x

25. Buchheim, C., De Santis, M., Lucidi, S., Rinaldi, F., Trieu, L.: A feasible active set method with reop-
timization for convex quadratic mixed-integer programming. SIAM J. Optim. 26(3), 1695–1714 (2016).
https://doi.org/10.1137/140978971

26. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999). https://doi.org/10.1007/
978-0-387-40065-5

27. Eichfelder, G., Warnow, L.: AdEnA. https://github.com/LeoWarnow/AdEnA. Accessed 2023-09-20
(2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.ejor.2023.02.032
https://doi.org/10.1016/j.ejor.2023.02.032
https://doi.org/10.1016/j.ejor.2015.03.031
https://doi.org/10.1016/j.orl.2015.05.001
https://doi.org/10.1137/120878495
https://doi.org/10.1137/120878495
https://doi.org/10.1007/s10107-011-0475-x
https://doi.org/10.1007/s10107-011-0475-x
https://doi.org/10.1137/140978971
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://github.com/LeoWarnow/AdEnA

	Using dual relaxations in multiobjective mixed-integer convex quadratic programming
	Abstract
	1 Introduction
	2 Basic notions and definitions
	3 Building subproblems by fixing variables
	4 Pruning of nodes
	4.1 Pruning by infeasibility
	4.2 Pruning by lower and upper bounds
	4.3 Occurring of pruning conditions

	5 DEIA-BB: algorithmic scheme and finiteness
	6 Using dual relaxations
	7 Numerical results
	8 Conclusions
	Appendix
	Acknowledgements
	References

